1
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
2
|
ERβ Isoforms Have Differential Clinical Significance in Breast Cancer Subtypes and Subgroups. Curr Issues Mol Biol 2022; 44:1564-1586. [PMID: 35723365 PMCID: PMC9164084 DOI: 10.3390/cimb44040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
ERβ, an ER subtype first identified in 1996, is highly expressed in different types of BCa including ERα-negative BCa and TNBC. Many studies on ERβ expression investigated mostly on ERβ1 protein expression in ERα-positive and ERα-negative BCa combined. The results are conflicting. This may be due to the complexity of ERβ isoforms, subject heterogeneity, and various study designs targeting different ERβ isoforms and either ERβ protein or mRNA expression, as well as to the lack of a standardized testing protocol. Herein, we simultaneously investigated both mRNA and protein expression of ERβ isoforms 1, 2, and 5 in different BCa subtypes and clinical characteristics. Patient samples (138) and breast cancer cell lines (BCC) reflecting different types of BCa were tested for ERα and ERβ mRNA expression using quantitative real-time PCR, as well as for protein expression of ERα, ERβ1, ERβ2, and ERβ5 isoforms, PR, HER2/neu, Ki-67, CK 5/6, and p53 using immunohistochemistry. Associations of ERβ isoform expression with clinical characteristics and overall survival (OS) were analyzed. ERβ1, 2, and 5 isoforms are differentially expressed in different BCa subtypes including ERα-negative and TNBC. Each ERβ isoform seemingly plays a distinct role and is associated with clinical tumor characteristics and patient outcomes. ERβ isoform expression is significantly associated with >15% Ki-67 positivity and poor prognostic markers, and it predicts poorer OS, mostly in the subgroups. High ERβ2 and 5 isoform expression in ERα-negative BCa and TNBC is predictive of poor OS. Further investigation of ERβ isoforms in a larger cohort of BCa subgroups is needed to evaluate the role of ERβ for the potential usefulness of ERβ as a prognostic and predictive marker and for therapeutic use. The inconsistent outcomes of ERβ isoform mRNA or protein expression in many studies suggest that the standardization of ERβ testing would facilitate the use of ERβ in a clinical setting.
Collapse
|
3
|
Mendes C, Lopes-Coelho F, Ramos C, Martins F, Santos I, Rodrigues A, Silva F, André S, Serpa J. Unraveling FATP1, regulated by ER-β, as a targeted breast cancer innovative therapy. Sci Rep 2019; 9:14107. [PMID: 31575907 PMCID: PMC6773857 DOI: 10.1038/s41598-019-50531-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
The biochemical demands associated with tumor proliferation prompt neoplastic cells to augment the import of nutrients to sustain their survival and fuel cell growth, with a consequent metabolic remodeling. Fatty acids (FA) are crucial in this process, since they have a dual role as energetic coins and building blocks. Recently, our team has shown that FATP1 has a pivotal role in FA transfer between breast cancer cells (BCCs) and non-cancerous cells in the microenvironment. We aimed to investigate the role of FATP1 in BCCs and also to explore if FATP1 inhibition is a promising therapeutic strategy. In patients’ data, we showed a higher expression of FATP1/SLC27A1 in TNBC, which correlated with a significant decreased overall survival (OS). In vitro, we verified that FA and estradiol stimulated FATP1/SLC27A1 expression in BCCs. Additionally, experiments with estradiol and PHTPP (ER-β antagonist) showed that estrogen receptor-β (ER-β) regulates FATP1/SLC27A1 expression, the uptake of FA and cell viability, in four BCC lines. Furthermore, the inhibition of FATP1 with arylpiperazine 5k (DS22420314) interfered with the uptake of FA and cell viability. Our study, unraveled FATP1 as a putative therapeutic target in breast cancer (BC).
Collapse
Affiliation(s)
- Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Inês Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Saudade André
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal. .,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
4
|
Gautron J, Guyot N, Brionne A, Réhault-Godbert S. Bioactive Minor Egg Components. EGGS AS FUNCTIONAL FOODS AND NUTRACEUTICALS FOR HUMAN HEALTH 2019. [DOI: 10.1039/9781788013833-00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the last 15 years, the development of functional genomics has increased the number of egg proteins identified from 50 to about 1300. These proteins are initially present in eggs to support a harmonious embryonic development. Consequently, this closed embryonic chamber contains molecules exhibiting diverse functions, including defense, nutrition and many predicted biological activities, which have been investigated using both bioinformatics and experimental investigations. In this chapter, we focus on some very interesting activities of high potential reported for minor egg proteins (excluding ovalbumin, ovotransferrin and lysozyme). The shell matrix proteins are involved in the calcification process to define and control the final texture of the shell and thereby its mechanical properties. Antimicrobial proteins are part of innate immunity and are mainly present in the white and vitelline membranes. They encompass several protein families, including protease inhibitors, vitamin-binding proteins, defensins, LBP-PLUNC family proteins and heparin-binding proteins. The egg also possesses additional bioactive proteins with direct anti-cancerous and antioxidant activities or whose biochemical properties are currently used to develop diagnostic tools and strategies for targeted therapy. Finally, this chapter also reports some emerging functions in tissue remodeling/wound healing and proposes some relevant bioactive candidates and research fields that would be interesting to investigate further.
Collapse
Affiliation(s)
- J. Gautron
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | - N. Guyot
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | - A. Brionne
- INRA, BOA, Université de Tours 37380 Nouzilly France
| | | |
Collapse
|
5
|
Guo L, Zhu Q, Aisimutuola M, Yilamu D, Liu S, Jakulin A. Expression and prognostic value of estrogen receptor β in patients with triple-negative and triple-positive breast cancer. Exp Ther Med 2015; 9:2147-2150. [PMID: 26136950 DOI: 10.3892/etm.2015.2380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/24/2015] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the expression of estrogen receptor β (ERβ) in triple-negative and triple-positive breast cancer patients, and evaluate its utility as a prognostic factor. Between January 2000 and December 2010, primary tumor tissue samples were collected from 234 subjects, including 107 triple-negative and 127 triple-positive breast cancer patients. The samples were embedded in paraffin and immunohistochemical staining was conducted to determine the expression levels of ERβ. The Kaplan-Meier method was used to analyze patient survival rates. ERβ expression was observed in 38/107 patients (35.5%) with triple-negative breast cancer and 63/127 patients (49.6%) with triple-positive breast cancer. The ERβ expression rate was significantly decreased in the patients with triple-negative breast cancer, as compared with those with triple-positive breast cancer (P=0.03). Analysis of the survival rates indicated that patients with triple-negative breast cancer and positive ERβ expression exhibited poor disease progression-free survival (DFS) compared with those with negative ERβ expression (P=0.021). However, no statistically significant difference was observed in the DFS between the triple-positive breast cancer patients with positive and negative ERβ expression. Therefore, the expression of ERβ varies between triple-negative and triple-positive breast cancer patients. In addition, positive expression of ERβ indicates a poor prognosis in triple-negative breast cancer patients; however, this is not the case for triple-positive breast cancer patients.
