1
|
Goswami M, Toro-González M, Moon J, Davern S. Precision Atomistic Structures of Actinium-/Radium-/Barium-Doped Lanthanide Nanoconstructs for Radiotherapeutic Applications. ACS NANO 2024; 18:16577-16588. [PMID: 38885179 PMCID: PMC11223473 DOI: 10.1021/acsnano.3c13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
Lanthanide vanadate (LnVO4) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO4 nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO4 nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations. LnVO4 nanoconstructs were synthesized via a precipitation method in aqueous media. The reaction conditions and elemental compositions were varied to control the structure, fluorescence properties, and size distribution of the LnVO4 nanoconstructs. LnVO4 nanoconstructs were characterized by X-ray diffraction, Raman spectroscopy, and fluorescence spectroscopy. Molecular dynamics simulations were performed to obtain a fundamental understanding of the structure-property relationship between radionuclides and LnVO4 nanoconstructs at the atomic length scale. Molecular dynamics simulations with well-established force field (FF) parameters show that Ra atoms tend to distribute across the nanoconstructs' surface in a broader coordination shell, while the Ac atoms are arranged inside a smaller coordination shell within the nanocluster. The Ba atoms prefer to self-assemble around the surface. These theoretical/simulation predictions of the atomistic structures and an understanding of the relationship between radionuclides and LnVO4 nanoconstructs at the atomic scale are important because they provide design principles for the future development of nanoconstructs for targeted radionuclide delivery.
Collapse
Affiliation(s)
- Monojoy Goswami
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miguel Toro-González
- Radioisotope
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jisue Moon
- Radioisotope
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sandra Davern
- Radioisotope
Science & Technology Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Toro-González M, Akingbesote N, Bible A, Pal D, Sanders B, Ivanov AS, Jansone-Popova S, Popovs I, Benny P, Perry R, Davern S. Development of 225Ac-doped biocompatible nanoparticles for targeted alpha therapy. J Nanobiotechnology 2024; 22:306. [PMID: 38825717 PMCID: PMC11145892 DOI: 10.1186/s12951-024-02520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.
Collapse
Affiliation(s)
- Miguel Toro-González
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Ngozi Akingbesote
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Amber Bible
- Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Debjani Pal
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Brian Sanders
- Biological and Environmental Systems Science Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Alexander S Ivanov
- Physical Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Santa Jansone-Popova
- Physical Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Ilja Popovs
- Physical Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Paul Benny
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Rachel Perry
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sandra Davern
- Isotope Science and Engineering Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
3
|
Munekane M, Fuchigami T, Ogawa K. Recent advances in the development of 225Ac- and 211At-labeled radioligands for radiotheranostics. ANAL SCI 2024; 40:803-826. [PMID: 38564087 PMCID: PMC11035452 DOI: 10.1007/s44211-024-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Radiotheranostics utilizes a set of radioligands incorporating diagnostic or therapeutic radionuclides to achieve both diagnosis and therapy. Imaging probes using diagnostic radionuclides have been used for systemic cancer imaging. Integration of therapeutic radionuclides into the imaging probes serves as potent agents for radionuclide therapy. Among them, targeted alpha therapy (TAT) is a promising next-generation cancer therapy. The α-particles emitted by the radioligands used in TAT result in a high linear energy transfer over a short range, inducing substantial damage to nearby cells surrounding the binding site. Therefore, the key to successful cancer treatment with minimal side effects by TAT depends on the selective delivery of radioligands to their targets. Recently, TAT agents targeting biomolecules highly expressed in various cancer cells, such as sodium/iodide symporter, norepinephrine transporter, somatostatin receptor, αvβ3 integrin, prostate-specific membrane antigen, fibroblast-activation protein, and human epidermal growth factor receptor 2 have been developed and have made remarkable progress toward clinical application. In this review, we focus on two radionuclides, 225Ac and 211At, which are expected to have a wide range of applications in TAT. We also introduce recent fundamental and clinical studies of radiopharmaceuticals labeled with these radionuclides.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
4
|
Morgan KA, Wichmann CW, Osellame LD, Cao Z, Guo N, Scott AM, Donnelly PS. Tumor targeted alpha particle therapy with an actinium-225 labelled antibody for carbonic anhydrase IX. Chem Sci 2024; 15:3372-3381. [PMID: 38425522 PMCID: PMC10901495 DOI: 10.1039/d3sc06365h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| | - Christian W Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
- Department of Medicine, University of Melbourne Melbourne Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| |
Collapse
|
5
|
Hassan M, Bokhari TH, Lodhi NA, Khosa MK, Usman M. A review of recent advancements in Actinium-225 labeled compounds and biomolecules for therapeutic purposes. Chem Biol Drug Des 2023; 102:1276-1292. [PMID: 37715360 DOI: 10.1111/cbdd.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023]
Abstract
In nuclear medicine, cancers that cannot be cured or can only be treated partially by traditional techniques like surgery or chemotherapy are killed by ionizing radiation as a form of therapeutic treatment. Actinium-225 is an alpha-emitting radionuclide that is highly encouraging as a therapeutic approach and more promising for targeted alpha therapy (TAT). Actinium-225 is the best candidate for tumor cells treatment and has physical characteristics such as high (LET) linear energy transfer (150 keV per μm), half-life (t1/2 = 9.92d), and short ranges (400-100 μm) which prevent the damage of normal healthy tissues. The introduction of various new radiopharmaceuticals and radioisotopes has significantly assisted the advancement of nuclear medicine. Ac-225 radiopharmaceuticals continuously demonstrate their potential as targeted alpha therapeutics. 225 Ac-labeled radiopharmaceuticals have confirmed their importance in medical and clinical areas by introducing [225 Ac]Ac-PSMA-617, [225 Ac]Ac-DOTATOC, [225 Ac]Ac-DOTA-substance-P, reported significantly improved response in patients with prostate cancer, neuroendocrine, and glioma, respectively. The development of these radiopharmaceuticals required a suitable buffer, incubation time, optimal pH, and reaction temperature. There is a growing need to standardize quality control (QC) testing techniques such as radiochemical purity (RCP). This review aims to summarize the development of the Ac-225 labeled compounds and biomolecules. The current state of their reported resulting clinical applications is also summarized as well.
Collapse
Affiliation(s)
- Maria Hassan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Nadeem Ahmed Lodhi
- Isotope Production Division, Pakistan institute of Nuclear Science & Technology (PINSTECH), Islamabad, Pakistan
| | | | - Muhammad Usman
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
7
|
Kondo M, Cai Z, Chan C, Forkan N, Reilly RM. [ 225Ac]Ac- and [ 111In]In-DOTA-trastuzumab theranostic pair: cellular dosimetry and cytotoxicity in vitro and tumour and normal tissue uptake in vivo in NRG mice with HER2-positive human breast cancer xenografts. EJNMMI Radiopharm Chem 2023; 8:24. [PMID: 37750937 PMCID: PMC10522541 DOI: 10.1186/s41181-023-00208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Trastuzumab (Herceptin) has improved the outcome for patients with HER2-positive breast cancer (BC) but brain metastases (BM) remain a challenge due to poor uptake of trastuzumab into the brain. Radioimmunotherapy (RIT) with trastuzumab labeled with α-particle emitting, 225Ac may overcome this challenge by increasing the cytotoxic potency on HER2-positive BC cells. Our first aim was to synthesize and characterize [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC, respectively. A second aim was to estimate the cellular dosimetry of [225Ac]Ac-DOTA-trastuzumab and determine its cytotoxicity in vitro on HER2-positive BC cells. A third aim was to study the tumour and normal tissue uptake of [225Ac]Ac-DOTA-trastuzumab using [111In]In-DOTA-trastuzumab as a radiotracer in vivo in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours that metastasize to the brain. RESULTS Trastuzumab was conjugated to 12.7 ± 1.2 DOTA chelators and labeled with 111In or 225Ac. [111In]In-DOTA-trastuzumab exhibited high affinity specific binding to HER2-positive SK-BR-3 human BC cells (KD = 1.2 ± 0.3 × 10-8 mol/L). Treatment with [225Ac]Ac-DOTA-trastuzumab decreased the surviving fraction (SF) of SK-BR-3 cells dependent on the specific activity (SA) with SF < 0.001 at SA = 0.74 kBq/µg. No surviving colonies were noted at SA = 1.10 kBq/µg or 1.665 kBq/µg. Multiple DNA double-strand breaks (DSBs) were detected in SK-BR-3 cells exposed to [225Ac]Ac-DOTA-trastuzumab by γ-H2AX immunofluorescence microscopy. The time-integrated activity of [111In]In-DOTA-trastuzumab in SK-BR-3 cells was measured and used to estimate the absorbed doses from [225Ac]Ac-DOTA-trastuzumab by Monte Carlo N-Particle simulation for correlation with the SF. The dose required to decrease the SF of SK-BR-3 cells to 0.10 (D10) was 1.10 Gy. Based on the D10 reported for γ-irradiation of SK-BR-3 cells, we estimate that the relative biological effectiveness of the α-particles emitted by 225Ac is 4.4. Biodistribution studies in NRG mice with s.c. 164/8-1B/H2N.luc+ human BC tumours at 48 h post-coinjection of [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab revealed HER2-specific tumour uptake (10.6 ± 0.6% ID/g) but spleen uptake was high (28.9 ± 7.4% ID/g). Tumours were well-visualized by SPECT/CT imaging using [111In]In-DOTA-trastuzumab. CONCLUSION We conclude that [225Ac]Ac-DOTA-trastuzumab exhibited potent and HER2-specific cytotoxicity on SK-BR-3 cells in vitro and HER2-specific uptake in s.c. 164/8-1B/H2N.luc+ human BC tumours in NRG mice, and these tumours were imaged by SPECT/CT with [111In]In-DOTA-trastuzumab. These results are promising for combining [111In]In-DOTA-trastuzumab and [225Ac]Ac-DOTA-trastuzumab as a theranostic pair for imaging and RIT of HER2-positive BC.
