1
|
Bialas P, Kobayashi T, Hellsten R, Krzyzanowska A, Persson M, Marginean F, Trudel D, Garraway IP, Trock BJ, Taimen P, Saad F, Mirtti T, Knudsen B, De Marzo AM, Bjartell A. pSTAT3 Expression is Increased in Advanced Prostate Cancer in Post-Initiation of Androgen Deprivation Therapy. Prostate 2025; 85:252-264. [PMID: 39523927 PMCID: PMC11720397 DOI: 10.1002/pros.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) plays a role in carcinogenesis and is involved in processes, such as proliferation, differentiation, drug resistance and immunosuppression. STAT3 can be activated by phosphorylation of tyrosine at position 705 (pSTAT3Tyr705) or serine at 727 (pSTAT3Ser727). High expression levels of pSTAT3 are implicated in advanced stages of prostate cancer (PCa) and are known to interact with the androgen receptor signaling pathway. However, not much is known about how androgen deprivation therapy (ADT) in advanced disease affects pSTAT3 expression. The aim of this study was to determine the influence of ADT on pSTAT3 expression in PCa tissue. METHODS The study cohort came from a PCa tissue microarray resource containing prostate specimens from patients before and post-initiation of ADT. Tissue samples from 111 patients were immunostained for pSTAT3Tyr705 and pSTAT3Ser727. H-score was used to evaluate the intensity and the percentage of pSTAT3 expression in malignant epithelial and stromal compartments. Univariate and multivariable Cox regression analyses were used to assess pSTAT3Tyr705 and pSTAT3Ser727 as biomarkers of oncological outcome in patients undergoing ADT. RESULTS Post-ADT PCa samples demonstrated increased nuclear and cytoplasmic levels of pSTAT3Ser727 in the stroma compared to pre-ADT samples, whereas pSTAT3Tyr705 expression was increased significantly in both stromal and malignant epithelial compartments except for stromal cytoplasm. High cytoplasmic pSTAT3Ser727 in stromal compartments correlated with reduced overall survival, shorter time to castration-resistant PCa development, and decreased metastasis-free survival. An increase in nuclear and cytoplasmic pSTAT3Ser727 expression within the stromal compartment of post-ADT samples corresponded to a shorter time to CRPC development, which was not observed for pSTAT3Tyr705. Multivariable survival analysis using Cox's regression identified that high cytoplasmic pSTAT3Ser727 expression in the stroma of post-ADT samples and pT3 or pT4-stage were associated with worse overall survival and 5-year metastasis-free survival (MFS). CONCLUSIONS This study presents novel insights into the impact of ADT on the expression levels of pSTAT3Tyr705 and pSTAT3Ser727 in PCa. Cytoplasmic pSTAT3Ser727 status of cancer-associated stromal cells in post-ADT samples may serve as an independent prognostic marker for OS and 5-year MFS, identifying prostate cancer patients prone to developing resistance to ADT.
Collapse
Affiliation(s)
- Piotr Bialas
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
- Chair and Department of Cell BiologyPoznan University of Medical SciencesPoznanPoland
| | - Tamae Kobayashi
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Rebecka Hellsten
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Margareta Persson
- Department of Laboratory Medicine, Translational Cancer ResearchLund UniversityLundSweden
| | - Felicia Marginean
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
| | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l'Université de Montréal et Institut du cancer de MontréalMontrealQuebecCanada
- Department of Pathology and Cellular BiologyUniversité de MontréalMontrealQuebecCanada
| | - Isla P. Garraway
- Department of Urology, Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine at University of CaliforniaLos AngelesCaliforniaUSA
- Division of UrologyGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| | - Bruce J. Trock
- Department of Urology and Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer CentreUniversity of TurkuTurkuFinland
- Department of PathologyTurku University HospitalTurkuFinland
| | - Fred Saad
- Department of SurgeryUniversité de MontréalMontrealQuebecCanada
| | - Tuomas Mirtti
- HUS Diagnostic Center, Department of PathologyHUS Helsinki University HospitalHelsinkiFinland
- Medicum and Research Program In Systems OncologyFaculty of Medicine, University of HelsinkiHelsinkiFinland
| | - Beatrice Knudsen
- Digital and Computational PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Angelo M. De Marzo
- Department of Urology and Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreMarylandUSA
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological CancersLund UniversityMalmöSweden
- Department of UrologySkåne University HospitalMalmöSweden
| |
Collapse
|
2
|
Choo N, Keerthikumar S, Ramm S, Ashikari D, Teng L, Niranjan B, Hedwards S, Porter LH, Goode DL, Simpson KJ, Taylor RA, Risbridger GP, Lawrence MG. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer. J Pathol 2024; 263:242-256. [PMID: 38578195 DOI: 10.1002/path.6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susanne Ramm
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daisaku Ashikari
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Linda Teng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Birunthi Niranjan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shelley Hedwards
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| |
Collapse
|