1
|
Liu Y, Sha S, Ran Q, Shi H, Ma J, Qin B, Li Y, Wang N, Liu X, Wang J, Li L, Liu N, Quan X. The Correlation Between Fecal Amino Acids, Colonic Mucosal Taste Receptors, and Clinical Features and Indicators of Ulcerative Colitis: A Multicenter Exploratory Study. Inflamm Bowel Dis 2025:izae299. [PMID: 39774769 DOI: 10.1093/ibd/izae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) exhibit abnormal amino acid (AA) metabolism. Taste receptors play a crucial role in the detection of intestinal AAs. Nevertheless, it remains unclear whether UC patients exhibit abnormal expression of these receptors in the colon. METHODS An observational, multicenter study was conducted involving adult patients with active UC and healthy controls (HCs), recruited from July 2023 to March 2024. Fresh feces and rectosigmoid mucosal tissues were obtained from each participant. The concentrations of fecal AAs and the expression of taste receptors, including calcium-sensing receptor (CaSR), G protein-coupled receptor family C group 6 member A (GPRC6A), taste receptor type 1 member 1 (T1R1), and metabotropic glutamate receptor 4 (mGLuR4), in the colon were measured. Additionally, the correlation between colonic mucosal taste receptors and clinical characteristics was evaluated. RESULTS Except for GPRC6A, the expression levels of CaSR, mGLuR4, and T1R1 in the colonic mucosa of UC patients were significantly elevated compared to HC. The expression of CaSR was negatively correlated with C-reactive protein and erythrocyte sedimentation rate (ESR). T1R1 expression positively correlated with defecation frequency and an Improved Mayo Endoscopic Score. The total and subtype concentrations of fecal AAs were elevated in UC patients and demonstrated a negative correlation with ESR and fecal calprotectin. CONCLUSIONS The increased levels of taste receptors and fecal AAs in the colon of UC patients suggest an abnormal nutrient-sensing mechanism, potentially playing a crucial role in the development of the disease.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sumei Sha
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiuju Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ning Wang
- Department of Gastroenterology, The Second Affiliated Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaojing Quan
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Fan H, Yan D, Fang X, Xiao L, Liang M, Wu H, Zhu G, Geng D, Liu Q. Low expression of GRM4 is associated with poor prognosis and tumor immune infiltration in glioma. Int J Neurosci 2024; 134:1674-1686. [PMID: 38164693 DOI: 10.1080/00207454.2023.2297646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The metabotropic glutamate receptor 4 (mGlu4, GRM4) exhibits significant expression within the central nervous system (CNS) and has been implicated to be correlated with a poor prognosis. OBJECTIVE This study was aimed to elucidate the relationship between the expression profile of GRM4 and the prognosis of glioma patients. METHODS RNA-sequencing datasets from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and China Glioma Genome Atlas (CGGA) repositories were used to evaluate the potential relationship. The value of clinical prognostic about GRM4 was assessed using clinical survival data from CGGA and TCGA. The GEPIA database was used to select genes like GRM4. PPI network was constructed by the database of (STRING), GO and KEGG analyses were performed. TargetScan, TarBase, miRDB, and starBase were used to explore miRNAs that could regulate GRM4 expression. EWAS Data Hub, MethSurv, and MEXPRESS were used for the analysis and relationship between DNA methylation and GRM4 expression and prognosis in glioma. TIMER2.0 and CAMOIP databases were used to assess the association between immune cell infiltration and GRM4. Human GBM cell lines were used to validate the function of GRM4. RESULTS Our study shows that GRM4 is under expressed among gliomas and accompanied by poorer OS. Multivariate analysis showed that low mRNA expression of GRM4 was an independent factor of prognostic for shorter OS in all glioma patients. MiR-1262 affects the malignant phenotype of gliomas through GRM4. Methylation of DNA plays an important role in the instruction of GRM4 expression, the methylation level of GRM4 in glioma tissue is higher in comparison to normal tissue, and the higher methylation level was accompanied with the worse prognosis. Further analysis showed that GRM4 mRNA expression in GBM linked negatively with common lymphoid progenitor, Macrophage M1, Macrophage, and T cell CD4+ Th2, but not with the tumor purity. Overexpression of GRM4 prevents the migration of human GBM cell lines in vitro. CONCLUSION GRM4 may have a substantial impact on the infiltration of immune cells and serve as a valuable prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Hai Fan
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dongming Yan
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, China
- Shishou City People's Hospital, Shishou, China
| | - Xingyue Fang
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, China
| | - Liumin Xiao
- Shishou City People's Hospital, Shishou, China
| | - Mengjie Liang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Shihezi University School of Medicine/Hospital of Xinjiang Production and Construction Corps, Shihezi, China
| | - Haolin Wu
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, China
| | - Guohua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dangmurenjiafu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qibing Liu
- Engineering Research Center of Tropical Medicine Innovation and Transformation, Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Lomeli N, Pearre DC, Cruz M, Di K, Ricks-Oddie JL, Bota DA. Cisplatin induces BDNF downregulation in middle-aged female rat model while BDNF enhancement attenuates cisplatin neurotoxicity. Exp Neurol 2024; 375:114717. [PMID: 38336286 PMCID: PMC11087041 DOI: 10.1016/j.expneurol.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Cancer-related cognitive impairments (CRCI) are neurological complications associated with cancer treatment, and greatly affect cancer survivors' quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning and memory. The reduction of BDNF is associated with the decrease in cognitive function in various neurological disorders. Few pre-clinical studies have reported on the effects of chemotherapy and medical stress on BDNF levels and cognition. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive function in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected 24 weeks after cisplatin initiation. In cultured hippocampal neurons, we screened three neuroprotective agents, riluzole (an approved treatment for amyotrophic lateral sclerosis), as well as the ampakines CX546 and CX1739. We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD-95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD-95. Ampakines (CX546 and CX1739) and riluzole did not affect the antitumor efficacy of cisplatin in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels on cognitive function, although future studies are warranted to assess the efficacy of BDNF enhancement in vivo on synaptic plasticity. Collectively, our results indicate that cancer treatment exerts long-lasting changes in BDNF levels, and support BDNF enhancement as a potential preventative approach to target CRCI with therapeutics that are FDA approved and/or in clinical study for other indications.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Diana C Pearre
- Gynecologic Oncology, Providence Specialty Medical Group, Burbank, CA, USA
| | - Maureen Cruz
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Joni L Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, University of California Irvine, Irvine, CA, USA; Biostatistics, Epidemiology and Research Design Unit, Institute for Clinical and Translational Sciences, University of California Irvine, Irvine, CA, USA
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Lyu Y, Xie F, Chen B, Shin WS, Chen W, He Y, Leung KT, Tse GMK, Yu J, To KF, Kang W. The nerve cells in gastrointestinal cancers: from molecular mechanisms to clinical intervention. Oncogene 2024; 43:77-91. [PMID: 38081962 PMCID: PMC10774121 DOI: 10.1038/s41388-023-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Gastrointestinal (GI) cancer is a formidable malignancy with significant morbidity and mortality rates. Recent studies have shed light on the complex interplay between the nervous system and the GI system, influencing various aspects of GI tumorigenesis, such as the malignance of cancer cells, the conformation of tumor microenvironment (TME), and the resistance to chemotherapies. The discussion in this review first focused on exploring the intricate details of the biological function of the nervous system in the development of the GI tract and the progression of tumors within it. Meanwhile, the cancer cell-originated feedback regulation on the nervous system is revealed to play a crucial role in the growth and development of nerve cells within tumor tissues. This interaction is vital for understanding the complex relationship between the nervous system and GI oncogenesis. Additionally, the study identified various components within the TME that possess a significant influence on the occurrence and progression of GI cancer, including microbiota, immune cells, and fibroblasts. Moreover, we highlighted the transformation relationship between non-neuronal cells and neuronal cells during GI cancer progression, inspiring the development of strategies for nervous system-guided anti-tumor drugs. By further elucidating the deep mechanism of various neuroregulatory signals and neuronal intervention, we underlined the potential of these targeted drugs translating into effective therapies for GI cancer treatment. In summary, this review provides an overview of the mechanisms of neuromodulation and explores potential therapeutic opportunities, providing insights into the understanding and management of GI cancers.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Wing Sum Shin
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
5
|
Alqahtani A, Wang M, Lou M, Alachkar H. Genomics and transcriptomic alterations of the glutamate receptors in acute myeloid leukemia. Clin Transl Sci 2023; 16:1828-1841. [PMID: 37670476 PMCID: PMC10582680 DOI: 10.1111/cts.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 09/07/2023] Open
Abstract
Glutamine and glutamate have been widely explored as potential therapeutic targets in acute myeloid leukemia (AML). In addition to its bioenergetic role in leukemia cell proliferation, L-glutamate is a neurotransmitter that acts on glutamate receptors. However, the role of glutamate receptors in AML is largely understudied. Here, we comprehensively analyze the genomic and transcriptomic alterations of glutamate receptor genes in AML using publicly available data. We investigated the frequency of mutations in the glutamate receptor genes and whether an association exist between the presence of these mutations and clinical and molecular characteristics or patient's clinical outcome. We also assessed the dysregulation of glutamate receptor gene expression in AML with and without mutations and whether gene dysregulation is associated with clinical outcomes. We found that 29 (14.5%) of 200 patients with AML had a mutation in at least one glutamate receptor gene. The DNMT3A mutations were significantly more frequent in patients with mutations in at least one glutamate receptor gene compared with patients without mutations (13 of 29 [44.8%] vs. 41 of 171 [23.9%], p value: 0.02). Notably, patients with mutations in at least one glutamate receptor gene survived shorter than patients without mutations; however, the results did not reach statistical significance (overall survival: 15.5 vs. 19.0 months; p value: 0.10). Mutations in the glutamate receptor genes were not associated with changes in gene expression and the transcriptomic levels of glutamate receptor genes were not associated with clinical outcome.