Collapse
Affiliation(s)
- Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Nubaira Forkan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Mdanda S, Ngema LM, Mdlophane A, Sathekge MM, Zeevaart JR. Recent Innovations and Nano-Delivery of Actinium-225: A Narrative Review. Pharmaceutics 2023; 15:1719. [PMID: 37376167 DOI: 10.3390/pharmaceutics15061719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The actinium-225 (225Ac) radioisotope exhibits highly attractive nuclear properties for application in radionuclide therapy. However, the 225Ac radionuclide presents multiple daughter nuclides in its decay chain, which can escape the targeted site, circulate in plasma, and cause toxicity in areas such as kidneys and renal tissues. Several ameliorative strategies have been devised to circumvent this issue, including nano-delivery. Alpha-emitting radionuclides and nanotechnology applications in nuclear medicine have culminated in major advancements that offer promising therapeutic possibilities for treating several cancers. Accordingly, the importance of nanomaterials in retaining the 225Ac daughters from recoiling into unintended organs has been established. This review expounds on the advancements of targeted radionuclide therapy (TRT) as an alternative anticancer treatment. It discusses the recent developments in the preclinical and clinical investigations on 225Ac as a prospective anticancer agent. Moreover, the rationale for using nanomaterials in improving the therapeutic efficacy of α-particles in targeted alpha therapy (TAT) with an emphasis on 225Ac is discussed. Quality control measures in the preparation of 225Ac-conjugates are also highlighted.
Collapse
Affiliation(s)
- Sipho Mdanda
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa
- Johns Hopkins Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, Baltimore, MD 21218, USA
| | - Amanda Mdlophane
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0028, South Africa
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, Hartbeespoort 0240, South Africa
| |
Collapse
|
9
|
Multifunctional Nanoparticles Based on Iron Oxide and Gold-198 Designed for Magnetic Hyperthermia and Radionuclide Therapy as a Potential Tool for Combined HER2-Positive Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14081680. [PMID: 36015306 PMCID: PMC9415738 DOI: 10.3390/pharmaceutics14081680] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/17/2023] Open
Abstract
Iron oxide nanoparticles are commonly used in many medical applications as they can be easily modified, have a high surface-to-volume ratio, and are biocompatible and biodegradable. This study was performed to synthesize nanoparticles designed for multimodal HER2-positive cancer treatment involving radionuclide therapy and magnetic hyperthermia. The magnetic core (Fe3O4) was coated with a gold-198 layer creating so-called core-shell nanoparticles. These were then further modified with a bifunctional PEG linker and monoclonal antibody to achieve the targeted therapy. Monoclonal antibody—trastuzumab was used to target specific breast and nipple HER2-positive cancer cells. The nanoparticles measured by transmission electron microscopy were as small as 9 nm. The bioconjugation of trastuzumab was confirmed by two separate methods: thermogravimetric analysis and iodine-131 labeling. Synthesized nanoparticles showed that they are good heat mediators in an alternating magnetic field and exhibit great specific binding and internalization capabilities towards the SKOV-3 (HER2 positive) cancer cell line. Radioactive nanoparticles also exhibit capabilities regarding spheroid degradation without and with the application of magnetic hyperthermia with a greater impact in the case of the latter. Designed radiobioconjugate shows great promise and has great potential for in vivo studies regarding magnetic hyperthermia and radionuclide combined therapy.
Collapse
|
10
|
Du Y, Cortez A, Josefsson A, Zarisfi M, Krimins R, Liapi E, Nedrow JR. Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma. PLoS One 2022; 17:e0261982. [PMID: 35061763 PMCID: PMC8782514 DOI: 10.1371/journal.pone.0261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first alpha-particle emitting radioembolization for the treatment and monitoring of hepatic tumors. Furthermore, this works demonstrates the first in vivo simultaneous multiple-radionuclide SPECT-images of the complex decay chain of an [225Ac]Ac-labeled agent using a clinical SPECT system to monitor the temporal distribution. A DOTA chelator was modified with a lipophilic moiety and radiolabeled with the α-particle emitter Actinium-225. The resulting agent, [225Ac]Ac-DOTA-TDA, was emulsified in ethiodized oil and evaluated in vivo in mouse model and the VX2 rabbit technical model of liver cancer. SPECT imaging was performed to monitor distribution of the TAT agent and the free daughters. The [225Ac]Ac-DOTA-TDA emulsion was shown to retain within the HEP2G tumors and VX2 tumor, with minimal uptake within normal tissue. In the mouse model, significant improvements in overall survival were observed. SPECT-imaging was able to distinguish between the Actinium-225 agent (Francium-221) and the loss of the longer lived daughter, Bismuth-213. An α-particle emitting TARE agent is capable of targeting liver tumors with minimal accumulation in normal tissue, providing a potential therapeutic agent for the treatment of hepatocellular carcinoma as well as a variety of hepatic tumors. In addition, SPECT-imaging presented here supports the further development of imaging methodology and protocols that can be incorporated into the clinic to monitor Actinium-225-labeled agents.
Collapse
Affiliation(s)
- Yong Du
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Angel Cortez
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Anders Josefsson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Mohammadreza Zarisfi
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Rebecca Krimins
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eleni Liapi
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jessie R. Nedrow
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Liatsou I, Yu J, Bastiaannet R, Li Z, Hobbs RF, Torgue J, Sgouros G. 212Pb-conjugated anti-rat HER2/ neu antibody against a neu-N derived murine mammary carcinoma cell line: cell kill and RBE in vitro. Int J Radiat Biol 2022; 98:1452-1461. [PMID: 35073214 PMCID: PMC9673603 DOI: 10.1080/09553002.2022.2033341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE In the current work, the RBE of a 212Pb-conjugated anti-HER2/neu antibody construct has been evaluated, in vitro, by colony formation assay. The RBE was estimated by comparing two absorbed dose-survival curves: the first obtained from the conjugated 212Pb experiments (test radiation), the second obtained by parallel experiments of single bolus irradiation of external beam (reference radiation). MATERIALS AND METHODS Mammary carcinoma NT2.5 cells were treated with (0-3.70) kBq/ml of radiolabeled antibody. Nonspecific binding was assessed with addition of excess amount of unlabeled antibody. The colony formation curves were converted from activity concentration to cell nucleus absorbed dose by simulating the decay and transport of all daughter and secondary particles of 212Pb, using the Monte Carlo code GEANT 4. RESULTS The radiolabeled antibody yielded an RBE of 8.3 at 37% survival and a survival independent RBE (i.e. RBE2) of 9.9. Unbound/untargeted 212Pb-labeled antibody, as obtained in blocking experiments yielded minimal alpha-particle radiation to cells. Conclusions: These results further highlight the importance of specific targeting toward achieving tumor cell kill and low toxicity to normal tissue.
