1
|
Zhang P, Wu Z, Zhou T, Yang D, Mu Q, Zhang W, Yu L, Zhang S, Hu Y, Mu J, Jia W. Autoantibody repertoire profiling in tissue and blood identifies colorectal cancer-specific biomarkers. Cancer Sci 2024; 115:83-93. [PMID: 37985391 PMCID: PMC10823280 DOI: 10.1111/cas.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Autoantibodies (AAbs) in the blood of colorectal cancer (CRC) patients have been evaluated for tumor detection. However, it remains uncertain whether these AAbs are specific to tumor-associated antigens. In this study, we explored the IgG and IgM autoantibody repertoires in both the in situ tissue microenvironment and peripheral blood as potential tumor-specific biomarkers. We applied high-density protein arrays to profile AAbs in the tumor-infiltrating lymphocyte supernatants and corresponding serum from four patients with CRC, as well as in the serum of three noncancer controls. Our findings revealed that there were more reactive IgM AAbs than IgG in both the cell supernatant and corresponding serum, with a difference of approximately 3-5 times. Immunoglobulin G was predominant in the serum, while IgM was more abundant in the cell supernatant. We identified a range of AAbs present in both the supernatant and the corresponding serum, numbering between 432 and 780, with an average of 53.3% shared. Only 4.7% (n = 23) and 0.2% (n = 2) of reactive antigens for IgG and IgM AAbs, respectively, were specific to CRC. Ultimately, we compiled a list of 19 IgG AAb targets as potential tumor-specific AAb candidates. Autoantibodies against one of the top candidates, p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A), were significantly elevated in 53 CRC patients compared to 119 controls (p < 0.0001). The project revealed that tissue-derived IgG AAbs, rather than IgM, are the primary source of tumor-specific AAbs in peripheral blood. It also identified potential tumor-specific AAbs that could be applied for noninvasive screening of CRC.
Collapse
Affiliation(s)
- Pei‐Fen Zhang
- Affiliated Tumor Hospital of Xinjiang Medical UniversityÜrümqiChina
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ziyi Wu
- Department of Radiation OncologyFujian Medical University Cancer Hospital, Fujian Cancer HospitalFuzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Wei Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Quan‐Kai Mu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Bin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Long Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shao‐Dan Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ye‐Zhu Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleMarylandUSA
| | - Wei‐Hua Jia
- Affiliated Tumor Hospital of Xinjiang Medical UniversityÜrümqiChina
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
2
|
Yoon HS, Zheng W, Cai H, Wu J, Shidal C, Wang J, Shu XO, Waterboer T, Blot WJ, Cai Q. Pre-diagnostic circulating p53 autoantibodies and subsequent lung cancer risk in low-income African and European Americans. Cancer Epidemiol 2022; 81:102288. [PMID: 36332502 PMCID: PMC11296379 DOI: 10.1016/j.canep.2022.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Mutations of the TP53 gene lead to the production of autoantibodies against p53, a major tumor suppressor protein. Although studies have indicated the association of p53 autoantibodies with human cancers, epidemiologic evidence on lung cancer is still lacking. METHODS In this nested case-control study conducted within the Southern Community Cohort Study, we investigated the association of circulating p53 autoantibodies with the subsequent risk of developing lung cancer. Using blood samples collected prior to any cancer diagnosis from 295 cases and their individually matched controls, seroreactivity to p53 was assessed by fluorescent bead-based multiplex serology. Conditional logistic regression models were used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for lung cancer risk associated with p53 autoantibodies. RESULTS After adjustment for potential confounders, p53 seropositivity was significantly associated with an increased risk of lung cancer (OR=2.98, 95 % CI: 1.10-8.06) among African Americans, but not among European Americans (OR=1.21, 95 % CI: 0.24-6.15). The positive associations were restricted to men (OR=4.59, 95 % CI: 1.30-16.16) and participants with a short interval (≤ 4 years) from blood collection to diagnosis (OR=4.30, 95 % CI: 1.33-13.89). CONCLUSION Our findings add to the evidence supporting p53 autoantibodies as a biomarker of lung cancer.
