1
|
Establishment and Molecular Characterization of Two Patient-Derived Pancreatic Ductal Adenocarcinoma Cell Lines as Preclinical Models for Treatment Response. Cells 2023; 12:cells12040587. [PMID: 36831254 PMCID: PMC9954561 DOI: 10.3390/cells12040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The prognosis of pancreatic ductal adenocarcinoma (PDAC) is exceedingly poor. Although surgical resection is the only curative treatment option, multimodal treatment is of the utmost importance, as only about 20% of tumors are primarily resectable at the time of diagnosis. The choice of chemotherapeutic treatment regimens involving gemcitabine and FOLFIRINOX is currently solely based on the patient's performance status, but, ideally, it should be based on the tumors' individual biology. We established two novel patient-derived primary cell lines from surgical PDAC specimens. LuPanc-1 and LuPanc-2 were derived from a pT3, pN1, G2 and a pT3, pN2, G3 tumor, respectively, and the clinical follow-up was fully annotated. STR-genotyping revealed a unique profile for both cell lines. The population doubling time of LuPanc-2 was substantially longer than that of LuPanc-1 (84 vs. 44 h). Both cell lines exhibited a typical epithelial morphology and expressed moderate levels of CK7 and E-cadherin. LuPanc-1, but not LuPanc-2, co-expressed E-cadherin and vimentin at the single-cell level, suggesting a mixed epithelial-mesenchymal differentiation. LuPanc-1 had a missense mutation (p.R282W) and LuPanc-2 had a frameshift deletion (p.P89X) in TP53. BRCA2 was nonsense-mutated (p.Q780*) and CREBBP was missense-mutated (p.P279R) in LuPanc-1. CDKN2A was missense-mutated (p.H83Y) in LuPanc-2. Notably, only LuPanc-2 harbored a partial or complete deletion of DPC4. LuPanc-1 cells exhibited high basal and transforming growth factor (TGF)-β1-induced migratory activity in real-time cell migration assays, while LuPanc-2 was refractory. Both LuPanc-1 and LuPanc-2 cells responded to treatment with TGF-β1 with the activation of SMAD2; however, only LuPanc-1 cells were able to induce TGF-β1 target genes, which is consistent with the absence of DPC4 in LuPanc-2 cells. Both cell lines were able to form spheres in a semi-solid medium and in cell viability assays, LuPanc-1 cells were more sensitive than LuPanc-2 cells to treatment with gemcitabine and FOLFIRINOX. In summary, both patient-derived cell lines show distinct molecular phenotypes reflecting their individual tumor biology, with a unique clinical annotation of the respective patients. These preclinical ex vivo models can be further explored for potential new treatment strategies and might help in developing personalized (targeted) therapy regimens.
Collapse
|
2
|
Gregori A, Bergonzini C, Capula M, Mantini G, Khojasteh-Leylakoohi F, Comandatore A, Khalili-Tanha G, Khooei A, Morelli L, Avan A, Danen EH, Schmidt T, Giovannetti E. Prognostic Significance of Integrin Subunit Alpha 2 (ITGA2) and Role of Mechanical Cues in Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2023; 15:cancers15030628. [PMID: 36765586 PMCID: PMC9913151 DOI: 10.3390/cancers15030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION PDAC is an extremely aggressive tumor with a poor prognosis and remarkable therapeutic resistance. The dense extracellular matrix (ECM) which characterizes PDAC progression is considered a fundamental determinant of chemoresistance, with major contributions from mechanical factors. This study combined biomechanical and pharmacological approaches to evaluate the role of the cell-adhesion molecule ITGA2, a key regulator of ECM, in PDAC resistance to gemcitabine. METHODS The prognostic value of ITGA2 was analysed in publicly available databases and tissue-microarrays of two cohorts of radically resected and metastatic patients treated with gemcitabine. PANC-1 and its gemcitabine-resistant clone (PANC-1R) were analysed by RNA-sequencing and label-free proteomics. The role of ITGA2 in migration, proliferation, and apoptosis was investigated using hydrogel-coated wells, siRNA-mediated knockdown and overexpression, while collagen-embedded spheroids assessed invasion and ECM remodeling. RESULTS High ITGA2 expression correlated with shorter progression-free and overall survival, supporting its impact on prognosis and the lack of efficacy of gemcitabine treatment. These findings were corroborated by transcriptomic and proteomic analyses showing that ITGA2 was upregulated in the PANC-1R clone. The aggressive behavior of these cells was significantly reduced by ITGA2 silencing both in vitro and in vivo, while PANC-1 cells growing under conditions resembling PDAC stiffness acquired resistance to gemcitabine, associated to increased ITGA2 expression. Collagen-embedded spheroids of PANC-1R showed a significant matrix remodeling and spreading potential via increased expression of CXCR4 and MMP2. Additionally, overexpression of ITGA2 in MiaPaCa-2 cells triggered gemcitabine resistance and increased proliferation, both in vitro and in vivo, associated to upregulation of phospho-AKT. CONCLUSIONS ITGA2 emerged as a new prognostic factor, highlighting the relevance of stroma mechanical properties as potential therapeutic targets to counteract gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | | | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Alireza Khooei
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Erik H. Danen
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
- Correspondence:
| |
Collapse
|
3
|
Behl A, Sarwalia P, Kumar S, Behera C, Mintoo MJ, Datta TK, Gupta PN, Chhillar AK. Codelivery of Gemcitabine and MUC1 Inhibitor Using PEG-PCL Nanoparticles for Breast Cancer Therapy. Mol Pharm 2022; 19:2429-2440. [PMID: 35639628 DOI: 10.1021/acs.molpharmaceut.2c00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In breast cancer therapy, Gemcitabine (Gem) is an antineoplastic antimetabolite with greater anticancer efficacy and tolerability. However, effectiveness of Gem is limited by its off-target effects. The synergistic potential of MUC1 (mucin 1) inhibitors and Gem-loaded polymeric nanoparticles (NPs) was discussed in this work in order to reduce dose-related toxicities and enhance the therapeutic efficacy. The double emulsion solvent evaporation method was used to prepare poly(ethylene glycol) methyl ether-block-poly-caprolactone (PEG-PCL)-loaded Gem and MUC 1 inhibitor NPs. The average size of Gem and MUC 1 inhibitor-loaded NPs was 128 nm, with a spherical shape. Twin-loaded NPs containing Gem and the MUC1 inhibitor decreased IC50 and behaved synergistically. Furthermore, in vitro mechanistic studies, that is, loss of MMP, clonogenic assay, Annexin V FITC assay, and Western blotting to confirm apoptosis with simultaneous induction of autophagy using acridine orange (AO) staining were performed in this study. Furthermore, the investigated NPs upon combination exhibited greater loss of MMP and decreased clonogenic potential with simultaneous induction of autophagy in MCF-7 cells. Annexin V FITC clearly showed the percentage of apoptosis while Western blotting protein expression analysis revealed an increase in caspase-3 activity with simultaneous decrease in Bcl-2 protein expression, a hallmark of apoptosis. The effectiveness of the Ehrlich ascites solid (EAT) mice treated with Gem-MUC1 inhibitor NPs was higher than that of the animals treated alone. Overall, the combined administration of Gem and MUC1 inhibitor-loaded NPs was found to be more efficacious than Gem and MUC1 inhibitor delivered separately.
Collapse
Affiliation(s)
- Akanksha Behl
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sushil Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Chittaranjan Behera
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Mubashir Javed Mintoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Prem N Gupta
- PK-PD Tox and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anil K Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124 001, India
| |
Collapse
|
4
|
Implication of methylselenocysteine in combination chemotherapy with gemcitabine for improved anticancer efficacy. Eur J Pharm Sci 2022; 176:106238. [PMID: 35714943 DOI: 10.1016/j.ejps.2022.106238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
The limitations associated with cancer monotherapy including dose dependent toxicity and drug resistance can be addressed by combination chemotherapy. The combination of antineoplastic agents improves the cytotoxic activity in comparison to the single-agent based therapy in a synergistic or additive mode by reducing tumor growth as well as metastatic ability. In the present investigation, we explored the potential of methylselenocysteine (MSC) in combination chemotherapy with gemcitabine (GEM). The cytotoxic activity of GEM and MSC was determined in various cell lines and based on the activity, A549 cells were explored for the mechanistic studies including DAPI staining, measurement of oxidative stress, mitochondrial membrane potential loss, nitric oxide level, western blotting, cell migration and colony formation assays. A549 cells in combination treatment with MSC and GEM demonstrated enhanced cytotoxicity with more irregular cellular morphology as well as chromatin condensation and nuclear blebbing. The selected combination also significantly triggered ROS generation and mitochondrial destabilization, and alleviated cell migration potential and clonogenic propensity of A549 cells. Also, caspase-3 and PARP mediated apoptosis was observed in the combination treated cells. MSC based drug combination could offer the attributes of improved drug delivery and there was a 6-folds dose reduction of GEM in combination. Further, antitumor study in Ehrlich solid tumor model showed the efficacy of MSC combination with GEM for the enhanced antitumor activity. The proposed combination demonstrated the potential for further translational studies.
Collapse
|
5
|
Behera C, Kour J, Banjare N, Verma PK, Chashoo G, Sawant SD, Gupta PN. Mechanistic investigation of synergistic interaction of tocopherol succinate with a quinoline-based inhibitor of mammalian target of rapamycin. J Pharm Pharmacol 2021; 74:605-617. [PMID: 34468737 DOI: 10.1093/jpp/rgab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/02/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer monotherapy is associated with various limitations; therefore, combination chemotherapy is widely explored for optimum drug efficacy. In this study, 4-(N-Phenyl-N'-substituted benzenesulfonyl)-6-(4-hydroxyphenyl) quinoline-based mammalian target of rapamycin (mTOR) inhibitor (IIIM-4Q) was investigated in combination with tocopherol succinate (TOS), and the mechanism of cytotoxicity was elucidated. METHODS The cytotoxic potential of IIIM-4Q and TOS was evaluated in five cell lines. Further, to understand the mechanism of cytotoxicity of IIIM-4Q, TOS and their combination, various studies including morphological analysis using scanning electron microscopy and 6-diamidino-2-phenylindole (DAPI) staining, estimation of reactive oxygen species (ROS) level, measurement of mitochondrial membrane potential (MMP), in-vitro cell migration assay, Western blotting and staining with acridine orange (AO) for autophagy detection were performed. KEY FINDINGS Investigated combination was synergistic in nature and exhibited greater oxidative stress and mitochondrial dysfunction in pancreatic cancer cells. The migration potential of MIA PaCa-2 cells was significantly mitigated under the influence of this combination, and morphological changes such as chromatin condensation and nuclear blebbing were observed. Also, poly (adenosine diphosphate-ribose) polymerase cleavage and caspase-3 activation were observed in IIIM-4Q and TOS combination-treated cells. CONCLUSIONS The investigated combination synergistically inhibited proliferation of MIA PaCa-2 cells through simultaneous induction of autophagy followed by apoptosis, and this combination demonstrated potential for further translational studies.
