1
|
Encapsulated Carbenoxolone Reduces Lung Metastases. Cancers (Basel) 2019; 11:cancers11091383. [PMID: 31533288 PMCID: PMC6771083 DOI: 10.3390/cancers11091383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
Carbenoxolone is an anti-inflammatory compound and a derivate of a natural substance from the licorice plant. We previously showed that carbenoxolone reduces the metastatic burden in the lungs of mice through its antagonistic effect on high mobility group box 1 (HMGB1). To further enhance carbenoxolone's activity and localization in the lungs, thereby reducing the potential adverse side effects resulting from systemic exposure, we developed a poly(lactic-co-glycolic acid) (PLGA) slow-release system for pulmonary delivery which maintains drug activity in-vitro, as demonstrated in the anoikis assay. Both systemic and intranasal administrations of carbenoxolone effectively minimize metastatic formation in a lung colonization model in mice. Our results show a decrease in the metastatic burden in the lung tissue. Notably, the therapeutic effect of a single intranasal administration of 25 mg/kg carbenoxolone, in the form of drug-loaded particles, had a similar effect in reducing metastatic lesions in the lungs to that of a 10-fold dose of the free drug via intraperitoneal injections, three times per week over the course of four weeks. These data offer new means to potentiate the anti-cancer activity of carbenoxolone and simultaneously reduce the requirement for high dosage administration; the upshot substantially improves therapeutic effect and avoidance of side effects.
Collapse
|
2
|
Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release 2018; 294:102-113. [PMID: 30553849 DOI: 10.1016/j.jconrel.2018.12.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Owing to the diversity and ease of preparation of nanomaterials, the rational nanocarriers with a rational design have become increasingly popular in medical researches. Although nanoparticle-based drug delivery exhibits great potential, there are some challenges facing like rapid plasma clearance, triggering or aggravation of immune response, etc. Herein, cell-based targeted drug delivery systems have drawn more and more attention owing to low immunogenicity and intrinsic mutation rate, and innate ability to allow targeted delivery. Mesenchymal stem cells (MSCs) have been used in gene and drug delivery. The use of MSCs is a promising approach for the development of gene transfer systems and drug loading strategies because of their intrinsic properties, including homing ability and tumor tropism. By combining the inherent cell properties and merits of synthetic nanoparticles (NPs), cell membrane coated NPs emerge as the time requires. Overall, we provide a comprehensive overview of the utility of MSCs in drug and gene delivery as well as MSC membrane coated nanoparticles for therapy and drug delivery, aiming to figure out the significant room for development and highlight the potential future directions.
Collapse
|
4
|
The future of mesenchymal stem cell-based therapeutic approaches for cancer - From cells to ghosts. Cancer Lett 2017; 414:239-249. [PMID: 29175461 DOI: 10.1016/j.canlet.2017.11.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells which can differentiate into a variety of cell types including osteoblasts, adipocytes and chondrocytes. They are normally resident in adipose tissue, bone marrow and the umbilical cord, but can also be found in other tissues and are known to be recruited to sites of wound healing as well as growing tumours. The therapeutic potential of MSCs has been explored in a number of phase I/II and III clinical trials, of which several were targeted against graft-versus-host disease and to support engraftment of haematopoietic stem cells (HSCs), but currently only very few in the oncology field. There are now three clinical trials either ongoing or recruiting patients that use MSCs to treat tumour disease. In these, MSCs target gastrointestinal, lung and ovarian cancer, respectively. The first study uses MSCs loaded with a HSV-TK expression construct under the control of the CCL5 promoter, and has recently reported successful completion of Phase I/II. While no adverse side effects were seen during this study, no outcomes with respect to therapeutic benefits have been published. The other clinical trials targeting lung and ovarian cancer will be using MSCs expressing cytokines as therapeutic payload. Despite these encouraging early steps towards their clinical use, many questions are still unanswered regarding the biology of MSCs in normal and pathophysiological settings. In this review, in addition to summarising the current state of MSC-based therapeutic approaches for cancer, we will describe the remaining questions, obstacles and risks, as well as novel developments such as MSC-derived nanoghosts.
