1
|
Sterling J, Rahman SN, Varghese A, Angulo JC, Nikolavsky D. Complications after Prostate Cancer Treatment: Pathophysiology and Repair of Post-Radiation Urethral Stricture Disease. J Clin Med 2023; 12:3950. [PMID: 37373644 DOI: 10.3390/jcm12123950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Radiation therapy (RT) in the management of pelvic cancers remains a clinical challenge to urologists given the sequelae of urethral stricture disease secondary to fibrosis and vascular insults. The objective of this review is to understand the physiology of radiation-induced stricture disease and to educate urologists in clinical practice regarding future prospective options clinicians have to deal with this condition. The management of post-radiation urethral stricture consists of conservative, endoscopic, and primary reconstructive options. Endoscopic approaches remain an option, but with limited long-term success. Despite concerns with graft take, reconstructive options such as urethroplasties in this population with buccal grafts have shown long-term success rates ranging from 70 to 100%. Robotic reconstruction is augmenting previous options with faster recovery times. Radiation-induced stricture disease is challenging with multiple interventions available, but with successful outcomes demonstrated in various cohorts including urethroplasties with buccal grafts and robotic reconstruction.
Collapse
Affiliation(s)
- Joshua Sterling
- Yale School of Medicine, 20 York Street, New Haven, CT 06511, USA
| | - Syed N Rahman
- Yale School of Medicine, 20 York Street, New Haven, CT 06511, USA
| | - Ajin Varghese
- New York College of Osteopathic Medicine, 8000 Old Westbury, Glen Head, NY 11545, USA
| | - Javier C Angulo
- Faculty of Biomedical Sciences, Universidad Europea, 28905 Madrid, Spain
| | | |
Collapse
|
2
|
Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021; 9:678524. [PMID: 34277620 PMCID: PMC8284093 DOI: 10.3389/fcell.2021.678524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tubulointerstitial fibrosis is a common and diagnostic hallmark of a spectrum of chronic renal disorders. While the etiology varies as to the causative nature of the underlying pathology, persistent TGF-β1 signaling drives the relentless progression of renal fibrotic disease. TGF-β1 orchestrates the multifaceted program of kidney fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery or re-differentiation, capillary collapse and subsequent interstitial fibrosis eventually leading to chronic and ultimately end-stage disease. An increasing complement of non-canonical elements function as co-factors in TGF-β1 signaling. p53 is a particularly prominent transcriptional co-regulator of several TGF-β1 fibrotic-response genes by complexing with TGF-β1 receptor-activated SMADs. This cooperative p53/TGF-β1 genomic cluster includes genes involved in cellular proliferative control, survival, apoptosis, senescence, and ECM remodeling. While the molecular basis for this co-dependency remains to be determined, a subset of TGF-β1-regulated genes possess both p53- and SMAD-binding motifs. Increases in p53 expression and phosphorylation, moreover, are evident in various forms of renal injury as well as kidney allograft rejection. Targeted reduction of p53 levels by pharmacologic and genetic approaches attenuates expression of the involved genes and mitigates the fibrotic response confirming a key role for p53 in renal disorders. This review focuses on mechanisms underlying TGF-β1-induced renal fibrosis largely in the context of ureteral obstruction, which mimics the pathophysiology of pediatric unilateral ureteropelvic junction obstruction, and the role of p53 as a transcriptional regulator within the TGF-β1 repertoire of fibrosis-promoting genes.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - David M. Jones
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Angelica Costello
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
- The Urological Institute of Northeastern New York, Albany, NY, United States
- Division of Urology, Department of Surgery, Albany Medical College, Albany, NY, United States
| |
Collapse
|
3
|
Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019; 33:10596-10606. [PMID: 31284746 PMCID: PMC6766640 DOI: 10.1096/fj.201900943r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (i.e., diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and Drosophilia mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [e.g., plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.