Collapse
Affiliation(s)
- Chittaranjan Behera
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Nagma Banjare
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Praveen K Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gousia Chashoo
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Han Y, Gao G, Li S, Xiao N, Zhang Y, Luo H. Development of an optimal protocol for isolation and purification of human granulosa cells in patients with different ovarian reserves. Exp Ther Med 2021; 22:938. [PMID: 34335887 DOI: 10.3892/etm.2021.10370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of the current study was to develop an accurate and reproducible method for isolation of granulosa cells (GCs) in patients with different ovarian reserves. The cells of healthy individuals and patients with polycystic ovary syndrome (PCOS) were isolated using a modified two-step Percoll density gradient centrifugation. The cells of patients with poor ovarian response (POR) were isolated using a one-step method suitable for samples containing few cells. Cells extracted using these purification techniques were compared regarding cell yield, viability and purity using immunocytochemistry, flow cytometry, Cell Counting Kit-8, western blotting and RNA integrity analysis. The purity and activity of the cells in the POR group were comparable with those in the healthy and PCOS groups and no statistically significant differences were identified. Furthermore, isolated cells analyzed for RNA integrity indicated good quality RNA and presented an RNA integrity number of 8-10, demonstrating that the technique enabled the isolation of GCs from different types of patients. Thus, a reliable and reproducible technique for the isolation of pure GCs with high yield is described in the present study. This protocol provides an efficient method targeted to patients with different ovarian reserve functions that enables the preparation of GCs for evaluating their molecular functions.
Collapse
Affiliation(s)
- Ying Han
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Ge Gao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Shuang Li
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Yinfeng Zhang
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin 300100, P.R. China
| |
Collapse
|
7
|
Su WJ, Lu PZ, Wu Y, Kalpana K, Yang CK, Lu GD. Identification of Key Genes in Purine Metabolism as Prognostic Biomarker for Hepatocellular Carcinoma. Front Oncol 2021; 10:583053. [PMID: 33520699 PMCID: PMC7841304 DOI: 10.3389/fonc.2020.583053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Deregulated purine metabolism is critical for fast-growing tumor cells by providing nucleotide building blocks and cofactors. Importantly, purine antimetabolites belong to the earliest developed anticancer drugs and are still prescribed in clinics today. However, these antimetabolites can inhibit non-tumor cells and cause undesired side effects. As liver has the highest concentration of purines, it makes liver cancer a good model to study important nodes of dysregulated purine metabolism for better patient selection and precisive cancer treatment. Methods By using a training dataset from TCGA, we investigated the differentially expressed genes (DEG) of purine metabolism pathway (hsa00230) in hepatocellular carcinoma (HCC) and determined their clinical correlations to patient survival. A prognosis model was established by Lasso-penalized Cox regression analysis, and then validated through multiple examinations including Cox regression analysis, stratified analysis, and nomogram using another ICGC test dataset. We next treated HCC cells using chemical drugs of the key enzymes in vitro to determine targetable candidates in HCC. Results The DEG analysis found 43 up-regulated and 2 down-regulated genes in the purine metabolism pathway. Among them, 10 were markedly associated with HCC patient survival. A prognostic correlation model including five genes (PPAT, DCK, ATIC, IMPDH1, RRM2) was established and then validated using the ICGC test dataset. Multivariate Cox regression analysis found that both prognostic risk model (HR = 4.703 or 3.977) and TNM stage (HR = 2.303 or 2.957) independently predicted HCC patient survival in the two datasets respectively. The up-regulations of the five genes were further validated by comparing between 10 pairs of HCC tissues and neighboring non-tumor tissues. In vitro cellular experiments further confirmed that inhibition of IMPDH1 significantly repressed HCC cell proliferation. Conclusion In summary, this study suggests that purine metabolism is deregulated in HCC. The prognostic gene correlation model based on the five purine metabolic genes may be useful in predicting HCC prognosis and patient selection. Moreover, the deregulated genes are targetable by specific inhibitors.
Collapse
Affiliation(s)
- Wen-Jing Su
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Pei-Zhi Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yong Wu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Kumari Kalpana
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Key Laboratory of High-incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education of China, Nanning, China
| |
Collapse
|
8
|
Ogoke O, Maloy M, Parashurama N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol Rev Camb Philos Soc 2020; 96:179-204. [PMID: 33002311 DOI: 10.1111/brv.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The field of organoid engineering promises to revolutionize medicine with wide-ranging applications of scientific, engineering, and clinical interest, including precision and personalized medicine, gene editing, drug development, disease modelling, cellular therapy, and human development. Organoids are a three-dimensional (3D) miniature representation of a target organ, are initiated with stem/progenitor cells, and are extremely promising tools with which to model organ function. The biological basis for organoids is that they foster stem cell self-renewal, differentiation, and self-organization, recapitulating 3D tissue structure or function better than two-dimensional (2D) systems. In this review, we first discuss the importance of epithelial organs and the general properties of epithelial cells to provide a context and rationale for organoids of the liver, pancreas, and gall bladder. Next, we develop a general framework to understand self-organization, tissue hierarchy, and organoid cultivation. For each of these areas, we provide a historical context, and review a wide range of both biological and mathematical perspectives that enhance understanding of organoids. Next, we review existing techniques and progress in hepatobiliary and pancreatic organoid engineering. To do this, we review organoids from primary tissues, cell lines, and stem cells, and introduce engineering studies when applicable. We discuss non-invasive assessment of organoids, which can reveal the underlying biological mechanisms and enable improved assays for growth, metabolism, and function. Applications of organoids in cell therapy are also discussed. Taken together, we establish a broad scientific foundation for organoids and provide an in-depth review of hepatic, biliary and pancreatic organoids.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| |
Collapse
|
9
|
Puckett DL, Alquraishi M, Alani D, Chahed S, Donohoe D, Voy B, Whelan J, Bettaieb A. Zyflamend induces apoptosis in pancreatic cancer cells via modulation of the JNK pathway. Cell Commun Signal 2020; 18:126. [PMID: 32795297 PMCID: PMC7427957 DOI: 10.1186/s12964-020-00609-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Current pharmacological therapies and treatments targeting pancreatic neuroendocrine tumors (PNETs) have proven ineffective, far too often. Therefore, there is an urgent need for alternative therapeutic approaches. Zyflamend, a combination of anti-inflammatory herbal extracts, that has proven to be effective in various in vitro and in vivo cancer platforms, shows promise. However, its effects on pancreatic cancer, in particular, remain largely unexplored. Methods In the current study, we investigated the effects of Zyflamend on the survival of beta-TC-6 pancreatic insulinoma cells (β-TC6) and conducted a detailed analysis of the underlying molecular mechanisms. Results Herein, we demonstrate that Zyflamend treatment decreased cell proliferation in a dose-dependent manner, concomitant with increased apoptotic cell death and cell cycle arrest at the G2/M phase. At the molecular level, treatment with Zyflamend led to the induction of ER stress, autophagy, and the activation of c-Jun N-terminal kinase (JNK) pathway. Notably, pharmacological inhibition of JNK abrogated the pro-apoptotic effects of Zyflamend. Furthermore, Zyflamend exacerbated the effects of streptozotocin and adriamycin-induced ER stress, autophagy, and apoptosis. Conclusion The current study identifies Zyflamend as a potential novel adjuvant in the treatment of pancreatic cancer via modulation of the JNK pathway. Video abstract
Collapse
Affiliation(s)
- Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Dina Alani
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Samah Chahed
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Dallas Donohoe
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996-0840, USA.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA.,Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN, 37996-0840, USA. .,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
10
|
Fan J, Wei Q, Koay EJ, Liu Y, Ning B, Bernard PW, Zhang N, Han H, Katz MH, Zhao Z, Hu Y. Chemoresistance Transmission via Exosome-Mediated EphA2 Transfer in Pancreatic Cancer. Am J Cancer Res 2018; 8:5986-5994. [PMID: 30613276 PMCID: PMC6299429 DOI: 10.7150/thno.26650] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
Rationale: Exosomes are small extracellular vesicles secreted by most cells that are found in blood and other bodily fluids, and which contain cytoplasmic material and membrane factors corresponding to their cell type of origin. Exosome membrane factors and contents have been reported to alter adjacent and distant cell behavior in multiple studies, but the impact of cancer-derived exosomes on chemoresistance is less clear. Methods: Exosomes isolated from three pancreatic cancer (PC) cell lines displaying variable gemcitabine (GEM) resistance (PANC-1, MIA PaCa-2, and BxPC-3) were tested for their capacity to transmit chemoresistance among these cell lines. Comparative proteomics was performed to identify key exosomal proteins that conferred chemoresistance. Cell survival was assessed in GEM responsive PC cell lines treated with recombinant Ephrin type-A receptor 2 (EphA2), a candidate chemoresistance transfer factor, or exosomes from a chemoresistant PC cell line treated with or without EphA2 shRNA. Results: Exosomes from chemoresistant PANC-1 cells increased the GEM resistance of MIA PaCa-2 and BxPC-3 cell cultures. Comparative proteomics determined that PANC-1 exosomes overexpressed Ephrin type-A receptor 2 (EphA2) versus exosomes of less chemoresistant PC cell lines MIA PaCa-2 and BxPC-3. EphA2-knockdown in PANC-1 cells inhibited their ability to transmit exosome-mediated chemoresistance to MIA PaCa-2 and BxPC-3, while treatment of MIA PaCa-2 and BxPC-3 cells with soluble EphA2 did not promote chemoresistance, indicating that membrane carried EphA2 was important for the EphA2 chemoresistance effect. Conclusion: Exosomal EphA2 expression could transmit chemoresistance and may potentially serve as a minimally-invasive predictive biomarker for PC treatment response. Further work should address whether additional exosomal factors regulate resistance to other cancer therapeutic agents for PC or other cancer types.