Collapse
Affiliation(s)
- Amani Alqahtani
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Clinical Pharmacy, School of PharmacyNajran UniversityNajranSaudi Arabia
| | - Mengxi Wang
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mimi Lou
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Houda Alachkar
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- USC Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Koda S, Hu J, Ju X, Sun G, Shao S, Tang RX, Zheng KY, Yan J. The role of glutamate receptors in the regulation of the tumor microenvironment. Front Immunol 2023; 14:1123841. [PMID: 36817470 PMCID: PMC9929049 DOI: 10.3389/fimmu.2023.1123841] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Glutamate, as one of the most important carbon sources in the TCA cycle, is central in metabolic processes that will subsequently influence tumor progression. Several factors can affect the expression of glutamate receptors, playing either a tumor-promoting or tumor-suppressor role in cancer. Thus, the activation of glutamate receptors by the ligand could play a role in tumor development as ample studies have demonstrated the expression of glutamate receptors in a broad range of tumor cells. Glutamate and its receptors are involved in the regulation of different immune cells' development and function, as suggested by the receptor expression in immune cells. The activation of glutamate receptors can enhance the effectiveness of the effector's T cells, or decrease the cytokine production in immunosuppressive myeloid-derived suppressor cells, increasing the antitumor immune response. These receptors are essential for the interaction between tumor and immune cells within the tumor microenvironment (TME) and the regulation of antitumor immune responses. Although the role of glutamate in the TCA cycle has been well studied, few studies have deeply investigated the role of glutamate receptors in the regulation of cancer and immune cells within the TME. Here, by a systematic review of the available data, we will critically assess the physiopathological relevance of glutamate receptors in the regulation of cancer and immune cells in the TME and provide some unifying hypotheses for futures research on the role of glutamate receptors in the immune modulation of the tumor.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Hu
- Department of Bioinformatics, School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoman Ju
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guowei Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Simin Shao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Juming Yan, ; Kui-Yang Zheng,
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Juming Yan, ; Kui-Yang Zheng,
| |
Collapse
|
7
|
Wu J, Zhang L, Kuchi A, Otohinoyi D, Hicks C. CpG Site-Based Signature Predicts Survival of Colorectal Cancer. Biomedicines 2022; 10:biomedicines10123163. [PMID: 36551919 PMCID: PMC9776399 DOI: 10.3390/biomedicines10123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A critical unmet medical need in clinical management of colorectal cancer (CRC) pivots around lack of noninvasive and or minimally invasive techniques for early diagnosis and prognostic prediction of clinical outcomes. Because DNA methylation can capture the regulatory landscape of tumors and can be measured in body fluids, it provides unparalleled opportunities for the discovery of early diagnostic and prognostics markers predictive of clinical outcomes. Here we investigated use of DNA methylation for the discovery of potential clinically actionable diagnostic and prognostic markers for predicting survival in CRC. METHODS We analyzed DNA methylation patterns between tumor and control samples to discover signatures of CpG sites and genes associated with CRC and predictive of survival. We conducted functional analysis to identify molecular networks and signaling pathways driving clinical outcomes. RESULTS We discovered a signature of aberrantly methylated genes associated with CRC and a signature of thirteen (13) CpG sites predictive of survival. We discovered molecular networks and signaling pathways enriched for CpG sites likely to drive clinical outcomes. CONCLUSIONS The investigation revealed that CpG sites can predict survival in CRC and that DNA methylation can capture the regulatory state of tumors through aberrantly methylated molecular networks and signaling pathways.
Collapse
Affiliation(s)
- Jiande Wu
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - Lu Zhang
- Department of Public Health Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aditi Kuchi
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - David Otohinoyi
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
| | - Chindo Hicks
- Department of Genetics and the Bioinformatics and Genomics Program, School of Medicine, Louisiana State University Health Sciences Center, Bolivar 533, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
8
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
9
|
García-Gaytán AC, Hernández-Abrego A, Díaz-Muñoz M, Méndez I. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Front Endocrinol (Lausanne) 2022; 13:1029210. [PMID: 36457557 PMCID: PMC9705578 DOI: 10.3389/fendo.2022.1029210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate is one of the most abundant amino acids in the blood. Besides its role as a neurotransmitter in the brain, it is a key substrate in several metabolic pathways and a primary messenger that acts through its receptors outside the central nervous system (CNS). The two main types of glutamate receptors, ionotropic and metabotropic, are well characterized in CNS and have been recently analyzed for their roles in non-neural organs. Glutamate receptor expression may be particularly important for tumor growth in organs with high concentrations of glutamate and might also influence the propensity of such tumors to set metastases in glutamate-rich organs, such as the liver. The study of glutamate transporters has also acquired relevance in the physiology and pathologies outside the CNS, especially in the field of cancer research. In this review, we address the recent findings about the expression of glutamatergic system components, such as receptors and transporters, their role in the physiology and pathology of cancer in non-neural organs, and their possible use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Isabel Méndez
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| |
Collapse
|
10
|
Implications of a Neuronal Receptor Family, Metabotropic Glutamate Receptors, in Cancer Development and Progression. Cells 2022; 11:cells11182857. [PMID: 36139432 PMCID: PMC9496915 DOI: 10.3390/cells11182857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death, and incidences are increasing globally. Simply defined, cancer is the uncontrolled proliferation of a cell, and depending on the tissue of origin, the cancer etiology, biology, progression, prognosis, and treatment will differ. Carcinogenesis and its progression are associated with genetic factors that can either be inherited and/or acquired and are classified as an oncogene or tumor suppressor. Many of these genetic factors converge on common signaling pathway(s), such as the MAPK and PI3K/AKT pathways. In this review, we will focus on the metabotropic glutamate receptor (mGluR) family, an upstream protein that transmits extracellular signals into the cell and has been shown to regulate many aspects of tumor development and progression. We explore the involvement of members of this receptor family in various cancers that include breast cancer, colorectal cancer, glioma, kidney cancer, melanoma, oral cancer, osteosarcoma, pancreatic cancer, prostate cancer, and T-cell cancers. Intriguingly, depending on the member, mGluRs can either be classified as oncogenes or tumor suppressors, although in general most act as an oncogene. The extensive work done to elucidate the role of mGluRs in various cancers suggests that it might be a viable strategy to therapeutically target glutamatergic signaling.
Collapse
|
11
|
Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel) 2022; 14:cancers14153722. [PMID: 35954387 PMCID: PMC9367305 DOI: 10.3390/cancers14153722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Nerve–cancer cross-talk has increasingly become a focus of the oncology field, particularly in gastrointestinal (GI) cancers. The indispensable roles of the nervous system in GI tumorigenesis and malignancy have been dissected by epidemiological, experimental animal and mechanistic data. Herein, we review and integrate recent discoveries linking the nervous system to GI cancer initiation and progression, and focus on the molecular mechanisms by which nerves and neural receptor pathways drive GI malignancy. Abstract Our understanding of the fascinating connection between nervous system and gastrointestinal (GI) tumorigenesis has expanded greatly in recent years. Recent studies revealed that neurogenesis plays an active part in GI tumor initiation and progression. Tumor-driven neurogenesis, as well as neurite outgrowth of the pre-existing peripheral nervous system (PNS), may fuel GI tumor progression via facilitating cancer cell proliferation, chemoresistance, invasion and immune escape. Neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. In addition, neural infiltration also plays an integral role in tumor microenvironments, and contributes to an environment in favor of tumor angiogenesis, immune evasion and invasion. Blockade of tumor innervation via denervation or pharmacological agents may serve as a promising therapeutic strategy against GI tumors. In this review, we summarize recent findings linking the nervous system to GI tumor progression, set the spotlight on the molecular mechanisms by which neural signaling fuels cancer aggressiveness, and highlight the importance of targeting neural mechanisms in GI tumor therapy.
Collapse
|
12
|
Zhai J, He X, Sun Y, Wan Z, Ji B, Liu S, Li S, Wang J. In silico binding affinity prediction for metabotropic glutamate receptors using both endpoint free energy methods and a machine learning-based scoring function. Phys Chem Chem Phys 2022; 24:18291-18305. [PMID: 35880533 PMCID: PMC9460939 DOI: 10.1039/d2cp01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) play an important role in regulating glutamate signal pathways, which are involved in neuropathy and periphery homeostasis. mGluR4, which belongs to Group III mGluRs, is most widely distributed in the periphery among all the mGluRs. It has been proved that the regulation of this receptor is involved in diabetes, colorectal carcinoma and many other diseases. However, the application of structure-based drug design to identify small molecules to regulate the mGluR4 receptor is limited due to the absence of a resolved mGluR4 protein structure. In this work, we first built a homology model of mGluR4 based on a crystal structure of mGluR8, and then conducted hierarchical virtual screening (HVS) to identify possible active ligands for mGluR4. The HVS protocol consists of three hierarchical filters including Glide docking, molecular dynamic (MD) simulation and binding free energy calculation. We successfully prioritized active ligands of mGluR4 from a set of screening compounds using HVS. The predicted active ligands based on binding affinities can almost cover all the experiment-determined active ligands, with only one ligand missed. The correlation between the measured and predicted binding affinities is significantly improved for the MM-PB/GBSA-WSAS methods compared to the Glide docking method. More importantly, we have identified hotspots for ligand binding, and we found that SER157 and GLY158 tend to contribute to the selectivity of mGluR4 ligands, while ALA154 and ALA155 could account for the ligand selectivity to mGluR8. We also recognized other 5 key residues that are critical for ligand potency. The difference of the binding profiles between mGluR4 and mGluR8 can guide us to develop more potent and selective modulators. Moreover, we evaluated the performance of IPSF, a novel type of scoring function trained by a machine learning algorithm on residue-ligand interaction profiles, in guiding drug lead optimization. The cross-validation root-mean-square errors (RMSEs) are much smaller than those by the endpoint methods, and the correlation coefficients are comparable to the best endpoint methods for both mGluRs. Thus, machine learning-based IPSF can be applied to guide lead optimization, albeit the total number of actives/inactives are not big, a typical scenario in drug discovery projects.