Collapse
Affiliation(s)
- Ioanna Liatsou
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jing Yu
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Remco Bastiaannet
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Zhi Li
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Robert F. Hobbs
- Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| | | | - George Sgouros
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
12
|
Yang H, Wilson JJ, Orvig C, Li Y, Wilbur DS, Ramogida CF, Radchenko V, Schaffer P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J Nucl Med 2022; 63:5-13. [PMID: 34503958 PMCID: PMC8717181 DOI: 10.2967/jnumed.121.262687] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Targeted α-therapy (TAT) is an emerging powerful tool treating late-stage cancers for which therapeutic options are limited. At the core of TAT are targeted radiopharmaceuticals, where isotopes are paired with targeting vectors to enable tissue- or cell-specific delivery of α-emitters. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DTPA (diethylenetriamine pentaacetic acid) are commonly used to chelate metallic radionuclides but have limitations. Significant efforts are underway to develop effective stable chelators for α-emitters and are at various stages of development and community adoption. Isotopes such as 149Tb, 212/213Bi, 212Pb (for 212Bi), 225Ac, and 226/227Th have found suitable chelators, although further studies, especially in vivo studies, are required. For others, including 223Ra, 230U, and, arguably 211At, the ideal chemistry remains elusive. This review summarizes the methods reported to date for the incorporation of 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U into radiopharmaceuticals, with a focus on new discoveries and remaining challenges.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin J Wilson
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Farzipour S, Shaghaghi Z, Abbasi S, Albooyeh H, Alvandi M. Recent Achievements about Targeted Alpha Therapy-Based Targeting Vectors and Chelating Agents. Anticancer Agents Med Chem 2021; 22:1496-1510. [PMID: 34315393 DOI: 10.2174/1871520621666210727120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
One of the most rapidly growing options in the management of cancer therapy is Targeted Alpha Therapy (TAT) through which lethal α-emitting radionuclides conjugated to tumor-targeting vectors selectively deliver high amount of radiation to cancer cells.225Ac, 212Bi, 211At, 213Bi, and 223Ra have been investigated by plenty of clinical trials and preclinical researches for the treatment of smaller tumor burdens, micro-metastatic disease, and post-surgery residual disease. In order to send maximum radiation to tumor cells while minimizing toxicity in normal cells, a high affinity of targeting vectors to cancer tissue is essential. Besides that, the stable and specific complex between chelating agent and α-emitters was found as a crucial parameter. The present review was planned to highlight recent achievements about TAT-based targeting vectors and chelating agents and provide further insight for future researches.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Abbasi
- Department of Radiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Albooyeh
- Department of Nuclear Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021; 13:1123. [PMID: 34452084 PMCID: PMC8398190 DOI: 10.3390/pharmaceutics13081123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Pedro Cruz-Nova
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| | - Kattesh V. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA;
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| |
Collapse
|
15
|
Bayoumi NA, El-Kolaly MT. Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.
Collapse
Affiliation(s)
- Noha Anwer Bayoumi
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Mohamed Taha El-Kolaly
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
16
|
Klasen B, Moon ES, Rösch F. AAZTA 5-squaramide ester competing with DOTA-, DTPA- and CHX-A″-DTPA-analogues: Promising tool for 177Lu-labeling of monoclonal antibodies under mild conditions. Nucl Med Biol 2021; 96-97:80-93. [PMID: 33839678 DOI: 10.1016/j.nucmedbio.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Combining the advantages of both cyclic and acyclic chelator systems, AAZTA (1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) is well suited for complexation of various diagnostic and therapeutic radiometals such as gallium-68, scandium-44 and lutetium-177 under mild conditions. Due to its specificity for primary amines and pH dependent binding properties, squaric acid (SA) represents an excellent tool for selective coupling of the appropriate chelator to different target vectors. Therefore, the aim of this study was to evaluate radiolabeling properties of the novel bifunctional AAZTA5-SA being coupled to a model antibody (bevacizumab) in comparison to DOTA-SA, DTPA-p-Bn-SA and CHX-A″-DTPA-p-Bn-SA using the therapeutic nuclide lutetium-177. METHODS AND RESULTS As proof-of-concept, bevacizumab was first functionalized with AAZTA5-SA, DOTA-SA, DTPA-p-Bn-SA or CHX-A″-DTPA-p-Bn-SA. After purification via fractionated size exclusion chromatography (SEC), the corresponding immunoconjugates were subsequently radiolabeled with lutetium-177 at pH 7 and room temperature (RT) as well as 37 °C. After 90 min, labeling of AAZTA5-SA-mAb resulted in almost quantitative radiochemical yields (RCY) of >98% and >99%, respectively. Formation of [177Lu]Lu-DTPA-p-Bn-SA-mAb indicated rapid labeling kinetics reaching similar yields at RT already after 30 min. Fast but incomplete radiolabeling of the CHX-A″-analogue could be observed with a yield of 74% after 10 min and no further significant increase. In contrast, 177Lu-labeling of DOTA-SA-mAb showed negligible radiochemical yields of <2% both at room temperature and 37 °C. In vitro complex stability measurements of [177Lu]Lu-AAZTA5-SA-mAb at 37 °C indicated >94% protein bound activity in human serum and >92% in phosphate buffered saline (PBS), respectively within 15 days. [177Lu]Lu-DTPA-p-Bn-SA-mAb and [177Lu]Lu-CHX-A″-DTPA-p-Bn-SA-mAb revealed similar to even slightly higher in vitro stability in both media. CONCLUSION Coupling of AAZTA5-SA to the monoclonal antibody bevacizumab allowed for 177Lu-labeling with almost quantitative radiochemical yields both at room temperature and 37 °C. Within 15 days, the resulting radioconjugate indicated very high in vitro complex stability both in human serum and PBS. Therefore, AAZTA5-SA is a promising tool for 177Lu-labeling of sensitive biomolecules such as antibodies for theranostic applications.
Collapse
Affiliation(s)
- Benedikt Klasen
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| | - Euy Sung Moon
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| | - Frank Rösch
- Department of Chemistry - TRIGA site, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Redmond J, McCarthy H, Buchanan P, Levingstone TJ, Dunne NJ. Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111944. [PMID: 33641930 DOI: 10.1016/j.msec.2021.111944] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Collagen is the most abundant component of the extracellular matrix (ECM), therefore it represents an ideal biomaterial for the culture of a variety of cell types. Recently, collagen-based scaffolds have shown promise as 3D culture platforms for breast cancer-based research. Two-dimensional (2D) in vitro culture models, while useful for gaining preliminary insights, are ultimately flawed as they do not adequately replicate the tumour microenvironment. As a result, they do not facilitate proper 3D cell-cell/cell-matrix interactions and often an exaggerated response to therapeutic agents occurs. The ECM plays a crucial role in the development and spread of cancer. Alterations within the ECM have a significant impact on the pathogenesis of cancer, the initiation of metastasis and ultimate progression of the disease. 3D in vitro culture models that aim to replicate the tumour microenvironment have the potential to offer a new frontier for cancer research with cell growth, morphology and genetic properties that more closely match in vivo cancers. While initial 3D in vitro culture models used in breast cancer research consisted of simple hydrogel platforms, recent advances in biofabrication techniques, including freeze-drying, electrospinning and 3D bioprinting, have enabled the fabrication of biomimetic collagen-based platforms that more closely replicate the breast cancer ECM. This review highlights the current application of collagen-based scaffolds as 3D in vitro culture models for breast cancer research, specifically for adherence-based scaffolds (i.e. matrix-assisted). Finally, the future perspectives of 3D in vitro breast cancer models and their potential to lead to an improved understanding of breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen McCarthy
- School of Pharmacy, Queen's University, Belfast BT9 7BL, United Kingdom; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Paul Buchanan
- School of Nursing and Human Science, Dublin City University, Dublin 9, Ireland; National Institute of Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Yu J, Lu R, Nedrow JR, Sgouros G. Response of breast cancer carcinoma spheroids to combination therapy with radiation and DNA-PK inhibitor: growth arrest without a change in α/ β ratio. Int J Radiat Biol 2020; 96:1534-1540. [PMID: 33074046 DOI: 10.1080/09553002.2020.1838659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Agents that increase tumor radiosensitivity are of interest in improving outcomes in radiotherapy (XRT). DNA-PK inhibitors radiosensitize and alter cell adhesion proteins. We investigated combination radiation and a DNA-PK inhibitor in monolayers vs spheroids. MATERIALS AND METHODS Using HER2 positive mammary carcinoma cells, we investigated the impact of NU7441, a DNA-PK inhibitor, on irradiated monolayer and spheroid cultures. Colony formation assays were performed with monolayer culture cells and spheroids after irradiation with/without NU7441 (5 μM). RESULTS In monolayer culture cells, α/β increased from 3.0 ± 0.2 Gy (XRT alone) to 6.9 ± 0.2 Gy (XRT+NU7441). Corresponding α/β values for cells obtained by disaggregating treated spheroids were 3.6 ± 0.7 Gy (XRT alone) and 3.5 ± 0.2 Gy (XRT+NU7441). However, spheroid survival was highly sensitive to NU7441 incubation. After 4 Gy XRT alone 75% of the irradiated spheroids remained intact; when NU7441 treatment was involved, 13% remained intact. No spheroids survived to 3 weeks at 6 Gy or more. The discrepancy between the minimal change in α/β from cells derived from spheroids and the spheroid growth response was not related to poor penetration of NU7441. CONCLUSIONS DNA-PK inhibitor NU7441 radiosensitized monolayer cells but not cells obtained from spheroids. NU7441 and radiation increased spheroid fragmentation.
