1
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025:10.1038/s41568-024-00785-5. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Yeon M, Kwon N, Jeoung J, Jeoung D. HDAC9 and miR-512 Regulate CAGE-Promoted Anti-Cancer Drug Resistance and Cellular Proliferation. Curr Issues Mol Biol 2024; 46:5178-5193. [PMID: 38920983 PMCID: PMC11201674 DOI: 10.3390/cimb46060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Histone deacetylase 9 (HDAC9) is known to be upregulated in various cancers. Cancer-associated antigens (CAGEs) are cancer/testis antigens that play an important role in anti-cancer drug resistance. This study aimed to investigate the relationship between CAGEs and HDAC9 in relation to anti-cancer drug resistance. AGSR cells with an anti-cancer drug-resistant phenotype showed higher levels of CAGEs and HDAC9 than normal AGS cells. CAGEs regulated the expression of HDAC9 in AGS and AGSR cells. CAGEs directly regulated the expression of HDAC9. Rapamycin, an inducer of autophagy, increased HDAC9 expression in AGS, whereas chloroquine decreased HDAC9 expression in AGSR cells. The downregulation of HDAC9 decreased the autophagic flux, invasion, migration, and tumor spheroid formation potential in AGSR cells. The TargetScan analysis predicted that miR-512 was a negative regulator of HDAC9. An miR-512 mimic decreased expression levels of CAGEs and HDAC9. The miR-512 mimic also decreased the autophagic flux, invasion, migration, and tumor spheroid forming potential of AGSR cells. The culture medium of AGSR increased the expression of HDAC9 and autophagic flux in AGS. A human recombinant CAGE protein increased HDAC9 expression in AGS cells. AGSR cells displayed higher tumorigenic potential than AGS cells. Altogether, our results show that CAGE-HDAC9-miR-512 can regulate anti-cancer drug resistance, cellular proliferation, and autophagic flux. Our results can contribute to the understanding of the molecular roles of HDAC9 in anti-cancer drug resistance.
Collapse
Affiliation(s)
| | | | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (N.K.); (J.J.)
| |
Collapse
|
3
|
Park S, Yang JB, Park YH, Kim YK, Jeoung D, Kim HY, Jung HS. Structural insight into crystal structure of helicase domain of DDX53. Biochem Biophys Res Commun 2023; 677:190-195. [PMID: 37603933 DOI: 10.1016/j.bbrc.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
DEAD box helicase proteins are a family of RNA helicases that participate in various RNA metabolisms such as RNA unwinding, RNA processing, and RNPase activities. A particular DEAD box protein, the DDX53 protein, is primarily expressed in cancer cells and plays a crucial role in tumorigenesis. Numerous studies have revealed that DDX53 interacts with various microRNA and Histone deacetylases. However, its molecular structure and the detailed binding interaction between DDX53 and microRNA or HDAC is still unclear. In this study, we used X-ray crystallography to investigate the 3D structure of the hlicase C-terminal domain of DDX53, and successfully determined its crystal structure at a resolution of 1.97 Å. Subsequently, a functional analysis of RNA was conducted by examining the binding properties thereof with DDX53 by transmission electron microscopy and computing-based molecular docking simulation. The defined 3D model of DDX53 not only provides a structural basis for the fundamental understanding of DDX53 but is also expected to contribute to the field of anti-cancer drug discovery such as structure-based drug discovery and computer-aided drug design.
Collapse
Affiliation(s)
- Suncheol Park
- Research Center for Bioconvergence Analysis, Division of Analytical Science Research, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Republic of Korea
| | - Jeong Bin Yang
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Yoon Ho Park
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Young Kwan Kim
- Panolos Bioscience Inc., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dooil Jeoung
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hye-Yeon Kim
- Research Center for Bioconvergence Analysis, Division of Analytical Science Research, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Republic of Korea.
| | - Hyun Suk Jung
- Division of Chemistry & Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Yeon M, Lee H, Yeo J, Jeong MS, Jung HS, Lee H, Shim K, Jo H, Jeon D, Koh J, Jeoung D. Cancer/testis antigen CAGE mediates osimertinib resistance in non-small cell lung cancer cells and predicts poor prognosis in patients with pulmonary adenocarcinoma. Sci Rep 2023; 13:15748. [PMID: 37735252 PMCID: PMC10514060 DOI: 10.1038/s41598-023-43124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
CAGE, a cancer/testis antigen, was originally isolated from the sera of patients with gastric cancers. Previously, we have shown the role of CAGE in resistance to chemotherapy and target therapy. The aim of this study was to investigate the role of CAGE in osimertinib resistance and determine the prognostic value of CAGE in patients with pulmonary adenocarcinomas. The clinicopathological correlation with CAGE and autophagy flux in patients was examined using immunohistochemistry and in situ hybridization. The possible role of autophagy in osimertinib resistance was analyzed using immune blot, immune fluorescence staining and immunohistochemistry. This study found that immunohistochemical staining (IHC) showed CAGE expression in more than 50% of patients with pulmonary adenocarcinomas (pADCs). CAGE expression was increased in pADCs after the acquisition of EGFR-TKIs resistance. High expression of CAGE was correlated with shorter overall survival and progression free survival in patients with pADCs. Thus, CAGE mediates osimertinib resistance and predicts poor prognosis in patients with pADCs. Osimertinib-resistant non-small cell lung cancer cells (PC-9/OSI) were established and mechanistic studies of CAGE-mediated osimertinib resistance were performed. PC-9/OSI cells showed increased autophagic flux and CAGE expression compared with parental sensitive PC-9 cells. PC-9/OSI cells showed higher tumorigenic, metastatic, and angiogenic potential compared with parental PC-9 cells. CAGE CRISPR-Cas9 cell lines showed decreased autophagic flux, invasion, migration potential, and tumorigenic potential compared with PC-9/OSI cells in vitro and in vivo. CAGE plays a crucial role in the cancer progression by modulating autophagy and can predict the poor prognosis of patients with pulmonary adenocarcinomas. Our findings propose CAGE as a potential therapeutic target for developing anticancer drugs that can overcome osimertinib resistance.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | - Jeongseon Yeo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- Paean Biotech Company, Seoul, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | | | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | | | - Jaemoon Koh
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
5
|
Lee KJ, Singh N, Bizuneh M, Kim NH, Kim HS, Kim Y, Lee JJ, Kim JH, Kim J, Jeong SY, Cho HY, Park ST. miR-429 Suppresses Endometrial Cancer Progression and Drug Resistance via DDX53. J Pers Med 2023; 13:1302. [PMID: 37763070 PMCID: PMC10532590 DOI: 10.3390/jpm13091302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: To examine miR-429-meditated DEAD (Asp-Glu-Ala-Asp) box polypeptide 53 (DDX53) function in endometrial cancer (EC). (2) Methods: DDX53 and miR-429 levels were measured using quantitative real-time polymerase chain reaction and western blotting assays, cell invasion and migration using Transwell invasion and wound healing assays, and cell proliferation using colony-forming/proliferation assays. A murine xenograft model was also generated to examine miR-429 and DDX53 functions in vivo. (3) Results: DDX53 overexpression (OE) promoted key cancer phenotypes (proliferation, migration, and invasion) in EC, while in vivo, DDX53 OE hindered tumor growth in the murine xenograft model. Moreover, miR-429 was identified as a novel miRNA-targeting DDX53, which suppressed EC proliferation and invasion. (4) Conclusions: DDX53 and miR-429 regulatory mechanisms could provide novel molecular therapies for EC.