Collapse
Affiliation(s)
- Liying Guo
- Department of Breast Cancer, Digestive and Vascular Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Qianwen Zhu
- Department of General Surgery, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| | - Mulati Aisimutuola
- Department of Breast Cancer, Digestive and Vascular Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Dilimina Yilamu
- Department of Breast Cancer, Digestive and Vascular Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Sha Liu
- Department of Breast Cancer, Digestive and Vascular Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Adina Jakulin
- Department of Breast Cancer, Digestive and Vascular Center, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| |
Collapse
|
6
|
Chantzi ΝΙ, Palaiologou M, Stylianidou A, Goutas N, Vassilaros S, Kourea HP, Dhimolea E, Mitsiou DJ, Tiniakos DG, Alexis ΜN. Estrogen receptor β2 is inversely correlated with Ki-67 in hyperplastic and noninvasive neoplastic breast lesions. J Cancer Res Clin Oncol 2014; 140:1057-66. [DOI: 10.1007/s00432-014-1652-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/15/2014] [Indexed: 02/06/2023]
|
7
|
Yakimchuk K, Jondal M, Okret S. Estrogen receptor α and β in the normal immune system and in lymphoid malignancies. Mol Cell Endocrinol 2013; 375:121-9. [PMID: 23707618 DOI: 10.1016/j.mce.2013.05.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/14/2013] [Accepted: 05/18/2013] [Indexed: 02/07/2023]
Abstract
Estrogens regulate various normal and pathophysiological processes including cancers. Cellular signaling by estrogens is mediated by estrogen receptor α (ERα) and β (ERβ), respectively. Binding of agonists to the ERs affects gene transcription. The main endogenous estrogen, 17β-estradiol (E2), binds to both ERα and ERβ with similar affinity. However, the ligand-binding pocket of ERα and ERβ are slightly different which has allowed the development of selective ER ligands. Importantly, while estrogens via ERα stimulate proliferation, signaling via ERβ inhibits proliferation and promotes apoptosis. In both normal and cancer cells the ERs are co-expressed with ER splice variants which may modify the transcriptional activity of the wild-type receptors. Estrogens have prominent effects on immune functions and both ERα and ERβ are expressed in immune cells and lymphoid malignancies. With regard to lymphoid malignancies, most show estrogen influence as several epidemiological studies of lymphoid cancers demonstrate gender differences in incidence and prognosis with males being more affected. In line with these findings, recent results generated by us have shown that ERβ selective agonists inhibit growth and induce apoptosis in human and murine lymphomas in vivo in xenograft experiments. This suggests that ERβ selective agonists in the future may be useful in the treatment of lymphomas.
Collapse
Affiliation(s)
- Konstantin Yakimchuk
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge, Sweden
| | | | | |
Collapse
|
8
|
Chantzi NI, Tiniakos DG, Palaiologou M, Goutas N, Filippidis T, Vassilaros SD, Dhimolea E, Mitsiou DJ, Alexis MN. Estrogen receptor beta 2 is associated with poor prognosis in estrogen receptor alpha-negative breast carcinoma. J Cancer Res Clin Oncol 2013; 139:1489-98. [PMID: 23817696 DOI: 10.1007/s00432-013-1467-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/20/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE Our aim was to examine the prognostic significance of ERbeta1 and ERbeta2 expression in ERalpha-negative breast carcinomas. MATERIALS AND METHODS We evaluated nuclear and cytoplasmic expression of ERbeta1 and ERbeta2 by immunohistochemistry in a group of 95 patients with long follow-up. ERbeta1 and ERbeta2 status was correlated with clinicopathological parameters and disease outcome. Univariate and multivariate analyses of ERbeta1 and ERbeta2 as independent markers of disease-free survival (DFS) were carried out using the Cox proportional hazards model. RESULTS Nuclear ERbeta1 (nERbeta1) and nERbeta2 status was positively correlated (p = 0.01). nERbeta1 positivity was associated with low histological grade (p = 0.01) in all patients and in the nERbeta2-positive subgroup (p = 0.03) but not in the nERbeta2-negative (p = 0.27). nERbeta2 positivity was associated with lymph node involvement and tumor relapse in all cases (p < 0.00 and p < 0.00, respectively) and in the nERbeta1-negative subgroup (p < 0.00 and p < 0.00, respectively) but not in the nERbeta1-positive (p = 0.09 and p = 0.20, respectively). nERbeta2 positivity was associated with poor DFS in all patients (log-rank p <0.00), in the post-menopausal patient subgroup (log-rank p = 0.02) and in the HER2-negative (triple-negative) subgroup (log-rank p = 0.04). Cox multivariate analysis including ERbeta1, ERbeta2 and established clinicopathological variables highlighted ERbeta2 as an independent marker of early disease recurrence (hazard ratio 4.87; 95 % confidence interval 1.07-22.3; p = 0.04). CONCLUSION High nERbeta2 is an independent marker of early relapse in ERalpha-negative breast carcinoma, and in particular, in the nERbeta1-negative, the post-menopausal patient and the triple-negative subgroups. These findings suggest that inhibition of expression and/or function of ERbeta2 could improve disease outcome.
Collapse
Affiliation(s)
- Nuiki Iota Chantzi
- Laboratory of Histology and Embryology, Medical School, University of Athens, 75 M. Asias str., 11527, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Targeting estrogen receptor β in microglia and T cells to treat experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2013; 110:3543-8. [PMID: 23401502 DOI: 10.1073/pnas.1300313110] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A therapeutic goal in the treatment of certain CNS diseases, including multiple sclerosis, amyotrophic lateral sclerosis, and Parkinson disease, is to down-regulate inflammatory pathways. Inflammatory molecules produced by microglia are responsible for removal of damaged neurons, but can cause collateral damage to normal neurons located close to defective neurons. Although estrogen can inactivate microglia and inhibit the recruitment of T cells and macrophages into the CNS, there is controversy regarding which of the two estrogen receptors (ERs), ERα or ERβ, mediates the beneficial effects in microglia. In this study, we found that ERβ, but not ERα, is expressed in microglia. Using the experimental autoimmune encephalomyelitis (EAE) model in SJL/J mice, we evaluated the benefit of an ERβ agonist as a modulator of neuroinflammation. Treatment of EAE mice with LY3201, a selective ERβ agonist provided by Eli Lilly, resulted in marked reduction of activated microglia in the spinal cord. LY3201 down-regulated the nuclear transcription factor NF-κB, as well as the NF-κB-induced gene inducible nitric oxide synthase in microglia and CD3(+) T cells. In addition, LY3201 inhibited T-cell reactivity through regulation of indoleamine-2,3-dioxygenase. In the EAE model, treatment with LY3201 decreased mortality in the first 2 wk after disease onset, and also reduced the severity of symptoms in mice surviving for 4 wk. Our data show that ERβ-selective agonists, by modulating the immune system in both microglia and T cells, offer promise as a useful class of drugs for treating degenerative diseases of the CNS.