Collapse
|
11
|
Comparative study of the therapeutic effect of Doxorubicin and Resveratrol combination on 2D and 3D (spheroids) cell culture models. Int J Pharm 2018; 551:76-83. [PMID: 30217766 DOI: 10.1016/j.ijpharm.2018.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 01/26/2023]
Abstract
The assessment of drug-combinations for pancreatic cancer treatment is usually performed in 2D cell cultures. In this study, the therapeutic effect and the synergistic potential of a particular drug-combination towards 2D and 3D cell cultures of pancreatic cancer were compared for the first time. Thus, the effect of Doxorubicin:Resveratrol (DOX:RES) combinations (at molar ratios ranging from 5:1 to 1:5) in the viability of PANC-1 cells cultured as 2D monolayers and as 3D spheroids was analyzed. The results showed that the cells' viability was more affected when DOX:RES combinations containing higher contents of RES (1:2-1:5 molar ratios) were used. This can be explained by the ability of RES to reduce the P-glycoprotein (P-gp)-mediated efflux of DOX. Further, it was also revealed that the synergic effect of this drug combination was different in 2D and in 3D cell cultures. In fact, despite of the 1:4 and 1:5 DOX:RES ratios being both synergistic for both types of PANC-1 cell cultures, their Combination Indexes (CI) in the monolayers were lower than those attained in spheroids. Overall, the obtained results revealed that the DOX:RES combination is promising for pancreatic cancer treatment and corroborate the emergent need to evaluate drug combinations in 3D cell cultures.
Collapse
|
12
|
Lamture G, Crooks PA, Borrelli MJ. Actinomycin-D and dimethylamino-parthenolide synergism in treating human pancreatic cancer cells. Drug Dev Res 2018; 79:287-294. [PMID: 30295945 PMCID: PMC6193836 DOI: 10.1002/ddr.21441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Preclinical Research & Development Pancreatic cancer is the third leading cause of death in the US with a poor 5-year survival rate of 8.5%. A novel anti-cancer drug, dimethylamino parthenolide (DMAPT), is the water-soluble analog of the natural sesquiterpene lactone, parthenolide. The putative modes of action of DMAPT are inhibition of the Nuclear chain factor kappa-light-chain enhancer of activated B cells (NFκB) pathway and depletion of glutathione levels; the latter causing cancer cells to be more susceptible to oxidative stress-induced cell death. Actinomycin-D (ActD) is a polypeptide antibiotic that binds to DNA, and inhibits RNA and protein synthesis by inhibiting RNA polymerase II. A phase 2 clinical trial indicated that ActD could be a potent drug against pancreatic cancer; however, it was not a favored drug due to toxicity issues. New drug entities and methods of drug delivery, used alone or in combination, are needed to treat pancreatic cancer more effectively. Thus, it was postulated that combining DMAPT and ActD would result in synergistic inhibition of Panc-1 pancreatic cancer cell growth because DMAPT's inhibition of NFκB would enhance induction of apoptosis by ActD, via phosphorylation of c-Jun, by minimizing NFκB inhibition of c-Jun phosphorylation. Combining these two drugs induced a higher level of cell death than each drug alone. A fixed drug ratio of DMAPT: ActD (1,200:1) was used. Data from metabolic (MTT) and colony formation assays were analyzed for synergism with CompuSyn software, which utilizes the Chou-Talalay equation. The analyses indicated synergism and moderate synergism at combination concentrations of DMAPT/ActD of 12/0.01 and 18/0.015 μM, respectively.
Collapse
Affiliation(s)
- Gauri Lamture
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Peter A Crooks
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
13
|
SIRT1 induces resistance to apoptosis in human granulosa cells by activating the ERK pathway and inhibiting NF-κB signaling with anti-inflammatory functions. Apoptosis 2018; 22:1260-1272. [PMID: 28755171 DOI: 10.1007/s10495-017-1386-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIRT1, a member of the sirtuin family, has recently emerged as a vital molecule in controlling ovarian function. The aims of the present study were to investigate SIRT1 expression and analyze SIRT1-mediated apoptosis in human granulosa cells (GCs). Human ovarian tissues were subjected to immunohistochemistry for localization of SIRT1 expression. SIRT1 knockdown in a human ovarian GC tumor line (COV434) was achieved by small interfering RNA, and the relationship between apoptosis and SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction and western blotting. We further detected SIRT1 expression in human luteinized GCs. Associations among SIRT1 knockdown, SIRT1 stimulation (resveratrol) and expression of ERK1/2 and apoptotic regulatory proteins were analyzed in cell lines and luteinized GCs. Resveratrol downregulated the levels of nuclear factor (NF)-κB/p65, but this inhibitory effect was attenuated by suppressing SIRT1 activity. The NF-κB/p65 inhibitor pyrrolidine dithiocarbamate achieved similar anti-apoptosis effects. These results suggest that SIRT1 might play an anti-apoptotic role in apoptosis processes in GCs, possibly by sensing and regulating the ERK1/2 pathway, which has important clinical implications. Thus, our study provides a mechanistic link, whereby activation of SIRT1 function might help to sustain human reproduction by maintaining GCs as well as oocytes, offering a novel approach for developing a new class of therapeutic anti-inflammatory agents.
Collapse
|
14
|
O’Reilly EM, Lee JW, Lowery MA, Capanu M, Stadler ZK, Moore MJ, Dhani N, Kindler HL, Estrella H, Maynard H, Golan T, Segal A, Salo-Mullen EE, Yu KH, Epstein AS, Segal M, Brenner R, Do RK, Chen AP, Tang LH, Kelsen DP. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer 2018; 124:1374-1382. [PMID: 29338080 PMCID: PMC5867226 DOI: 10.1002/cncr.31218] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A phase 1 trial was used to evaluate a combination of cisplatin, gemcitabine, and escalating doses of veliparib in patients with untreated advanced pancreatic ductal adenocarcinoma (PDAC) in 2 cohorts: a germline BRCA1/2-mutated (BRCA+) cohort and a wild-type BRCA (BRCA-) cohort. The aims were to determine the safety, dose-limiting toxicities (DLTs), maximum tolerated dose, and recommended phase 2 dose (RP2D) of veliparib combined with cisplatin and gemcitabine and to assess the antitumor efficacy (Response Evaluation Criteria in Solid Tumors, version 1.1) and overall survival. METHODS Gemcitabine and cisplatin were dosed at 600 and 25 mg/m2 , respectively, over 30 minutes on days 3 and 10 of a 21-day cycle. Four dose levels of veliparib were evaluated: 20 (dose level 0), 40 (dose level 1), and 80 mg (dose level 2) given orally twice daily on days 1 to 12 and 80 mg given twice daily on days 1 to 21 (dose level 2A [DL2A]). RESULTS Seventeen patients were enrolled: 9 BRCA+ patients, 7 BRCA- patients, and 1 patient with an unknown status. DLTs were reached at DL2A (80 mg twice daily on days 1 to 21). Two of the 5 patients in this cohort (40%) experienced grade 4 neutropenia and thrombocytopenia. Two grade 5 events occurred on protocol. The objective response rate in the BRCA+ cohort was 7 of 9 (77.8%). The median overall survival for BRCA+ patients was 23.3 months (95% confidence interval [CI], 3.8-30.2 months). The median overall survival for BRCA- patients was 11 months (95% CI, 1.5-12.1 months). CONCLUSIONS The RP2D of veliparib was 80 mg by mouth twice daily on days 1 to 12 in combination with cisplatin and gemcitabine; the DLT was myelosuppression. Substantial antitumor activity was seen in BRCA+ PDAC. A randomized phase 2 trial is currently evaluating cisplatin and gemcitabine with and without veliparib for BRCA+ PDAC (NCT01585805). Cancer 2018;124:1374-82. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Eileen M. O’Reilly
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | | | | | | | - Zsofia K. Stadler
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - Malcolm J. Moore
- Princess Margaret Cancer Centre- University Health Network, Toronto, ON
| | - Neesha Dhani
- Princess Margaret Cancer Centre- University Health Network, Toronto, ON
| | | | | | | | - Talia Golan
- Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amiel Segal
- Share Zedek Medical Center, Jerusalem, Israel
| | | | - Kenneth H. Yu
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - Andrew S. Epstein
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - Michal Segal
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robin Brenner
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard K. Do
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | | | - Laura H. Tang
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - David P. Kelsen
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| |
Collapse
|
15
|
Toffalorio F, Santarpia M, Radice D, Jaramillo CA, Spitaleri G, Manzotti M, Catania C, Jordheim LP, Pelosi G, Peters GJ, Tibaldi C, Funel N, Spaggiari L, de Braud F, De Pas T, Giovannetti E. 5'-nucleotidase cN-II emerges as a new predictive biomarker of response to gemcitabine/platinum combination chemotherapy in non-small cell lung cancer. Oncotarget 2018; 9:16437-16450. [PMID: 29662657 PMCID: PMC5893252 DOI: 10.18632/oncotarget.24505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/02/2018] [Indexed: 02/04/2023] Open
Abstract
A number of pharmacogenetic studies have been carried out in non-small-cell lung cancer (NSCLC) to identify and characterize genes involved in chemotherapy activity. However, the results obtained so far are controversial and no reliable biomarker is currently used to predict clinical benefit from platinum-based chemotherapy, which represents the cornerstone of treatment of advanced NSCLC. This study investigated the expression levels of ERCC1 and of six genes (RRM1, RRM2, hENT1, dCK, cN-II and CDA) involved in gemcitabine metabolism in locally/advanced NSCLC patients treated with gemcitabine/platinum combination. Gene expression was assessed by quantitative-PCR in laser-microdissected specimens and correlated with tumor response. Frequency distribution of responses above and below the median expression level of biomarkers was compared using a two-sided Fisher’s test. 5′-nucleotidase (cN-II) was the only gene differently expressed (p = 0.016) in the responders (complete/partial-response) compared to non-responders (stable/progressive disease). In the multivariate analysis, overexpression of this catabolic enzyme of gemcitabine remained a significant negative predictive factor. Patients with low cN-II had a modest trend toward increased survival, while both survival and progression-free survival were significantly longer in a more homogenous validation cohort of 40 advanced NSCLC (8.0 vs. 5.1 months, p = 0.026). Moreover, in vitro studies showed that silencing or pharmacological inhibition of cN-II increased the cytotoxicity of gemcitabine. This is the first study demonstrating the role of cN-II as a predictor of response to gemcitabine/platinum combinations in NSCLC. Its validation in prospective studies may improve clinical outcome of selected patients.