Collapse
Affiliation(s)
- Kyung-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Nitya Singh
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Michael Bizuneh
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Nam-Hyeok Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Youngmi Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
| | - Jae-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Departments of Anesthesiology and Pain Medicine, Chuncheon Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Jung Han Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Jiye Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Soo Young Jeong
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hye-Yon Cho
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Kyeonggido 18450, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (N.S.); (N.-H.K.); (H.S.K.); (Y.K.); (J.-J.L.); (S.Y.J.)
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| |
Collapse
|
6
|
Miao Y, Konno Y, Wang B, Zhu L, Zhai T, Ihira K, Kobayashi N, Watari H, Jin X, Yue J, Dong P, Fang M. Integrated multi-omics analyses and functional validation reveal TTK as a novel EMT activator for endometrial cancer. J Transl Med 2023; 21:151. [PMID: 36829176 PMCID: PMC9960418 DOI: 10.1186/s12967-023-03998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Cancer-testis antigens (CTAs) are often expressed in tumor and testicular tissues but not in other normal tissues. To date, there has been no comprehensive study of the expression and clinical significance of CTA genes associated with endometrial cancer (EC) development. Additionally, the clinical relevance, biological role, and molecular mechanisms of the CTA gene TTK protein kinase (TTK) in EC are yet to be fully understood. METHODS Using bioinformatics methods, we comprehensively investigated the genomic, transcriptomic, and epigenetic changes associated with aberrant TTK overexpression in EC samples from the TCGA database. We further investigated the mechanisms of the lower survival associated with TTK dysregulation using single-cell data of EC samples from the GEO database. Cell functional assays were used to confirm the biological roles of TTK in EC cells. RESULTS We identified 80 CTA genes that were more abundant in EC than in normal tissues, and high expression of TTK was significantly linked with lower survival in EC patients. Furthermore, ROC analysis revealed that TTK could accurately distinguish stage I EC tissues from benign endometrial samples, suggesting that TTK has the potential to be a biomarker for early EC detection. We found TTK overexpression was more prevalent in EC patients with high-grade, advanced tumors, serous carcinoma, and TP53 alterations. Furthermore, in EC tissue, TTK expression showed a strong positive correlation with EMT-related genes. With single-cell transcriptome data, we identified a proliferative cell subpopulation with high expression of TTK and known epithelial-mesenchymal transition (EMT)-related genes and transcription factors. When proliferative cells were grouped according to TTK expression levels, the overexpressed genes in the TTKhigh group were shown to be functionally involved in the control of chemoresistance. Utilizing shRNA to repress TTK expression in EC cells resulted in substantial decreases in cell proliferation, invasion, EMT, and chemoresistance. Further research identified microRNA-21 (miR-21) as a key downstream regulator of TTK-induced EMT and chemoresistance. Finally, the TTK inhibitor AZ3146 was effective in reducing EC cell growth and invasion and enhancing the apoptosis of EC cells generated by paclitaxel. CONCLUSION Our findings establish the clinical significance of TTK as a new biomarker for EC and an as-yet-unknown carcinogenic function. This present study proposes that the therapeutic targeting of TTK might provide a viable approach for the treatment of EC.
Collapse
Affiliation(s)
- Yu Miao
- grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 China
| | - Yosuke Konno
- grid.39158.360000 0001 2173 7691Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Baojin Wang
- grid.412719.8Department of Gynecology and Obstetrics, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052 China
| | - Lin Zhu
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 China
| | - Tianyue Zhai
- grid.39158.360000 0001 2173 7691Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Kei Ihira
- grid.39158.360000 0001 2173 7691Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Noriko Kobayashi
- grid.39158.360000 0001 2173 7691Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Hidemichi Watari
- grid.39158.360000 0001 2173 7691Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Xin Jin
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China. .,BGI Research Asia-Pacific, BGI, Singapore, 138567, Singapore.
| |
Collapse
|
7
|
Lin CY, Wu RC, Yang LY, Jung SM, Ueng SH, Tang YH, Huang HJ, Tung HJ, Lin CT, Chen HY, Chao A, Lai CH. MicroRNAs as Predictors of Future Uterine Malignancy in Endometrial Hyperplasia without Atypia. J Pers Med 2022; 12:311. [PMID: 35207799 PMCID: PMC8879120 DOI: 10.3390/jpm12020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
The histological criteria for classifying endometrial hyperplasia (EH) are based on architectural crowding and nuclear atypia; however, diagnostic agreement among pathologists is poor. We investigated molecular biomarkers of endometrial cancer (EC) risk in women with simple hyperplasia or complex hyperplasia without atypia (SH/CH-nonA). Forty-nine patients with EC preceded by SH/CH-nonA were identified, of which 23 were excluded (15 with complex atypical hyperplasia (CAH), six not consenting, one with a diagnosis <6 months prior, and one lost to follow-up). The EH tissues of these patients were compared with those of patients with SH/CH-nonA that did not progress to EC (control) through microRNA (miRNA) array analysis, and the results were verified in an expanded cohort through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). MiRNA arrays analyses revealed 20 miRNAs that differed significantly (p < 0.05, fold change >4) between the control (n = 12) and case (n = 6) patients. Multiplex RT-qPCR for the 20 miRNAs in the expanded cohort (94 control and 25 case patients) led to the validation of miR-30a-3p (p = 0.0009), miR-141 (p < 0.0001), miR-200a (p < 0.0001), and miR-200b (p < 0.0001) as relevant biomarkers, among which miR-141, miR-200a, and miR-200b regulate the expression of phosphatase and tensin homolog (PTEN). For the prediction of EC, the area under the curve for miR-30a-3p, miR-141, miR-200a, and miR-200b was 0.623, 0.754, 0.783, and 0.704, respectively. The percentage of complete PTEN loss was significantly higher in the case group than in the control group (24% vs. 0%, p < 0.001, Fisher's exact test). A combination of complete PTEN loss and miR-200a provided optimal prediction performance (sensitivity = 0.760; specificity = 1.000; positive predictive value = 1.000; negative predictive value = 0.937; accuracy = 0.947). MiR-30a-3p, miR-141, miR-200a, miR-200b, and complete PTEN loss may be useful tissue biomarkers for predicting EC risk among patients with SH/CH-nonA.