Collapse
|
10
|
Dong W, Li J, Huang Y, Zhang H, Shan Z, Teng W. Differential expression patterns of estrogen receptor (ER)-β splice variants between papillary thyroid cancer and nodular thyroid goiter. Med Sci Monit 2013; 18:BR351-5. [PMID: 22936184 PMCID: PMC3560661 DOI: 10.12659/msm.883344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this study was to investigate the expression patterns of estrogen receptor (ER) β1 (wild-type ERβ) and ERβ2 (ERβcx) in papillary thyroid cancer (PTC) and nodular thyroid goiter (NTG), and to explore the reasons for the higher incidence of PTC in women of reproductive age. Material/Methods ERβ1 and ERβ2 expression was examined immunohistochemically on paraffin-embedded thyroid tissues from 106 patients with PTC and 30 patients with NTG. Results There was significant difference in the subcellular localization of ERβ1 (P<0.001), but not in the positive percentage, between PTC and NTG specimens. No significant difference was found in the positive percentage or the subcellular distribution of ERβ2 expression between PTC and NTG specimens. Both nuclear and nucleocytoplasmic ERβ1 expressions were significantly lower in PTC lesions than in NTG tissue (P<0.001 and P<0.05, respectively), while ERβ2 expression was significantly higher in the former than the latter (P<0.05). ERβ1 expression in reproductive-aged (18~45 years) female patients with PTC was lower than that in age-matched male patients (P<0.05), while ERβ2 expression had the opposite expression profile (P<0.05). There was no significant difference in ERβ1 and ERβ2 expression between reproductive-aged and advanced reproductive-aged (>45 years) female patients with PTC. Conclusions This preliminary study indicates that the expression patterns of ERβ1 and ERβ2 differ between malignant PTC lesions and benign NTG tissue, and their expression might be involved in the female predominance of PTC during the reproductive years. The clinical and biological significance of these results await further investigation.
Collapse
Affiliation(s)
- Wenwu Dong
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
11
|
Lee JH, Peters O, Lehmann L, Dence CS, Sharp TL, Carlson KE, Zhou D, Jeyakumar M, Welch MJ, Katzenellenbogen JA. Synthesis and biological evaluation of two agents for imaging estrogen receptor β by positron emission tomography: challenges in PET imaging of a low abundance target. Nucl Med Biol 2012; 39:1105-16. [PMID: 22749433 DOI: 10.1016/j.nucmedbio.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Independent measurement of the levels of both the estrogen receptors, ERα and ERβ, in breast cancer could improve prediction of benefit from endocrine therapies. While ERα levels can be measured by positron emission tomography (PET) using 16α-[(18)F]fluoroestradiol (FES), no effective agent for imaging ERβ by PET has yet been reported. METHODS We have prepared the fluorine-18 labeled form of 8β-(2-fluoroethyl)estradiol (8BFEE(2)), an analog of an ERβ-selective steroidal estrogen, 8β-vinylestradiol; efficient incorporation of fluorine-18 was achieved, but required very vigorous conditions. We have examined the biodistribution of this compound, as well as of Br-041, an analog of a known non-steroidal ERβ-selective ligand (ERB-041), labeled with bromine-76. Studies were done in immature female rodents, with various pharmacological and endocrine perturbations to assess ERβ selectivity of uptake. RESULTS Little evidence of ERβ-mediated uptake was observed with either [(18)F]8BFEE(2) or [(76)Br]Br-041. Attempts to increase the ERβ content of target tissues were not effective and failed to improve biodistribution selectivity. CONCLUSIONS Because on an absolute basis level, ERβ levels are low in all target tissues, these studies have highlighted the need to develop improved in vivo models for evaluating ERβ-selective radiopharmaceuticals for use in PET imaging. Genetically engineered breast cancer cells that are being developed to express either ERα or ERβ in a regulated manner, grown as xenografts in immune-compromised mice, could prove useful for future studies to develop ER subtype-selective radiopharmaceuticals.
Collapse
Affiliation(s)
- Jae Hak Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang H, Zhang Z, Xuan L, Zheng S, Guo L, Zhan Q, Qu X, Zhang B, Wang Y, Wang X, Song Y. Evaluation of ER-α, ER-Β1 and ER-Β2 expression and correlation with clinicopathologic factors in invasive luminal subtype breast cancers. Clin Transl Oncol 2012; 14:225-31. [PMID: 22374427 DOI: 10.1007/s12094-012-0788-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE Luminal subtype breast cancer is defined as oestrogen receptor (ER)- and/or progesterone receptor (PR)- positive breast cancer. We detected the expression of ER-α, ER-Β1 and ER-Β2 in the tissue samples of invasive luminal subtype breast cancer patients, evaluated the correlations between these ER statuses and prognosis, and tried to clarify whether the status of ER-α isoforms provides clinically useful information further to what is already provided by the traditional ER-α/PR assay. METHODS The expression of ER-α, ER-Β1 and ER-Β2 in the paraffin-embedded sections of 162 invasive luminal subtype breast cancer patients was detected with an immunohistochemical staining method. With mid-long-term follow-up, the features of ER-α, ER-Β1 and ER-Β2 status and the correlations between clinical characteristics and the prognosis were analysed. RESULTS ER-Β1-positive status was correlated with PR (rs=0.217, p<0.01). The median follow-up time was 92 months (range, 4-98 months). Univariate analysis suggested that ER-Β1 status was significantly correlated to diseasefree survival (DFS) time (log rank=3.98, p=0.046), especially in patients with positive lymph nodes (log rank=6.20, p=0.013). In patients with smaller tumour size (=20 mm), negative ER-Β2 status was significantly correlated to overall survival time (log rank=3.87, p=0.049). CONCLUSIONS In invasive luminal subtype breast cancers, ER-Β1 is correlated with good prognosis and could be regarded as one of the factors for evaluating DFS time, especially in lymph node-positive patients. There may be some interactions between ER-Β1 and PR. In clinical practice, besides routine detection of ER-α and PR in invasive luminal subtype breast cancers, immunohistochemical staining of ER-Β1 and ER-Β2 should be considered in order to achieve more useful information. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Yong An Road, Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Leung YK, Lee MT, Lam HM, Tarapore P, Ho SM. Estrogen receptor-beta and breast cancer: translating biology into clinical practice. Steroids 2012; 77:727-37. [PMID: 22465878 PMCID: PMC3356459 DOI: 10.1016/j.steroids.2012.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptor (ER) β was discovered over a decade ago. The design of most studies on this receptor was based on knowledge of its predecessor, ERα. Although breast cancer (BCa) has been a main focus of ERβ research, its precise roles in breast carcinogenesis remain elusive. Data from in vitro models have not always matched those from observational or clinical studies. Several inherent factors may contribute to these discrepancies: (a) several ERβ spliced variants are expressed at the protein level, and isoform-specific antibodies are unavailable for some variants; (b) post-translational modifications of the receptor regulate receptor functions; (c) the role of the receptor differs significantly depending on the type of ligands, cis-elements, and co-regulators that interact with the receptor; and (d) the diversity of distribution of the receptor among intracellular organelles of BCa cells. This review addresses the gaps in knowledge in ERβ research as it pertains to BCa regarding the following questions: (1) is ERβ a tumor suppressor in BCa?; (2) do ERβ isoforms play differential roles in breast carcinogenesis?; (3) do nuclear signaling and extranuclear ERβ signaling differ in BCa?; (4) what are the consequences of post-translational modifications of ERβ in BCa?; (5) how do co-regulators and interacting proteins increase functional diversity of ERβ?; and (6) how do the types of ligand and regulatory cis-elements affect the action of ERβ in BCa?. Insights gained from these key questions in ERβ research should help in prevention, diagnosis/prognosis, and treatment of BCa.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