Collapse
Affiliation(s)
- Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yuchen Sun
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhuoya Wan
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Song Li
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Silk AW, Saraiya B, Groisberg R, Chan N, Spencer K, Girda E, Shih W, Palmeri M, Saunders T, Berman RM, Coric V, Chen S, Zloza A, Vieth J, Mehnert JM, Malhotra J. A phase Ib dose-escalation study of troriluzole (BHV-4157), an oral glutamatergic signaling modulator, in combination with nivolumab in patients with advanced solid tumors. Eur J Med Res 2022; 27:107. [PMID: 35780243 PMCID: PMC9250196 DOI: 10.1186/s40001-022-00732-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutamate signaling activates MAPK and PI3K/AKT pathways in tumor cells. Treatment with riluzole, a glutamate release inhibitor, has been previously shown to be safe in melanoma patients and produced biologic effects, but did not lead to radiographic responses, possibly due to poor pharmacokinetic properties. Therefore, we conducted a phase Ib trial to determine the safety and tolerability of the combination of the riluzole prodrug troriluzole (BHV-4157, trigriluzole) and the PD-1 antibody nivolumab in patients with advanced solid tumors. METHODS Patients with advanced or refractory solid tumors and measurable disease per RECIST 1.1 were treated with increasing doses of troriluzole using a semi-Bayesian modified toxicity probability interval dose escalation procedure. Troriluzole monotherapy was orally self-administered for a 14-day lead-in period followed by continuation of troriluzole in combination with nivolumab 240 mg IV every 2 weeks. Endpoints included safety, pharmacokinetics (PK) and efficacy. RESULTS We enrolled 14 patients with advanced solid tumors (melanoma = 3, NSCLC = 3, renal cell carcinoma = 2, bladder/urothelial = 2, ovarian cancer = 1, adenoid cystic carcinoma = 1, pleural mesothelial = 1, head and neck cancer = 1). Eleven patients had cancer progression on prior therapy with PD-1 or PD-L1 agent. Patients received troriluzole total daily doses from 140 to 560 mg (divided). The most common treatment-related adverse events (TRAE) occurring in ≥ 5 patients (> 35%) were transaminitis and increased lipase. DLT (dose-limiting toxicity) occurred in 3 patients: (1) grade 3 anorexia, (2) grade 3 fatigue and, (3) grade 3 atrial fibrillation. Six patients were treated at the MTD (maximum tolerated dose). No subjects discontinued treatment due to AEs. One response occurred (7%), which was a partial response in a subject who had PD-1 refractory disease. The 6-month PFS rate was 21%. PK data showed that the prodrug troriluzole was efficiently cleaved into riluzole by 2-h post-dosing in all dose cohorts tested. CONCLUSION The combination of troriluzole and nivolumab was safe and well-tolerated. The MTD of troriluzole was determined to be 420 mg total daily dose. The observed antitumor activity, primarily disease stabilization, is of interest in patients with PD-1 resistant tumors. Trial Registration ClinicalTrials.gov Identifier NCT03229278.
Collapse
Affiliation(s)
- Ann W Silk
- Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Room LW503, Boston, MA, USA.
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Biren Saraiya
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Roman Groisberg
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Laura and Isaac Perlmutter Cancer Center and New York University Grossman School of Medicine, New York, NY, USA
| | - Kristen Spencer
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Eugenia Girda
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Weichung Shih
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers University School of Public Health, New Brunswick, NJ, USA
- Chi-Square Consulting LLC, Piscataway, NJ, USA
| | - Marisa Palmeri
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Tracie Saunders
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Vlad Coric
- Biohaven Pharmaceuticals, New Haven, CT, USA
| | - Suzie Chen
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers University School of Pharmacy, Piscataway, NJ, USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rush University Medical Center and Department of Internal Medicine, Rush Medical College, Chicago, IL, USA
| | - Joshua Vieth
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- JDRF International, New York, NY, USA
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Laura and Isaac Perlmutter Cancer Center and New York University Grossman School of Medicine, New York, NY, USA
| | - Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Kumar K, Banerjee Dixit A, Tripathi M, Dubey V, Siraj F, Sharma MC, Lalwani S, Chandra PS, Banerjee J. Transcriptomic profiling of nonneoplastic cortical tissues reveals epileptogenic mechanisms in dysembryoplastic neuroepithelial tumors. Funct Integr Genomics 2022; 22:905-917. [PMID: 35633443 DOI: 10.1007/s10142-022-00869-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Low-grade dysembryoplastic neuroepithelial tumors (DNTs) are a frequent cause of drug-refractory epilepsy. Molecular mechanisms underlying seizure generation in these tumors are poorly understood. This study was conducted to identify altered genes in nonneoplastic epileptogenic cortical tissues (ECTs) resected from DNT patients during electrocorticography (ECoG)-guided surgery. RNA sequencing (RNAseq) was used to determine the differentially expressed genes (DEGs) in these high-spiking ECTs compared to non-epileptic controls. A total of 477 DEGs (180 upregulated; 297 downregulated) were observed in the ECTs compared to non-epileptic controls. Gene ontology analysis revealed enrichment of genes belonging to the following Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: (i) glutamatergic synapse; (ii) nitrogen metabolism; (iii) transcriptional misregulation in cancer; and (iv) protein digestion and absorption. The glutamatergic synapse pathway was enriched by DEGs such as GRM4, SLC1A6, GRIN2C, GRM2, GRM5, GRIN3A, and GRIN2B. Enhanced glutamatergic activity was observed in the pyramidal neurons of ECTs, which could be attributed to altered synaptic transmission in these tissues compared to non-epileptic controls. Besides glutamatergic synapse, altered expression of other genes such as GABRB1 (synapse formation), SLIT2 (axonal growth), and PROKR2 (neuron migration) could be linked to epileptogenesis in ECTs. Also, upregulation of GABRA6 gene in ECTs could underlie benzodiazepine resistance in these patients. Neural cell-type-specific gene set enrichment analysis (GSEA) revealed transcriptome of ECTs to be predominantly contributed by microglia and neurons. This study provides first comprehensive gene expression profiling of nonneoplastic ECTs of DNT patients and identifies genes/pathways potentially linked to epileptogenesis.
Collapse
Affiliation(s)
- Krishan Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | | | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
15
|
Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophys Rev 2022; 14:303-315. [PMID: 35340601 PMCID: PMC8921357 DOI: 10.1007/s12551-021-00919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA), also called glutamate carboxypeptidase II (GCP(II)), is a Zn-dependent metalloprotease that is known as a well prostate cancer indication and a potential targeting towards anti-cancer medicines and drug delivery. Because of its centrality in the diagnostics and treatment of prostate cancer, several types of inhibitors are designed with particular scaffolds. In this study, important groups of related inhibitors as well as reported experimental and computational studies are being reviewed, in which we examined three functional groups on each group of structures. The importance of computational biochemistry and the necessity of extensive research in this area on PSMA and its effective ligands are recommended.
Collapse
|
16
|
Wan Z, Sun R, Liu YW, Li S, Sun J, Li J, Zhu J, Moharil P, Zhang B, Ren P, Ren G, Zhang M, Ma X, Dai S, Yang D, Lu B, Li S. Targeting metabotropic glutamate receptor 4 for cancer immunotherapy. SCIENCE ADVANCES 2021; 7:eabj4226. [PMID: 34890233 PMCID: PMC8664261 DOI: 10.1126/sciadv.abj4226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/23/2021] [Indexed: 05/30/2023]
Abstract
In this study, we report a novel role of metabotropic glutamate receptor 4 (GRM4) in suppressing antitumor immunity. We revealed in three murine syngeneic tumor models (B16, MC38, and 3LL) that either genetic knockout (Grm4−/−) or pharmacological inhibition led to significant delay in tumor growth. Mechanistically, perturbation of GRM4 resulted in a strong antitumor immunity by promoting natural killer (NK), CD4+, and CD8+ T cells toward an activated, proliferative, and functional phenotype. Single-cell RNA sequencing and T cell receptor profiling further defined the clonal expansion and immune landscape changes in CD8+ T cells. We further showed that Grm4−/− intrinsically activated interferon-γ production in CD8+ T cells through cyclic adenosine 3′,5′-monophosphate (cAMP)/cAMP response element binding protein–mediated pathway. Our study appears to be of clinical significance as a signature of NKhigh-GRM4low and CD8high-GRM4low correlated with improved survival in patients with melanoma. Targeting GRM4 represents a new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Runzi Sun
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yang-Wuyue Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pearl Moharil
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Guolian Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shuangshuang Dai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Liu HM, Ma LL, Li C, Cao B, Jiang Y, Han L, Xu R, Lin J, Zhang D. The molecular mechanism of chronic stress affecting the occurrence and development of breast cancer and potential drug therapy. Transl Oncol 2021; 15:101281. [PMID: 34875482 PMCID: PMC8652015 DOI: 10.1016/j.tranon.2021.101281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
According to the 2020 data released by the International Agency for Research on Cancer, breast cancer has surpassed lung cancer as the world's most newly diagnosed first-time cancer. Compared with patients with other types of cancer, those with breast cancer experience greater mental stress and more severe psychological impacts because of the life-threatening diagnosis, physical changes, treatment side effects, and family and social life dysfunctions. These usually manifest as anxiety, depression, nervousness, and insomnia, all of which elicit stress responses. Particularly under chronic stress, the continuous release of neurotransmitters from the neuroendocrine system can have a highly profound impact on the occurrence and prognosis of breast cancer. However, because of the complex mechanisms underlying chronic stress and the variability in individual tolerance, evidence of the role of chronic stress in the occurrence and evolution of breast cancer remains unclear. This article reviewed previous research on the correlation between chronic stress and the occurrence and development of breast cancer, particularly the molecular mechanism through which chronic stress promotes breast cancer via neurotransmitters secreted by the nervous system. We also review the progress in the development of potential drugs or blockers for the treatment of breast cancer by targeting the neuroendocrine system.