Collapse
|
5
|
Askoxylakis V, Arvanitis CD, Wong CSF, Ferraro GB, Jain RK. Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Adv Drug Deliv Rev 2017. [PMID: 28648712 DOI: 10.1016/j.addr.2017.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Five-year survival rates have not increased appreciably for patients with primary and metastatic brain tumors. Nearly 17,000 patients die from primary brain tumors, whereas approximately 200,000 cases are diagnosed with brain metastasis every year in the US alone. At the same time, with improved control of systemic disease, the incidence of brain metastasis is increasing. Thus, novel approaches for improving the treatment outcome for these uniformly fatal diseases are needed urgently. In the review, we summarize the challenges in the treatment of these diseases using antiangiogenic therapies alone or in combination with radio-, chemo- and immuno-therapies. We also discuss the emerging strategies to improve the treatment outcome using both pharmacological approaches to normalize the tumor microenvironment and physical approaches (e.g., focused ultrasound) to modulate the blood-tumor-barrier, along with limitations of each approach. Finally, we offer some new avenues of future research.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christina S F Wong
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Landgraf L, Nordmeyer D, Schmiel P, Gao Q, Ritz S, S Gebauer J, Graß S, Diabaté S, Treuel L, Graf C, Rühl E, Landfester K, Mailänder V, Weiss C, Zellner R, Hilger I. Validation of weak biological effects by round robin experiments: cytotoxicity/biocompatibility of SiO 2 and polymer nanoparticles in HepG2 cells. Sci Rep 2017; 7:4341. [PMID: 28659574 PMCID: PMC5489506 DOI: 10.1038/s41598-017-02958-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
All over the world, different types of nanomaterials with a diversified spectrum of applications are designed and developed, especially in the field of nanomedicine. The great variety of nanoparticles (NPs), in vitro test systems and cell lines led to a vast amount of publications with conflicting data. To identify the decisive principles of these variabilities, we conducted an intercomparison study of collaborating laboratories within the German DFG Priority Program SPP1313, using well-defined experimental parameters and well-characterized NPs. The participants analyzed the in vitro biocompatibility of silica and polymer NPs on human hepatoma HepG2 cells. Nanoparticle mediated effects on cell metabolism, internalization, and inflammation were measured. All laboratories showed that both nanoparticle formulations were internalized and had a low cytotoxicity profile. Interestingly, small variations in nanoparticle preparation, cell handling and the type of culture slide influenced the nanoparticle stability and the outcomes of cell assays. The round robin test demonstrated the importance of the use of clearly defined and characterized NPs and parameters for reproducible results across laboratories. Comparative analyses of in vitro screening methods performed in multiple laboratories are absolutely essential to establish robust standard operation procedure as a prerequisite for sound hazard assessment of nanomaterials.
Collapse
Affiliation(s)
- Lisa Landgraf
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, University Hospital Jena, Friedrich-Schiller Universität Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Daniel Nordmeyer
- Physikalische Chemie, Hochschule Darmstadt, University of Applied Sciences, Fachbereich Chemie und Biotechnologie, Hochschulstrasse 2, 64289, Darmstadt, Germany
| | - Peter Schmiel
- Physikalische Chemie, Hochschule Darmstadt, University of Applied Sciences, Fachbereich Chemie und Biotechnologie, Hochschulstrasse 2, 64289, Darmstadt, Germany
| | - Qi Gao
- Physikalische Chemie, Hochschule Darmstadt, University of Applied Sciences, Fachbereich Chemie und Biotechnologie, Hochschulstrasse 2, 64289, Darmstadt, Germany
| | - Sandra Ritz
- Max Planck Institute for Molecular Biology, Ackermannweg 10, 55128, Mainz, Germany
| | - Julia S Gebauer
- Institute of Physical Chemistry, University of Duisburg-Essen, 45128, Essen, Germany
| | - Stefan Graß
- Institute of Physical Chemistry, University of Duisburg-Essen, 45128, Essen, Germany
| | - Silvia Diabaté
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Lennart Treuel
- Institute of Physical Chemistry, University of Duisburg-Essen, 45128, Essen, Germany.,Fraunhofer ICT-IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Christina Graf
- Physikalische Chemie, Hochschule Darmstadt, University of Applied Sciences, Fachbereich Chemie und Biotechnologie, Hochschulstrasse 2, 64289, Darmstadt, Germany
| | - Eckart Rühl
- Physikalische Chemie, Hochschule Darmstadt, University of Applied Sciences, Fachbereich Chemie und Biotechnologie, Hochschulstrasse 2, 64289, Darmstadt, Germany
| | - Katharina Landfester
- Max Planck Institute for Molecular Biology, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Molecular Biology, Ackermannweg 10, 55128, Mainz, Germany.,Department of Dermatology, University Medicine of the Johannes-Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Carsten Weiss
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Reinhard Zellner
- Institute of Physical Chemistry, University of Duisburg-Essen, 45128, Essen, Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, University Hospital Jena, Friedrich-Schiller Universität Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
7
|
Ultrasound-Mediated Mesenchymal Stem Cells Transfection as a Targeted Cancer Therapy Platform. Sci Rep 2017; 7:42046. [PMID: 28169315 PMCID: PMC5294424 DOI: 10.1038/srep42046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential as a targeted cell-based delivery platform for inflammatory and cancer therapy. Genetic manipulation of MSCs, however, is challenging, and therefore, most studies using MSCs as therapeutic cell carriers have utilized viral vectors to transduce the cells. Here, we demonstrate, for the first time, an alternative approach for the efficient transfection of MSCs; therapeutic ultrasound (TUS). Using TUS with low intensities and moderate frequencies, MSCs were transfected with a pDNA encoding for PEX, a protein that inhibits tumor angiogenesis, and studied as a cell vehicle for in vivo tumor therapy. TUS application did not alter the MSCs' stemness or their homing capabilities, and the transfected MSCs transcribed biologically active PEX. Additionally, in a mouse model, 70% inhibition of prostate tumor growth was achieved following a single I.V. administration of MSCs that were TUS-transfected with pPEX. Further, the repeated I.V. administration of TUS-pPEX transfected-MSCs enhanced tumor inhibition up to 84%. Altogether, these results provide a proof of concept that TUS-transfected MSCs can be effectively used as a cell-based delivery approach for the prospective treatment of cancer.