Collapse
Affiliation(s)
- Francesca Toffalorio
- Medical Oncology Unit of Respiratory Tract and Sarcomas, New Drugs Development Division, European Institute of Oncology, Milan, Italy.,Medical Affairs, Roche Spa, Monza, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit of Respiratory Tract and Sarcomas, New Drugs Development Division, European Institute of Oncology, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology, University of Messina, Messina, Italy
| | - Davide Radice
- Epidemiology and Biostatistics Division, European Institute of Oncology, Milan, Italy
| | | | - Gianluca Spitaleri
- Medical Oncology Unit of Respiratory Tract and Sarcomas, New Drugs Development Division, European Institute of Oncology, Milan, Italy.,Thoracic Oncology Division, European Institute of Oncology, Milan, Italy
| | - Michela Manzotti
- Division of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Chiara Catania
- Medical Oncology Unit of Respiratory Tract and Sarcomas, New Drugs Development Division, European Institute of Oncology, Milan, Italy.,Thoracic Oncology Division, European Institute of Oncology, Milan, Italy
| | - Lars Petter Jordheim
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052/CNRS UMR 5286, Lyon, France
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Inter-Hospital Pathology Division, Science and Technology Park, IRCCS MultiMedica, Milan, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Carmelo Tibaldi
- Division of Oncology, Department of Oncology, S. Luca Hospital, Lucca, Italy
| | - Niccola Funel
- CNR-Nano, Institute of Nanoscience and Nanotechnology, Pisa, Italy.,Cancer Pharmacology Laboratory, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Lorenzo Spaggiari
- Thoracic Surgery Division, European Institute of Oncology, Milan, Italy
| | - Filippo de Braud
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Inter-Hospital Pathology Division, Science and Technology Park, IRCCS MultiMedica, Milan, Italy
| | - Tommaso De Pas
- Medical Oncology Unit of Respiratory Tract and Sarcomas, New Drugs Development Division, European Institute of Oncology, Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.,CNR-Nano, Institute of Nanoscience and Nanotechnology, Pisa, Italy.,Cancer Pharmacology Laboratory, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Pancreatic adenocarcinoma response to chemotherapy enhanced with non-invasive radio frequency evaluated via an integrated experimental/computational approach. Sci Rep 2017; 7:3437. [PMID: 28611425 PMCID: PMC5469743 DOI: 10.1038/s41598-017-03040-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
Although chemotherapy combined with radiofrequency exposure has shown promise in cancer treatment by coupling drug cytotoxicity with thermal ablation or thermally-induced cytotoxicity, limited access of the drug to tumor loci in hypo-vascularized lesions has hampered clinical application. We recently showed that high-intensity short-wave capacitively coupled radiofrequency (RF) electric-fields may reach inaccessible targets in vivo. This non-invasive RF combined with gemcitabine (Gem) chemotherapy enhanced drug uptake and effect in pancreatic adenocarcinoma (PDAC), notorious for having poor response and limited therapeutic options, but without inducing thermal injury. We hypothesize that the enhanced cytotoxicity derives from RF-facilitated drug transport in the tumor microenvironment. We propose an integrated experimental/computational approach to evaluate chemotherapeutic response combined with RF-induced phenotypic changes in tissue with impaired transport. Results show that RF facilitates diffusive transport in 3D cell cultures representing hypo-vascularized lesions, enhancing drug uptake and effect. Computational modeling evaluates drug vascular extravasation and diffusive transport as key RF-modulated parameters, with transport being dominant. Assessment of hypothetical schedules following current clinical protocol for Stage-IV PDAC suggests that unresponsive lesions may be growth-restrained when exposed to Gem plus RF. Comparison of these projections to experiments in vivo indicates that synergy may result from RF-induced cell phenotypic changes enhancing drug transport and cytotoxicity, thus providing a potential baseline for clinically-focused evaluation.
Collapse
|
17
|
Passardi A, Fanini F, Turci L, Foca F, Rosetti P, Ruscelli S, Casadei Gardini A, Valgiusti M, Dazzi C, Marangolo M. Prolonged Pemetrexed Infusion Plus Gemcitabine in Refractory Metastatic Colorectal Cancer: Preclinical Rationale and Phase II Study Results. Oncologist 2017; 22:886-e79. [PMID: 28592624 PMCID: PMC5553965 DOI: 10.1634/theoncologist.2017-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/05/2017] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED Difficulties in translating in vitro results into clinical practice are inevitable.Further efforts to verify the efficacy of alternative schedules of pemetrexed in solid tumors are encouraged. BACKGROUND We investigated the cytotoxic activity of pemetrexed in combination with several drugs (gemcitabine, carboplatin, vinorelbine, and mitomycin C) using different exposure schedules in three colon cancer cell lines. The best results were obtained with the following schedule: a prolonged pemetrexed exposure followed by a 48-hour wash-out and then gemcitabine. This combination was then advanced to a phase II clinical trial. METHODS Patients with metastatic colorectal cancer in progression after standard treatment were included in the study. Adequate bone marrow reserve, normal hepatic and renal function, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 were required. Treatment consisted of an 8-hour intravenous infusion of pemetrexed 150 mg/m2 on day 1 and a 30-minute intravenous infusion of gemcitabine 1,000 mg/m2 on day 3 of each cycle, repeated every 14 days. RESULTS Fourteen patients were enrolled onto the study (first step). No objective responses were seen, and evidence of stable disease was observed in only one of the 12 evaluable patients. The most important grade 3-4 side effects were hematological toxicity (neutropenia 64.2%, thrombocytopenia 71.4%, anemia 28.7%), fatigue (50.0%), and stomatitis (21.5%). Median overall survival and time to progression were 5.8 months (95% confidence interval [CI]: 3.9-7.1) and 2.1 months (95% CI: 1.7-2.8), respectively. CONCLUSION The experimental pemetrexed-gemcitabine combination proved to be inactive and moderately toxic.
Collapse
Affiliation(s)
- Alessandro Passardi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesca Fanini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Livia Turci
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Flavia Foca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Rosetti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Silvia Ruscelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Andrea Casadei Gardini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Martina Valgiusti
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | | |
Collapse
|
18
|
Kuroda H, Tachikawa M, Uchida Y, Inoue K, Ohtsuka H, Ohtsuki S, Unno M, Terasaki T. All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1 by up-regulating protein expression of deoxycytidine kinase. Eur J Pharm Sci 2017; 103:116-121. [DOI: 10.1016/j.ejps.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
|
19
|
Qian T, Huang XE. Study of Pemetrexed-based Chemotherapy for Patients with Locally Advanced or Metastatic Cancers. Asian Pac J Cancer Prev 2016; 16:4791-5. [PMID: 26107242 DOI: 10.7314/apjcp.2015.16.11.4791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE This study was conducted to observe the efficacy and safety of pemetrexed based chemotherapy in treating patients with locally advanced or metastatic cancers as first-line, second-line or third-line therapy. MATERIALS AND METHODS From May 2011 to January 2015, we recruited 29 patients with advanced breast cancer, 19 patients with advanced ovary cancer, 17 patients with advanced esophageal cancer,5 patients with advanced gallbladder cancer,5 patients with advanced cervical cancer and 1 patient with advanced tongue cancer in Jiangsu Cancer Hospital and Research Institute.All of them were pathologically confirmed and treated with pemetrexed based chemotherapy. After two cycles of treatment,efficacy and safety can be evaluated. RESULTS For pemetrexed based regimens,including 76 patients with 6 kinds of advanced cancer were considered eligible for inclusion. Complete remission represents CR, partial remission represents PR, stable disease represents SD, progressive disease represents PD. Among 29 patients with advanced breast cancer, 4 patients chose pemetrexed based regimens as second-line treatment,1 of them was PR,the other 3 got SD. The last 25 patients made use of this chemotherapy as third-line treatment, except one patient could not be assessed, 2 of them got PR,6 of them got SD,the remaining 16 of them finally were PD.19 patients with advanced ovary cancer,5 patients used this regimens as second-line treatment, 3 of them got PD,the remaining patients got SD, respectively. The last 14 patients made use of pemetrexed based regimens as third-line treatment,. RR (CR+PR) was 28.5%. Among 17 patients with advanced esophageal cancer, 2 patients made use of pemetrexed based regimens as first-line treatment,both of them got PR.4 of them used this chemotherapy as second-line regimen, except 2 patients could not be assessed,the remaining 2 was PD at last. The last 11 patients was third-line users, RR (CR+PR) was 18.2%. Among 5 patients with advanced gallbladder cancer, pemetrexed based regimens was used in 1 patient as first- line treatment and 1 patient as second-line treatment. The curative effect was SD and PD, respectively. 3 patients accepted pemetrexed based regimens as third-line treatment, 2 of them got PD as results and another was SD. Among 5 patients with advanced cervical cancer, just 1 patient adopted pemetrexed based regimens as first-line treatment, whose curative effect was PR.2 patients chose this chemotherapy regimens as second-line treatment. Both of them got PD as their consequence. The last 2 patients made use of the regimens as third-line treatment, the effect of them was PD and SD, respectively. The one who with advanced tongue cancer, pemetrexed based regimens was used as second-line treatment, and the consequence was PD. About 71.1% patients experienced bone marrow suppression. Among them, 5 patients reached 4 grade. Other toxicity of pemetrexed were neurotoxicity, fatigue, diarrhea, dysphagia and vomiting. No treatment related death occurred with pemetrexed-based treatment. CONCLUSIONS Pemetrexed based chemotherapy has considerable effect in patients with advanced cancers such as breast cancer,esophageal cancer and ovary cancer. More randomly clinical trials are needed to verify the results.