Collapse
Affiliation(s)
- Hui-Min Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Le-le Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Chunyu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China; National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Road Shierqiao, Chengdu 610072, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Road Shierqiao, Chengdu 610072, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue Liutai, Chengdu 611137, China.
| |
Collapse
|
18
|
Hofmann CS, Carrington S, Keller AN, Gregory KJ, Niswender CM. Regulation and functional consequences of mGlu 4 RNA editing. RNA (NEW YORK, N.Y.) 2021; 27:1220-1240. [PMID: 34244459 PMCID: PMC8457003 DOI: 10.1261/rna.078729.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Amino Acid Sequence
- Animals
- Base Pairing
- Base Sequence
- Birds
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- HEK293 Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Models, Molecular
- Neurons/cytology
- Neurons/metabolism
- Nucleic Acid Conformation
- Point Mutation
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- RNA Editing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Reptiles
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christopher S Hofmann
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sheridan Carrington
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Andrew N Keller
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
19
|
Eddy K, Chen S. Glutamatergic Signaling a Therapeutic Vulnerability in Melanoma. Cancers (Basel) 2021; 13:3874. [PMID: 34359771 PMCID: PMC8345431 DOI: 10.3390/cancers13153874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Like other cancers, melanomas are associated with the hyperactivation of two major cell signaling cascades, the MAPK and PI3K/AKT pathways. Both pathways are activated by numerous genes implicated in the development and progression of melanomas such as mutated BRAF, RAS, and NF1. Our lab was the first to identify yet another driver of melanoma, Metabotropic Glutamate Receptor 1 (protein: mGluR1, mouse gene: Grm1, human gene: GRM1), upstream of the MAPK and PI3K/AKT pathways. Binding of glutamate, the natural ligand of mGluR1, activates MAPK and PI3K/AKT pathways and sets in motion the deregulated cellular responses in cell growth, cell survival, and cell metastasis. In this review, we will assess the proposed modes of action that mediate the oncogenic properties of mGluR1 in melanoma and possible application of anti-glutamatergic signaling modulator(s) as therapeutic strategy for the treatment of melanomas.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies, Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Interactive regulation of laryngeal cancer and neuroscience. Biochim Biophys Acta Rev Cancer 2021; 1876:188580. [PMID: 34129916 DOI: 10.1016/j.bbcan.2021.188580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Nerve fibres are distributed throughout the body along with blood and lymphatic vessels. The intrinsic morphological characteristics of nerves and the general characteristics of secretions in the tumour microenvironment provide a solid theoretical basis for exploring how neuronal tissue can influence the progression of laryngeal cancer (LC). The central nervous system (CNS) and the peripheral nervous system (PNS) jointly control many aspects of cancer and have attracted widespread attention in the study of the progression, invasion and metastasis of tumour tissue banks. Stress activates the neuroendocrine response of the human hypothalamus-pituitary-adrenal (HPA) axis. LC cells induce nerve growth in the microenvironment by releasing neurotrophic factors (NTFs), and they can also stimulate neurite formation by secreting axons and axon guides. Conversely, nerve endings secrete factors that attract LC cells; this is known as perineural invasion (PNI) and promotes the progression of the associated cancer. In this paper, we summarize the systematic understanding of the role of neuroregulation in the LC tumour microenvironment (TME) and ways in which the TME accelerates nerve growth, which is closely related to the occurrence of LC.
Collapse
|
22
|
The Emerging Role of Nerves and Glia in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13010152. [PMID: 33466373 PMCID: PMC7796331 DOI: 10.3390/cancers13010152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The influence of nerves on different types of cancers, including colorectal cancer, is increasingly recognized. The intestines are highly innervated, both from outside the intestines (extrinsic innervation) and by a nervous system of their own; the enteric nervous system (intrinsic innervation). Nerves and cancer cells have been described to communicate with each other, although the exact mechanism in colorectal cancer is not yet explored. Nerves can enhance cancer progression by secreting signaling molecules, and cancer cells are capable of stimulating nerve growth. This review summarizes the innervation of the intestines and current knowledge on the role of the nervous system in colorectal cancer. Additionally, the therapeutic potential of these new insights is discussed. Abstract The role of the nervous system as a contributor in the tumor microenvironment has been recognized in different cancer types, including colorectal cancer (CRC). The gastrointestinal tract is a highly innervated organ system, which is not only innervated by the autonomic nervous system, but also contains an extensive nervous system of its own; the enteric nervous system (ENS). The ENS is important for gut function and homeostasis by regulating processes such as fluid absorption, blood flow, and gut motility. Dysfunction of the ENS has been linked with multiple gastrointestinal diseases, such as Hirschsprung disease and inflammatory bowel disease, and even with neurodegenerative disorders. How the extrinsic and intrinsic innervation of the gut contributes to CRC is not fully understood, although a mutual relationship between cancer cells and nerves has been described. Nerves enhance cancer progression through the secretion of neurotransmitters and neuropeptides, and cancer cells are capable of stimulating nerve growth. This review summarizes and discusses the nervous system innervation of the gastrointestinal tract and how it can influence carcinogenesis, and vice versa. Lastly, the therapeutic potential of these novel insights is discussed.
Collapse
|
23
|
Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, Afshari AR, Sahebkar A. Deciphering the Role of Glutamate Signaling in Glioblastoma Multiforme: Current Therapeutic Modalities and Future Directions. Curr Pharm Des 2020; 26:4777-4788. [DOI: 10.2174/1381612826666200603132456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
As the most popular intrinsic neoplasm throughout the brain, glioblastoma multiforme (GBM) is resistant
to existing therapies. Due to its invasive nature, GBM shows a poor prognosis despite aggressive surgery
and chemoradiation. Therefore, identifying and understanding the critical molecules of GBM can help develop
new therapeutic strategies. Glutamatergic signaling dysfunction has been well documented in neurodegenerative
diseases as well as in GBM. Inhibition of glutamate receptor activation or extracellular glutamate release by specific
antagonists inhibits cell development, invasion, and migration and contributes to apoptosis and autophagy in
GBM cells. This review outlines the current knowledge of glutamate signaling involvement and current therapeutic
modalities for the treatment of GBM.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H. Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad M. Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | |
Collapse
|
24
|
Hsu CH, Tomiyasu H, Lee JJ, Tung CW, Liao CH, Chuang CH, Huang LY, Liao KW, Chou CH, Liao ATC, Lin CS. Genome-wide DNA methylation analysis using MethylCap-seq in canine high-grade B-cell lymphoma. J Leukoc Biol 2020; 109:1089-1103. [PMID: 33031589 DOI: 10.1002/jlb.2a0820-673r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 08/11/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023] Open
Abstract
DNA methylation is a comprehensively studied epigenetic modification and plays crucial roles in cancer development. In the present study, MethylCap-seq was used to characterize the genome-wide DNA methylation patterns in canine high-grade B-cell lymphoma (cHGBL). Canine methylated DNA fragments were captured and the MEDIUM-HIGH and LOW fraction of methylated DNA was obtained based on variation in CpG methylation density. In the MEDIUM-HIGH and LOW fraction, 2144 and 1987 cHGBL-specific hypermethylated genes, respectively, were identified. Functional analysis highlighted pathways strongly related to oncogenesis. The relevant signaling pathways associated with neuronal system were also revealed, echoing recent novel findings that neurogenesis plays key roles in tumor establishment. In addition, 14 genes were hypermethylated in all the cHGBL cases but not in the healthy dogs. These genes might be potential signatures for tracing cHGBL, and some of them have been reported to play roles in various types of cancers. Further, the distinct methylation pattern of cHGBL showed a concordance with the clinical outcome, suggesting that aberrant epigenetic changes may influence tumor behavior. In summary, our study characterized genome-wide DNA methylation patterns using MethylCap-seq in cHGBL; the findings suggest that specific DNA hypermethylation holds promise for dissecting tumorigenesis and uncovering biomarkers for monitoring the progression of cHGBL.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jih-Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsun Chuang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Ling-Ya Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert T C Liao
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Yusof HM, Ab-Rahim S, Wan Ngah WZ, Nathan S, A Jamal AR, Mazlan M. Metabolomic characterization of colorectal cancer cell lines highlighting stage-specific alterations during cancer progression. BIOIMPACTS : BI 2020; 11:147-156. [PMID: 33842285 PMCID: PMC8022234 DOI: 10.34172/bi.2021.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/12/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
Introduction: Metabolomic studies on various colorectal cancer (CRC) cell lines have improved our understanding of the biochemical events underlying the disease. However, the metabolic profile dynamics associated with different stages of CRC progression is still lacking. Such information can provide further insights into the pathophysiology and progression of the disease that will prove useful in identifying specific targets for drug designing and therapeutics. Thus, our study aims to characterize the metabolite profiles in the established cell lines corresponding to different stages of CRC. Methods: Metabolite profiling of normal colon cell lines (CCD 841 CoN) and CRC cell lines corresponding to different stages, i.e., SW 1116 (stage A), HT 29 and SW 480 (stage B), HCT 15 and DLD-1 (stage C), and HCT 116 (stage D), was carried out using liquid chromatography-mass spectrometry (LC-MS). Mass Profiler Professional and Metaboanalyst 4.0 software were used for statistical and pathway analysis. METLIN database was used for the identification of metabolites. Results: We identified 72 differential metabolites compared between CRC cell lines of all the stages and normal colon cells. Principle component analysis and partial least squares discriminant analysis score plot were used to segregate normal and CRC cells, as well as CRC cells in different stages of the disease. Variable importance in projection score identified unique differential metabolites in CRC cells of the different stages. We identified 7 differential metabolites unique to stage A, 3 in stage B, 5 in stage C, and 5 in stage D. Conclusion: This study highlights the differential metabolite profiling in CRC cell lines corresponding to different stages. The identification of the differential metabolites in CRC cells at individual stages will lead to a better understanding of the pathophysiology of CRC development and progression and, hence, its application in treatment strategies.