Collapse
Affiliation(s)
- Chiao-Yun Lin
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Ren-Chin Wu
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Lan-Yan Yang
- Biostatics Unit, Clinical Trial Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan;
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Jung
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Shir-Hwa Ueng
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
- Department of Pathology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Yun-Hsin Tang
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Huei-Jean Huang
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Hsiu-Jung Tung
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Cheng-Tao Lin
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Hsuan-Yu Chen
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Angel Chao
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (Y.-H.T.); (H.-J.H.); (H.-J.T.); (C.-T.L.); (H.-Y.C.); (A.C.)
- Gynecologic Cancer Research Center, College of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan; (R.-C.W.); (S.-M.J.); (S.-H.U.)
| |
Collapse
|
8
|
Yeon M, Kim Y, Pathak D, Kwon E, Kim DY, Jeong MS, Jung HS, Jeoung D. The CAGE-MiR-181b-5p-S1PR1 Axis Regulates Anticancer Drug Resistance and Autophagy in Gastric Cancer Cells. Front Cell Dev Biol 2021; 9:666387. [PMID: 34113619 PMCID: PMC8185229 DOI: 10.3389/fcell.2021.666387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 01/18/2023] Open
Abstract
Cancer-associated gene (CAGE), a cancer/testis antigen, has been known to promote anticancer drug resistance. Since the underlying mechanisms of CAGE-promoted anticancer drug resistance are poorly understood, we established Anticancer drug-resistant gastric cancer cells (AGSR) to better elucidate possible mechanisms. AGSR showed an increased expression level of CAGE and autophagic flux compared with anticancer drug-sensitive parental gastric cancer cells (AGS cells). AGSR cells showed higher invasion potential, growth rate, tumor spheroid formation, and angiogenic potential than AGS cells. CAGE exerted effects on the response to anticancer drugs and autophagic flux. CAGE was shown to bind to Beclin1, a mediator of autophagy. Overexpression of CAGE increased autophagic flux and invasion potential but inhibited the cleavage of PARP in response to anticancer drugs in CAGE CRISPR–Cas9 cell lines. TargetScan analysis was utilized to predict the binding of miR-302b-5p to the promoter sequences of CAGE, and the results show that miR-302b-5p directly regulated CAGE expression as illustrated by luciferase activity. MiR-302b-5p regulated autophagic flux and the response to anticancer drugs. CAGE was shown to bind the promoter sequences of miR-302b-5p. The culture medium of AGSR cells increased CAGE expression and autophagic flux in AGS cells. ImmunoEM showed CAGE was present in the exosomes of AGSR cells; exosomes of AGSR cells and human recombinant CAGE protein increased CAGE expression, autophagic flux, and resistance to anticancer drugs in AGS cells. MicroRNA array revealed miR-181b-5p as a potential negative regulator of CAGE. MiR-181b-5p inhibitor increased the expression of CAGE and autophagic flux in addition to preventing anticancer drugs from cleaving poly(ADP-ribose) polymerase (PARP) in AGS cells. TargetScan analysis predicted sphingosine 1-phosphate receptor 1 (SIPR1) as a potential target for miR-181b-5p. CAGE showed binding to the promoter sequences of S1PR1. The downregulation or inhibition of S1PR1 led to decreased autophagic flux but enhanced the sensitivity to anticancer drugs in AGSR cells. This study presents a novel role of the CAGE–miR-181b-5p–S1PR1 axis in anticancer drug resistance and autophagy.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
9
|
Zhao MM, Wang RS, Zhou YL, Yang ZG. Emerging relationship between RNA helicases and autophagy. J Zhejiang Univ Sci B 2020; 21:767-778. [PMID: 33043643 PMCID: PMC7606199 DOI: 10.1631/jzus.b2000245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/10/2020] [Indexed: 01/15/2023]
Abstract
RNA helicases, the largest family of proteins that participate in RNA metabolism, stabilize the intracellular environment through various processes, such as translation and pre-RNA splicing. These proteins are also involved in some diseases, such as cancers and viral diseases. Autophagy, a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival, is associated with human diseases. Interestingly, similar to autophagy, RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases. According to recent studies, RNA helicases are closely related to autophagy, participate in regulating autophagy, or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progression of diseases. Here, we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.