Collapse
Affiliation(s)
- Ting Qian
- Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China E-mail :
| | | |
Collapse
|
20
|
Shi M, He X, Wei W, Wang J, Zhang T, Shen X. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway. Apoptosis 2016; 20:843-57. [PMID: 25690319 DOI: 10.1007/s10495-015-1106-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC's expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic processes. TNC mediated gemcitabine chemo-resistance via modulating cell apoptosis in pancreatic cancer. TNC resulted in the enrichment of pancreatic cancer cells in S-phase with a concomitant decrease in number of cells in G1 phase. The present study indicated TNC in cellular matrix induces an activation of ERK1/2/NF-κB/p65 signaling cascade and thereby mediates resistance to apoptosis in pancreatic cancer. TNC could serve as a diagnostic marker and predictor of gemcitabine response and potentially as a target for chemotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Meiyan Shi
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
21
|
Ohmine K, Kawaguchi K, Ohtsuki S, Motoi F, Ohtsuka H, Kamiie J, Abe T, Unno M, Terasaki T. Quantitative Targeted Proteomics of Pancreatic Cancer: Deoxycytidine Kinase Protein Level Correlates to Progression-Free Survival of Patients Receiving Gemcitabine Treatment. Mol Pharm 2015; 12:3282-91. [PMID: 26280109 DOI: 10.1021/acs.molpharmaceut.5b00282] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of the present study is to identify the determinant(s) of gemcitabine (dFdC)-sensitivity in pancreatic cancer tissues of patients treated with dFdC alone and in pancreatic cancer cell lines exposed to dFdC in vitro. Protein expression levels of 12 enzymes and 13 transporters potentially involved in transport and metabolism of dFdC in pancreatic cancer cell lines and tissues were quantified by means of our LC-MS/MS-based quantitative targeted proteomics technology. Protein expression levels of deoxycytidine kinase (dCK), uridine monophosphate-cytidine monophosphate (UMP-CMP) kinase, cytosolic nucleotidase III (cN-III), and equilibrative nucleoside transporter 1 (ENT1) were significantly correlated with IC50 or 1/IC50 in five cell lines with different sensitivities to dFdC (p < 0.05). Expression levels of the selected proteins in pancreatic cancer tissues of 10 patients with different progression-free survival (PFS) (49-955 days) were quantified, and their relationship with PFS was examined. Only the protein expression level of dCK was significantly correlated with PFS (p < 0.05). Multiple regression analysis was also performed, and combinations of ENT1, UMP-CMP kinase, CTPS1, and dCK were highly correlated with PFS. Our results indicate that the protein expression level of dCK in pancreatic cancer tissue is a good predictor of PFS, and thus dCK may be the best biomarker of dFdC sensitivity in pancreatic cancer patients treated with dFdC, although other proteins would also contribute to dFdC-sensitivity at the cellular level in vivo and in vitro.
Collapse
Affiliation(s)
- Ken Ohmine
- Membrane Transport and Drug Targeting Laboratory, Tohoku University Graduate School of Pharmaceutical Sciences , Sendai, Japan
| | - Kei Kawaguchi
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University , Kumamoto, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Hideo Ohtsuka
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, Azabu University School of Veterinary Medicine , Sagamihara, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Tetsuya Terasaki
- Membrane Transport and Drug Targeting Laboratory, Tohoku University Graduate School of Pharmaceutical Sciences , Sendai, Japan
| |
Collapse
|
22
|
Synergistic activity of combination therapy with PEGylated pemetrexed and gemcitabine for an effective cancer treatment. Eur J Pharm Biopharm 2015; 94:83-93. [PMID: 25968494 DOI: 10.1016/j.ejpb.2015.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 02/08/2023]
Abstract
Combination therapy in cancer is now opted as a potential therapeutic strategy for cancer treatment. However, effective delivery of drugs in combination at the tumor site is marred by low bioavailability and systemic toxicity of individual drugs. Polymer therapeutics is indeed an upcoming approach for the combinational drug delivery in favor of better cancer management. Hence, the objective of our investigation was to develop a dual drug PEGylated system that carries two chemotherapeutic drugs simultaneously for effective treatment of cancer. In this regard, we have synthesized Pem-PEG-Gem, wherein pemetrexed (Pem) and gemcitabine (Gem) are conjugated to a heterobifunctional polyethylene glycol (PEG) polymer for the effective treatment of Non-Small Cell Lung Cancer (NSCLC). Our results demonstrate enhanced bioavailability of the individual drugs in Pem-PEG-Gem in comparison with the drugs in their native form. The developed Pem-PEG-Gem showed enhanced cell death with respect to their native counterparts when treated singly or in combination against NSCLC cells. This might be attributed to better cellular internalization through the process of macropinocytosis and synergistic cytotoxic action of Pem-PEG-Gem in NSCLC cells. Hence, we propose the above dual drug based polymer therapeutic approach suitable for better clinical application in the treatment of NSCLC.
Collapse
|
23
|
SIRT1 inhibition in pancreatic cancer models: contrasting effects in vitro and in vivo. Eur J Pharmacol 2015; 757:59-67. [PMID: 25843411 DOI: 10.1016/j.ejphar.2015.03.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022]
Abstract
Gemcitabine remains the standard treatment for pancreatic cancer, although most patients acquire resistance to the therapy. Up-regulated in pancreatic cancer, SIRT1 is involved in tumorigenesis and drug resistance. However the mechanism through which SIRT1 regulates drug sensitivity in cancer cells is mainly unknown. We hypothesise that inhibiting SIRT1 activity may increase sensitivity of pancreatic cancer cells to gemcitabine treatment through the regulation of apototic cell death, cell cycle, epithelial-mesenschymal-transition (EMT) and senescence. We demonstrate that gemcitabine or 6-Chloro-2,3,4,9-tetrahydro-1 H-Carbazole-1-carboxamide (EX527) SIRT1 inhibitor reduces PANC-1 cell proliferation in vitro. EX527 enhanced sensitivity of PANC-1 cells to gemcitabine treatment through increased apoptosis. However, EX527 displayed no beneficial effect either as a monotreatment or in combination with gemcitabine in the modulation of cell cycle progression. Combination treatment did not reverse the two phenomena known to affect drug sensitivity, namely EMT and senescence, which are both induced by gemcitabine. Unexpectedly, EX527 promoted PANC-1 xenograft tumour growth in SCID mice compared to control group. Dual tX527 and gemcitabine displayed no synergistic effect compared to gemcitabine alone. The study reveals that SIRT1 is involved in chemoresistance and that inhibiting SIRT1 activity with EX527 sensitised PANC-1 cells to gemcitabine treatment in vitro. Sensitisation of cells is shown to be mainly through induction of micronuclei formation as a result of DNA damage and apoptosis in vitro. However, the absence of positive combinatorial effects in vivo indicates possible effects on cells of the tumor microenvironment and suggests caution regarding the clinical relevance of tissue culture findings with EX527.
Collapse
|
24
|
Asuncion Valenzuela MM, Castro I, Gonda A, Diaz Osterman CJ, Jutzy JM, Aspe JR, Khan S, Neidigh JW, Wall NR. Cell death in response to antimetabolites directed at ribonucleotide reductase and thymidylate synthase. Onco Targets Ther 2015; 8:495-507. [PMID: 25767396 PMCID: PMC4354452 DOI: 10.2147/ott.s79647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor) and 5-fluorouracil (thymidylate synthase inhibitor) were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs) investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Malyn M Asuncion Valenzuela
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Imilce Castro
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Amber Gonda
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jessica M Jutzy
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jonathan R Aspe
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Salma Khan
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Jonathan W Neidigh
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Nathan R Wall
- Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
25
|
Wei W, Sun HH, Li N, Li HY, Li X, Li Q, Shen XH. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells. Hepatobiliary Pancreat Dis Int 2014; 13:529-38. [PMID: 25308364 DOI: 10.1016/s1499-3872(14)60277-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemo-resistance in pancreatic cancer tissues and cell lines. METHODS Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathophysiology, School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wu XY, Huang XE, Cao J, Shi L, Xu X, Qian ZY. A predictive model for evaluating responsiveness to pemetrexed treatment in patients with advanced colorectal cancer. Asian Pac J Cancer Prev 2014; 15:5941-4. [PMID: 25081726 DOI: 10.7314/apjcp.2014.15.14.5941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To highlight the potential factors that could predict the response rate of patients with metastatic colorectal cancer (mCRC) treated with pemetrexed combined chemotherapy after first- or second-line chemotherapy using the FOLFOX regimen. MATERIALS AND METHODS Between January 2007 and July 2014, 54 patients diagnosed and pathologically-confirmed with advanced colorectal cancer in Jiangsu Cancer Hospital and Research Institute, were enrolled. They received pemetrexed at a dose of 500mg/m2 by 10 minute infusion on day 1, repeated every 3 weeks. Doses were modified depending on nadir counts of blood cells. Combined chemotherapeutic agents included irinotecan, lobaplatin, carboplatin, oxaliplatin, gemcitabine, cis-platinum or bevacizumab. Multiple variables (age, sex, hemoglobin, platinum drugs combined, metastasis sites, LDH, ALP, CEA>40 ug/ml) reported earlier were selected.We used logistic regression analysis to evaluate relationships between these and tumor response. RESULTS On multivariable analysis, we found that age was significant in predicting the responsiveness to pemetrexed (p<0.05) combined with oxaliplatin. We did not find any other factors which were significantly associated with the response rate to chemotherapy with pemetrexed and irinotecan. CONCLUSIONS By multivariate analysis, we found that age had significant impact on the responsiveness of pemetrexed when combined with oxaliplatin. Additional research based on genomic properties of host and tumors are needed to clarify markers for better selection of patients who could benefit from pemetrexed combined chemotherapy.
Collapse
Affiliation(s)
- Xue-Yan Wu
- Department of Chemotherapy, the Affiliated Jiangsu Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, China E-mail : huangxinen06 @aliyun.com
| | | | | | | | | | | |
Collapse
|
27
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C 3- amide)-[anti-HER2/ neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole. JOURNAL OF CANCER RESEARCH AND THERAPEUTIC ONCOLOGY 2014; 2:203. [PMID: 25844392 PMCID: PMC4381351 DOI: 10.17303/jcrto.2014.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Delineate the feasibility of simultaneous, dual selective "targeted" chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively "targeted" for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. METHODOLOGY Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it's potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. RESULTS Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. CONCLUSIONS The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced higher levels of selectively "targeted" anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].