Collapse
Affiliation(s)
- Hazwani Mohd Yusof
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Campus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab-Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Campus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
| | - Wan Zurinah Wan Ngah
- Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Batu 9 Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Sheila Nathan
- Department of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - A Rahman A Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Musalmah Mazlan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Campus Sungai Buloh, 47000 Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
26
|
Boccella S, Marabese I, Guida F, Luongo L, Maione S, Palazzo E. The Modulation of Pain by Metabotropic Glutamate Receptors 7 and 8 in the Dorsal Striatum. Curr Neuropharmacol 2020; 18:34-50. [PMID: 31210112 PMCID: PMC7327935 DOI: 10.2174/1570159x17666190618121859] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
The dorsal striatum, apart from controlling voluntary movement, displays a recently demonstrated pain inhibition. It is connected to the descending pain modulatory system and in particular to the rostral ventromedial medulla through the medullary dorsal reticular nucleus. Diseases of the basal ganglia, such as Parkinson's disease, in addition to being characterized by motor disorders, are associated with pain and hyperactivation of the excitatory transmission. A way to counteract glutamatergic hyperactivation is through the activation of group III metabotropic glutamate receptors (mGluRs), which are located on presynaptic terminals inhibiting neurotransmitter release. So far the mGluRs of group III have been the least investigated, owing to a lack of selective tools. More recently, selective ligands for each mGluR of group III, in particular positive and negative allosteric modulators, have been developed and the role of each subtype is starting to emerge. The neuroprotective potential of group III mGluRs in pathological conditions, such as those characterized by elevate glutamate, has been recently shown. In the dorsal striatum, mGluR7 and mGluR8 are located at glutamatergic corticostriatal terminals and their stimulation inhibits pain in pathological conditions such as neuropathic pain. The two receptors in the dorsal striatum have instead a different role in pain control in normal conditions. This review will discuss recent results focusing on the contribution of mGluR7 and mGluR8 in the dorsal striatal control of pain. The role of mGluR4, whose antiparkinsonian activity is widely reported, will also be addressed.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
27
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
28
|
Ni T, Huang T, Gu SL, Wang J, Liu Y, Sun X, Wang YD. DRG Neurons Promote Perineural Invasion of Endometrial Cancer via GluR2. J Cancer 2020; 11:2518-2528. [PMID: 32201522 PMCID: PMC7066017 DOI: 10.7150/jca.40055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/19/2020] [Indexed: 01/28/2023] Open
Abstract
Background: Perineural invasion (PNI) is correlated with negative prognosis in multiple cancers, but its role in endometrial cancer (EC) is still largely unknown; thus, targeted treatment for nerve infiltration is lacking as well. Methods: The interaction between nerve and EC cells were investigated by in vitro neural invasion assay and transwell coculture system. Then the nerve-related receptor gene glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) was detected in EC tissues and cells using PCR array, western blotting, and immunohistochemistry. The role of GluR2 (gene name GRIA2) on EC proliferation, migration and invasion was evaluated by a GluR2 antagonist and shRNA. At the same time, the neurotransmitter effect on GluR2 (glutamate) from the cocultured conditional medium was measured using high-performance liquid chromatography (HPLC). Results: EC cell line Ishikawa (ISK) showed the ability to migrate along neurites in vitro and the numbers of migrated/invaded EC cells in the DRG neuron coculture group were significantly increased. The expression of GluR2 in EC tissue was found to be higher than that in para-carcinoma tissue. After GluR2 antagonist and GluR2 shRNA treatment, the proliferation, migration and invasion of ISK cells was markedly inhibited. Moreover, the ability of DRG neurons to promote the migration and invasion of ISK cells could also be attenuated by downregulation of GluR2, and the concentration of the neurotransmitter glutamate was notably increased in the coculture conditional medium compared to that in the DRG neuron or ISK cells alone. Conclusions: DRG neurons promote metastasis of EC cells via GluR2, which might be a risk factor for PNI in EC. Moreover, the perineural system may promote tumor invasion and metastasis under certain circumstances.
Collapse
Affiliation(s)
- Ting Ni
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China
| | - Ting Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China
| | - Sheng-Lan Gu
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China
| | - Jing Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China
| | - Yao Liu
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China
| | - Xiao Sun
- Laboratory for Gynecologic Oncology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China
| | - Yu-Dong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, No. 910 Hengshan Road, Shanghai 200030, China.,Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
29
|
Yi H, Talmon G, Wang J. Glutamate in cancers: from metabolism to signaling. J Biomed Res 2019; 34:260-270. [PMID: 32594024 PMCID: PMC7386414 DOI: 10.7555/jbr.34.20190037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/20/2019] [Indexed: 01/31/2023] Open
Abstract
Glutamine and glutamate are major bioenergy substrates for normal and cancer cell growth. Cancer cells need more biofuel than normal tissues for energy supply, anti-oxidation activity and biomass production. Genes related to metabolic chains in many cancers are somehow mutated, which makes cancer cells more glutamate dependent. Meanwhile, glutamate is an excitatory neurotransmitter for conducting signals through binding with different types of receptors in central neuron system. Interestingly, increasing evidences have shown involvement of glutamate signaling, guided through their receptors, in human malignancy. Dysregulation of glutamate transporters, such as excitatory amino acid transporter and cystine/glutamate antiporter system, also generates excessive extracellular glutamate, which in turn, activates glutamate receptors on cancer cells and results in malignant growth. These features make glutamate an attractive target for anti-cancer drug development with some glutamate targeted but blood brain barrier impermeable anti-psychosis drugs under consideration. We discussed the relevant progressions and drawbacks in this field herein.
Collapse
Affiliation(s)
- Haowei Yi
- Department of Genetics, Cell Biology and Anatomy
| | | | - Jing Wang
- Department of Genetics, Cell Biology and Anatomy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
30
|
Kansara M, Thomson K, Pang P, Dutour A, Mirabello L, Acher F, Pin JP, Demicco EG, Yan J, Teng MWL, Smyth MJ, Thomas DM. Infiltrating Myeloid Cells Drive Osteosarcoma Progression via GRM4 Regulation of IL23. Cancer Discov 2019; 9:1511-1519. [PMID: 31527131 DOI: 10.1158/2159-8290.cd-19-0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/03/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
The glutamate metabotropic receptor 4 (GRM4) locus is linked to susceptibility to human osteosarcoma, through unknown mechanisms. We show that Grm4-/- gene-targeted mice demonstrate accelerated radiation-induced tumor development to an extent comparable with Rb1+/- mice. GRM4 is expressed in myeloid cells, selectively regulating expression of IL23 and the related cytokine IL12. Osteosarcoma-conditioned media induce myeloid cell Il23 expression in a GRM4-dependent fashion, while suppressing the related cytokine Il12. Both human and mouse osteosarcomas express an increased IL23:IL12 ratio, whereas higher IL23 expression is associated with worse survival in humans. Consistent with an oncogenic role, Il23 -/- mice are strikingly resistant to osteosarcoma development. Agonists of GRM4 or a neutralizing antibody to IL23 suppressed osteosarcoma growth in mice. These findings identify a novel, druggable myeloid suppressor pathway linking GRM4 to the proinflammatory IL23/IL12 axis. SIGNIFICANCE: Few novel systemic therapies targeting osteosarcoma have emerged in the last four decades. Using insights gained from a genome-wide association study and mouse modeling, we show that GRM4 plays a role in driving osteosarcoma via a non-cell-autonomous mechanism regulating IL23, opening new avenues for therapeutic intervention.See related commentary by Jones, p. 1484.This article is highlighted in the In This Issue feature, p. 1469.
Collapse
Affiliation(s)
- Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Kristian Thomson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Puiyi Pang
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Aurelie Dutour
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Leon Berard, Lyon, France
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Francine Acher
- IGF, Universite de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int J Mol Sci 2019; 20:ijms20061482. [PMID: 30934533 PMCID: PMC6471396 DOI: 10.3390/ijms20061482] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
A complex bidirectional communication system exists between the gastrointestinal tract and the brain. Initially termed the “gut-brain axis” it is now renamed the “microbiota-gut-brain axis” considering the pivotal role of gut microbiota in maintaining local and systemic homeostasis. Different cellular and molecular pathways act along this axis and strong attention is paid to neuroactive molecules (neurotransmitters, i.e., noradrenaline, dopamine, serotonin, gamma aminobutyric acid and glutamate and metabolites, i.e., tryptophan metabolites), sustaining a possible interkingdom communication system between eukaryota and prokaryota. This review provides a description of the most up-to-date evidence on glutamate as a neurotransmitter/neuromodulator in this bidirectional communication axis. Modulation of glutamatergic receptor activity along the microbiota-gut-brain axis may influence gut (i.e., taste, visceral sensitivity and motility) and brain functions (stress response, mood and behavior) and alterations of glutamatergic transmission may participate to the pathogenesis of local and brain disorders. In this latter context, we will focus on two major gut disorders, such as irritable bowel syndrome and inflammatory bowel disease, both characterized by psychiatric co-morbidity. Research in this area opens the possibility to target glutamatergic neurotransmission, either pharmacologically or by the use of probiotics producing neuroactive molecules, as a therapeutic approach for the treatment of gastrointestinal and related psychiatric disorders.