Collapse
Affiliation(s)
- Miao-miao Zhao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Ru-sha Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yan-lin Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zheng-gang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
10
|
Yeon M, Lee S, Lee JE, Jung HS, Kim Y, Jeoung D. CAGE-miR-140-5p-Wnt1 Axis Regulates Autophagic Flux, Tumorigenic Potential of Mouse Colon Cancer Cells and Cellular Interactions Mediated by Exosomes. Front Oncol 2019; 9:1240. [PMID: 31799196 PMCID: PMC6868029 DOI: 10.3389/fonc.2019.01240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although the cancer/testis antigen CAGE has been implicated in tumorigenesis, the molecular mechanisms of CAGE-promoted tumorigenesis remain largely unknown. CT26Flag−CAGE cells, CT26 (mouse colon cancer cells) cells stably expressing CAGE, were established to investigate CAGE-promoted tumorigenesis. Down-regulation of CAGE led to decreased autophagic flux in CT26Flag−CAGE cells. CAGE interacted with Beclin1, a mediator of autophagy. The CT26Flag−CAGE cells showed enhanced autophagosome formation and displayed greater tumor spheroid-forming potential than CT26 cells. MicroRNA array analysis revealed that CAGE decreased the expression of various microRNAs, including miR-140-5p, in CT26 cells. CAGE was shown to bind to the promoter sequences of miR-140-5p. MiR-140-5p inhibition increased the tumorigenic potential of and autophagic flux in CT26 cells. A miR-140-5p mimic exerted negative effects on the tumorigenic potential of CT26Flag−CAGE cells and autophagic flux in CT26Flag−CAGE cells. MiR-140-5p was predicted to bind to the 3′-UTR of Wnt1. CT26Flag−CAGE cells showed higher expression of Wnt1 than CT26 cells. Down-regulation of Wnt1 decreased autophagic flux. Luciferase activity assays showed the direct regulation of wnt1 by miR-140-5p. Tumor tissue derived from the CT26Flag−CAGE cells revealed higher expressions of factors associated with activated mast cells and tumor-associated macrophages than tumor tissue derived from CT26 cells. Culture medium from the CT26Flag−CAGE cells increased autophagic flux in CT26 cells, mast cells and macrophages. Culture medium from the CT26Flag−CAGE cells increased CD163 and autophagic flux in CT26 cells, mast cells, and macrophages in a Wnt1-dependent manner. Exosomes from CT26Flag−CAGE cells increased autophagc flux in CT26 cells, mast cells, and macrophages. Exosomes from CT26Flag−CAGE cells increased the tumorigenic potential of CT26 cells. Wnt1 was shown to be present within the exosomes. Recombinant Wnt1 protein increased autophagic flux in CT26, mast cells, and macrophages. Recombinant wnt1 protein mediated interactions between the CT26 cells, mast cells, and macrophages. Our results showed novel roles for the CAGE-miR-140-5p-Wnt1 axis in autophagic flux and cellular interactions mediated by exosomes.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Seungheon Lee
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Joo-Eun Lee
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Youngmi Kim
- College of Medicine, Institute of New Frontier Research, Hallym University, Chuncheon-si, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| |
Collapse
|
11
|
Kwon Y, Kim Y, Jung HS, Jeoung D. Role of HDAC3-miRNA-CAGE Network in Anti-Cancer Drug-Resistance. Int J Mol Sci 2018; 20:ijms20010051. [PMID: 30583572 PMCID: PMC6337380 DOI: 10.3390/ijms20010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Histone modification is associated with resistance to anti-cancer drugs. Epigenetic modifications of histones can regulate resistance to anti-cancer drugs. It has been reported that histone deacetylase 3 (HDAC3) regulates responses to anti-cancer drugs, angiogenic potential, and tumorigenic potential of cancer cells in association with cancer-associated genes (CAGE), and in particular, a cancer/testis antigen gene. In this paper, we report the roles of microRNAs that regulate the expression of HDAC3 and CAGE involved in resistance to anti-cancer drugs and associated mechanisms. In this review, roles of HDAC3-miRNAs-CAGE molecular networks in resistance to anti-cancer drugs, and the relevance of HDAC3 as a target for developing anti-cancer drugs are discussed.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon 24251, Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea.
| |
Collapse
|
12
|
Yeon M, Byun J, Kim H, Kim M, Jung HS, Jeon D, Kim Y, Jeoung D. CAGE Binds to Beclin1, Regulates Autophagic Flux and CAGE-Derived Peptide Confers Sensitivity to Anti-cancer Drugs in Non-small Cell Lung Cancer Cells. Front Oncol 2018; 8:599. [PMID: 30619741 PMCID: PMC6296237 DOI: 10.3389/fonc.2018.00599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine the role of CAGE, a cancer/testis antigen, in resistance of non-small cell lung cancers to anti-cancer drugs. Erlotinib-resistant PC-9 cells (PC-9/ER) with EGFR mutations (ex 19 del + T790M of EGFR), showed higher level of autophagic flux than parental sensitive PC-9 cells. Erlotinib and osimertinib increased autophagic flux and induced the binding of CAGE to Beclin1 in PC-9 cells. The inhibition or induction of autophagy regulated the binding of CAGE to Beclin1 and the responses to anti-cancer drugs. CAGE showed binding to HER2 while HER2 was necessary for binding of CAGE to Beclin1. CAGE was responsible for high level of autophagic flux and resistance to anti-cancer drugs in PC-9/ER cells. A peptide corresponding to the DEAD box domain of CAGE, 266AQTGTGKT273, enhanced the sensitivity of PC-9/ER cells to erlotinib and osimertinib, inhibited the binding of CAGE to Beclin1 and regulated autophagic flux in PC-9/ER cells. Mutant CAGE-derived peptide 266AQTGTGAT273 or 266AQTGTGKA273 did not affect autophagic flux or the binding of CAGE to Beclin1. AQTGTGKT peptide showed binding to CAGE, but not to Beclin1. FITC-AQTGTGKT peptide showed co-localization with CAGE. AQTGTGKT peptide decreased tumorigenic potentials of PC-9/ER and H1975 cells, non-small cell lung cancer (NSCLC) cells with EGFR mutation (L885R/T790M), by inhibiting autophagic fluxand inhibiting the binding of CAGE to Beclin1. AQTGTGKT peptide also enhanced the sensitivity of H1975 cells to anti-cancer drugs. AQTGTGKT peptide showed tumor homing potential based on ex vivo homing assays of xenograft of H1975 cells. AQTGTGKT peptide restored expression levels of miR-143-3p and miR-373-5p, decreased autophagic flux and conferred sensitivity to anti-cancer drugs. These results present evidence that combination of anti-cancer drug with CAGE-derived peptide could overcome resistance of non-small cell lung cancers to anti-cancer drugs.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Jaewhan Byun
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyuna Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | | | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
13
|