Collapse
Affiliation(s)
- CP Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
28
|
Abstract
Pancreatic cancer is a deadly and aggressive disease. Less than 1% of diagnosed patients survive 5 years with an average survival time of only 4–8 months. The only option for metastatic pancreatic cancer is chemotherapy where only the antimetabolites gemcitabine and 5-fluorouracil are used clinically. Unfortunately, efforts to improve chemotherapy regimens by combining, 5-fluorouracil or gemcitabine with other drugs, such as cisplatin or oxaliplatin, have not increased cell killing or improved patient survival. The novel antimetabolite zebularine shows promise, inducing apoptosis and arresting cellular growth in various pancreatic cancer cell lines. However, resistance to these antimetabolites remains a problem highlighting the need to discover and develop new antimetabolites that will improve a patient’s overall survival.
Collapse
Affiliation(s)
- Malyn May Asuncion Valenzuela
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, USA ; Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Jonathan W Neidigh
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Nathan R Wall
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, USA ; Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
29
|
Brullé L, Vandamme M, Riès D, Martel E, Robert E, Lerondel S, Trichet V, Richard S, Pouvesle JM, Le Pape A. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One 2012; 7:e52653. [PMID: 23300736 PMCID: PMC3530450 DOI: 10.1371/journal.pone.0052653] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/19/2012] [Indexed: 12/01/2022] Open
Abstract
Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.
Collapse
Affiliation(s)
- Laura Brullé
- Centre d'Imagerie du Petit Animal-CIPA TAAM, UPS44 CNRS, Orléans, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kahramanoğullari O, Fantaccini G, Lecca P, Morpurgo D, Priami C. Algorithmic modeling quantifies the complementary contribution of metabolic inhibitions to gemcitabine efficacy. PLoS One 2012; 7:e50176. [PMID: 23239976 PMCID: PMC3519828 DOI: 10.1371/journal.pone.0050176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023] Open
Abstract
Gemcitabine (2,2-difluorodeoxycytidine, dFdC) is a prodrug widely used for treating various carcinomas. Gemcitabine exerts its clinical effect by depleting the deoxyribonucleotide pools, and incorporating its triphosphate metabolite (dFdC-TP) into DNA, thereby inhibiting DNA synthesis. This process blocks the cell cycle in the early S phase, eventually resulting in apoptosis. The incorporation of gemcitabine into DNA takes place in competition with the natural nucleoside dCTP. The mechanisms of indirect competition between these cascades for common resources are given with the race for DNA incorporation; in clinical studies dedicated to singling out mechanisms of resistance, ribonucleotide reductase (RR) and deoxycytidine kinase (dCK) and human equilibrative nucleoside transporter1 (hENT1) have been associated to efficacy of gemcitabine with respect to their roles in the synthesis cascades of dFdC-TP and dCTP. However, the direct competition, which manifests itself in terms of inhibitions between these cascades, remains to be quantified. We propose an algorithmic model of gemcitabine mechanism of action, verified with respect to independent experimental data. We performed in silico experiments in different virtual conditions, otherwise difficult in vivo, to evaluate the contribution of the inhibitory mechanisms to gemcitabine efficacy. In agreement with the experimental data, our model indicates that the inhibitions due to the association of dCTP with dCK and the association of gemcitabine diphosphate metabolite (dFdC-DP) with RR play a key role in adjusting the efficacy. While the former tunes the catalysis of the rate-limiting first phosphorylation of dFdC, the latter is responsible for depletion of dCTP pools, thereby contributing to gemcitabine efficacy with a dependency on nucleoside transport efficiency. Our simulations predict the existence of a continuum of non-efficacy to high-efficacy regimes, where the levels of dFdC-TP and dCTP are coupled in a complementary manner, which can explain the resistance to this drug in some patients.
Collapse
Affiliation(s)
- Ozan Kahramanoğullari
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto (Trento), Italy.
| | | | | | | | | |
Collapse
|
31
|
Effects of the CK2 inhibitors CX-4945 and CX-5011 on drug-resistant cells. PLoS One 2012; 7:e49193. [PMID: 23145120 PMCID: PMC3493520 DOI: 10.1371/journal.pone.0049193] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022] Open
Abstract
CK2 is a pleiotropic protein kinase, which regulates many survival pathways and plays a global anti-apoptotic function. It is highly expressed in tumor cells, and is presently considered a promising therapeutic target. Among the many inhibitors available for this kinase, the recently developed CX-4945 and CX-5011 have proved to be very potent, selective and effective in inducing cell death in tumor cells; CX-4945 has recently entered clinical trials. However, no data are available on the efficacy of these compounds to overcome drug resistance, a major reasons of cancer therapy failure. Here we address this point, by studying their effects in several tumor cell lines, each available as variant R resistant to drug-induced apoptosis, and normal-sensitive variant S. We found that the inhibition of endogenous CK2 was very similar in S and R treated cells, with more than 50% CK2 activity reduction at sub-micromolar concentrations of CX-4945 and CX-5011. A consequent apoptotic response was induced both in S and R variants of each pairs. Moreover, the combined treatment of CX-4945 plus vinblastine was able to sensitize to vinblastine R cells that are otherwise almost insensitive to this conventional antitumor drug. Consistently, doxorubicin accumulation in multidrug resistant (MDR) cells was greatly increased by CX-4945. In summary, we demonstrated that all the R variants are sensitive to CX-4945 and CX-5011; since some of the treated R lines express the extrusion pump Pgp, often responsible of the MDR phenotype, we can also conclude that the two inhibitors can successfully overcome the MDR phenomenon.
Collapse
|
32
|
Soo RA, Yong WP, Innocenti F. Systemic therapies for pancreatic cancer--the role of pharmacogenetics. Curr Drug Targets 2012; 13:811-28. [PMID: 22458528 DOI: 10.2174/138945012800564068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 02/23/2012] [Accepted: 03/27/2012] [Indexed: 12/17/2022]
Abstract
Effective systemic treatment of pancreatic cancer remains a major challenge, with progress hampered by drug resistance and treatment related toxicities. Currently available cytotoxic agents as monotherapy or in combination have provided only a modest survival benefit for patients with advanced disease. Disappointing phase III results with gemcitabine-based combinations in patients with advanced pancreatic cancer might be related to poor efficacy of systemic therapies in unselected patients. Future research strategies should prioritize identification of predictive markers through pharmacogenetic investigations. The individualization of patient treatment through pharmacogenetics may help to improve outcome by maximizing efficacy whilst lowering toxicity. This review provides an update on the pharmacogenetics of pancreatic cancer treatment and its influence on treatment benefits and toxicity.
Collapse
Affiliation(s)
- Ross A Soo
- Department of Hematology-Oncology, National University Health System, Singapore
| | | | | |
Collapse
|
33
|
Soo RA, Yong WP, Innocenti F. Systemic therapies for pancreatic cancer--the role of pharmacogenetics. Curr Drug Targets 2012. [PMID: 22458528 DOI: 10.1016/j.pestbp.2011.02.012.investigations] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Effective systemic treatment of pancreatic cancer remains a major challenge, with progress hampered by drug resistance and treatment related toxicities. Currently available cytotoxic agents as monotherapy or in combination have provided only a modest survival benefit for patients with advanced disease. Disappointing phase III results with gemcitabine-based combinations in patients with advanced pancreatic cancer might be related to poor efficacy of systemic therapies in unselected patients. Future research strategies should prioritize identification of predictive markers through pharmacogenetic investigations. The individualization of patient treatment through pharmacogenetics may help to improve outcome by maximizing efficacy whilst lowering toxicity. This review provides an update on the pharmacogenetics of pancreatic cancer treatment and its influence on treatment benefits and toxicity.