14
|
Bozkurt KK, Kapucuoğlu N. Investigation of immunohistochemical ERα, ERβ and ERβcx expressions in normal and neoplastic breast tissues. Pathol Res Pract 2012; 208:133-9. [DOI: 10.1016/j.prp.2011.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/15/2011] [Accepted: 12/02/2011] [Indexed: 11/16/2022]
|
15
|
Yakimchuk K, Norin S, Kimby E, Hägglund H, Warner M, Gustafsson JÅ. Up-regulated estrogen receptor β2 in chronic lymphocytic leukemia. Leuk Lymphoma 2011; 53:139-44. [DOI: 10.3109/10428194.2011.605187] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Rahal OM, Simmen RCM. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor β signaling. Endocrinology 2011; 152:3409-21. [PMID: 21712365 DOI: 10.1210/en.2011-1085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine, adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between "local," mammary tissue-derived APN and breast cancer risk is poorly understood. Here, we identify a novel mechanism of APN-mediated signaling that influences mammary epithelial cell proliferation, differentiation, and apoptosis to modify breast cancer risk. We demonstrate that early dietary exposure to soy protein isolate induced mammary tissue APN production without corresponding effects on systemic APN levels. In estrogen receptor (ER)-negative MCF-10A cells, recombinant APN promoted lobuloalveolar differentiation by inhibiting oncogenic signal transducer and activator of transcription 3 activity. In ER-positive HC11 cells, recombinant APN increased ERβ expression, inhibited cell proliferation, and induced apoptosis. Using the estrogen-responsive 4X-estrogen response element promoter-reporter construct to assess ER transactivation and small interfering RNA targeting of ERα and ERβ, we show that APN synergized with the soy phytoestrogen genistein to promote ERβ signaling in the presence of estrogen (17β-estradiol) and ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile and to oppose ERα signaling in the presence of the ERα-specific agonist 4,4',4'-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol. The enhancement of ERβ signaling with APN + genistein cotreatments was associated with induction of apoptosis, increased expression of proapoptotic/prodifferentiation genes (Bad, p53, and Pten), and decreased antiapoptotic (Bcl2 and survivin) transcript levels. Our results suggest that mammary-derived APN can influence adjacent epithelial function by ER-dependent and ER-independent mechanisms that are consistent with reduction of breast cancer risk and suggest local APN induction by dietary factors as a targeted approach for promotion of breast health.
Collapse
Affiliation(s)
- Omar M Rahal
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | |
Collapse
|
17
|
Abstract
By eliciting distinct transcriptional responses, the oestrogen receptors (ERs) ERα and ERβ exert opposite effects on cellular processes that include proliferation, apoptosis and migration and that differentially influence the development and the progression of cancer. Perturbation of ER subtype-specific expression has been detected in various types of cancer, and the differences in the expression of ERs are correlated with the clinical outcome. The changes in the bioavailability of ERs in tumours, together with their specific biological functions, promote the selective restoration of their activity as one of the major therapeutic approaches for hormone-dependent cancers.
Collapse
Affiliation(s)
- Christoforos Thomas
- Center for Nuclear Receptors and Cell Signalling, Department of Biology and Biochemistry, University of Houston, Houston 77204, Texas, USA
| | | |
Collapse
|
18
|
Expression of oestrogen receptor beta isoforms is regulated by transcriptional and post-transcriptional mechanisms. Biochem J 2010; 429:283-90. [PMID: 20462399 DOI: 10.1042/bj20100373] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although ERs (oestrogen receptors) mediate breast tumour behaviour, the precise role of ERbeta remains unclear. This is mainly because analyses have been complicated by the presence in breast tissue of three ERbeta protein variants (ERbeta1, ERbeta2 and ERbeta5) that derive from differential 3' splicing. We have recently identified the first known mechanisms responsible for the differential control of isoform expression, involving regulation of translation via 5'-UTRs (untranslated regions). In the present study, we have uncovered further complexity involving the influence of multiple promoters and cross-talk between 5'- and 3'-UTRs. We demonstrate that full-length ERbeta mRNAs are transcribed from three separate promoters; two promoters are well-established within the literature, whereas the third represents a novel finding. Each promoter produces transcripts with distinct 5'-UTRs. The differential 3' splicing that produces transcripts coding for the ERbeta isoforms also defines isoform-specific 3'-UTRs. We identified exact 3'-UTR sequences for each isoform, and have shown that alternative polyadenylation sites are used in a cell-type specific manner to produce transcripts with 3'-UTRs of different lengths. Critically, we show that 5'- and 3'-UTRs combine to specify the efficiencies with which individual transcripts are translated, with 3'-UTR length having a key influence. In addition, we demonstrate how 17beta-oestradiol, a key driver of breast cancer development, affects the regulation of ERbeta expression at both transcriptional and translational levels.
Collapse
|
19
|
Xiao Y, Gao X. Use of IgY antibodies and semiconductor nanocrystal detection in cancer biomarker quantitation. Biomark Med 2010; 4:227-39. [PMID: 20406067 DOI: 10.2217/bmm.10.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biomarkers play a pivotal role in the early detection and diagnosis of cancer. Accurate quantitation of certain biomarkers is crucial to reach correct treatment decisions. In practice, immunohistochemistry (IHC) remains the most important diagnostic technique to evaluate protein biomarker expression in tissue biopsies. However, IHC has largely been qualitative. Low specificity of the mammalian IgG antibodies used to capture the analytes and instability of fluorescence from the organic dyes used as the detecting agents are among the major factors that have impeded the development of quantitative IHC. Avian IgY antibodies have many attractive biochemical, immunological and production advantages over IgGs and are, therefore, better substitutes in diagnostic applications. Using IgY in immunoassays can potentially eliminate false positives and often results in low background and interference. Quantum dots (QDs) have recently emerged as a novel class of fluorophores, promising for many biomedical imaging applications. Fluorescence from QDs is significantly brighter and more photostable than organic dyes. In addition, QDs offer the capacity of multiplexed detection of several biomarkers simultaneously. Combining the high sensitivity and specificity of IgY antibodies and the high brightness and photostability of QDs in IHC has been demonstrated to improve biomarker detection and quantitation.
Collapse
Affiliation(s)
- Yan Xiao
- DNA Science Group, Biochemical Science Division, Chemical Science & Technology Laboratory, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA.
| | | |
Collapse
|
20
|
Smith L, Brannan RA, Hanby AM, Shaaban AM, Verghese ET, Peter MB, Pollock S, Satheesha S, Szynkiewicz M, Speirs V, Hughes TA. Differential regulation of oestrogen receptor β isoforms by 5' untranslated regions in cancer. J Cell Mol Med 2010; 14:2172-84. [PMID: 20920096 PMCID: PMC3823008 DOI: 10.1111/j.1582-4934.2009.00867.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs – ERβ– are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5′ untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5′UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5′UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function.