Collapse
Affiliation(s)
- Jing Yu
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Lu
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jessie R Nedrow
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - George Sgouros
- Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Gawęda W, Pruszyński M, Cędrowska E, Rodak M, Majkowska-Pilip A, Gaweł D, Bruchertseifer F, Morgenstern A, Bilewicz A. Trastuzumab Modified Barium Ferrite Magnetic Nanoparticles Labeled with Radium-223: A New Potential Radiobioconjugate for Alpha Radioimmunotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2067. [PMID: 33092037 PMCID: PMC7589850 DOI: 10.3390/nano10102067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Barium ferrite nanoparticles (BaFeNPs) were investigated as vehicles for 223Ra radionuclide in targeted α-therapy. BaFe nanoparticles were labeled using a hydrothermal Ba2+ cations replacement by 223Ra with yield reaching 61.3 ± 1.8%. Radiolabeled nanoparticles were functionalized with 3-phosphonopropionic acid (CEPA) linker followed by covalent conjugation to trastuzumab (Herceptin®). Thermogravimetric analysis and radiometric method with the use of [131I]-labeled trastuzumab revealed that on average 19-21 molecules of trastuzumab are attached to the surface of one BaFe-CEPA nanoparticle. The hydrodynamic diameter of BaFe-CEPA-trastuzumab conjugate is 99.9 ± 3.0 nm in water and increases to 218.3 ± 3.7 nm in PBS buffer, and the zeta potential varies from +27.2 ± 0.7 mV in water to -8.8 ± 0.7 in PBS buffer. The [223Ra]BaFe-CEPA-trastuzumab radiobioconjugate almost quantitatively retained 223Ra (>98%) and about 96% of 211Bi and 94% of 211Pb over 30 days. The obtained radiobioconjugate exhibited high affinity, cell internalization and cytotoxicity towards the human ovarian adenocarcinoma SKOV-3 cells overexpressing HER2 receptor. Confocal studies indicated that [223Ra]BaFe-CEPA-trastuzumab was located in peri-nuclear space. High cytotoxicity of the [223Ra]BaFe-CEPA-trastuzumab bioconjugate was confirmed by radiotoxicity studies on SKOV-3 cell monolayers and 3D-spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.
Collapse
Affiliation(s)
- Weronika Gawęda
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Magdalena Rodak
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Agnieszka Majkowska-Pilip
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Damian Gaweł
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| |
Collapse
|
20
|
Cędrowska E, Pruszyński M, Gawęda W, Żuk M, Krysiński P, Bruchertseifer F, Morgenstern A, Karageorgou MA, Bouziotis P, Bilewicz A. Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with 225Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules 2020; 25:molecules25051025. [PMID: 32106568 PMCID: PMC7179151 DOI: 10.3390/molecules25051025] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
It has been proven and confirmed in numerous repeated tests, that the use of a combination of several therapeutic methods gives much better treatment results than in the case of separate therapies. Particularly promising is the combination of ionizing radiation and magnetic hyperthermia in one drug. To achieve this objective, magnetite nanoparticles have been modified in their core with α emitter 225Ac, in an amount affecting only slightly their magnetic properties. By 3-phosphonopropionic acid (CEPA) linker nanoparticles were conjugated covalently with trastuzumab (Herceptin®), a monoclonal antibody that recognizes ovarian and breast cancer cells overexpressing the HER2 receptors. The synthesized bioconjugates were characterized by transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) measurement, thermogravimetric analysis (TGA) and application of 131I-labeled trastuzumab for quantification of the bound biomolecule. The obtained results show that one 225Ac@Fe3O4-CEPA-trastuzumab bioconjugate contains an average of 8–11 molecules of trastuzumab. The labeled nanoparticles almost quantitatively retain 225Ac (>98%) in phosphate-buffered saline (PBS) and physiological salt, and more than 90% of 221Fr and 213Bi over 10 days. In human serum after 10 days, the fraction of 225Ac released from 225Ac@Fe3O4 was still less than 2%, but the retention of 221Fr and 213Bi decreased to 70%. The synthesized 225Ac@Fe3O4-CEPA-trastuzumab bioconjugates have shown a high cytotoxic effect toward SKOV-3 ovarian cancer cells expressing HER2 receptor in-vitro. The in-vivo studies indicate that this bioconjugate exhibits properties suitable for the treatment of cancer cells by intratumoral or post-resection injection. The intravenous injection of the 225Ac@Fe3O4-CEPA-trastuzumab radiobioconjugate is excluded due to its high accumulation in the liver, lungs and spleen. Additionally, the high value of a specific absorption rate (SAR) allows its use in a new very perspective combination of α radionuclide therapy with magnetic hyperthermia.
Collapse
Affiliation(s)
- Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Correspondence: (M.P.); (A.B.); Tel.: +48-22-5041357 (A.B.)
| | - Weronika Gawęda
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
| | - Michał Żuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.Ż.); (P.K.)
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.Ż.); (P.K.)
| | - Frank Bruchertseifer
- Department for Nuclear Safety and Security, Joint Research Centre, European Commission, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- Department for Nuclear Safety and Security, Joint Research Centre, European Commission, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Maria-Argyro Karageorgou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. ‘Demokritos’, Aghia Paraskevi, 15341 Athens, Greece; (M.-A.K.); (P.B.)
- Department of Physics, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784 Athens, Greece
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. ‘Demokritos’, Aghia Paraskevi, 15341 Athens, Greece; (M.-A.K.); (P.B.)
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
- Correspondence: (M.P.); (A.B.); Tel.: +48-22-5041357 (A.B.)
| |
Collapse
|
21
|
Baranowska-Kortylewicz J, Sharp JG, McGuire TR, Joshi S, Coulter DW. Alpha-Particle Therapy for Multifocal Osteosarcoma: A Hypothesis. Cancer Biother Radiopharm 2020; 35:418-424. [PMID: 32073902 DOI: 10.1089/cbr.2019.3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Osteosarcoma (OST) is the most common bone tumor in children and adolescents with a second peak of incidence in elderly adults usually diagnosed as secondary tumors in Paget's disease or irradiated bone. Subjects with metastatic disease or whose disease relapses after the initial therapy have a poor prognosis. Moreover, multifocal OST contains tumor-initiating cells that are resistant to chemotherapy. The use of aggressive therapies in an attempt to eradicate these cells can have long-term negative consequences in these vulnerable patient populations. 227Th-labeled molecular probes based on ligands to OST-associated receptors such as IGF-1R (insulin-like growth factor receptor 1), HER2 (human epidermal growth factor receptor 2), and PSMA (prostate-specific membrane antigen) are expected to detect and treat osseous and nonosseous sites of multifocal OST. Published reports indicate that 227Th has limited myelotoxicity, can be stably chelated to its carriers and, as it decays at targeted sites, 227Th produces 223Ra that is subsequently incorporated into the areas of increased osteoblastic activity, that is, osseous metastatic lesions. Linear energy transfer of α particles emitted by 227Th and its daughter 223Ra is within the range of the optimum relative biological effectiveness. The radiotoxicity of α particles is virtually independent of the phase in the cell cycle, oxygenation, and the dose rate. For these reasons, even resistant OST cells remain susceptible to killing by high-energy α particles, which can also kill adjacent quiescent OST cells or cells with low expression of targeted receptors. Systemic side effects are minimized by the limited range of these intense radiations. Quantitative single-photon emission computed tomography of 227Th and 223Ra is feasible. Additionally, the availability of radionuclide pairs, for example, 89Zr for positron emission tomography and 227Th for therapy, establish a strong basis for the theranostic use of 227Th in the individualized treatment of multifocal OST.
Collapse
Affiliation(s)
- Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John G Sharp
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shantharam Joshi
- Department of Genetics Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Don W Coulter
- Division of Hematology/Oncology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
22
|
Stein BW, Morgenstern A, Batista ER, Birnbaum ER, Bone SE, Cary SK, Ferrier MG, John KD, Pacheco JL, Kozimor SA, Mocko V, Scott BL, Yang P. Advancing Chelation Chemistry for Actinium and Other +3 f-Elements, Am, Cm, and La. J Am Chem Soc 2019; 141:19404-19414. [PMID: 31794205 DOI: 10.1021/jacs.9b10354] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (μg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.
Collapse
Affiliation(s)
- Benjamin W Stein
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Amanda Morgenstern
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Enrique R Batista
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Eva R Birnbaum
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Sharon E Bone
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | | | - Maryline G Ferrier
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Kevin D John
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Juan Lezama Pacheco
- Stanford University , Stanford , California 94305 , United States of America
| | - Stosh A Kozimor
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Veronika Mocko
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Brian L Scott
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| | - Ping Yang
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States of America
| |
Collapse
|
23
|
Tafreshi NK, Doligalski ML, Tichacek CJ, Pandya DN, Budzevich MM, El-Haddad G, Khushalani NI, Moros EG, McLaughlin ML, Wadas TJ, Morse DL. Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules 2019; 24:molecules24234314. [PMID: 31779154 PMCID: PMC6930656 DOI: 10.3390/molecules24234314] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer. In this comprehensive review, we discuss the current consensus regarding the properties of the α-particle-emitting radionuclides that are potentially relevant for use in the clinic; the TAT-mediated mechanisms responsible for cell death; the different classes of targeting moieties and radiometal chelators available for TAT development; current approaches to calculating radiation dosimetry for TATs; and lead optimization via medicinal chemistry to improve the TAT radiopharmaceutical properties. We have also summarized the use of TATs in pre-clinical and clinical studies to date.