Collapse
|
32
|
Crupi R, Impellizzeri D, Cuzzocrea S. Role of Metabotropic Glutamate Receptors in Neurological Disorders. Front Mol Neurosci 2019; 12:20. [PMID: 30800054 PMCID: PMC6375857 DOI: 10.3389/fnmol.2019.00020] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a fundamental excitatory neurotransmitter in the mammalian central nervous system (CNS), playing key roles in memory, neuronal development, and synaptic plasticity. Moreover, excessive glutamate release has been implicated in neuronal cell death. There are both ionotropic and metabotropic glutamate receptors (mGluRs), the latter of which can be divided into eight subtypes and three subgroups based on homology sequence and their effects on cell signaling. Indeed, mGluRs exert fine control over glutamate activity by stimulating several cell-signaling pathways via the activation of G protein-coupled (GPC) or G protein-independent cell signaling. The involvement of specific mGluRs in different forms of synaptic plasticity suggests that modulation of mGluRs may aid in the treatment of cognitive impairments related to several neurodevelopmental/psychiatric disorders and neurodegenerative diseases, which are associated with a high economic and social burden. Preclinical and clinical data have shown that, in the CNS, mGluRs are able to modulate presynaptic neurotransmission by fine-tuning neuronal firing and neurotransmitter release in a dynamic, activity-dependent manner. Current studies on drugs that target mGluRs have identified promising, innovative pharmacological tools for the treatment of neurodegenerative and neuropsychiatric conditions, including chronic pain.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
33
|
Shao L, Liu Y, Xiao J, Wang Q, Liu F, Ding J. Activating metabotropic glutamate receptor‑7 attenuates visceral hypersensitivity in neonatal maternally separated rats. Int J Mol Med 2018; 43:761-770. [PMID: 30569115 PMCID: PMC6317681 DOI: 10.3892/ijmm.2018.4022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has indicated that metabotropic glutamate receptor-7 (mGluR7) is an important target for reducing anxiety and stress-associated behaviours. Notably, mood disorders exhibit high levels of comorbidity with gastrointestinal dysfunction; however, the role of mGluR7 outside of the central nervous system is currently unknown. Activating mGluR7 likely increases colonic secretory function. Therefore, the present study aimed to evaluate the possible effects of mGluR7 on the visceral hypersensitivity of irritable bowel syndrome (IBS) in rats. The expression levels of mGluR7 were assessed in the colon tissues of rats with neonatal maternal separation (NMS)-induced visceral hypersensitivity using reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. In addition, the mGluR7 agonist AMN082 (3 or 10 mg/kg; i.p.) was administered 1 h prior to the visceral hypersensitivity test, and the effects of AMN082 were then observed on the nuclear factor (NF)-κB signalling pathway. The mRNA and protein expression levels of mGluR7 were upregulated in the colon mucosa of NMS rats compared with in normal control rats. Notably, administration of AMN082 (10 mg/kg) attenuated colorectal distension (CRD)-induced visceral hypersensitivity in NMS rats. In addition, interleukin-10 and transforming growth factor-β mRNA expression levels were upregulated, whereas interferon-γ mRNA expression levels were downregulated in the NMS + AMN082 group compared with in NMS rats. The number of cluster of differentiation 3+ T cells in the intestinal mucosa and myeloperoxidase activity were decreased in NMS + AMN082 rats. Furthermore, AMN082 treatment reduced the protein expression levels of phosphorylated-NF-κB in the colon tissue of NMS rats. These results indicated that activation of mGluR7 may attenuate CRD-induced visceral hypersensitivity in experimental IBS and reduce the abnormal immune cytokine response. In addition, it was suggested that the role of AMN082 in modulating the inflammatory response may be partially associated with inhibiting NF-κB activation. These data suggested that targeting mGluR7 may be useful in the treatment of stress-associated IBS.
Collapse
Affiliation(s)
- Limei Shao
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Yanbing Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200092, P.R. China
| | - Junhua Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Qunying Wang
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200092, P.R. China
| | - Jin Ding
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
34
|
Huang CY, Hsueh YM, Chen LC, Cheng WC, Yu CC, Chen WJ, Lu TL, Lan KJ, Lee CH, Huang SP, Bao BY. Clinical significance of glutamate metabotropic receptors in renal cell carcinoma risk and survival. Cancer Med 2018; 7:6104-6111. [PMID: 30488581 PMCID: PMC6308098 DOI: 10.1002/cam4.1901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence suggests the roles of glutamate metabotropic receptors (GRMs) in cancer, in addition to synaptic signalling. The present study assessed the associations of genetic variants in eight GRM genes with regard to risk and overall survival (OS) in 780 renal cell carcinoma (RCC) patients and controls. After adjustment for known risk factors, GRM5 rs7102764 T was associated with an increased risk of RCC (P = 0.006). Additional analysis has provided evidence that rs7102764 T was correlated with a higher expression of GRM5, which is consistently found to be upregulated in tumours, compared to normal tissues. Furthermore, the GRM3 rs701332 C, GRM4 rs2499707 T, and GRM4 rs4713742 T alleles were significantly associated with a poorer OS (P ≤ 0.030). The three loci were also observed to have strong cumulative effects on OS. Additional analysis has revealed a significant genotype‐expression correlation of rs2499707 T with increased GRM4 expression, which in turn leads to poorer OS in patients with RCC. GRMs might be involved in RCC development and progression, and genetic variants in GRMs might be promising biomarkers.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.,Department of Urology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwa
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Wei-Jen Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kuo-Jin Lan
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan.,Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
35
|
Jantas D, Grygier B, Gołda S, Chwastek J, Zatorska J, Tertil M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett 2018; 432:1-16. [DOI: 10.1016/j.canlet.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
|
36
|
Zhao X, Ren Y, Cui N, Wang X, Cui Y. Identification of key microRNAs and their targets in exosomes of pancreatic cancer using bioinformatics analysis. Medicine (Baltimore) 2018; 97:e12632. [PMID: 30278585 PMCID: PMC6181532 DOI: 10.1097/md.0000000000012632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal tumors, due to late diagnosis and limited surgical strategies. It has been reported that serum exosomal microRNAs (S-Exo-miRNAs) play a pivotal role as signaling molecules and serve as noninvasive diagnosis methods for PC. The combination of S-Exo-miRNAs with the corresponding target also plays an important role in the tumor microenvironment.Here we investigated S-Exo-miRNAs involved in PC. The gene expression profile was downloaded from the Gene Expression Omnibus (GEO) database. The analysis was carried out using GEO2R. The targets of differentially expressed serum exosomal miRNAs (DE-S-Exo-miRNAs) were predicted by 4 bioinformatic algorithms (miRanda, miRDB, miRWalk, and Targetscan). Further analysis with gene ontology (GO) and Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment analyses were performed with Cytoscape software version 3.4.0. Subsequently, the interaction regulatory network of target genes was performed with the Search Tool for the Retrieval of Interacting Genes (STRING) database (http://www.string-db.org/) and visualized using Cytoscape software.We downloaded the gene expression profile GSE50632, which was based on an Agilent microarray GPL17660 platform containing 4 eligible samples. In total 467 DE-S-Exo-miRNAs were obtained, including 7 overexpressed miRNAs (1.50%), and 460 remaining underexpressed miRNAs (98.50%). The databases miRWalk, miRDB, miRanda, and TargetScan were used to predict their potential targets, which were subsequently submitted to Cytoscape software version 3.4.0 (www.cytoscape.org). Next the functional and pathway enrichment analysis were used for the KEGG pathway and GO categories analysis. The enrichment analysis identified the genes involved in such processes as developmental and negative regulation of multicellular organismal processes, regulation of anatomical structure morphogenesis, regulation of cell death, apoptotic processes and mitogen-activated protein kinase (MAPK) signaling pathway, transforming growth factor - beta (TGF -β) signaling pathway, cyclic adenosine monophosphate (cAMP) signaling pathway, and the phosphatidylinositol-3 kinases/Akt (PI3K-Akt) signaling pathway. Subsequently according to the protein-protein interaction (PPI) network, the top 10 genes were obtained. The enrichment analyses of the genes involved in a significant module revealed that these genes were related to the TGF-β signaling pathway. After reviewing the literature, we identified the apoptosis genes, and their corresponding miRNAs that have a relationship with apoptosis of the tumor.This analysis provides a comprehensive understanding of the roles of S-Exo-miRNAs and the related targets in the development of PC. Additionally, the present study provides promising candidate targets for early diagnosis and therapeutic intervention. However, these predictions require further experimental validation in future studies.
Collapse
Affiliation(s)
- Xin Zhao
- Tianjin Medical University, Tianjin
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| | - Yiming Ren
- Department of Bone and Joint, Tianjin Union Medicine Center, PR China
| | - Naiqiang Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| | - Ximo Wang
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School, Tianjin Medical University
| |
Collapse
|
37
|
Zhang Z, Liu Y, Wang K, Zhu K, Zheng X, Wang L, Luan Y, Wang X, Lu H, Wu K, Chen X, He D, Liu Y. Activation of type 4 metabotropic glutamate receptor promotes cell apoptosis and inhibits proliferation in bladder cancer. J Cell Physiol 2018; 234:2741-2755. [PMID: 30145816 DOI: 10.1002/jcp.27089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Zhichao Zhang
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Yingfei Liu
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Ke Wang
- Department of UrologyFirst Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
| | - Kun Zhu
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Xiaoyan Zheng
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Li Wang
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Yan Luan
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Xinyang Wang
- Department of UrologyFirst Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
| | - Haixia Lu
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Kaijie Wu
- Department of UrologyFirst Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
| | - Xinlin Chen
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Dalin He
- Department of UrologyFirst Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
| | - Yong Liu
- Institute of NeurobiologyXi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| |
Collapse
|
38
|
Jantas D, Grygier B, Zatorska J, Lasoń W. Allosteric and Orthosteric Activators of mGluR8 Differentially Affect the Chemotherapeutic-Induced Human Neuroblastoma SH-SY5Y Cell Damage: The Impact of Cell Differentiation State. Basic Clin Pharmacol Toxicol 2018; 123:443-451. [PMID: 29753314 DOI: 10.1111/bcpt.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/29/2018] [Indexed: 12/25/2022]
Abstract
The participation of group III metabotropic glutamate receptors (mGluRs) in cancer growth and progression is still an understudied issue. Based on our recent data on high expression of mGluR8 in human neuroblastoma SH-SY5Y cells, in this study, we evaluated the effect of an mGluR8-specific positive allosteric modulator (PAM: AZ12216052) and orthosteric agonist [(S)-3,4-DCPG ((S)-3,4-dicarboxyphenylglycine)] on chemotherapeutic (doxorubicin, irinotecan or cisplatin)-evoked cell damage in undifferentiated (UN-) and retinoic acid-differentiated (RA-) SH-SY5Y cells. The data showed that AZ12216052 as well as a group III mGluR antagonist (UBP1112) but not (S)-3,4-DCPG partially inhibited the cell damage evoked by doxorubicin, irinotecan or cisplatin in UN-SH-SY5Y cells. In RA-SH-SY5Y, we observed only a modest protective effect of mGluR8 PAM. In contrast, both types of mGluR8 activators significantly enhanced toxic effects of doxorubicin and irinotecan in RA-SH-SY5Y cells. These data suggest that in undifferentiated neuroblastoma malignant cells, some mGluR8 modulators can decrease cytotoxic effects of chemotherapeutics which exclude them from the group of putative anticancer agents. On the other hand, in SH-SY5Y cells differentiated to a more mature neuron-like phenotype, that is non-malignant cells, the mGluR8 activators can aggravate the chemotherapeutic neurotoxicity which is a well-known undesired effect of these drugs. Our pharmacological data add new observations to the unexplored field of research on the role of mGluR8 in cancer, pointing to complexity of response which could be mediated by particular types of mGluR8 ligands at least in neuroblastoma cells.