Collapse
Affiliation(s)
- Laura Smith
- Leeds Institute of Molecular Medicine, Leeds University, Leeds, UK Department of Histopathology, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hartman J, Ström A, Gustafsson JA. Estrogen receptor beta in breast cancer--diagnostic and therapeutic implications. Steroids 2009; 74:635-41. [PMID: 19463683 DOI: 10.1016/j.steroids.2009.02.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 02/07/2023]
Abstract
More than 10 years have passed since the discovery of the second estrogen receptor, estrogen receptor beta (ERbeta). It is now evident that ERalpha is not the only ER in breast cancer cells; in fact, ERbeta is expressed in the majority of breast cancers although at lower levels than in the normal breast. In addition, ERbeta is expressed in breast cancer infiltrating lymphocytes, fibroblasts and endothelial cells, all known to influence tumor growth. By overexpressing or knocking-out ERbeta in breast cancer cell lines, several researchers have investigated its function with respect to proliferation and tumor growth. It appears that ERbeta is anti-proliferative, in many ways antagonising the function of ERalpha. Furthermore, phytoestrogens have a binding-preference for ERbeta and several epidemiological studies indicate a breast cancer preventing effect of this class of compounds. Tamoxifen is one of the standard, adjuvant treatments for ERalpha positive breast cancer, classically thought to mediate its effect through ERalpha. However, in several recent studies, ERbeta has been described as a potential marker for tamoxifen response. In summary, experimental, epidemiological as well as diagnostic studies point towards ERbeta as an important factor in breast cancer, opening up the possibility for novel ERbeta-selective therapies in the treatment of breast cancer.
Collapse
Affiliation(s)
- Johan Hartman
- Department of Biosciences and Nutrition, Novum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Taylor SE, Martin-Hirsch PL, Martin FL. Oestrogen receptor splice variants in the pathogenesis of disease. Cancer Lett 2009; 288:133-48. [PMID: 19608332 DOI: 10.1016/j.canlet.2009.06.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 02/06/2023]
Abstract
The full-length oestrogen receptor (ER) exists in most vertebrates as two separately encoded isoforms. ER splice variants represent truncated or otherwise modified versions of the full-length alpha or beta isoforms of the parent receptor. ERalpha is found on chromosome 6q and encodes a 595 amino acid protein, while ERbeta is found on chromosome 14q and encodes a 530 amino acid protein. These receptors possess differing ligand affinities, are differentially expressed in a tissue-specific fashion and may act antagonistically. Their altered expression has been implicated in the pathophysiology of a diverse range of conditions from cancer progression in hormone-responsive tissues to neurodegenerative disease. Variously co-expressed with full-length ERs, ER splice variants may have a positive or negative influence on transcription either by modifying the effect of the parent receptor or through their own intrinsic activity. To date, the vast majority of studies have used generic primers or antibodies against the full-length receptors and would not distinguish ER-mediated effects associated with various splice variants. Thus the evidence base of the influence of ER splice variants in normal developmental physiology and in the pathogenesis of disease is weak and greater understanding of their role will undoubtedly lead to new therapeutic strategies for disease intervention and treatment. This review aims to compile the current evidence for the presence of ER splice variants in humans, their physiological roles and clinical sequelae.
Collapse
|
23
|
Spears M, Bartlett J. The potential role of estrogen receptors and the SRC family as targets for the treatment of breast cancer. Expert Opin Ther Targets 2009; 13:665-74. [DOI: 10.1517/14728220902911509] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Miki Y, Suzuki T, Sasano H. Intracrinology of sex steroids in ductal carcinoma in situ (DCIS) of human breast: comparison to invasive ductal carcinoma (IDC) and non-neoplastic breast. J Steroid Biochem Mol Biol 2009; 114:68-71. [PMID: 19444935 DOI: 10.1016/j.jsbmb.2008.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sex steroids, including those through intratumoral production in an intracrine manner, play important roles in the development of invasive ductal carcinoma (IDC) of human breast, but biological and/or clinical significance of intratumoral production and metabolism of sex steroids, have remained largely unknown in the ductal carcinoma in situ (DCIS), an important precursor lesion of IDC. We recently examined tissue concentration of estradiol and 5-dihydrotestosterone using liquid chromatography/electrospray tandem mass spectrometry in non-neoplastic breast, DCIS, and IDC tissues. Results of our study suggest that intratumoral concentrations of both estradiol and 5-dihydrotestosterone are increased in DCIS, which is considered due to intratumoral production of these sex steroids. Therefore, both estradiol and 5-dehydrotestosterone are considered to play important roles in the development of DCIS as well as IDC through an intracrine manner. Intratumoral metabolism and synthesis of estrogens and androgens as a result of the interactions of various enzymes are therefore also considered to play important roles in hormone dependent DCIS. Aromatase, which is one of the estrogen synthesis enzymes, plays an important role in intratumoral production of estrogen but other enzymes also play pivotal roles in intratumoral estrogen and androgen productions in human breast carcinoma. Therefore, in this review, we also focused on the importance of key intracrine enzymes such as 17beta-hydroxysteroid dehydrogenases, steroid sulfatase,estrogen sulfotransferase, 5alpha-reductases in both IDC and DCIS.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi-ken 980-8575, Japan
| | | | | |
Collapse
|
25
|
Honma N, Saji S, Kurabayashi R, Aida J, Arai T, Horii R, Akiyama F, Iwase T, Harada N, Younes M, Toi M, Takubo K, Sakamoto G. Oestrogen receptor-beta1 but not oestrogen receptor-betacx is of prognostic value in apocrine carcinoma of the breast. APMIS 2009; 116:923-30. [PMID: 19132986 DOI: 10.1111/j.1600-0463.2008.01122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apocrine carcinoma of the breast, which frequently expresses oestrogen receptor-beta (ER-beta) in the absence of ER-alpha and only infrequently is treated endocrinologically, gives an opportunity to investigate the clinicopathological role of ER-beta in breast cancer independent of ER-alpha expression or tamoxifen treatment. Several isotypes of ER-beta, ER-beta1-5 etc., have been identified thus far; however, the clinicopathological importance of each ER-beta isotype in breast cancer is still uncertain. Here we aimed to clarify the clinicopathological importance of ER-beta1 and ER-betacx (ER-beta2) in apocrine carcinomas, immunohistochemically examining expressions of ER-beta1 and ER-betacx in 47 apocrine carcinomas. Positivity for ER-beta1 and ER-betacx was observed in 41 (87%) and 18 (38%) of 47 cases, respectively. ER-beta1 positivity was related to smaller tumor size (P=0.0359), lower histological grade (P=0.0322), and higher disease-free survival (P<0.0001), whereas ER-betacx status was related to none of these parameters. ER-beta1 positivity was also associated with favorable clinical outcome in 24 so-called triple-negative (ER-alpha-negative/PR-negative/HER2-negative) apocrine carcinomas. ER-beta1 itself, independent of ER-alpha expression and tamoxifen treatment, seems to have a tumor-suppressive effect, at least in apocrine carcinomas. Further study of ER-beta1 is desired to optimize breast cancer treatment.