Collapse
Affiliation(s)
- Narges K. Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Michael L. Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Christopher J. Tichacek
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Darpan N. Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - Mikalai M. Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Ghassan El-Haddad
- Depts. of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Eduardo G. Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Mark L. McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, WV & Modulation Therapeutics Inc., 64 Medical Center Drive, Morgantown, WV 26506, USA;
| | - Thaddeus J. Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - David L. Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8948; Fax: +1-813-745-8375
| |
Collapse
|
24
|
Karimian A, Ji NT, Song H, Sgouros G. Mathematical Modeling of Preclinical Alpha-Emitter Radiopharmaceutical Therapy. Cancer Res 2019; 80:868-876. [PMID: 31772036 DOI: 10.1158/0008-5472.can-19-2553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022]
Abstract
Preclinical studies, in vivo, and in vitro studies, in combination with mathematical modeling can help optimize and guide the design of clinical trials. The design and optimization of alpha-particle emitter radiopharmaceutical therapy (αRPT) is especially important as αRPT has the potential for high efficacy but also high toxicity. We have developed a mathematical model that may be used to identify trial design parameters that will have the greatest impact on outcome. The model combines Gompertzian tumor growth with antibody-mediated pharmacokinetics and radiation-induced cell killing. It was validated using preclinical experimental data of antibody-mediated 213Bi and 225Ac delivery in a metastatic transgenic breast cancer model. In modeling simulations, tumor cell doubling time, administered antibody, antibody specific-activity, and antigen-site density most impacted median survival. The model was also used to investigate treatment fractionation. Depending upon the time-interval between injections, increasing the number of injections increased survival time. For example, two administrations of 200 nCi, 225Ac-labeled antibody, separated by 30 days, resulted in a simulated 31% increase in median survival over a single 400 nCi administration. If the time interval was 7 days or less, however, there was no improvement in survival; a one-day interval between injections led to a 10% reduction in median survival. Further model development and validation including the incorporation of normal tissue toxicity is necessary to properly balance efficacy with toxicity. The current model is, however, useful in helping understand preclinical results and in guiding preclinical and clinical trial design towards approaches that have the greatest likelihood of success. SIGNIFICANCE: Modeling is used to optimize αRPT.
Collapse
Affiliation(s)
- Alireza Karimian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Nathan T Ji
- Radiologic Physics Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Hong Song
- Radiologic Physics Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - George Sgouros
- Radiologic Physics Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland.
| |
Collapse
|
25
|
Dziawer Ł, Majkowska-Pilip A, Gaweł D, Godlewska M, Pruszyński M, Jastrzębski J, Wąs B, Bilewicz A. Trastuzumab-Modified Gold Nanoparticles Labeled with 211At as a Prospective Tool for Local Treatment of HER2-Positive Breast Cancer. NANOMATERIALS 2019; 9:nano9040632. [PMID: 31003512 PMCID: PMC6523862 DOI: 10.3390/nano9040632] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Highly localized radiotherapy with radionuclides is a commonly used treatment modality for patients with unresectable solid tumors. Herein, we propose a novel α-nanobrachytherapy approach for selective therapy of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. This uses local intratumoral injection of 5-nm-diameter gold nanoparticles (AuNPs) labeled with an α-emitter (211At), modified with polyethylene glycol (PEG) chains and attached to HER2-specific monoclonal antibody (trastuzumab). The size, shape, morphology, and zeta potential of the 5 nm synthesized AuNPs were characterized by TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering) techniques. The gold nanoparticle surface was modified by PEG and subsequently used for antibody immobilization. Utilizing the high affinity of gold for heavy halogens, the bioconjugate was labelled with 211At obtained by α irradiation of the bismuth target. The labeling yield of 211At was greater than 99%. 211At bioconjugates were stable in human serum. Additionally, in vitro biological studies indicated that 211At-AuNP-PEG-trastuzumab exhibited higher affinity and cytotoxicity towards the HER2-overexpressing human ovarian SKOV-3 cell line than unmodified nanoparticles. Confocal and dark field microscopy studies revealed that 211At-AuNP-PEG-trastuzumab was effectively internalized and deposited near the nucleus. These findings show promising potential for the 211At-AuNP-PEG-trastuzumab radiobioconjugate as a perspective therapeutic agent in the treatment of unresectable solid cancers expressing HER2 receptors.
Collapse
Affiliation(s)
- Łucja Dziawer
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Damian Gaweł
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Marek Pruszyński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Jerzy Jastrzębski
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland.
| | - Bogdan Wąs
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow, Poland.
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| |
Collapse
|
26
|
Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr Radiopharm 2019; 11:156-172. [PMID: 29658444 PMCID: PMC6249690 DOI: 10.2174/1874471011666180416161908] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/18/2017] [Accepted: 03/06/2018] [Indexed: 11/22/2022]
Abstract
Background: The development of radiopharmaceuticals containing 225Ac for targeted alpha therapy is an active area of academic and commercial research worldwide. Objectives: Despite promising results from recent clinical trials, 225Ac-radiopharmaceutical development still faces significant challenges that must be overcome to realize the widespread clinical use of 225Ac. Some of these challenges include the limited availability of the isotope, the challenging chemistry required to isolate 225Ac from any co-produced isotopes, and the need for stable targeting systems with high radio-labeling yields. Results: Here we provide a review of available literature pertaining to these challenges in the 225Ac-radiopharmaceutical field and also provide insight into how performed and planned efforts at TRIUMF - Canada’s particle accelerator centre - aim to address these issues
Collapse
Affiliation(s)
- Andrew Kyle Henderson Robertson
- Life Sciences Division, TRIUMF, Vancouver BC, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada
| | | | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver BC, Canada.,Department of Radiology, University of British Columbia, Vancouver BC, Canada
| | | |
Collapse
|
27
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
28
|
Abstract
α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.
Collapse
Affiliation(s)
- Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Stavroula Sofou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
29
|
Kasten BB, Oliver PG, Kim H, Fan J, Ferrone S, Zinn KR, Buchsbaum DJ. 212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models. Int J Mol Sci 2018; 19:ijms19040925. [PMID: 29561763 PMCID: PMC5979285 DOI: 10.3390/ijms19040925] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 01/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs), as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4) is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT) targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb) 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with 212Pb (212Pb-225.28) as a source of α-particles for RIT was used for in vitro Scatchard assays and clonogenic survival assays with human TNBC cells (SUM159 and 2LMP) grown as adherent cells or non-adherent CIC-enriched mammospheres. Immune-deficient mice bearing orthotopic SUM159 or 2LMP xenografts were injected i.v. with the targeted (225.28) or irrelevant isotype-matched control (F3-C25) mAbs, labeled with 99mTc, 125I, or 212Pb for in vivo imaging, biodistribution, or tumor growth inhibition studies. 212Pb-225.28 bound to adherent SUM159 and 2LMP cells and to CICs from SUM159 and 2LMP mammospheres with a mean affinity of 0.5 nM. Nearly ten times more binding sites per cell were present on SUM159 cells and CICs compared with 2LMP cells. 212Pb-225.28 was six to seven times more effective than 212Pb-F3-C25 at inhibiting SUM159 cell and CIC clonogenic survival (p < 0.05). Radiolabeled mAb 225.28 showed significantly higher uptake than radiolabeled mAb F3-C25 in SUM159 and 2LMP xenografts (p < 0.05), and the uptake of 212Pb-225.28 in TNBC xenografts was correlated with target epitope expression. 212Pb-225.28 caused dose-dependent growth inhibition of SUM159 xenografts; 0.30 MBq 212Pb-225.28 was significantly more effective than 0.33 MBq 212Pb-F3-C25 at inhibiting tumor growth (p < 0.01). These results suggest that CSPG4-specific 212Pb-225.28 is a useful reagent for RIT of CSPG4-expressing tumors, including metastatic TNBC.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jinda Fan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Kurt R Zinn
- Institute for Quantitative Health Science and Engineering, Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Pruszynski M, D'Huyvetter M, Bruchertseifer F, Morgenstern A, Lahoutte T. Evaluation of an Anti-HER2 Nanobody Labeled with 225Ac for Targeted α-Particle Therapy of Cancer. Mol Pharm 2018; 15:1457-1466. [PMID: 29502411 DOI: 10.1021/acs.molpharmaceut.7b00985] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human epidermal growth factor receptor type 2 (HER2) is overexpressed in numerous carcinomas. Nanobodies (Nbs) are the smallest antibody-derived fragments with beneficial characteristics for molecular imaging and radionuclide therapy. Therefore, HER2-targeting nanobodies could offer a valuable platform for radioimmunotherapy, especially when labeled with α-particle emitters, which provide highly lethal and localized radiation to targeted cells with minimal exposure to surrounding healthy tissues. In this study, the anti-HER2 2Rs15d-nanobody was conjugated with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid ( p-SCN-Bn-DOTA) and radiolabeled with an α-emitter 225Ac with a high yield (>90%) and a radiochemical purity above 95%. The 225Ac-DOTA-Nb binding affinity was 4.12 ± 0.47 nM with an immunoreactive fraction above 80%. Binding to low HER2-expressing MDA-MB-231 cells was negligible, whereas HER2-overexpressing SKOV-3 cells could be blocked with an excess of unlabeled nanobody, confirming the specificity of binding. Noncompeting binding to HER2 was observed in the presence of an excess of trastuzumab. The cell-associated fraction of 225Ac-DOTA-Nb was 34.72 ± 16.66% over 24 h. In vitro, the radioconjugate was toxic in an HER2-mediated and dose-dependent manner, resulting in IC50 values of 10.2 and 322.1 kBq/mL for 225Ac-DOTA-Nb and the 225Ac-DOTA control, respectively, on SKOV-3 cells, and 282.2 kBq/mL for 225Ac-DOTA-Nb on MDA-MB-231 cells. Ex vivo biodistribution studies, performed in mice bearing subcutaneous HER2-overexpressing and low HER2-expressing tumors, showed a fast uptake in SKOV-3 tumors compared to MDA-MB-231 (4.01 ± 1.58% ID/g vs 0.49 ± 0.20% ID/g after 2 h), resulting also in high tumor-to-normal tissue ratios. In addition, coinjection of 225Ac-DOTA-Nb with Gelofusine reduced kidney retention by 70%. This study shows that 225Ac-DOTA-Nb is a promising new radioconjugate for targeted α-particle therapy and supports its further development.