Collapse
Affiliation(s)
- Ross A Soo
- Department of Hematology-Oncology, National University Health System, Singapore
| | | | | |
Collapse
|
34
|
Sun G, Anderson MA, Gorospe EC, Leggett CL, Lutzke LS, Wong Kee Song LM, Levy M, Wang KK. Synergistic effects of photodynamic therapy with HPPH and gemcitabine in pancreatic cancer cell lines. Lasers Surg Med 2012; 44:755-61. [DOI: 10.1002/lsm.22073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2012] [Indexed: 12/22/2022]
|
35
|
Morotti M, Valenzano Menada M, Venturini PL, Mammoliti S, Ferrero S. Pemetrexed disodium in ovarian cancer treatment. Expert Opin Investig Drugs 2012; 21:437-49. [DOI: 10.1517/13543784.2012.661714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Pasqualetti G, Ricciardi S, Mey V, Del Tacca M, Danesi R. Synergistic cytotoxicity, inhibition of signal transduction pathways and pharmacogenetics of sorafenib and gemcitabine in human NSCLC cell lines. Lung Cancer 2011; 74:197-205. [DOI: 10.1016/j.lungcan.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 03/03/2011] [Accepted: 03/06/2011] [Indexed: 12/19/2022]
|
37
|
Wang L, Zhu ZX, Zhang WY, Zhang WM. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in BXPC-3 and PANC-1 human pancreatic cancer cells. Exp Ther Med 2011; 2:969-975. [PMID: 22977607 DOI: 10.3892/etm.2011.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/09/2011] [Indexed: 02/04/2023] Open
Abstract
Previous studies have shown that both pemetrexed, a cytotoxic drug, and erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), inhibit the cell growth of pancreatic cancer cells. However, whether they exert a synergistic antitumor effect on pancreatic cancer cells remains unknown. The present study aimed to assess the synergistic effect of erlotinib in combination with pemetrexed using different sequential administration schedules on the proliferation of human pancreatic cancer BXPC-3 and PANC-1 cells and to probe its cellular mechanism. The EGFR and K-ras gene mutation status was examined by quantitative PCR high-resolution melting (qPCR-HRM) analysis. BXPC-3 and PANC-1 cells were incubated with pemetrexed and erlotinib using different administration schedules. MTT assay was used to determine cytotoxicity, and cell cycle distribution was determined by flow cytometry. The expression and phosphorylation of EGFR, HER3, AKT and MET were determined using Western blotting. Both pemetrexed and erlotinib inhibited the proliferation of BXPC-3 and PANC-1 cells in a dose- and time-dependent manner in vitro. Synergistic effects on cell proliferation were observed when pemetrexed was used in combination with erlotinib. The degree of the synergistic effects depended on the administration sequence, which was most obvious when erlotinib was sequentially administered at 24-h interval following pemetrexed. Cell cycle studies revealed that pemetrexed induced S arrest and erlotinib induced G(0)/G(1) arrest. The sequential administration of erlotinib following pemetrexed induced S arrest. Western blot analyses showed that pemetrexed increased and erlotinib decreased the phosphorylation of EGFR, HER3 and AKT, respectively. However, both pemetrexed and erlotinib exerted no significant effects on the phosphorylation of c-MET. The phosphorylation of EGFR, HER3 and AKT was significantly suppressed by scheduled incubation with pemetrexed followed by erlotinib, but not by concomitant or sequential incubation with erlotinib followed by pemetrexed. In summary, our results demonstrated that the combined use of erlotinib and pemetrexed exhibited a strong synergism in BXPC-3 and PANC-1 cells. The inhibitory effects were strongest after sequential administration of pemetrexed followed by erlotinib. The synergistic effects may be related to activation of the EGFR/HER3/AKT pathway induced by pemetrexed.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command (Guangzhou Liuhuaqiao Hospital), Guangzhou, Guangdong 510010, P.R. China
| | | | | | | |
Collapse
|
38
|
Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia 2011; 12:740-7. [PMID: 20824050 DOI: 10.1593/neo.10576] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/04/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022] Open
Abstract
Gemcitabine is widely used as first-line chemotherapeutic drug in the treatment of pancreatic cancer. Our previous experimental chemotherapy studies have shown that treatment of human pancreatic carcinoma cells with 5-fluorouracil (5-FU) alters the cellular transporter expression profile and that modulation of the expression of multidrug resistance protein 5 (MRP5; ABCC5) influences the chemoresistance of these tumor cells. Here, we studied the influence of acute and chronic gemcitabine treatment on the expression of relevant uptake and export transporters in pancreatic carcinoma cells by reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunoblot analyses. The specific role of MRP5 in cellular gemcitabine sensitivity was studied by cytotoxicity assays using MRP5-overexpressing and MRP5-silenced cells. Exposure to gemcitabine (12 nM for 3 days) did not alter the messenger RNA (mRNA) expression of MRP1, MRP3, MRP5, and equilibrative nucleoside transporter 1 (ENT1), whereas high dosages of the drug (20 microM for 1 hour) elicited up-regulation of these transporters in most cell lines studied. In cells with acquired gemcitabine resistance (up to 160 nM gemcitabine), the mRNA or protein expression of the gemcitabine transporters MRP5 and ENT1 was upregulated in several cell lines. Combined treatment with 5-FU and gemcitabine caused a 5- to 40-fold increase in MRP5 and ENT1 expressions. Cytotoxicity assays using either MRP5-overexpressing (HEK and PANC-1) or MRP5-silenced (PANC1/shMRP5) cells indicated that MRP5 contributes to gemcitabine resistance. Thus, our novel data not only on drug-induced alterations of transporter expression relevant for gemcitabine uptake and export but also on the link between gemcitabine sensitivity and MRP5 expression may lead to improved strategies of future chemotherapy regimens using gemcitabine in pancreatic carcinoma patients.
Collapse
|
39
|
Wang Z, Liu J, Cheng Y, Wang Y. Fangjiomics: in search of effective and safe combination therapies. J Clin Pharmacol 2011; 51:1132-51. [PMID: 21209238 DOI: 10.1177/0091270010382913] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Millennia-old Chinese medicine treats disease with many combination therapies involving ingredients used in clinic practice. Fangjiomics is the science of identifying and designing effective mixtures of bioactive agents and elucidating their modes of action beyond those of Chinese patent medicines. Omics profiling and quantitative optimal modeling have been used to associate the various responses with biological pathways related to disease phenotype. Fangjiomics seeks to study myriad compatible combinations that may act through multiple targets, modes of action, and biological pathways balancing on off-target and on-target effects. This approach may lead to the discovery of controllable array-designed therapies to combine less potent elements that are more effective collectively but have fewer adverse side effects than does any element singly.
Collapse
Affiliation(s)
- Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | | | | | | |
Collapse
|
40
|
Wouters A, Pauwels B, Lardon F, Pattyn GGO, Lambrechts HAJ, Baay M, Meijnders P, Vermorken JB. In vitro study on the schedule-dependency of the interaction between pemetrexed, gemcitabine and irradiation in non-small cell lung cancer and head and neck cancer cells. BMC Cancer 2010; 10:441. [PMID: 20723210 PMCID: PMC2931492 DOI: 10.1186/1471-2407-10-441] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 08/19/2010] [Indexed: 12/14/2022] Open
Abstract
Background Based on their different mechanisms of action, non-overlapping side effects and radiosensitising potential, combining the antimetabolites pemetrexed (multitargeted antifolate, MTA) and gemcitabine (2',2'-difluorodeoxycytidine, dFdC) with irradiation (RT) seems promising. This in vitro study, for the first time, presents the triple combination of MTA, dFdC and irradiation using various treatment schedules. Methods The cytotoxicity, radiosensitising potential and cell cycle effect of MTA were investigated in A549 (NSCLC) and CAL-27 (SCCHN) cells. Using simultaneous or sequential exposure schedules, the cytotoxicity and radiosensitising effect of 24 h MTA combined with 1 h or 24 h dFdC were analysed. Results Including a time interval between MTA exposure and irradiation seemed favourable to MTA immediately preceding or following radiotherapy. MTA induced a significant S phase accumulation that persisted for more than 8 h after drug removal. Among different MTA/dFdC combinations tested, the highest synergistic interaction was produced by 24 h MTA followed by 1 h dFdC. Combined with irradiation, this schedule showed a clear radiosensitising effect. Conclusions Results from our in vitro model suggest that the sequence 24 h MTA → 1 h dFdC → RT is the most rational design and would, after confirmation in an in vivo setting, possibly provide the greatest benefit in the clinic.
Collapse
Affiliation(s)
- An Wouters
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pippen J, Elias AD, Neubauer M, Stokoe C, Vaughn LG, Wang Y, Orlando M, Shonukan O, Muscato J, O'Shaughnessy JA, Gralow J. A Phase II Trial of Pemetrexed and Gemcitabine in Patients With Metastatic Breast Cancer Who Have Received Prior Taxane Therapy. Clin Breast Cancer 2010; 10:148-53. [DOI: 10.3816/cbc.2010.n.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Tomao F, Panici PB, Frati L, Tomao S. Emerging role of pemetrexed in ovarian cancer. Expert Rev Anticancer Ther 2010; 9:1727-35. [PMID: 19954283 DOI: 10.1586/era.09.141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current treatment of choice of epithelial ovarian cancer involves aggressive tumor cytoreductive surgery followed by platinum- and taxane-based chemotherapy; however, despite the encouraging activity of these agents, most ovarian carcinomas relapse and many patients die from drug-resistant disease. After the failure of platinum- and taxane-based schedules, several cytotoxic agents have demonstrated activity in advanced ovarian cancer but none were able to induce significant and durable responses. Among the new cytotoxic agents, pemetrexed plays an emerging role in different tumors, demonstrating competitive activity and a promising safety profile. In ovarian cancer, pemetrexed has been investigated, with encouraging results, as a single agent and in association with platinum compounds; moreover, the drug has shown interesting activity both in platinum-sensitive and platinum-resistant ovarian cancer. According to these clinical results it appears reasonable to explore the combination of pemetrexed with other cytotoxic agents and also with targeted therapies in relapsed ovarian cancer patients.
Collapse
Affiliation(s)
- Federica Tomao
- Dipartimento di Ginecologia, Perinatologia ed Ostetricia, Università di Roma Sapienza, Viale Regina Elena 324,00161, Rome, Italy
| | | | | | | |
Collapse
|
43
|
Yang J, Shi X, Yan W, Lin SB, Gu HT, Qian CJ. Nicardipine reverses the resistance of human pancreatic carcinoma Patu8988 cell line to pemetrexed. Shijie Huaren Xiaohua Zazhi 2010; 18:132-136. [DOI: 10.11569/wcjd.v18.i2.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether safe doses of nicardipine, an antagonist of ATP-binding cassette subfamily G member 2 (ABCG2), can reverse the resistance of human pancreatic carcinoma Patu8988 cell line to pemetrexed.
METHODS: The maximal safe dose of nicardipine for pemetrexed-resistant Patu8988 strain and its parent strain was determined by methyl thiazoly tetrazolium (MTT) assay. The half maximal inhibitory concentrations (IC50) of pemetrexed alone and in combination with nicardipine for the growth of the two cell strains were measured also by MTT assay. The apoptosis rates of the two cell strains were examined using DAPI nuclear staining and flow cytometry.
RESULTS: MTT analysis showed that the maximal safe dose of nicardipine for Patu8988 strains was 4.85 μmol/L (2.5 mg/L). Although there was no significant difference in the IC50 value in parental Patu8988 cell strain between pemetrexed alone and pemetrexed in combination with safe doses of nicardipine, a significant difference was noted in the IC50 value in drug-resistant Patu8988 strain (P < 0.05). Flow cytometry analysis showed that the apoptosis rate of drug-resistant cells treated with pemetrexed in combination with nicardipine was higher than that of cells treated with pemetrexed alone (32.27% ± 2.8% vs 50.5% ± 4.2%, P < 0.05).
CONCLUSION: Nicardipine at safe doses can increase the sensitivity of drug-resistant Patu8988 cell strain to pemetrexed, but has no significant effect in parental Patu8988 strain.