Collapse
Affiliation(s)
- Naoko Honma
- Research Team for Geriatric Diseases, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proc Natl Acad Sci U S A 2009; 106:2859-63. [PMID: 19196965 DOI: 10.1073/pnas.0812666106] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is usually described as a pathological proliferation of prostatic fibroblasts/myofibroblasts and epithelial cells. In the present study of BPH samples, we have made a morphological and immunohistochemical study of BPH prostatic sections using markers of proliferation, apoptosis, hormone receptors, and TGF-beta signaling. We found no evidence of proliferation in the stroma but in the epithelium of some ducts; 0.7% of the basal and 0.4% of luminal cells were positive for Ki67 and PCNA. Androgen receptor and estrogen receptor beta (ERbeta)1 and ERbetacx were abundant in both stromal and epithelial compartments but cells expressing ERalpha were very rare. What was very common in all BPH samples was the following: (i) regions of the ductal epithelium where the epithelial cells did not express E-cadherin, had lost their polarization, and become spindle shaped (the nuclei of these cells were strongly positive for pSmad 3 and Snail); and (ii) regions where the walls of the blood vessels were extremely thick and there was loss of endothelial layer. Loss of E-cadherin, increased pSmad 3, and high expression of Snail are all characteristic of epithelial-mesenchymal transition (EMT). We conclude that BPH is not a disease of prostatic stromal proliferation but rather of accumulation of mesenchymal-like cells derived from the prostatic epithelium and the endothelium. TGF-beta is thought to play a key role in EMT. Our data suggests that TGF-beta/Smad should be considered as targets for treatment of BPH.
Collapse
|
27
|
Speirs V, Shaaban AM. Role of ERβ in Clinical Breast Cancer. Cancer Treat Res 2009; 147:1-20. [PMID: 21461830 DOI: 10.1007/978-0-387-09463-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Valerie Speirs
- Section of Pathology and Tumor Biology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, LS9 7TF, UK,
| | | |
Collapse
|
28
|
Zurvarra FM, Salvetti NR, Mason JI, Velazquez MML, Alfaro NS, Ortega HH. Disruption in the expression and immunolocalisation of steroid receptors and steroidogenic enzymes in letrozole-induced polycystic ovaries in rat. Reprod Fertil Dev 2009; 21:827-39. [DOI: 10.1071/rd09026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 05/17/2009] [Indexed: 11/23/2022] Open
Abstract
The objective of the present study was to characterise the expression and tissue distribution of steroid receptors (oestrogen receptor-α and –β (ERα, ERβ), androgen receptor (AR) and progesterone receptor (PR)) and steroidogenic enzymes (P450 aromatase (P450arom), 3β-hydroxysteroid dehydrogenase (3β-HSD) and steroidogenic acute regulatory protein (StAR)) in letrozole-induced polycystic ovaries of rats. Changes in serum hormone levels, protein expression in whole ovaries by western blot analysis and protein localisation by immunohistochemistry were determined in female rats treated with the aromatase inhibitor letrozole and compared with controls in proestrous and diestrous rats. Increases in the serum LH, FSH and testosterone concentrations were observed in letrozole-treated rats whereas serum oestradiol and progesterone levels were reduced. Protein expression as analysed by western immunoblot was consistent with the immunohistochemical data. Letrozole treatment induced an increase in the expression of AR, StAR and 3β-HSD and a decrease in ERβ. ERα, PR and P450arom showed partial changes in relation to some cycle stages. These results indicate that cystogenesis in this experimental model is characterised by changes in steroid receptors and steroidogenic enzyme expression that may be essential to proper ovarian functioning and are in agreement with similar changes observed in women with PCOS.
Collapse
|
29
|
Fox EM, Davis RJ, Shupnik MA. ERbeta in breast cancer--onlooker, passive player, or active protector? Steroids 2008; 73:1039-51. [PMID: 18501937 PMCID: PMC2583259 DOI: 10.1016/j.steroids.2008.04.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
The role of estrogen exposure in breast cancer risk is well-documented, and both estrogen synthesis and actions through the estrogen receptor (ER) have been targeted by therapies to control hormone-dependent breast cancer. The discovery of a second ER form and its therapeutic implications sparked great interest. Both the original ERalpha and the more recently identified ERbeta subtypes bind and respond similarly to many physiological and pharmacological ligands. However, differences in phytoestrogen binding have been noted, and subtype-specific ligands have been developed. Cell-based assays show that ERbeta and its variants are generally less active on gene transcription than ERalpha, and may influence ERalpha activity; however, both gene- and cell-specific responses occur, and nongenomic activities are less well explored. Specific ligands, and methods to disrupt or eliminate receptor subtype expression in animal and cell models, demonstrate that the ERs have both overlapping and distinct biological functions. Overall, in cell-based studies, ERalpha appears to play a predominant role in cell proliferation, and ERbeta is suggested to be antiproliferative. The potential for distinct populations of breast tumors to be identified based on ER subtype expression, and to exhibit distinct clinical behaviors, is of greatest interest. Several studies suggest that the majority of ER-positive tumors contain both subtypes, but that some tumors contain only ERbeta and may have distinct clinical behaviors and responses. Expression of ERbeta together with ERalpha favors positive responses to endocrine therapy in most studies, and additional studies to determine if the addition of ERbeta to ERalpha as a tumor marker is of clinical benefit are warranted. In contrast, the positive association between ERbeta and HER2 expression in high-grade ERalpha-negative breast cancer does not favor positive responses to endocrine therapy. Expression of ERbeta in specific clinical subpopulations, and the potential for therapies targeting ERbeta specifically, is discussed.
Collapse
Affiliation(s)
- Emily M. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Rebecca J. Davis
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Margaret A. Shupnik
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
30
|
Skliris GP, Leygue E, Watson PH, Murphy LC. Estrogen receptor alpha negative breast cancer patients: estrogen receptor beta as a therapeutic target. J Steroid Biochem Mol Biol 2008; 109:1-10. [PMID: 18243688 DOI: 10.1016/j.jsbmb.2007.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Clinical management of breast cancer is increasingly guided by assessment of tumor phenotypic parameters. One of these is estrogen receptor (ER) status, currently defined by ERalpha expression. However with the discovery of a second ER, ERbeta and its variant isoforms, the definition of ER status is potentially more complex. In breast tumors there are two ERbeta expression cohorts. One where ERbeta is co-expressed with ERalpha and the other expressing ERbeta alone. In the latter subgroup of currently defined ER negative patients ERbeta has the potential to be a therapeutic target. Characterization of the nature and role of ERbeta in ERalpha negative tumors is essentially unexplored but available data suggest that the role of ERbeta may be different when co-expressed with ERalpha and when expressed alone. This review summarizes available data and explores the possibility that ERbeta signaling may be a therapeutic target in these tumors. Evidence so far supports the idea that the role of ERbeta in breast cancer is different in ERalpha negative compared to ERalpha positive tumors. However, cohort size and numbers of independent studies are small to date, and more studies are needed with better standardization of antibodies and protocols. Also, the ability to determine the role of ERbeta in ERalpha negative breast cancer and therefore assess ERbeta signaling pathways as therapeutic targets would be greatly facilitated by identification of specific downstream markers of ERbeta activity in breast cancer.
Collapse
Affiliation(s)
- George P Skliris
- Manitoba Institute of Cell Biology, Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E OV9
| | | | | | | |
Collapse
|
31
|
Green CA, Peter MB, Speirs V, Shaaban AM. The potential role of ER beta isoforms in the clinical management of breast cancer. Histopathology 2008; 53:374-80. [PMID: 18312354 DOI: 10.1111/j.1365-2559.2008.02968.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of a second oestrogen receptor, ER beta, was a subject of much interest, as this suggested a means to improve the prognostic stratification of invasive breast cancer, better predict response to endocrine therapy, develop new chemotherapeutic/chemopreventative drugs and perhaps prevent inappropriate treatment. However, this has not proved to be straightforward with the discovery of five ER beta isoforms and numerous exon deletion variants. This review sets out to identify the present state of knowledge regarding the clinicopathological role of ER beta isoforms and discusses possible reasons for conflicting results arising from recent research findings.