Collapse
Affiliation(s)
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory , Vrije Universiteit Brussel , Brussels , Belgium
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre , Department for Nuclear Safety and Security , Karlsruhe , Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre , Department for Nuclear Safety and Security , Karlsruhe , Germany
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory , Vrije Universiteit Brussel , Brussels , Belgium.,Nuclear Medicine Department , UZ Brussel , Brussels , Belgium
| |
Collapse
|
31
|
Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators. Molecules 2018; 23:molecules23030581. [PMID: 29510568 PMCID: PMC6017877 DOI: 10.3390/molecules23030581] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
This review summarizes recent progress and developments as well as the most important pitfalls in targeted alpha-particle therapy, covering single alpha-particle emitters as well as in vivo alpha-particle generators. It discusses the production of radionuclides like 211At, 223Ra, 225Ac/213Bi, labelling and delivery employing various targeting vectors (small molecules, chelators for alpha-emitting nuclides and their biomolecular targets as well as nanocarriers), general radiopharmaceutical issues, preclinical studies, and clinical trials including the possibilities of therapy prognosis and follow-up imaging. Special attention is given to the nuclear recoil effect and its impacts on the possible use of alpha emitters for cancer treatment, proper dose estimation, and labelling chemistry. The most recent and important achievements in the development of alpha emitters carrying vectors for preclinical and clinical use are highlighted along with an outlook for future developments.
Collapse
|
32
|
Yoshida T, Jin K, Song H, Park S, Huso DL, Zhang Z, Liangfeng H, Zhu C, Bruchertseifer F, Morgenstern A, Sgouros G, Sukumar S. Effective treatment of ductal carcinoma in situ with a HER-2- targeted alpha-particle emitting radionuclide in a preclinical model of human breast cancer. Oncotarget 2017; 7:33306-15. [PMID: 27119227 PMCID: PMC5078096 DOI: 10.18632/oncotarget.8949] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/31/2016] [Indexed: 01/03/2023] Open
Abstract
The standard treatment for ductal carcinoma in situ (DCIS) of the breast is surgical resection, followed by radiation. Here, we tested localized therapy of DCIS in mice using the immunoconjugate 225Ac linked-trastuzumab delivered through the intraductal (i.duc) route. Trastuzumab targets HER-2/neu, while the alpha-emitter 225Ac (half-life, 10 days) delivers highly cytotoxic, focused doses of radiation to tumors. Systemic 225Ac, however, elicits hematologic toxicity and at high doses free 213Bi, generated by its decay, causes renal toxicity. I.duc delivery of the radioimmunoconjugate could bypass its systemic toxicity. Bioluminescent imaging showed that the therapeutic efficacy of intraductal 225Ac-trastuzumab (10-40 nCi per mammary gland; 30-120 nCi per mouse) in a DCIS model of human SUM225 cancer cells in NSG mice was significantly higher (p<0.0003) than intravenous (120 nCi per mouse) administration, with no kidney toxicity or loss of body weight. Our findings suggest that i.duc radioimmunotherapy using 225Ac-trastuzumab deserves greater attention for future clinical development as a treatment modality for early breast cancer.
Collapse
Affiliation(s)
- Takahiro Yoshida
- Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA
| | - Kideok Jin
- Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA
| | - Hong Song
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Maryland, USA
| | - Sunju Park
- Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA
| | - David L Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Maryland, USA
| | - Zhe Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA
| | - Han Liangfeng
- Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA
| | - Charles Zhu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe, Germany
| | - George Sgouros
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Maryland, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Maryland, USA
| |
Collapse
|
33
|
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials 2017; 130:67-75. [DOI: 10.1016/j.biomaterials.2017.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
|
34
|
Kasten BB, Arend RC, Katre AA, Kim H, Fan J, Ferrone S, Zinn KR, Buchsbaum DJ. B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl Med Biol 2017; 47:23-30. [PMID: 28104527 DOI: 10.1016/j.nucmedbio.2017.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Novel therapies that effectively kill both differentiated cancer cells and cancer initiating cells (CICs), which are implicated in causing chemotherapy-resistance and disease recurrence, are needed to reduce the morbidity and mortality of ovarian cancer. These studies used monoclonal antibody (mAb) 376.96, which recognizes a B7-H3 epitope expressed on ovarian cancer cells and CICs, as a carrier molecule for targeted α-particle radioimmunotherapy (RIT) in preclinical models of human ovarian cancer. METHODS mAb 376.96 was conjugated to the chelate 2-(4-isothiocyanotobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra-(2-carbamoylmethyl)-cyclododecane (TCMC) and radiolabeled with 212Pb, a source of α-particles. In vitro Scatchard assays determined the specific binding of 212Pb-376.96 to adherent differentiated or non-adherent CIC-enriched ES-2 and A2780cp20 ovarian cancer cells. Adherent ovarian cancer cells and non-adherent CIC-enriched tumorspheres treated in vitro with 212Pb-376.96 or the irrelevant isotype-matched 212Pb-F3-C25 were assessed for clonogenic survival. Mice bearing i.p. ES-2 or A2780cp20 xenografts were injected i.p. with 0.17-0.70MBq 212Pb-376.96 or 212Pb-F3-C25 and were used for in vivo imaging, ex vivo biodistribution, and therapeutic survival studies. RESULTS 212Pb-376.96 was obtained in high yield and purity (>98%); Kd values ranged from 10.6-26.6nM for ovarian cancer cells, with 104-105 binding sites/cell. 212Pb-376.96 inhibited the clonogenic survival of ovarian cancer cells up to 40 times more effectively than isotype-matched control 212Pb-F3-C25; combining 212Pb-376.96 with carboplatin significantly decreased clonogenic survival compared to either agent alone. In vivo imaging and biodistribution analysis 24h after i.p. injection of 212Pb-376.96 showed high peritoneal retention and tumor tissue accumulation (28.7% ID/g in ES-2 ascites, 73.1% ID/g in A2780cp20 tumors); normal tissues showed lower and comparable uptake for 212Pb-376.96 and 212Pb-F3-C25. Tumor-bearing mice treated with 212Pb-376.96 alone or combined with carboplatin survived 2-3 times longer than mice treated with 212Pb-F3-C25 or non-treated controls. CONCLUSION These results support additional RIT studies with 212Pb-376.96 for future evaluation in patients with ovarian cancer.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL
| | - Ashwini A Katre
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jinda Fan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
35
|
Sempkowski M, Zhu C, Menzenski MZ, Kevrekidis IG, Bruchertseifer F, Morgenstern A, Sofou S. Sticky Patches on Lipid Nanoparticles Enable the Selective Targeting and Killing of Untargetable Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8329-8338. [PMID: 27468779 DOI: 10.1021/acs.langmuir.6b01464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective targeting by uniformly functionalized nanoparticles is limited to cancer cells expressing at least two copies of targeted receptors per nanoparticle footprint (approximately ≥2 × 10(5) receptor copies per cell); such a receptor density supports the required multivalent interaction between the neighboring receptors and the ligands from a single nanoparticle. To enable selective targeting below this receptor density, ligands on the surface of lipid vesicles were displayed in clusters that were designed to form at the acidic pH of the tumor interstitium. Vesicles with clustered HER2-targeting peptides within such sticky patches (sticky vesicles) were compared to uniformly functionalized vesicles. On HER2-negative breast cancer cells MDA-MB-231 and MCF7 {expressing (8.3 ± 0.8) × 10(4) and (5.4 ± 0.9) × 10(4) HER2 copies per cell, respectively}, only the sticky vesicles exhibited detectable specific targeting (KD ≈ 49-69 nM); dissociation (0.005-0.009 min(-1)) and endocytosis rates (0.024-0.026 min(-1)) were independent of HER2 expression for these cells. MDA-MB-231 and MCF7 were killed only by sticky vesicles encapsulating doxorubicin (32-40% viability) or α-particle emitter (225)Ac (39-58% viability) and were not affected by uniformly functionalized vesicles (>80% viability). Toxicities on cardiomyocytes and normal breast cells (expressing HER2 at considerably lower but not insignificant levels) were not observed, suggesting the potential of tunable clustered ligand display for the selective killing of cancer cells with low receptor densities.