Kim Y, Kim H, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeon D, Jeoung D. The pentapeptide Gly-Thr-Gly-Lys-Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1. Oncotarget 2017; 8:13632-13651. [PMID: 28099142 PMCID: PMC5355126 DOI: 10.18632/oncotarget.14621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/03/2017] [Indexed: 12/27/2022] Open
Abstract
We previously reported the role of cancer/testis antigen CAGE in the response to anti-cancer drugs. CAGE increased the expression of cyclinD1, and pGSK3βSer9, an inactive GSK3β, while decreasing the expression of phospho-cyclinD1Thr286. CAGE showed binding to GSK3β and the domain of CAGE (amino acids 231-300) necessary for binding to GSK3β and for the expression regulation of cyclinD1 was determined. 269GTGKT273 peptide, corresponding to the DEAD box helicase domain of CAGE, decreased the expression of cyclinD1 and pGSK3βSer9 while increasing the expression of phospho-cyclinD1Thr286. GTGKT peptide showed the binding to CAGE and prevented CAGE from binding to GSK3β. GTGKT peptide changed the localization of CAGE and inhibited the binding of CAGE to the promoter sequences of cyclin D1. GTGKT peptide enhanced the apoptotic effects of anti-cancer drugs and decreased the migration, invasion, angiogenic, tumorigenic and metastatic potential of anti-cancer drug-resistant cancer cells. We found that Lys272 of GTGKT peptide was necessary for conferring anti-cancer activity. Peptides corresponding to the DEAD box helicase domain of CAGE, such as AQTGTGKT, QTGTGKT and TGTGKT, also showed anti-cancer activity by preventing CAGE from binding to GSK3β. GTGKT peptide showed ex vivo tumor homing potential. Thus, peptides corresponding to the DEAD box helicase domain of CAGE can be developed as anti-cancer drugs in cancer patients expressing CAGE.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Hansoo Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| | - Yun Sil Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Jongseon Choe
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | - Young Myeong Kim
- Graduate School of Medicine, Kangwon National University, Chunchon 24341, Korea
| | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 24341, Korea
| |
Collapse
|
14
|
Kim Y, Yeon M, Jeoung D. DDX53 Regulates Cancer Stem Cell-Like Properties by Binding to SOX-2. Mol Cells 2017; 40:322-330. [PMID: 28535666 PMCID: PMC5463040 DOI: 10.14348/molcells.2017.0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023] Open
Abstract
This study investigated the role of cancer/testis antigen DDX53 in regulating cancer stem cell-like properties. DDX53 shows co-expression with CD133, a marker for cancer stem cells. DDX53 directly regulates the SOX-2 expression in anticancer drug-resistant Malme3MR cells. DDX53 and miR-200b were found to be involved in the regulation of tumor spheroid forming potential of Malme3M and Malme3MR cells. Furthermore, the self-renewal activity and the tumorigenic potential of Malme3MR-CD133 (+) cells were also regulated by DDX53. A miR-200b inhibitor induced the direct regulation of SOX-2 by DDX53 We therefore, conclude that DDX53 may serve as an immunotherapeutic target for regulating cancer stem-like properties of melanomas.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341,
Korea
| | - Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chunchon 24341,
Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon 24341,
Korea
| |
Collapse
|
15
|
Kim H, Kim Y, Jeoung D. DDX53 Promotes Cancer Stem Cell-Like Properties and Autophagy. Mol Cells 2017; 40:54-65. [PMID: 28152297 PMCID: PMC5303889 DOI: 10.14348/molcells.2017.2258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
Although cancer/testis antigen DDX53 confers anti-cancer drug-resistance, the effect of DDX53 on cancer stem cell-like properties and autophagy remains unknown. MDA-MB-231 (CD133+) cells showed higher expression of DDX53, SOX-2, NANOG and MDR1 than MDA-MB-231 (CD133-). DDX53 increased in vitro self-renewal activity of MCF-7 while decreasing expression of DDX53 by siRNA lowered in vitro self-renewal activity of MDA-MB-231. DDX53 showed an interaction with EGFR and binding to the promoter sequences of EGFR. DDX53 induced resistance to anti-cancer drugs in MCF-7 cells while decreased expression of DDX53 by siRNA increased the sensitivity of MDA-MB-231 to anti-cancer drugs. Negative regulators of DDX53, such as miR-200b and miR-217, increased the sensitivity of MDA-MB-231 to anti-cancer drugs. MDA-MB-231 showed higher expression of autophagy marker proteins such as ATG-5, pBeclin1Ser15 and LC-3I/II compared with MCF-7. DDX53 regulated the expression of marker proteins of autophagy in MCF-7 and MDA-MB-231 cells. miR-200b and miR-217 negatively regulated the expression of autophagy marker proteins. Chromatin immunoprecipitation assays showed the direct regulation of ATG-5. The decreased expression of ATG-5 by siRNA increased the sensitivity to anti-cancer drugs in MDA-MB-231 cells. In conclusion, DDX53 promotes stem cell-like properties, autophagy, and confers resistance to anti-cancer drugs in breast cancer cells.
Collapse
Affiliation(s)
- Hyuna Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341,
Korea
| | - Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chunchon 24341,
Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon 24341,
Korea
| |
Collapse
|
16
|
miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 2016; 7:10297-321. [PMID: 26863629 PMCID: PMC4891121 DOI: 10.18632/oncotarget.7185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors.
Collapse
|
17
|
Deficient Mismatch Repair and the Role of Immunotherapy in Metastatic Colorectal Cancer. Curr Treat Options Oncol 2016; 17:41. [DOI: 10.1007/s11864-016-0414-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Park D, Kim H, Kim Y, Jeoung D. miR-30a Regulates the Expression of CAGE and p53 and Regulates the Response to Anti-Cancer Drugs. Mol Cells 2016; 39:299-309. [PMID: 26912082 PMCID: PMC4844936 DOI: 10.14348/molcells.2016.2242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
We have previously reported the role of miR-217 in anti-cancer drug-resistance. miRNA array and miRNA hybridization analysis predicted miR-30a-3p as a target of miR-217. miR-30a-3p and miR-217 formed a negative feedback loop and regulated the expression of each other. Ago1 immunoprecipitation and co-localization analysis revealed a possible interaction between miR-30a-3p and miR-217. miR-30a-3p conferred resistance to anti-cancer drugs and enhanced the invasion, migration, angiogenic, tumorigenic, and metastatic potential of cancer cells in CAGE-dependent manner. CAGE increased the expression of miR-30a-3p by binding to the promoter sequences of miR-30a-3p, suggesting a positive feedback loop between CAGE and miR-30a-3p. miR-30a-3p decreased the expression of p53, which showed the binding to the promoter sequences of miR-30a-3p and CAGE in anti-cancer drug-sensitive cancer cells. Luciferase activity assays showed that p53 serves as a target of miR-30a. Thus, the miR-30a-3p-CAGE-p53 feedback loop serves as a target for overcoming resistance to anti-cancer drugs.