Collapse
Affiliation(s)
- Danuta Jantas
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Zatorska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Władysław Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
39
|
Zhang Z, Zheng X, Luan Y, Liu Y, Li X, Liu C, Lu H, Chen X, Liu Y. Activity of Metabotropic Glutamate Receptor 4 Suppresses Proliferation and Promotes Apoptosis With Inhibition of Gli-1 in Human Glioblastoma Cells. Front Neurosci 2018; 12:320. [PMID: 29867331 PMCID: PMC5962807 DOI: 10.3389/fnins.2018.00320] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/24/2018] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal glioma variant in the adult brain and among the deadliest of human cancers. Increasing evidence has shown that metabotropic glutamate receptor subtype 4 (mGluR4) expression may play roles in regulating the growth of neural stem cells as well as several cancer cell lines. Here, we investigated the effects of mGluR4 on the growth and apoptosis of the LN229 GBM cell line. Involvement of Gli-1, one of the key transcription factors in the sonic Hedgehog (SHH) signaling pathway, was further explored. In this study, mGluR4 was activated using selective agonist VU0155041; and gene-targeted siRNAs were used to generate loss of function of mGluR4 and Gli-1 in LN229 cells. The results demonstrated that LN229 cells expressed mGluR4 and the agonist VU0155041 decreased cell viability in a dose- and time-dependent manner. Activation of mGluR4 inhibited cyclin D1 expression, activated pro-caspase-8/9/3, and disrupted the balance of Bcl-2/Bax expression, which indicated cell cycle arrest and apoptosis of LN229 cells, respectively. Furthermore, Gli-1 expression was reduced by mGluR4 activation in LN229 cells, and downregulation of Gli-1 expression by gene-targeted siRNA resulted in both inhibition of cell proliferation and promotion of apoptosis. Moreover, VU0155041 treatment substantially blocked SHH-induced cyclin D1 expression and cell proliferation, while increasing TUNEL-positive cells and the activation of apoptosis-related proteins. We concluded that activation of mGluR4 expressed in LN229 cells could inhibit GBM cell growth by decreasing cell proliferation and promoting apoptosis. Further suppression of intracellular Gli-1 expression might be involved in the action of mGluR4 on cancer cells. Our study suggested a novel role of mGluR4, which might serve as a potential drug target for control of GBM cell growth.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingxing Li
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chongxiao Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Neurosurgery, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
40
|
Iacovelli L, Orlando R, Rossi A, Spinsanti P, Melchiorri D, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr Opin Pharmacol 2018. [PMID: 29525720 DOI: 10.1016/j.coph.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In spite of the recent advancement in the molecular characterization of malignant gliomas and medulloblastomas, the treatment of primary brain tumors remains suboptimal. The use of small molecule inhibitors of intracellular signaling pathways, inhibitors of angiogenesis, and immunotherapic agents is limited by systemic adverse effects, limited brain penetration, and, in some cases, lack of efficacy. Thus, adjuvant chemo-therapy and radiotherapy still remain the gold standard in the treatment of grade-IV astrocytoma (glioblastoma multiforme) and medulloblastoma. We review evidence that supports the development of mGlu3 receptor antagonists as add-on drugs in the treatment of malignant gliomas. These drugs appear to display pleiotropic effect on tumor cells, affecting proliferation, differentiation, and response to chemotherapy. mGlu1 and mGlu4 receptors could also be targeted by potential anticancer agents in the treatment of malignant gliomas and medulloblastoma, but extensive research is required for target validation.
Collapse
Affiliation(s)
- Luisa Iacovelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy.
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Alessandro Rossi
- Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Paola Spinsanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
41
|
Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:89. [PMID: 29666812 DOI: 10.21037/atm.2018.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
One of the challenges of cancer is its heterogeneity and rapid capacity to adapt. Notwithstanding significant progress in the last decades in genomics and precision medicine, new molecular targets and therapies appear highly necessary. One way to approach this complex problem is to consider cancer in the context of its cellular and molecular microenvironment, which includes nerves. The peripheral nerves, the topic of this review, modulate the biological behavior of the cancer cells and influence tumor progression, including the events related to the metastatic spread of the disease. This mechanism involves the release of neurotransmitters directly into the microenvironment and the activation of the corresponding membrane receptors. While this fact appears to complicate further the molecular landscape of cancer, the neurotransmitters are highly investigated molecules, and often are already targeted by well-developed drugs, a fact that can help finding new therapies at a fraction of the cost and time needed for new medicines (through the so-called drug repurposing). Moreover, the modulation of tumor progression by neurotransmitters can probably explain the long-recognized effects of psychological factors on the burden of cancer. We begin with an introduction on the tumor-nervous-connections and a description of the perineural invasion and neoneurogenesis, the two most important interaction patterns of cancer and nerves. Next, we discuss the most recent data that unequivocally demonstrate the necessity of the nervous system for tumor onset and growth. We introduce the molecular players of the tumor-nervous-connections by citing the role of three main families: neurotropic factors, axon guidance molecules, and neurotransmitters. Finally, we review the role the most important neurotransmitters in tumor biology and we conclude by analyzing the significance of the presented data for cancer therapy, with all the potential advantages and caveats.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Margherita Pergolizzi
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Laura Bizzozero
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| | - Davide Pascal
- Department of Oncology, University of Torino Medical School, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy.,Laboratory of Neurovascular Biology, Candiolo Cancer Institute - FPO, IRCCS, Turin, Italy
| |
Collapse
|
42
|
Volpi C, Fallarino F, Mondanelli G, Macchiarulo A, Grohmann U. Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opin Drug Discov 2018; 13:411-423. [DOI: 10.1080/17460441.2018.1443076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
43
|
Pang Y, Zhao J, Fowdur M, Liu Y, Wu H, He M. To Explore the Mechanism of the GRM4 Gene in Osteosarcoma by RNA Sequencing and Bioinformatics Approach. Med Sci Monit Basic Res 2018; 24:16-25. [PMID: 29339716 PMCID: PMC5782838 DOI: 10.12659/msmbr.908107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Glutamate metabotropic receptor 4 (GRM4) has been correlated with the pathogenesis of osteosarcoma. The objective of this study was to explore the underlying molecular mechanism of GRM4 in osteosarcoma. Material/Methods The expression levels of GRM4 in four human osteosarcoma cell lines and hFOB1.19 cells were examined by real-time quantitative PCR (RT-qPCR). The U2OS cells of the highest GRM4 expression were transfected with lentivirus-mediated small interfering RNA (siRNA). The differentially expressed genes (DEGs) after GRM4 gene silencing were screened through RNA sequencing, and analyzed by bioinformatics. Additionally, the transcription factors (TFs) targeting GRM4 were predicted and the downstream protein-protein interaction (PPI) network was constructed using the bioinformatics approach. Results A total of 51 significant DEGs were obtained, including 14 upregulated and 37 downregulated DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs indicated that four significant enrichment pathways were obtained. A total of six TFs that could be involved in the transcriptional regulation of GRM4 were detected. The results showed that 182 genes in the PPI network were significantly enriched in 14 pathways. The chemokines and chemokine receptors were found to be significantly enriched in three pathways. Conclusions The DEGs in the four significant enrichment pathways might participate in the development and progression of osteosarcoma through GRM4. The results revealed that EGR1 and CTCF are probably involved in the transcriptional regulation of GRM4, which participates in the progress of osteosarcoma by interacting with chemokines and their receptors.
Collapse
Affiliation(s)
- Yunguo Pang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland).,Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mitra Fowdur
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yun Liu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hao Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Maolin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
44
|
Gene expression profiling of brain metastatic cell from triple negative breast cancer: Understanding the molecular events. Gene 2017; 640:21-27. [PMID: 29024707 DOI: 10.1016/j.gene.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/07/2017] [Indexed: 12/20/2022]
Abstract
Brain metastatic triple negative breast cancer (BM-TNBC) is afflicted with unfavorable prognosis. However, the molecular events underlying BM-TNBC remain largely unknown. In the present study, we conducted gene expression microarray analysis using the triple negative breast cancer cell line MDA-MB-231 and its brain metastatic derivative (MDA-MB-231Brm). Results of microarray analysis showed that a total of 4296 genes were differentially expressed, of which 2433 genes were up-regulated and 1863 genes were down-regulated. Gene Ontology (GO), KEGG pathway and protein-protein interaction (PPI) analyses indicated differentially expressed genes functionally categorized as genes of signal transduction, multicellular organismal development, ion transport, nervous system development, plasma membrane, extracellular region, calcium ion binding, GTP binding neuroactive ligand-receptor interaction. The validity of the microarray results was verified by quantitative real-time PCR analysis of twelve representative genes. The present findings revealed molecular basis and events associated with brain metastasis in TNBC, which will potentially contribute to the understanding of underlying mechanism and develop therapeutic targets.