Collapse
Affiliation(s)
- C A Green
- Pathology and Tumour Biology, Leeds Institute of Molecular Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
32
|
Rochefort H. Cancérogenèse hormonale chez la femme : des mécanismes à la prévention. C R Biol 2008; 331:104-13. [DOI: 10.1016/j.crvi.2006.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/20/2006] [Accepted: 07/18/2006] [Indexed: 11/29/2022]
|
33
|
Roger P, Esslimani-Sahla M, Delfour C, Lazennec G, Rochefort H, Maudelonde T. Expression of Estrogen Receptors α and β in Early Steps of Human Breast Carcinogenesis. HORMONAL CARCINOGENESIS V 2008; 617:139-48. [DOI: 10.1007/978-0-387-69080-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Williams C, Edvardsson K, Lewandowski SA, Ström A, Gustafsson JA. A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 2007; 27:1019-32. [PMID: 17700529 DOI: 10.1038/sj.onc.1210712] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional effects of estrogen result from its activation of two estrogen receptor (ER) isoforms; ERalpha that drives proliferation and ERbeta that is antiproliferative. Expression of ERbeta in xenograft tumors from the T47D breast cancer cell line reduces tumor growth and angiogenesis. If ERbeta can halt tumor growth, its introduction into cancers may be a novel therapeutic approach to the treatment of estrogen-responsive cancers. To assess the complete impact of ERbeta on transcription, we have made a full transcriptome analysis of ERalpha- and ERbeta-mediated gene regulation in T47D cell line with Tet-Off regulated ERbeta expression. Of the 35 000 genes and transcripts analysed, 4.1% (1434) were altered by ERalpha activation. Tet withdrawal and subsequent ERbeta expression inhibited the ERalpha regulation of 998 genes and, in addition, altered expression of 152 non-ERalpha-regulated genes. ERalpha-induced and ERbeta-repressed genes were involved in proliferation, steroid/xenobiotic metabolism and ion transport. The ERbeta repressive effect was further confirmed by proliferation assays, where ERbeta was shown to completely oppose the ERalpha-E2 induced proliferation. Additional analysis of ERbeta with a mutated DNA-binding domain revealed that this mutant, at least for a quantity of genes, antagonizes ERalpha even more strongly than ERbeta wt. From an examination of the genes regulated by ERalpha and ERbeta, we suggest that introduction of ERbeta may be an alternative therapeutic approach to the treatment of certain cancers.
Collapse
Affiliation(s)
- C Williams
- Department of Biosciences and Nutrition at Novum, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Carbonell Sala S, Martineti V, Carossino AM, Brandi ML. Genetics and pharmacogenetics of estrogen response. Expert Rev Endocrinol Metab 2007; 2:503-516. [PMID: 30290424 DOI: 10.1586/17446651.2.4.503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogens are a steroid hormone group distributed widely in animals and human beings. Estrogens diffuse across cell phospholipidic membranes and interact with estrogen receptors. Their highest concentration is found in target tissues with reproductive function (breast, ovary, vagina and uterus). High estrogen levels are usually associated with tumor onset and progression, while loss of estrogen or its receptor(s) contributes to development and/or progression of various diseases (osteoporosis, neurodegenerative disease and cardiovascular disease). Despite the numerous efforts to highlight estrogen's mechanism of action, recent discoveries showed an unexpected degree of complexity of estrogenic response.
Collapse
Affiliation(s)
- Silvia Carbonell Sala
- a University of Florence, Department of Internal Medicine, Florence, Italy; DeGene Spin-Off, Viale Pieraccini, 6-50139, Florence, Italy.
| | | | | | - Maria Luisa Brandi
- d University of Florence, Department of Internal Medicine, Florence, Italy; De Gene Spin-Off, Viale Pieraccini, 6-50139, Florence, Italy.
| |
Collapse
|
36
|
Speirs V, Shaaban AM. Hormone receptors in defining breast cancer prognosis—time for a rethink? ACTA ACUST UNITED AC 2007; 4:204-5. [PMID: 17392711 DOI: 10.1038/ncponc0771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/12/2006] [Indexed: 11/09/2022]
Affiliation(s)
- Valerie Speirs
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TK, UK.
| | | |
Collapse
|
37
|
Speirs V, Walker RA. New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol 2007; 211:499-506. [PMID: 17236182 DOI: 10.1002/path.2130] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oestrogen receptor (ER) is arguably the single most important biological predictive factor that exists today. In the last 10 years or so, however, our understanding of ER biology has undergone a paradigm shift following the identification of a second ER, ERbeta, with the original ER being renamed ERalpha. A number of isoforms have additionally been described, especially for ERbeta. Our knowledge of ER signalling has also increased with the recognition of accessory co-regulatory proteins, which help direct the transcriptional cascade. Here we outline these changes and discuss what biological and clinical implications these could have in the mammary gland.
Collapse
Affiliation(s)
- V Speirs
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK
| | - R A Walker
- Department of Cancer Studies and Molecular Medicine, Robert Kilpatrick Building, Leicester Royal Infirmary, PO Box 65, Leicester LE2 7LX, UK
| |
Collapse
|
38
|
Secreto FJ, Monroe DG, Dutta S, Ingle JN, Spelsberg TC. Estrogen receptor α/β isoforms, but not βcx, modulate unique patterns of gene expression and cell proliferation in Hs578T cells. J Cell Biochem 2007; 101:1125-47. [PMID: 17520659 DOI: 10.1002/jcb.21205] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The actions of 17beta-estradiol (E2) and selective estrogen receptor modulators (SERMs) have been extensively investigated regarding their ability to act through estrogen receptor-alpha (ERalpha) to perturb estrogen receptor positive (ER+) breast cancer (BC) growth. However, many BCs also express ERbeta, along with multiple estrogen receptor (ER) splice variants such as ERbetacx, an ERbeta splice variant incapable of binding ligand. To gain a more comprehensive understanding of ER action in BC cells, we stably expressed ERalpha, ERbeta, or ERbetacx under doxycycline (Dox) control in Hs578T cells. Microarrays performed on E2 or 4OH-tamoxifen (4HT) treated Hs578T ERalpha and ERbeta cells revealed distinct ligand and receptor-dependent patterns of gene regulation, while the induction of ERbetacx did not alter gene expression patterns. E2 stimulation of Hs578T ERbeta cells resulted in a 27% decrease in cellular proliferation, however, no significant change in proliferation was observed following the exposure of Hs578T ERalpha or ERbeta cells to 4HT. Expression of ERbetacx in Hs578T cells did not effect cellular proliferation. Flow cytometry assays revealed a 50% decrease in E2-stimulated Hs578T ERbeta cells entering S-phase, along with a 17% increase in G0/G1 cell-cycle arrest. We demonstrate here that ERalpha and ERbeta regulate unique gene expression patterns in Hs578T cells, and such regulation likely is responsible for the observed isoform-specific changes in cell proliferation. Hs578T ER expressing cell-lines provide a unique BC model system, permitting the comparison of ERalpha, ERbeta, and ERbetacx actions in the same cell-line.