Collapse
Affiliation(s)
- Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| |
Collapse
|
19
|
Kim H, Kim Y, Goh H, Jeoung D. Histone Deacetylase-3/CAGE Axis Targets EGFR Signaling and Regulates the Response to Anti-Cancer Drugs. Mol Cells 2016; 39:229-41. [PMID: 26883907 PMCID: PMC4794605 DOI: 10.14348/molcells.2016.2244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022] Open
Abstract
We have previously reported the role of miR-326-HDAC3 loop in anti-cancer drug-resistance. CAGE, a cancer/testis antigen, regulates the response to anti-cancer drug-resistance by forming a negative feedback loop with miR-200b. Studies investigating the relationship between CAGE and HDAC3 revealed that HDAC3 negatively regulated the expression of CAGE. ChIP assays demonstrated the binding of HDAC3 to the promoter sequences of CAGE. However, CAGE did not affect the expression of HDAC3. We also found that EGFR signaling regulated the expressions of HDAC3 and CAGE. Anti-cancer drug-resistant cancer cell lines show an increased expression of pEGFR(Y845). HDAC3 was found to negatively regulate the expression of pEGFR(Y845). CAGE showed an interaction and co-localization with EGFR. It was seen that miR-326, a negative regulator of HDAC3, regulated the expression of CAGE, pEGFR(Y845), and the interaction between CAGE and EGFR. miR-326 inhibitor induced the binding of HDAC3 to the promoter sequences in anti-cancer drug-resistant Malme3M(R) cells, decreasing the tumorigenic potential of Malme3M(R) cells in a manner associated with its effect on the expression of HDAC3, CAGE and pEGFR(Y845). The down-regulation of HDAC3 enhanced the tumorigenic, angiogenic and invasion potential of the anti-cancer drug-sensitive Malme3M cells in CAGE-dependent manner. Studies revealed that PKCδ was responsible for the increased expression of pEGFR(Y845) and CAGE in Malme3M(R) cells. CAGE showed an interaction with PKCδ in Malme3M(R) cells. Our results show that HDAC3-CAGE axis can be employed as a target for overcoming resistance to EGFR inhibitors.
Collapse
Affiliation(s)
- Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Hyeonjung Goh
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon 200-701,
Korea
| |
Collapse
|
20
|
Kim Y, Park D, Kim H, Choi M, Lee H, Lee YS, Choe J, Kim YM, Jeoung D. miR-200b and cancer/testis antigen CAGE form a feedback loop to regulate the invasion and tumorigenic and angiogenic responses of a cancer cell line to microtubule-targeting drugs. J Biol Chem 2013; 288:36502-18. [PMID: 24174534 DOI: 10.1074/jbc.m113.502047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer/testis antigen cancer-associated gene (CAGE) is known to be involved in various cellular processes, such as proliferation, cell motility, and anti-cancer drug resistance. However, the mechanism of the expression regulation of CAGE remains unknown. Target scan analysis predicted the binding of microRNA-200b (miR-200b) to CAGE promoter sequences. The expression of CAGE showed an inverse relationship with miR-200b in various cancer cell lines. miR-200b was shown to bind to the 3'-UTR of CAGE and to regulate the expression of CAGE at the transcriptional level. miR-200b also enhanced the sensitivities to microtubule-targeting drugs in vitro. miR-200b and CAGE showed opposite regulations on invasion potential and responses to microtubule-targeting drugs. Xenograft experiments showed that miR-200b had negative effects on the tumorigenic and metastatic potential of cancer cells. The effect of miR-200b on metastatic potential involved the expression regulation of CAGE by miR-200b. miR-200b decreased the tumorigenic potential of a cancer cell line resistant to microtubule-targeting drugs in a manner associated with the down-regulation of CAGE. ChIP assays showed the direct regulation of miR-200b by CAGE. CAGE enhanced the invasion potential of a cancer cell line stably expressing miR-200b. miR-200b exerted a negative regulation on tumor-induced angiogenesis. The down-regulation of CAGE led to the decreased expression of plasminogen activator inhibitor-1, a TGFβ-responsive protein involved in angiogenesis, and VEGF. CAGE mediated tumor-induced angiogenesis and was necessary for VEGF-promoted angiogenesis. Human recombinant CAGE protein displayed angiogenic potential. Thus, miR-200b and CAGE form a feedback regulatory loop and regulate the response to microtubule-targeting drugs, as well as the invasion, tumorigenic potential, and angiogenic potential.
Collapse
|
21
|
XIN LIN, CAO JIAQING, LIU CHUAN, ZENG FEI, CHENG HUA, HU XIAOYUN, ZHU PEIQIAN, SHAO JIANGHUA. Selection of anti-cancer-associated gene single-chain variable fragments derived from gastric cancer patients using ribosome display. Mol Med Rep 2013; 8:631-7. [DOI: 10.3892/mmr.2013.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
|
22
|
Song MH, Ha JM, Shin DH, Lee CH, Old L, Lee SY. KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer. Int J Oncol 2012; 41:1820-6. [PMID: 22923163 DOI: 10.3892/ijo.2012.1601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022] Open
Abstract
Cancer/testis (CT) antigens are considered target molecules for cancer immunotherapy. To identify novel CT antigens, immunoscreening of a testicular cDNA library was performed using serum obtained from a colon cancer patient who was immunized with a new dendritic cell vaccine. We isolated 64 positive cDNA clones comprised of 40 different genes, designated KP-CoT-1 through KP-CoT-40. Three of these putative antigens, including KP-CoT-23 (CCDC83), had testis-specific expression profiles in the Unigene database. RT-PCR analysis showed that the expression of 2 KP-Cot-23 variants was restricted to the testis in normal adult tissues. In addition, KP-CoT-23 variants were frequently expressed in a variety of tumors and cancer cell lines, including colon cancer. A serological western blot assay showed IgG antibodies to the KP-CoT-23 protein in 26 of 37 colon cancer patients and in 4 of 21 healthy patients. These data suggest that KP-CoT-23 is a novel CT antigen that may be useful for the diagnosis and immunotherapy of cancer.