Collapse
Affiliation(s)
| | | | | | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Program in Applied and Computational Mathematics, Princeton University , A319 Engineering Quad, Princeton, New Jersey 08544, United States
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Institute for Transuranium Elements , P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Institute for Transuranium Elements , P.O. Box 2340, D-76125 Karlsruhe, Germany
| | | |
Collapse
|
36
|
Bethge WA, Sandmaier BM. Targeted Cancer Therapy Using Radiolabeled Monoclonal Antibodies. Technol Cancer Res Treat 2016; 4:393-405. [PMID: 16029058 DOI: 10.1177/153303460500400407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radioimmunotherapy (RIT) combines the advantages of targeted radiation therapy and specific immunotherapy using monoclonal antibodies. RIT can be used either to target tumor cells or to specifically suppress immunocompetent host cells in the setting of allogeneic transplantation. The choice of radionuclide used for RIT depends on its distinct radiation characteristics and the type of malignancy or cells targeted. Beta-emitters with their lower energy and longer path length are more suitable to target bulky, solid tumors whereas α-emitters with their high linear energy transfer and short path length are better suited to target hematopoietic cells (normal or malignant). Different approaches of RIT such as the use of stable radioimmunoconjugates or of pretargeting strategies are available. Encouraging results have been obtained with RIT in patients with hematologic malignancies. The results in solid tumors are somewhat less favorable but new strategies for patients with minimal residual disease using adjuvant and locoregional treatment are evolving. This report outlines basic principles of RIT, gives an overview of available radionuclides and radioimmunoconjugates, and discusses clinical results with special emphasis on their use in hematologic malignancies including use in conditioning regimens for bone marrow transplantation.
Collapse
Affiliation(s)
- Wolfgang A Bethge
- Medical Center, University of Tuebingen, Department of Hematology and Oncology, Otfried-Mueller Str. 10, 72076 Tuebingen, Germany
| | | |
Collapse
|
37
|
Guseva LI. Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine. RADIOCHEMISTRY 2014. [DOI: 10.1134/s1066362214050014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Knapp FF, Pillai MRA, Osso JA, Dash A. Re-emergence of the important role of radionuclide generators to provide diagnostic and therapeutic radionuclides to meet future research and clinical demands. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3642-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Wadas TJ, Pandya DN, Solingapuram Sai KK, Mintz A. Molecular targeted α-particle therapy for oncologic applications. AJR Am J Roentgenol 2014; 203:253-60. [PMID: 25055256 PMCID: PMC4490786 DOI: 10.2214/ajr.14.12554] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A significant challenge facing traditional cancer therapies is their propensity to significantly harm normal tissue. The recent clinical success of targeting therapies by attaching them to antibodies that are specific to tumor-restricted biomarkers marks a new era of cancer treatments. CONCLUSION In this article, we highlight the recent developments in α-particle therapy that have enabled investigators to exploit this highly potent form of therapy by targeting tumor-restricted molecular biomarkers.
Collapse
Affiliation(s)
- Thaddeus J Wadas
- 1 Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
| | | | | | | |
Collapse
|
40
|
Maguire WF, McDevitt MR, Smith-Jones PM, Scheinberg DA. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for α-particle radioimmunotherapy of cancer. J Nucl Med 2014; 55:1492-8. [PMID: 24982438 DOI: 10.2967/jnumed.114.138347] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Targeted α-particle radiation using the radioisotope (225)Ac is a promising form of therapy for various types of cancer. Historic obstacles to the use of (225)Ac have been the difficulty in finding suitable chelators to stably attach it to targeting vehicles such as peptides and monoclonal antibodies, the low specific activities of the products, and the lack of cost-effective radiolabeling procedures. We initially solved the first problem with a procedure involving 2 chemical steps that has been used as a standard in preclinical and clinical studies. However, this procedure involves the loss of 90% of the input (225)Ac. A more efficient, economical process is needed to facilitate the more widespread use of (225)Ac. METHODS We conjugated representative antibodies with 2 forms of DOTA as well as other chelators as controls. We developed conditions to radiolabel these constructs in 1 chemical step and characterized their stability, immunoreactivity, biodistribution, and therapeutic efficacy in healthy and tumor-bearing mice. RESULTS DOTA-antibody constructs were labeled to a wide range of specific activities in 1 chemical step at 37°C. Radiochemical yields were approximately 10-fold higher, and specific activities were up to 30-fold higher than with the previous approach. The products retained immunoreactivity and were stable to serum challenge in vitro and in mice. Labeling kinetics of DOTA-antibody constructs linked through a benzyl isothiocyanate linkage were more favorable than those linked through an N-hydroxysuccinimide linkage. Tissue distribution was similar but not identical between the constructs. The constructs produced specific therapeutic responses in a mouse model of acute myeloid leukemia. CONCLUSION We have characterized an efficient, 1-step radiolabeling method that produces stable, therapeutically active conjugates of antibodies with (225)Ac at high specific activity. We propose that this technology greatly expands the possible clinical applications of (225)Ac monoclonal antibodies.
Collapse
Affiliation(s)
- William F Maguire
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York Weill Cornell Medical College, New York, New York
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Peter M Smith-Jones
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, New York; and Department of Radiology, Stony Brook University, Stony Brook, New York
| | - David A Scheinberg
- Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York Weill Cornell Medical College, New York, New York Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
41
|
Charoen KM, Fallica B, Colson YL, Zaman MH, Grinstaff MW. Embedded multicellular spheroids as a biomimetic 3D cancer model for evaluating drug and drug-device combinations. Biomaterials 2013; 35:2264-71. [PMID: 24360576 DOI: 10.1016/j.biomaterials.2013.11.038] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 01/17/2023]
Abstract
Multicellular aggregates of cells, termed spheroids, are of interest for studying tumor behavior and for evaluating the response of pharmacologically active agents. Spheroids more faithfully reproduce the tumor macrostructure found in vivo compared to classical 2D monolayers. We present a method for embedding spheroids within collagen gels followed by quantitative and qualitative whole spheroid and single cell analyses enabling characterization over the length scales from molecular to macroscopic. Spheroid producing and embedding capabilities are demonstrated for U2OS and MDA-MB-231 cell lines, of osteosarcoma and breast adenocarcinoma origin, respectively. Finally, using the MDA-MB-231 tumor model, the chemotherapeutic response between paclitaxel delivery as a bolus dose, as practiced in the clinic, is compared to delivery within an expansile nanoparticle. The expansile nanoparticle delivery route provides a superior outcome and the results mirror those observed in a murine xenograft model. These findings highlight the synergistic beneficial results that may arise from the use of a drug delivery system, and the need to evaluate both drug candidates and delivery systems in the research and preclinical screening phases of a new cancer therapy development program.
Collapse
Affiliation(s)
- Kristie M Charoen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Brian Fallica
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
42
|
Petriev VM, Podgorodnichenko VK, Smoryzanova OA, Skvortsov VG. Studies of the Pharmacokinetics of Actinium-255-Labeled Bisphosphonate in Intact Mice. Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Abstract
Radiometals comprise many useful radioactive isotopes of various metallic elements. When properly harnessed, these have valuable emission properties that can be used for diagnostic imaging techniques, such as single photon emission computed tomography (SPECT, e.g.(67)Ga, (99m)Tc, (111)In, (177)Lu) and positron emission tomography (PET, e.g.(68)Ga, (64)Cu, (44)Sc, (86)Y, (89)Zr), as well as therapeutic applications (e.g.(47)Sc, (114m)In, (177)Lu, (90)Y, (212/213)Bi, (212)Pb, (225)Ac, (186/188)Re). A fundamental critical component of a radiometal-based radiopharmaceutical is the chelator, the ligand system that binds the radiometal ion in a tight stable coordination complex so that it can be properly directed to a desirable molecular target in vivo. This article is a guide for selecting the optimal match between chelator and radiometal for use in these systems. The article briefly introduces a selection of relevant and high impact radiometals, and their potential utility to the fields of radiochemistry, nuclear medicine, and molecular imaging. A description of radiometal-based radiopharmaceuticals is provided, and several key design considerations are discussed. The experimental methods by which chelators are assessed for their suitability with a variety of radiometal ions is explained, and a large selection of the most common and most promising chelators are evaluated and discussed for their potential use with a variety of radiometals. Comprehensive tables have been assembled to provide a convenient and accessible overview of the field of radiometal chelating agents.