Collapse
|
8
|
Kaneti L, Bronshtein T, Malkah Dayan N, Kovregina I, Letko Khait N, Lupu-Haber Y, Fliman M, Schoen BW, Kaneti G, Machluf M. Nanoghosts as a Novel Natural Nonviral Gene Delivery Platform Safely Targeting Multiple Cancers. NANO LETTERS 2016; 16:1574-82. [PMID: 26901695 DOI: 10.1021/acs.nanolett.5b04237] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanoghosts derived from mesenchymal stem cells and retaining their unique surface-associated tumor-targeting capabilities were redesigned as a selective and safe universal nonviral gene-therapy platform. pDNA-loaded nanoghosts efficiently targeted and transfected diverse cancer cells, in vitro and in vivo, in subcutaneous and metastatic orthotopic tumor models, leading to no adverse effects. Nanoghosts loaded with pDNA encoding for a cancer-toxic gene inhibited the growth of metastatic orthotopic lung cancer and subcutaneous prostate cancer models and dramatically prolonged the animals' survival.
Collapse
Affiliation(s)
- Limor Kaneti
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Tomer Bronshtein
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Natali Malkah Dayan
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Inna Kovregina
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Nitzan Letko Khait
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Yael Lupu-Haber
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Miguel Fliman
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Beth W Schoen
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Galoz Kaneti
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology , Haifa 3200003, Israel
| |
Collapse
|
10
|
Yemisci M, Bozdag S, Cetin M, Söylemezoglu F, Capan Y, Dalkara T, Vural I. Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery 2007; 59:1296-302; discussion 1302-3. [PMID: 17277693 DOI: 10.1227/01.neu.0000245607.99946.8f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Mitoxantrone (MTZ) has potent in vitro activity against malignant glioma cell lines, but it cannot be used effectively as a systemic agent for the treatment of brain tumors because of its poor central nervous system penetration. However, MTZ-loaded poly(lactide-co-glycolide) (PLGA) microspheres may be injected into the peritumoral area and into tumor tissue to provide effective and sustained local drug concentrations without causing systemic side effects. METHODS Fisher rats were randomized into three groups. The first group (n = 9) was concomitantly implanted with rat glioma (RG2) cells and blank PLGA microspheres. The second group (n = 6) was implanted with RG2 cells and MTZ-loaded PLGA microspheres. The third group (n = 9) was implanted with RG2 cells, and MTZ-loaded PLGA microspheres were injected into the same area after 7 days. Animals were sacrificed on Day 15 or 35. Tumor volumes were measured after hematoxylin and eosin staining. Distribution kinetics of MTZ in the brain was determined by high-performance liquid chromatography in nine rats injected with MTZ-loaded microspheres. RESULTS The tumor volumes were 76 +/- 11 and 107 +/- 11 mm (mean +/- standard error) on Days 15 (n = 6) and 35 (n = 3), respectively, in the control group. In rats treated with MTZ-loaded microspheres on Day 7, tumor volumes were significantly reduced to 17 +/- 4 and 23 +/- 2 mm on Days 15 (n = 6) and 35 (n = 3), respectively. No tumor formation was observed when glioma cells and MTZ-loaded PLGA microspheres were implanted concomitantly (n = 6). No systemic side effects or parenchymal inflammatory infiltration were observed in either group of rats. Brain MTZ concentration was highest at the injection site and declined with time and distance from the injection site and with time. CONCLUSION These data demonstrate that MTZ-loaded PLGA microspheres can deliver therapeutic concentrations of drug to the tumor and prevent glioma growth without causing side effects. This treatment method may increase the efficiency of antineoplastic therapy and positively impact survival.
Collapse
Affiliation(s)
- Muge Yemisci
- Department of Neurology, Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|