Collapse
Affiliation(s)
- Myung-Ha Song
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan‑si, Gyeongsangnam‑do 626-770, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Kim Y, Park H, Park D, Lee YS, Choe J, Hahn JH, Lee H, Kim YM, Jeoung D. Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J Biol Chem 2010; 285:25957-68. [PMID: 20534591 DOI: 10.1074/jbc.m109.095950] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of the cancer/testis antigen CAGE in drug resistance was investigated. The drug-resistant human melanoma Malme3M (Malme3M(R)) and the human hepatic cancer cell line SNU387 (SNU387(R)) showed in vivo drug resistance and CAGE induction. Induction of CAGE resulted from decreased expression and thereby displacement of DNA methyltransferase 1(DNMT1) from CAGE promoter sequences. Various drugs induce expression of CAGE by decreasing expression of DNMT1, and hypomethylation of CAGE was correlated with the increased expression of CAGE. Down-regulation of CAGE in these cell lines decreased invasion and enhanced drug sensitivity resulting from increased apoptosis. Down-regulation of CAGE also led to decreased anchorage-independent growth. Down-regulation of CAGE led to increased expression of p53, suggesting that CAGE may act as a negative regulator of p53. Down-regulation of p53 enhanced resistance to drugs and prevented drugs from exerting apoptotic effects. In SNU387(R) cells, CAGE induced the interaction between histone deacetylase 2 (HDAC2) and Snail, which exerted a negative effect on p53 expression. Chromatin immunoprecipitation assay showed that CAGE, through interaction with HDAC2, exerted a negative effect on p53 expression in Malme3M(R) cells. These results suggest that CAGE confers drug resistance by regulating expression of p53 through HDAC2. Taken together, these results show the potential value of CAGE as a target for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cancer/testis antigens and clinical risk factors for liver metastasis of colorectal cancer: a predictive panel. Dis Colon Rectum 2010; 53:31-8. [PMID: 20010347 DOI: 10.1007/dcr.0b013e3181bdca3a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Accumulating evidence suggests that cancer/testis antigens may serve as indicators of tumor malignant phenotype. The purpose of this study is to evaluate cancer/testis antigen genes in predicting metastasis of colorectal cancer to the liver. METHODS The expression levels of 25 cancer/testis antigen genes were determined by reverse-transcription polymerase chain reaction in 288 colorectal cancer tissue samples from the primary tumor or liver metastasis. Pearson chi2 and multiple logistic regression analyses were performed to assess the association between risk factors and probability of liver metastasis of colorectal cancer. RESULTS No significant difference was detected between the primary tumor and liver metastasis in expression pattern of cancer/testis antigen genes in colorectal cancer tissue samples. However, 3 cancer/testis antigen genes (PAGE4, SCP-1, and SPANX) and 3 clinicopathologic parameters (lymph node involvement, vessel cancer embolus, and tumor invasion depth) correlated significantly with liver metastasis of colorectal cancer (P < .05). A logistic regression model was constructed for prediction of liver metastasis based on a panel consisting of PAGE4, lymph node involvement, and presence or absence of vessel cancer embolus. The predicted risk of liver metastasis based on the panel was consistent with the actual risk observed. The probability of developing liver metastasis as estimated by the panel was 86.9% when all 3 factors were positive, representing an up to 20% improvement in the prediction level compared with the classic methods of lymph node involvement and vessel cancer embolus. CONCLUSIONS A new predictive panel including PAGE4 expression may help predict liver metastasis of colorectal cancer.
Collapse
|
25
|
Kim Y, Jeoung D. The cancer/testis antigen CAGE induces MMP-2 through the activation of NF-kappaB and AP-1. BMB Rep 2009; 42:758-63. [PMID: 19944019 DOI: 10.5483/bmbrep.2009.42.11.758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cancer-associated antigen (CAGE) induces the expression of matrix metalloproteinase-2 (MMP-2) by activating Akt, which in turn interacts with inhibitory kappa kinase beta (IkappaKbeta) to activate nuclear factor kappaB (NF-kappaB). Akt and p38 mitogen activated protein kinase (p38 MAPK) are necessary for CAGE-mediated induction of the AP-1 subunit JunB, whereas extracellular regulated kinase (ERK) is necessary for the induction of fos-related antigen-1 (Fra-1). Induction of MMP-2 by CAGE requires activator of protein-1 (AP-1) to be bound. Specific binding of JunB to MMP-2 promoter sequences was shown by chromatin immunoprecipitation (ChIP) analysis.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, Korea
| | | |
Collapse
|
26
|
Hayashi E, Matsuzaki Y, Hasegawa G, Yaguchi T, Kurihara S, Fujita T, Kageshita T, Sano M, Kawakami Y. Identification of a Novel Cancer-Testis Antigen CRT2 Frequently Expressed in Various Cancers Using Representational Differential Analysis. Clin Cancer Res 2007; 13:6267-74. [DOI: 10.1158/1078-0432.ccr-07-1374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Risinger JI, Chandramouli GVR, Maxwell GL, Custer M, Pack S, Loukinov D, Aprelikova O, Litzi T, Schrump DS, Murphy SK, Berchuck A, Lobanenkov V, Barrett JC. Global expression analysis of cancer/testis genes in uterine cancers reveals a high incidence of BORIS expression. Clin Cancer Res 2007; 13:1713-9. [PMID: 17363524 DOI: 10.1158/1078-0432.ccr-05-2569] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer/testis (CT) genes predominantly expressed in the testis (germ cells) and generally not in other normal tissues are aberrantly expressed in human cancers. This highly restricted expression provides a unique opportunity to use these CT genes for diagnostics, immunotherapeutic, or other targeted therapies. The purpose of this study was to identify those CT genes with the greatest incidence of expression in uterine cancers. EXPERIMENTAL DESIGN We queried the expression of known and putative CT gene transcripts (representing 79 gene loci) using whole genome gene expression arrays. Specifically, the global gene expressions of uterine cancers (n = 122) and normal uteri (n = 10) were determined using expression data from the Affymetrix HG-U133A and HG-U133B chips. Additionally, we also examined the brother of the regulator of imprinted sites (BORIS) transcript by reverse transcription-PCR and quantitative PCR because its transcript was not represented on the array. RESULTS Global microarray analysis detected many CT genes expressed in various uterine cancers; however, no individual CT gene was expressed in more than 25% of all cancers. The expression of the two most commonly expressed CT genes on the arrays, MAGEA9 (24 of 122 cancers and 0 of 10 normal tissues) and Down syndrome critical region 8 (DSCR8)/MMA1 (16 if 122 cancers and 0 of 10 normal tissues), was confirmed by reverse transcription-PCR methods, validating the array screening approach. In contrast to the relatively low incidence of expression of the other CT genes, BORIS expression was detected in 73 of 95 (77%) endometrial cancers and 24 of 31 (77%) uterine mixed mesodermal tumors. CONCLUSIONS These data provide the first extensive survey of multiple CT genes in uterine cancers. Importantly, we detected a high frequency of BORIS expression in uterine cancers, suggesting its potential as an immunologic or diagnostic target for these cancers. Given the high incidence of BORIS expression and its possible regulatory role, an examination of BORIS function in the etiology of these cancers is warranted.