Collapse
|
45
|
Pereira MSL, Klamt F, Thomé CC, Worm PV, de Oliveira DL. Metabotropic glutamate receptors as a new therapeutic target for malignant gliomas. Oncotarget 2017; 8:22279-22298. [PMID: 28212543 PMCID: PMC5400663 DOI: 10.18632/oncotarget.15299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022] Open
Abstract
Metabotropic glutamate receptors (mGluR) are predominantly involved in maintenance of cellular homeostasis of central nervous system. However, evidences have suggested other roles of mGluR in human tumors. Aberrant mGluR signaling has been shown to participate in transformation and maintenance of various cancer types, including malignant brain tumors. This review intends to summarize recent findings regarding the involvement of mGluR-mediated intracellular signaling pathways in progression, aggressiveness, and recurrence of malignant gliomas, mainly glioblastomas (GBM), highlighting the potential therapeutic applications of mGluR ligands. In addition to the growing number of studies reporting mGluR gene or protein expression in glioma samples (resections, lineages, and primary cultures), pharmacological blockade in vitro of mGluR1 and mGluR3 by selective ligands has been shown to be anti-proliferative and anti-migratory, decreasing activation of MAPK and PI3K pathways. In addition, mGluR3 antagonists promoted astroglial differentiation of GBM cells and also enabled cytotoxic action of temozolomide (TMZ). mGluR3-dependent TMZ toxicity was supported by increasing levels of MGMT transcripts through an intracellular signaling pathway that sequentially involves PI3K and NF-κB. Further, continuous pharmacological blockade of mGluR1 and mGluR3 have been shown to reduced growth of GBM tumor in two independent in vivo xenograft models. In parallel, low levels of mGluR3 mRNA in GBM resections may be a predictor for long survival rate of patients. Since several Phase I, II and III clinical trials are being performed using group I and II mGluR modulators, there is a strong scientifically-based rationale for testing mGluR antagonists as an adjuvant therapy for malignant brain tumors.
Collapse
Affiliation(s)
- Mery Stefani Leivas Pereira
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Fábio Klamt
- Department of Biochemistry, Laboratory of Cellular Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Chairini Cássia Thomé
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Paulo Valdeci Worm
- Department of Neurosurgery, Cristo Redentor Hospital – GHC – Porto Alegre RS, Brazil
- Department of Neurosurgery, São José Hospital, Complexo Hospitalar Santa Casa, Porto Alegre RS, Brazil
| | - Diogo Losch de Oliveira
- Department of Biochemistry, Laboratory of Cellular Neurochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| |
Collapse
|
46
|
Yi H, Geng L, Black A, Talmon G, Berim L, Wang J. The miR-487b-3p/GRM3/TGFβ signaling axis is an important regulator of colon cancer tumorigenesis. Oncogene 2017; 36:3477-3489. [PMID: 28114282 PMCID: PMC5472494 DOI: 10.1038/onc.2016.499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
Molecular targeting is an import strategy to treat advanced colon cancer. The current study demonstrates that expression of GRM3, a metabotropic glutamate receptor mainly expressed in mammalian central nervous system, is significantly upregulated in majority of human colonic adenocarcinomas tested and colon cancer cell lines. Knockdown of GRM3 expression or inhibition of GRM3 activation in colon cancer cells reduces cell survival and anchorage-independent growth in vitro and inhibits tumor growth in vivo. Mechanistically, GRM3 antagonizes TGFβ-mediated activation of protein kinase A and inhibition of AKT. In addition, TGFβ signaling increases GRM3 protein stability and knockdown of GRM3 enhances TGFβ-mediated tumor suppressor function. Further studies indicate that miR-487b-3p directly targets GRM3. Overexpression of miR-487b-3p mimics the effects of GRM3 knockdown and suppresses the tumorigenicity of colon cancer cells in vivo. Expression of miR-487b-3p is decreased in colon adenocarcinomas and inversely correlates with GRM3 expression. Taken together, these studies indicate that upregulation of GRM3 expression is a functionally important molecular event in colon cancer, and that GRM3 is a promising molecular target for colon cancer treatment. This is particularly interesting and important from a therapeutic standpoint because numerous metabotropic glutamate receptor antagonists are available, many of which have been found unsuitable for treatment of neuropsychiatric disorders for reasons such as inability to readily penetrate blood brain barriers. Since GRM3 is upregulated in colon cancer, but rarely expressed in normal peripheral tissues, targeting GRM3 with such agents would not likely cause adverse neurological or peripheral side effects, making GRM3 an attractive and specific molecular target for colon cancer treatment.
Collapse
Affiliation(s)
- H Yi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Geng
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - A Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - G Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - L Berim
- Department of Internal Medicine Oncology/Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J Wang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
47
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
48
|
Analysis of the interplay between methylation and expression reveals its potential role in cancer aetiology. Funct Integr Genomics 2016; 17:53-68. [PMID: 27819121 DOI: 10.1007/s10142-016-0533-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/07/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
With ongoing developments in technology, changes in DNA methylation levels have become prevalent to study cancer biology. Previous studies report that DNA methylation affects gene expression in a direct manner, most probably by blocking gene regulatory regions. In this study, we have studied the interplay between methylation and expression to improve our knowledge of cancer aetiology. For this purpose, we have investigated which genomic regions are of higher importance; hence, first exon, 5'UTR and 200 bp near the transcription start sites are proposed as being more crucial compared to other genomic regions. Furthermore, we have searched for a valid methylation level change threshold, and as a result, 25 % methylation change in previously determined genomic regions showed the highest inverse correlation with expression data. As a final step, we have examined the commonly affected genes and pathways by integrating methylation and expression information. Remarkably, the GPR115 gene and ErbB signalling pathway were found to be significantly altered for all cancer types in our analysis. Overall, combining methylation and expression information and identifying commonly affected genes and pathways in a variety of cancer types revealed new insights of cancer disease mechanisms. Moreover, compared to previous methylation-based studies, we have identified more important genomic regions and have defined a methylation change threshold level in order to obtain more reliable results. In addition to the novel analysis framework that involves the analysis of four different cancer types, our study exposes essential information regarding the contribution of methylation changes and its impact on cancer disease biology, which may facilitate the identification of new drug targets.
Collapse
|
49
|
Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology 2016; 111:14-33. [PMID: 27561972 DOI: 10.1016/j.neuropharm.2016.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Several studies have been carried out in the last 30 years in the attempt to clarify the possible role of glutamate as a neurotransmitter/neuromodulator in the gastrointestinal tract. Such effort has provided immunohistochemical, biomolecular and functional data suggesting that the entire glutamatergic neurotransmitter machinery is present in the complex circuitries of the enteric nervous system (ENS), which participates to the local coordination of gastrointestinal functions. Glutamate is also involved in the regulation of the brain-gut axis, a bi-directional connection pathway between the central nervous system (CNS) and the gut. The neurotransmitter contributes to convey information, via afferent fibers, from the gut to the brain, and to send appropriate signals, via efferent fibers, from the brain to control gut secretion and motility. In analogy with the CNS, an increasing number of studies suggest that dysregulation of the enteric glutamatergic neurotransmitter machinery may lead to gastrointestinal dysfunctions. On the whole, this research field has opened the possibility to find new potential targets for development of drugs for the treatment of gastrointestinal diseases. The present review analyzes the more recent literature on enteric glutamatergic neurotransmission both in physiological and pathological conditions, such as gastroesophageal reflux, gastric acid hypersecretory diseases, inflammatory bowel disease, irritable bowel syndrome and intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Marina Protasoni
- Department of Surgical and Morphological Sciences, University of Insubria, via F. Guicciardini 9, I-21100 Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| |
Collapse
|
50
|
Seifi M, Swinny JD. Immunolocalization of AMPA receptor subunits within the enteric nervous system of the mouse colon and the effect of their activation on spontaneous colonic contractions. Neurogastroenterol Motil 2016; 28:705-20. [PMID: 26867789 DOI: 10.1111/nmo.12768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The appropriate expression of specific neurotransmitter receptors within the cellular networks that compose the enteric nervous system (ENS) is central to the regulation of gastrointestinal (GI) functions. While the ENS expression patterns of the neurotransmitter glutamate have been well documented, the localization of its receptors on ENS neurons remains to be fully characterized. We investigated the expression patterns of glutamate receptor AMPA subunits within ENS neurons of the mouse colon and the consequences of their pharmacological activation on spontaneous colonic contractility. METHODS RT-PCR was used to detect individual AMPA receptor (GluR 1-4) subunit expression at the mRNA level in mouse colon tissue. Immunohistochemistry and confocal microscopy was used to localize the expression of the GluR1 and 4 subunits in colon tissue. Brain tissue was used as a positive control. Organ bath preparations were used to determine the effect of AMPA receptors activation on the force and frequency of colonic longitudinal smooth muscle spontaneous contractions. KEY RESULTS GluR1, 3, 4 mRNA was detected in the mouse colon. Immunoreactivity for GluR1 and 4 subunits was detected on the somatic and dendritic surfaces of subpopulations of neurochemically defined ENS neurons. The pharmacological activation of AMPA receptors increased the force but not frequency of spontaneous colonic contractions. CONCLUSIONS & INFERENCES Molecularly distinct AMPA receptor subtypes are differentially expressed within the neural networks of the mouse colon and have a direct role in motility. These data provide the rationale for the development of AMPA-selective ligands for the therapeutic delivery to the GIT in motility disorders.
Collapse
Affiliation(s)
- M Seifi
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - J D Swinny
- Institute for Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|