Collapse
Affiliation(s)
- Frank J Secreto
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|
39
|
Ceresini G, Morganti S, Graiani V, Saccani M, Milli B, Usberti E, Valenti G, Ceda GP, Corcione L. Estrogen receptor (ER)-beta, but not ER-alpha, is present in thyroid vessels: immunohistochemical evaluations in multinodular goiter and papillary thyroid carcinoma. Thyroid 2006; 16:1215-20. [PMID: 17199431 DOI: 10.1089/thy.2006.16.1215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Estrogen receptors (ERs) have been demostrated in the vessel structures of several systems. Little is known on the presence of ERs in the thyroid vessels. DESIGN We immunohistochemically evaluated both ER-alpha and ER-beta immunoreactivity (IR) in both vascular and follicular thyroid cells in tissue samples from 17 cases of multinodular goiter (MNG) and 17 cases of papillary thyroid carcinoma (PTC). MAIN OUTCOME ER-alpha IR was undetectable in either tissue examined. In 100% of MNG samples, nuclear ER-beta IR was detected in both endothelial and follicular cells. In PTC samples, endothelial nuclear ER-beta IR was found in 100% of cases, whereas the nuclear staining of follicular cells was found in 83% of cases. The intensity of staining of the endothelial ER-beta IR was comparable between MNG and PTC. However, when follicular cells were considered, a tendency toward a decrease in nuclear staining and a significant increase in cytoplasmic staining were found in PTC lesions as compared to MNG. CONCLUSIONS This study demonstrated that ER-beta, but not ER-alpha, IR is present in the endothelium of thyroid vessels. Furthermore, although data need to be confirmed in larger observations, these results suggest the lack of differences in the pattern of vascular ER-beta IR between MNG and PTC.
Collapse
Affiliation(s)
- Graziano Ceresini
- Department of Internal Medicine and Biomedical Sciences, University of Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wells CC, Riazi S, Mankhey RW, Bhatti F, Ecelbarger C, Maric C. Diabetic nephropathy is associated with decreased circulating estradiol levels and imbalance in the expression of renal estrogen receptors. ACTA ACUST UNITED AC 2006; 2:227-37. [PMID: 16464734 DOI: 10.1016/s1550-8579(05)80052-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND The incidence of cardiovascular and renal disease is lower in premenopausal women than in aged-matched men. However, in the setting of diabetes mellitus (DM), this "female advantage" no longer exists: the incidence and progression of DM and its associated end-organ complications are equal in men and women, regardless of age. We have recently reported that estrogen supplementation attenuates the progression of diabetic nephropathy, suggesting that lack of estrogen may nullify female sex as a protective factor against DM. OBJECTIVE This study examined circulating levels of estradiol in DM and expression of estrogen receptor subtypes (ERa and ERP) in the nondiabetic (ND) and diabetic (D) kidney. METHODS : The study was performed in ND and streptozotocin-induced D Sprague-Dawley rats after 2 weeks (male and female) and 12 weeks (female) of DM. The animals (N = 8/group) were kept either intact, ovariectomized (OVX), or OVX with 17beta-estradiol (E(2)) supplementation (OVX + E(2), 5 mug/kg/d). Plasma estradiol levels were measured by enzyme-linked immunosorbent assay, and expression of renal ERalpha and ERbeta was measured by immunohistochemistry and Western blot analysis. RESULTS DM was associated with reduced circulating estradiol levels (ND: mean [SEM] 37.1 [7.2]; D: 24.5 [9.3] pg/mL; P < 0.05). The diabetic kidney exhibited increased expression of ERalpha protein (ND: 0.82 [0.06]; D: 1.15 [0.09] arbitrary units; P < 0.05), but no differences in ERP were observed. This resulted in an overall increase in the ratio of ERalpha/ERbeta protein expression in the diabetic kidney. No differences in the expression of ERa were observed in either females or males with similar glycemic levels after 2 weeks of DM. CONCLUSIONS Reduced circulating levels of estradiol and imbalance in the expression of estrogen receptor subtypes in the diabetic kidney may explain why female sex is no longer a protective factor in the setting of DM. Thus, estradiol supplementation may be an effective regimen in attenuating the onset and progression of diabetic renal complications.
Collapse
Affiliation(s)
- Corinne C Wells
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The unexpected discovery of a second form of the estrogen receptor (ER), designated ERbeta, surprised and energized the field of estrogen research. In the 9 yr since its identification, the remarkable efforts from academic and industrial scientists of many disciplines have made significant progress in elucidating its biology. A powerful battery of tools, including knockout mice as well as a panel of receptor-selective agonists, has allowed an investigation into the role of ERbeta. To date, in vivo efficacy studies are limited to rodents. Current data indicate that ERbeta plays a minor role in mediating estrogen action in the uterus, on the hypothalamus/pituitary, the skeleton, and other classic estrogen target tissues. However, a clear role for ERbeta has been established in the ovary, cardiovascular system, and brain as well as in several animal models of inflammation including arthritis, endometriosis, inflammatory bowel disease, and sepsis. The next phase of research will focus on elucidating, at a molecular level, how ERbeta exerts these diverse effects and exploring the clinical utility of ERbeta-selective agonists.
Collapse
Affiliation(s)
- Heather A Harris
- Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| |
Collapse
|
42
|
Esslimani-Sahla M, Thezenas S, Simony-Lafontaine J, Kramar A, Lavaill R, Chalbos D, Rochefort H. Increased expression of fatty acid synthase and progesterone receptor in early steps of human mammary carcinogenesis. Int J Cancer 2006; 120:224-9. [PMID: 17044016 DOI: 10.1002/ijc.22202] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progestins increase the risk of breast cancer in the hormone therapy of menopause, and progesterone receptor-induced fatty acid synthase (FAS) is a potential therapeutical target of breast cancer. In a first attempt to specify in which lesions at risk of breast cancer progestins might be acting, we have compared the progesterone receptor (PR) and FAS expression in preinvasive breast lesions and in adjacent "normal" mammary glands. We used archive paraffin-embedded tissues from 116 patients, with 164 lesions of increasing histological risk from nonproliferative "benign" breast disease (BBD) to in situ breast carcinomas. Immunostaining using our FAS antibody and a PR antibody from Dako was quantified as continuous variables by computer-assisted image analysis. FAS level increased (p < 10(-3) by the Kruskall-Wallis test) in all lesions, starting from nonproliferative BBD, and was maximal in in situ carcinoma. The % of PR-positive cells increased from nonproliferative BBD and was higher in proliferative atypia (p < 10(-3)). It was very low in high-grade DCIS corresponding to a likely different carcinogenesis pathway. There was a trend for a positive correlation between FAS and PR in normal glands. However, the 2 markers increased independently in BBD and were negatively correlated in in situ carcinomas. FAS and PR were positively correlated with Ki67 in BBD. The increased PR level in premalignant steps of mammary carcinogenesis suggests an early increased responsiveness to progestins. The increased FAS expression, in lesions parallel to their increased breast cancer risk, suggests further studies to develop new markers of high-risk lesions and to prevent breast cancer.
Collapse
Affiliation(s)
- Majida Esslimani-Sahla
- Endocrinologie Moléculaire et Cellulaire des Cancers (U540), Institut National de la Santé et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
43
|
|