Collapse
Affiliation(s)
- Hyung-Suk Yoon
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Chris Shidal
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jifeng Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA.
| |
Collapse
|
3
|
Zheng Z, Park JK, Kwon OW, Ahn SH, Kwon YJ, Jiang L, Zhu S, Park BH. The Risk of Gastrointestinal Cancer on Daily Intake of Low-Dose BaP in C57BL/6 for 60 Days. J Korean Med Sci 2022; 37:e235. [PMID: 35916047 PMCID: PMC9344036 DOI: 10.3346/jkms.2022.37.e235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Benzo(a)pyrene (BaP) is a carcinogenic compound in contaminated foodstuffs. The effect of oral intake of the environmental carcinogen BaP under low doses and frequent exposure on a digestive system has not been thoroughly verified. METHODS In this regard, this study was conducted to prove the toxicity effects of BaP on the stomach and colon tissue after exposure to C57BL/6 mouse (3 and 6 µg/kg) following daily oral administration for 60 days. This study investigated acute gastric mucosal injury, severe gastric edema, cell infiltration, and mononuclear cells, multifocal cells, and tumoral inflammatory cells. RESULTS The results of ELISA showed that the expression of serum interleukin (IL)-6 and tumor necrosis factor-α in the BaP exposure group were significantly increased, and a high level of DNA adduct distribution in their stomach and colon. Moreover, this study has confirmed the expression of early carcinogenesis markers: nuclear factor (NF)-κB, p53, IL-6, superoxide dismutase 1 (SOD1), mucin (MUC1 and MUC2), and β-catenin in the stomach and colon, and showed that there was a significant increase in IL-6, NF-κB, SOD1, β-catenin, and MUC1 (P < 0.05). At the same time, there was a significant decrease in MUC2 and p53 (P < 0.05). Thus, even in low doses, oral intake of BaP can induce DNA damage, increasing the potential risk of gastrointestinal cancer. CONCLUSION This study will provide a scientific basis for researching environmental contaminated food and intestinal health following daily oral administration of BaP.
Collapse
Affiliation(s)
- Zhi Zheng
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Jung Kuk Park
- Department of Environmental Technology, Food Technology, and Molecular Technology, Ghent University Global Campus, Incheon, Korea
| | | | - Sung Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Korea
| | - Young Joo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Linjuan Jiang
- School of Public Health, Xinxiang Medical University, Henan, China
| | - Shaohui Zhu
- The First Affiliated Hospital of Xinxiang Medical College, Henan, China
| | - Byoung Hee Park
- Raphagen Co., Ltd. Seoul, Korea
- HealingBio Co., Ltd. Cheongju, Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
4
|
Harlid S, Gunter MJ, Van Guelpen B. Risk-Predictive and Diagnostic Biomarkers for Colorectal Cancer; a Systematic Review of Studies Using Pre-Diagnostic Blood Samples Collected in Prospective Cohorts and Screening Settings. Cancers (Basel) 2021; 13:4406. [PMID: 34503217 PMCID: PMC8430893 DOI: 10.3390/cancers13174406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
This systematic review summarizes the evidence for blood-based colorectal cancer biomarkers from studies conducted in pre-diagnostic, asymptomatic settings. Of 1372 studies initially identified, the final selection included 30 studies from prospective cohorts and 23 studies from general screening settings. Overall, the investigations had high quality but considerable variability in data analysis and presentation of results, and few biomarkers demonstrated a clinically relevant discriminatory ability. One of the most promising biomarkers was the anti-p53 antibody, with consistent findings in one screening cohort and in the 3-4 years prior to diagnosis in two prospective cohort studies. Proteins were the most common type of biomarker assessed, particularly carcinoembryonic antigen (CEA) and C-reactive protein (CRP), with modest results. Other potentially promising biomarkers included proteins, such as AREG, MIC-1/GDF15, LRG1 and FGF-21, metabolites and/or metabolite profiles, non-coding RNAs and DNA methylation, as well as re-purposed routine lab tests, such as ferritin and the triglyceride-glucose index. Biomarker panels generally achieved higher discriminatory performance than single markers. In conclusion, this systematic review highlighted anti-p53 antibodies as a promising blood-based biomarker for use in colorectal cancer screening panels, together with other specific proteins. It also underscores the need for validation of promising biomarkers in independent pre-diagnostic settings.
Collapse
Affiliation(s)
- Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, 90187 Umeå, Sweden;
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, 69372 Lyon, France;
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, 90187 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
5
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|