Collapse
Affiliation(s)
- John Ian Risinger
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garg M, Chaurasiya D, Rana R, Jagadish N, Kanojia D, Dudha N, Kamran N, Salhan S, Bhatnagar A, Suri S, Gupta A, Suri A. Sperm-associated antigen 9, a novel cancer testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer. Clin Cancer Res 2007; 13:1421-8. [PMID: 17332284 DOI: 10.1158/1078-0432.ccr-06-2340] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Cancer testis antigens are a group of tumor antigens with gene expression restricted to male germ cells in the testis and in various cancerous tissues. Recently, we reported a novel testis-specific sperm-associated antigen 9 (SPAG9) gene, a new member of the c-Jun NH(2)-terminal kinase-interacting protein family, having functional role in sperm-egg fusion and mitogen-activated protein kinase signaling pathway. National Center for Biotechnology Information Blast searches revealed SPAG9 nucleotide sequence similarities with expressed sequence tags of various cancerous tissues. In an effort to examine the clinical utility of SPAG9, we investigated the SPAG9 mRNA and protein expression in epithelial ovarian cancer (EOC). Humoral immune response to SPAG9 was also evaluated in EOC patients. EXPERIMENTAL DESIGN We determined the expression profile of SPAG9 transcript by reverse transcription-PCR and RNA in situ hybridization and SPAG9 protein expression by immunohistochemistry in EOC specimens and human ovarian cancer cell lines. Using ELISA and Western blotting, we analyzed specific antibodies for SPAG9 in sera from patients with EOC. RESULTS SPAG9 mRNA and protein expression was detected in 90% of EOC tissues and in all three human ovarian cancer cell lines. Specific SPAG9 antibodies were detected in 67% of EOC patients and not in sera from healthy individuals. CONCLUSIONS Our findings indicate that SPAG9 is highly expressed in EOC and immunogenic in patients. Humoral immune response against SPAG9 in early stages of EOC suggests its important role in early diagnostics. These results collectively suggest that SPAG9, a novel member of cancer testis antigen family, could be a potential target for the development of diagnostic and therapeutic methods in EOC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Antibodies, Neoplasm/blood
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/analysis
- Blotting, Western
- Cell Line, Tumor
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Gene Expression
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Immunotherapy
- In Situ Hybridization
- Neoplasms, Glandular and Epithelial/blood
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/metabolism
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Manoj Garg
- Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou FL, Zhang WG, Chen G, Zhao WH, Cao XM, Chen YX, Tian W, Liu J, Liu SH. Serological identification and bioinformatics analysis of immunogenic antigens in multiple myeloma. Cancer Immunol Immunother 2006; 55:910-7. [PMID: 16193335 PMCID: PMC11030602 DOI: 10.1007/s00262-005-0074-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Identifying appropriate tumor antigens is critical to the development of successful specific cancer immunotherapy. Serological analysis of tumor antigens by a recombinant cDNA expression library (SEREX) allows the systematic cloning of tumor antigens recognized by the spontaneous autoantibody repertoire of cancer patients. We applied SEREX to the cDNA expression library of cell line HMy2, which led to the isolation of six known characterized genes and 12 novel genes. Known genes, including ring finger protein 167, KLF10, TPT1, p02 protein, cDNA FLJ46859 fis, and DNMT1, were related to the development of different tumors. Bioinformatics was performed to predict 12 novel MMSA (multiple myeloma special antigen) genes. The prediction of tumor antigens provides potential targets for the immunotherapy of patients with multiple myeloma (MM) and help in the understanding of carcinogenesis. Crude lysate ELISA methodology indicated that the optical density value of MMSA-3 and MMSA-7 were significantly higher in MM patients than in healthy donors. Furthermore, SYBR Green real-time PCR showed that MMSA-1 presented with a high number of copy messages in MM. In summary, the antigens identified in this study may be potential candidates for diagnosis and targets for immunotherapy in MM.
Collapse
Affiliation(s)
- F. L. Zhou
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
- Environments and Genes Related to Diseases Key Laboratory of the Education Ministry, Xi’an Jiaotong University, Xi’an, 710004 China
| | - W. G. Zhang
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
- Environments and Genes Related to Diseases Key Laboratory of the Education Ministry, Xi’an Jiaotong University, Xi’an, 710004 China
| | - G. Chen
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| | - W. H. Zhao
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| | - X. M. Cao
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| | - Y. X. Chen
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| | - W. Tian
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| | - J. Liu
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| | - S. H. Liu
- Department of Hematology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, The west five road, No. 157, Xi’an, 710004 China
| |
Collapse
|
30
|
Suri A. Cancer testis antigens--their importance in immunotherapy and in the early detection of cancer. Expert Opin Biol Ther 2006; 6:379-89. [PMID: 16548764 DOI: 10.1517/14712598.6.4.379] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of successful immunotherapeutic strategies requires the identification and characterisation of immunogenic cancer antigens that will be recognised by the host immune system, leading to tumour rejection. The concept of immunotherapy is based on the assumption that antigenic structures expressed in tumours can be used for therapeutic approaches employing the autologous immune system or by the application of immunotherapeutic reagents. Based on this concept, there is a great need to gain profound knowledge of the actual protein/antigen expression and its distribution pattern within normal tissues and cancerous tissues. Cancer testis (CT) antigens represent a unique class of tumour antigens, which are expressed in a variety of cancerous tissues and are silent in normal tissues, except for the testis. Owing to their restricted gene expression in the testis and various malignancies, CT antigens represent potential defined targets for antigen-based vaccination and antigen-directed immunotherapy to control cancer growth. Moreover, the analysis of humoral and cellular immune responses to CT antigens has proved useful for identifying novel cancer serum biomarkers with potential implications in early diagnosis of cancer.
Collapse
Affiliation(s)
- Anil Suri
- National Institute of Immunology, Genes and Proteins Laboratory, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|