Collapse
|
44
|
Cellular and molecular mechanisms for the synergistic cytotoxicity elicited by oxaliplatin and pemetrexed in colon cancer cell lines. Cancer Chemother Pharmacol 2009; 66:547-58. [PMID: 20020129 PMCID: PMC2886085 DOI: 10.1007/s00280-009-1195-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/26/2009] [Indexed: 12/03/2022]
Abstract
Purpose Oxaliplatin effect in the treatment of colorectal cancer is improved upon combination with thymidylate synthase (TS) inhibitors. Pemetrexed is polyglutamated by the folylpolyglutamate synthase (FPGS) and blocks folate metabolism and DNA synthesis by inhibiting TS, dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase (GARFT). The present study evaluates the pharmacological interaction between oxaliplatin and pemetrexed in colorectal cancer cells. Methods Human HT29, WiDr, SW620 and LS174T cells were treated with oxaliplatin and pemetrexed. Drug interaction was studied using the combination index method, while cell cycle was investigated with flow cytometry. The effects of drugs on Akt phosphorylation and apoptosis were studied with ELISA and fluorescence microscopy, respectively. RT-PCR analysis was performed to assess whether drugs modulated the expression of pemetrexed targets and of genes involved in DNA repair (ERCC1 and ERCC2). Finally, platinum–DNA adduct levels were detected by ultra-sensitive multi-collector inductively coupled plasma mass spectrometry (ICP-MS). Results A dose-dependent inhibition of cell growth was observed after drug exposure, while a synergistic interaction was detected preferentially with sequential combinations. Oxaliplatin enhanced cellular population in the S-phase. Drug combinations increased apoptotic indices with respect to single agents, and both drugs inhibited Akt phosphorylation. RT-PCR analysis showed a correlation between the FPGS/(TS × DHFR × GARFT) ratio and pemetrexed sensitivity, as well as a downregulation of ERCC1, ERCC2, TS, DHFR and GARFT after drug exposure. In addition, pretreatment with pemetrexed resulted in an increase of oxaliplatin–DNA adducts. Conclusion These data demonstrate that oxaliplatin and pemetrexed synergistically interact against colon cancer cells, through modulation of cell cycle, inhibition of Akt phosphorylation, induction of apoptosis and modulation of gene expression.
Collapse
|
45
|
Jonckheere N, Fauquette V, Stechly L, Saint-Laurent N, Aubert S, Susini C, Huet G, Porchet N, Van Seuningen I, Pigny P. Tumour growth and resistance to gemcitabine of pancreatic cancer cells are decreased by AP-2alpha overexpression. Br J Cancer 2009; 101:637-44. [PMID: 19672266 PMCID: PMC2736821 DOI: 10.1038/sj.bjc.6605190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Activator protein-2α (AP-2α) is a transcription factor that belongs to the family of AP-2 proteins that have essential roles in tumorigenesis. Indeed, AP-2α is considered as a tumour-suppressor gene in different tissues such as colonic, prostatic or breast epithelial cells. Moreover, AP-2α also participates in the control of colon and breast cancer cells sensitivity towards chemotherapeutic drugs. Despite its potential interest, very few data are available regarding the roles of AP-2α in pancreatic cancer. Methods: We have developed a stable pancreatic CAPAN-1 cell line overexpressing AP-2α. Consequences of overexpression were studied in terms of in vivo cell growth, gene expression, migration capacity and chemosensitivity. Results: In vivo tumour growth of CAPAN-1 cells overexpressing AP-2α was significantly decreased by comparison to control cells. An altered expression pattern of cell cycle-controlling factors (CDK-4, CDK-6, cyclin-G1, p27kip1 and p57kip2) was observed in AP-2α-overexpressing clones by microarrays and western blot analysis. Promoter activity and ChIP analysis indicated that AP-2α induces p27kip1 protein levels by direct binding to and transactivation of its promoter. Moreover, AP-2α overexpression increased the chemosensitivity of CAPAN-1 cells to low doses of gemcitabine and reduced their in vitro migration capacity. Conclusion: Our data suggested that AP-2α overexpression could be exploited to decrease in vivo tumour growth of pancreatic cancer cells and to increase their sensitivity to gemcitabine.
Collapse
Affiliation(s)
- N Jonckheere
- INSERM, U837, Université de Lille 2, Centre de Recherche Jean-Pierre Aubert, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dent SF, Gertler S, Verma S, Segal R, Young V, Goel R, Keller O, Canil C, Iscoe N. A phase II study of biweekly pemetrexed and gemcitabine in patients with metastatic breast cancer. Cancer Chemother Pharmacol 2009; 65:557-61. [DOI: 10.1007/s00280-009-1064-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
47
|
Crea F, Giovannetti E, Cortesi F, Mey V, Nannizzi S, Gallegos Ruiz MI, Ricciardi S, Del Tacca M, Peters GJ, Danesi R. Epigenetic mechanisms of irinotecan sensitivity in colorectal cancer cell lines. Mol Cancer Ther 2009; 8:1964-73. [PMID: 19531575 DOI: 10.1158/1535-7163.mct-09-0027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Irinotecan is a topoisomerase-I (Top-I) inhibitor used for the treatment of colorectal cancer. DNA demethylating agents, including 5-azacytidine (5-aza), display synergistic antitumor activity with several chemotherapy drugs. 5-Aza may enhance irinotecan cytotoxicity by at least one of the following mechanisms: (a) Top-I promoter demethylation, (b) activation of genes involved in Top-I transcriptional regulation (p16 or Sp1), and (c) modulation of the cell cycle and apoptosis after DNA damage. The growth-inhibitory effects of SN38, the active metabolite of irinotecan, 5-aza, and their combinations, were studied in four colorectal cancer cell lines. The effects of treatments on cell cycle were analyzed by flow cytometry, and apoptosis was measured by fluorescence microscopy. Top-I, Sp1, and p53 expression modulated by 5-aza were measured by real-time PCR. Methylation of Top-I, p16, 14-3-3sigma, and hMLH1 promoters before and after 5-aza treatment were measured by MethyLight PCR and DNA bisulfite sequencing. Low-dose 5-aza significantly enhanced the apoptotic effect of irinotecan in all colorectal cancer cells, whereas a synergistic cytotoxic effect was observed only in p53-mutated cells (HT29, SW620, and WiDr). This synergistic effect was significantly correlated with Top-I up-regulation by 5-aza, and coupled to p16 demethylation and Sp1 up-regulation. p16 demethylation was also associated with enhanced cell cycle arrest after irinotecan treatment. In contrast, 5-aza down-regulated Top-I expression in the p53 wild-type LS174T cells in a p53-dependent manner, thereby reducing SN38 cytotoxicity. In conclusion, 5-aza modulates Top-I expression by several mechanisms involving Sp1, p16, and p53. If confirmed in other models, these results suggest that p16 and p53 status affects the 5-aza-irinotecan interaction.
Collapse
|
48
|
Management of platinum-resistant ovarian cancer with the combination of pemetrexed and gemcitabine. Clin Transl Oncol 2009; 11:35-40. [PMID: 19155202 DOI: 10.1007/s12094-009-0308-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Platinum resistant ovarian cancer is a current challenge in Oncology. Current approved therapies offer no more of a 20% of response. New therapeutic options are urgently needed. PATIENTS AND METHODS Patients were treated with the combination of Pemetrexed 500 mg/m(2) d1 and Gemcitabine 1000 mg/m(2) d1,8 in a 21 days basis. RESULTS 10 platinum-resistant ovarian cancer patients were treated under compassionate use. Mean previous chemotherapy lines were 3.3. Mean administered cycles were 4. Mean CA 125 decrease was on average of 47%, with one patient experiencing a 95% decrease in her CA 125 level. 1 patient had a complete clinical remission, and 2, had partial radiological responses. Mean Progression free survival was 16.5 weeks, and Overall Survival was 21.2 weeks. Treatment was well tolerated. CONCLUSIONS Deemd to the observed activity, the combination of Pemetrexed and Gemcitabine deserves deeper investigation in platinum-resistant ovarian cancer patients.
Collapse
|
49
|
Hanauske AR, Endler C, Graefe T, Fleeth J, Scheel JV, Lüdtke FE, Müller-Hagen S, Depenbrock H, Ohnmacht U, Bolling C. Phase-I-study of four different schedules of pemetrexed, gemcitabine and cisplatin in patients with locally advanced or metastatic solid tumours. Eur J Cancer 2008; 44:2444-52. [DOI: 10.1016/j.ejca.2008.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
50
|
Simon GR, Verschraegen CF, Jänne PA, Langer CJ, Dowlati A, Gadgeel SM, Kelly K, Kalemkerian GP, Traynor AM, Peng G, Gill J, Obasaju CK, Kindler HL. Pemetrexed plus gemcitabine as first-line chemotherapy for patients with peritoneal mesothelioma: final report of a phase II trial. J Clin Oncol 2008; 26:3567-72. [PMID: 18640937 DOI: 10.1200/jco.2007.15.2868] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Pemetrexed in combination with cisplatin is approved for the treatment of pleural mesothelioma and is active in malignant peritoneal mesothelioma (MPeM). Pemetrexed and gemcitabine are synergistic in preclinical models, but the activity of this combination in MPeM is unknown. This clinical study assessed safety and efficacy of pemetrexed plus gemcitabine in chemotherapy-naïve patients with MPeM. PATIENTS AND METHODS Treatment consisted of gemcitabine 1,250 mg/m(2) on days 1 and 8, and pemetrexed 500 mg/m(2) on day 8, administered immediately before gemcitabine. Treatment was repeated every 21 days for six cycles or until disease progression. All patients received folic acid, vitamin B(12), and dexamethasone supplementation. End points included tumor response, toxicity, time to disease progression (TTPD), and overall survival (OS). Disease control rate (DCR) was also calculated. RESULTS Twenty patients were enrolled between December 2002 and May 2004. The confirmed response rate was 15% (95% CI, 3.2% to 37.9%), with three patients experiencing a partial response. The DCR was 50% (95% CI, 27.2% to 72.8%). The most common grade 3 to 4 nonhematologic toxicities included fatigue (20%), constipation (10%), vomiting (10%), and dehydration (10%). Hematologic toxicities included grade 3 to 4 neutropenia (60%) and febrile neutropenia (10%). One patient death was attributed to treatment. Median TTPD and OS times were 10.4 months and 26.8 months, respectively. CONCLUSION The combination of pemetrexed plus gemcitabine was active in patients with MPeM with a notably high incidence of neutropenia. Median TTPD and OS seem promising. This regimen may provide an alternative to standard therapies, especially for patients who cannot tolerate a platinum-based regimen.
Collapse
Affiliation(s)
- George R Simon
- Thoracic Oncology Program and Experimental Therapeutics Program, H. Lee Moffitt Cancer Center and Research Institute, MRC-4W, 12902 Magnolia Drive, Tampa, FL 33612-9497, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|