Collapse
Affiliation(s)
- Eric W Price
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, CanadaV6T 1Z1.
| | | |
Collapse
|
44
|
Song H, Hedayati M, Hobbs RF, Shao C, Bruchertseifer F, Morgenstern A, Deweese TL, Sgouros G. Targeting aberrant DNA double-strand break repair in triple-negative breast cancer with alpha-particle emitter radiolabeled anti-EGFR antibody. Mol Cancer Ther 2013; 12:2043-54. [PMID: 23873849 DOI: 10.1158/1535-7163.mct-13-0108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The higher potential efficacy of alpha-particle radiopharmaceutical therapy lies in the 3- to 8-fold greater relative biological effectiveness (RBE) of alpha particles relative to photon or beta-particle radiation. This greater RBE, however, also applies to normal tissue, thereby reducing the potential advantage of high RBE. As alpha particles typically cause DNA double-strand breaks (DSB), targeting tumors that are defective in DSB repair effectively increases the RBE, yielding a secondary, RBE-based differentiation between tumor and normal tissue that is complementary to conventional, receptor-mediated tumor targeting. In some triple-negative breast cancers (TNBC; ER(-)/PR(-)/HER-2(-)), germline mutation in BRCA-1, a key gene in homologous recombination DSB repair, predisposes patients to early onset of breast cancer. These patients have few treatment options once the cancer has metastasized. In this study, we investigated the efficacy of alpha-particle emitter, (213)Bi-labeled anti-EGF receptor antibody, cetuximab, in BRCA-1-defective TNBC. (213)Bi-cetuximab was found to be significantly more effective in the BRCA-1-mutated TNBC cell line HCC1937 than BRCA-1-competent TNBC cell MDA-MB-231. siRNA knockdown of BRCA-1 or DNA-dependent protein kinase, catalytic subunit (DNA-PKcs), a key gene in non-homologous end-joining DSB repair pathway, also sensitized TNBC cells to (213)Bi-cetuximab. Furthermore, the small-molecule inhibitor of DNA-PKcs, NU7441, sensitized BRCA-1-competent TNBC cells to alpha-particle radiation. Immunofluorescent staining of γ-H2AX foci and comet assay confirmed that enhanced RBE is caused by impaired DSB repair. These data offer a novel strategy for enhancing conventional receptor-mediated targeting with an additional, potentially synergistic radiobiological targeting that could be applied to TNBC.
Collapse
Affiliation(s)
- Hong Song
- Corresponding Author: George Sgouros, The Johns Hopkins University School of Medicine, Rm 4M61 Cancer Research Building II, 1550 Orleans Street, Baltimore, MD 21231.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol 2012; 314:57-68. [PMID: 22974563 DOI: 10.1016/j.jtbi.2012.08.034] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization.
Collapse
Affiliation(s)
- Greg M Thurber
- Dept. Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
46
|
Microdosimetry for targeted alpha therapy of cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:153212. [PMID: 22988479 PMCID: PMC3439982 DOI: 10.1155/2012/153212] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/25/2012] [Indexed: 11/17/2022]
Abstract
Targeted alpha therapy (TAT) has the advantage of delivering therapeutic doses to individual cancer cells while reducing the dose to normal tissues. TAT applications relate to hematologic malignancies and now extend to solid tumors. Results from several clinical trials have shown efficacy with limited toxicity. However, the dosimetry for the labeled alpha particle is challenging because of the heterogeneous antigen expression among cancer cells and the nature of short-range, high-LET alpha radiation. This paper demonstrates that it is inappropriate to investigate the therapeutic efficacy of TAT by macrodosimetry. The objective of this work is to review the microdosimetry of TAT as a function of the cell geometry, source-target configuration, cell sensitivity, and biological factors. A detailed knowledge of each of these parameters is required for accurate microdosimetric calculations.
Collapse
|
47
|
Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm 2012; 4:306-20. [PMID: 22202153 DOI: 10.2174/1874471011104040306] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/31/2011] [Accepted: 04/19/2011] [Indexed: 01/22/2023]
Abstract
Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer.
Collapse
Affiliation(s)
- David A Scheinberg
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue,New York, NY 10065, USA
| | | |
Collapse
|
48
|
Abbas N, Heyerdahl H, Bruland OS, Borrebæk J, Nesland J, Dahle J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res 2011; 1:18. [PMID: 22214432 PMCID: PMC3250964 DOI: 10.1186/2191-219x-1-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the present study was to explore the biodistribution, normal tissue toxicity, and therapeutic efficacy of the internalizing low-dose rate alpha-particle-emitting radioimmunoconjugate 227Th-trastuzumab in mice with HER2-expressing breast cancer xenografts. Methods Biodistribution of 227Th-trastuzumab and 227Th-rituximab in nude mice bearing SKBR-3 xenografts were determined at different time points after injection. Tumor growth was measured after administration of 227Th-trastuzumab, 227Th-rituximab, cold trastuzumab, and saline. The toxicity of 227Th-trastuzumab was evaluated by measurements of body weight, blood cell, and clinical chemistry parameters, as well as histological examination of tissue specimens. Results The tumor uptake reached peak levels of 34% ID/g (4.6 kBq/g) 3 days after injection of 400 kBq/kg of 227Th-trastuzumab. The absorbed radiation dose to tumor was 2.9 Gy, while it was 2.4 Gy to femur due to uptake of the daughter nuclide 223Ra in bone; the latter already explored in clinical phases I and II trials without serious toxicity. A significant dose-dependent antitumor effect was observed for dosages of 200, 400, and 600 kBq/kg of 227Th-trastuzumab but no effect of 400 and 600 kBq/kg 227Th-rituximab (non-tumor binding). No serious delayed bone marrow or normal organ toxicity was observed, but there was a statistical significant reduction in blood cell parameters for the highest-dose group of 227Th-trastuzumab treatment. Conclusion Internalizing 227Th-trastuzumab therapy was well tolerated and resulted in a dose-dependent inhibition of breast cancer xenograft growth. These results warrant further preclinical studies aiming at a clinical trial in breast cancer patients with metastases to bone.
Collapse
Affiliation(s)
- Nasir Abbas
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
49
|
Sgouros G, Hobbs RF, Song H. Modelling and dosimetry for alpha-particle therapy. Curr Radiopharm 2011; 4:261-5. [PMID: 22201712 PMCID: PMC4332831 DOI: 10.2174/1874471011104030261] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 11/22/2022]
Abstract
As a consequence of the high potency and short range of alpha-particles, radiopharmaceutical therapy with alpha- particle emitting radionuclides is a promising treatment approach that is under active pre-clinical and clinical investigation. To understand and predict the biological effects of alpha-particle radiopharmaceuticals, dosimetry is required at the micro or multi-cellular scale level. At such a scale, highly non-uniform irradiation of the target volume may be expected and the utility of a single absorbed dose value to predict biological effects comes into question. It is not currently possible to measure the pharmacokinetic input required for micro scale dosimetry in humans. Accordingly, pre-clinical studies are required to provide the pharmacokinetic data for dosimetry calculations. The translation of animal data to the human requires a pharmacokinetic model that links macro- and micro-scale pharmacokinetics thereby enabling the extrapolation of micro-scale kinetics from macroscopic measurements. These considerations along with a discussion of the appropriate physical quantity and related units for alpha-particle radiopharmaceutical therapy are examined in this review.
Collapse
Affiliation(s)
- George Sgouros
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | |
Collapse
|
50
|
Song HA, Kang CS, Baidoo KE, Milenic DE, Chen Y, Dai A, Brechbiel MW, Chong HS. Efficient bifunctional decadentate ligand 3p-C-DEPA for targeted α-radioimmunotherapy applications. Bioconjug Chem 2011; 22:1128-35. [PMID: 21604692 DOI: 10.1021/bc100586y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new bifunctional ligand 3p-C-DEPA was synthesized and evaluated for use in targeted α-radioimmunotherapy. 3p-C-DEPA was efficiently prepared via regiospecific ring opening of an aziridinium ion and conjugated with trastuzumab. The 3p-C-DEPA-trastuzumab conjugate was extremely rapid in binding (205/6)Bi, and the corresponding (205/6)Bi-3p-C-DEPA-trastuzumab complex was stable in human serum. Biodistribution studies were performed to evaluate in vivo stability and tumor targeting of (205/6)Bi-3p-C-DEPA-trastuzumab conjugate in tumor bearing athymic mice. (205/6)Bi-3p-C-DEPA-trastuzumab conjugate displayed excellent in vivo stability and targeting as evidenced by low organ uptake and high tumor uptake. The results of the in vitro and in vivo studies indicate that 3p-C-DEPA is a promising chelator for radioimmunotherapy of (212)Bi and (213)Bi.
Collapse
Affiliation(s)
- Hyun A Song
- Chemistry Division, Biological, Chemical, and Physical Sciences Department, Illinois Institute of Technology, Chicago, Illinois, United States
| | | | | | | | | | | | | | | |
Collapse
|