Collapse
Affiliation(s)
- Craig E. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Jiaqi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Badar M. Mian
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Cody C. Gifford
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - David J. Conti
- Division of Transplantation Surgery, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Kirstan K. Meldrum
- Division of Pediatric Urology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Rohan Samarakoon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Paul J. Higgins
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
- The Urological Institute of Northeastern New York, Albany, New York, USA
- Division of Urology, Department of Surgery, Albany Medical College, Albany, New York, USA
| |
Collapse
|
4
|
Yuan BY, Chen YH, Wu ZF, Zhuang Y, Chen GW, Zhang L, Zhang HG, Cheng JCH, Lin Q, Zeng ZC. MicroRNA-146a-5p Attenuates Fibrosis-related Molecules in Irradiated and TGF-beta1-Treated Human Hepatic Stellate Cells by Regulating PTPRA-SRC Signaling. Radiat Res 2019; 192:621-629. [PMID: 31560641 DOI: 10.1667/rr15401.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bao-Ying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Han Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gen-Wen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Ge Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Yuan B, Chen Y, Wu Z, Zhang L, Zhuang Y, Zhao X, Niu H, Cheng JCH, Zeng Z. Proteomic Profiling of Human Hepatic Stellate Cell Line LX2 Responses to Irradiation and TGF-β1. J Proteome Res 2018; 18:508-521. [PMID: 30489086 DOI: 10.1021/acs.jproteome.8b00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic stellate cells (HSCs) are the main target of radiation damage and primarily contribute to the development of radiation-induced liver fibrosis. However, the molecular events underlying the radiation-induced activation of HSCs are not fully elucidated. In the present study, human HSC line LX2 was treated with X-ray irradiation and/or TGF-β1, and profibrogenic molecules were evaluated. The iTRAQ LC-MS/MS technology was performed to identify global protein expression profiles in LX2 following exposure to different stimuli. Irradiation or TGF-β1 alone increased expression of α-SMA, collagen 1, CTGF, PAI-1, and fibronectin. Irradiation and TGF-β1 cooperatively induced expression of these profibrotic markers. In total, 102, 137, 155 dysregulated proteins were identified in LX2 cell samples affected by irradiation, TGF-β1, or cotreatment, respectively. Bioinformatic analyses showed that the three differentially expressed protein sets were commonly associated with cell cycle and protein processing in endoplasmic reticulum. The expression of a set of proteins was properly validated: CDC20, PRC1, KIF20A, CCNB1, SHCBP, TACC3 were upregulated upon irradiation or irradiation and TGF-β1 costimulation, whereas SPARC and THBS1 were elevated by TGF-β1 or TGF-β1 plus irradiation treatment. Furthermore, CDC20 inhibition suppressed expression of profibrotic markers in irradiated and TGF-β1-stimulated LX2 cells. Detailed data on potential molecular mechanisms causing the radiation-induced HSC activation presented here would be instrumental in developing radiotherapy strategies that minimize radiation-induced liver fibrosis.
Collapse
Affiliation(s)
- Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China.,Department of Radiation Oncology, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Departments of Oncology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| |
Collapse
|
6
|
Shioya S, Masuda T, Senoo T, Horimasu Y, Miyamoto S, Nakashima T, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Plasminogen activator inhibitor-1 serves an important role in radiation-induced pulmonary fibrosis. Exp Ther Med 2018; 16:3070-3076. [PMID: 30214528 PMCID: PMC6125865 DOI: 10.3892/etm.2018.6550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a serious complication. Plasminogen activator inhibitor-1 (PAI-1) has been indicated to be a key factor in the progression of pulmonary fibrosis. In the present study, the effect of PAI-1 deficiency on radiation-induced pulmonary fibrosis was analyzed. Wild-type (WT) and PAI-1-deficient (PAI-1−/−) mice were treated with thoracic irradiation of 15 Gy to induce pulmonary fibrosis. Analyses of bronchoalveolar lavage (BAL) fluids were performed 0, 4, 12, 18, and 24 weeks after irradiation. The degree of pulmonary fibrosis was assessed according to the histology of lung tissues and hydroxyproline contents. The results demonstrated that the irradiation of WT mice increased PAI-1 expression in the lungs after 18 weeks and established lung fibrosis at 24 weeks. The number of total cells and transforming growth factor-β levels in BAL fluid were significantly lower at 24 weeks after irradiation in PAI-1−/− mice compared with WT mice. Furthermore, histological examination revealed that the extent of pulmonary fibrosis was attenuated in PAI-1−/− mice compared with that in WT mice. Hydroxyproline content was also significantly lower in PAI-1−/− mice compared with WT mice at 24 weeks after irradiation. In conclusion, PAI-1 serves an important role in the development of radiation-induced pulmonary fibrosis and may represent a novel therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Sachiko Shioya
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takeshi Masuda
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tadashi Senoo
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yasushi Horimasu
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Taku Nakashima
- Department of Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
7
|
Lee YC, Yu CC, Lan C, Lee CH, Lee HT, Kuo YL, Wang PH, Chang WW. Plasminogen activator inhibitor-1 as regulator of tumor-initiating cell properties in head and neck cancers. Head Neck 2015; 38 Suppl 1:E895-904. [DOI: 10.1002/hed.24124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/26/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yueh-Chun Lee
- Radiation Oncology Department; Chung Shan Medical University Hospital; Taichung City Taiwan
- Institute of Medicine, Chung Shan Medical University; Taichung Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University; Taichung Taiwan
- Department of Dentistry; Chung Shan Medical University Hospital; Taichung Taiwan
- Institute of Oral Sciences, Chung Shan Medical University; Taichung Taiwan
| | - Chih Lan
- School of Biomedical Sciences, Chung Shan Medical University; Taichung City Taiwan
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University; Taichung Taiwan
- Department of Microbiology; School of Medicine, China Medical University; Taichung Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University; Taipei Taiwan
| | - Yu-Liang Kuo
- Department of Medical Imaging; Chung Shan Medical University Hospital; Taichung Taiwan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University; Taichung Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University; Taichung Taiwan
- Department of Obstetrics and Gynecology; Chung Shan Medical University Hospital; Taichung Taiwan
- School of Medicine, Chung Shan Medical University; Taichung Taiwan
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University; Taichung City Taiwan
- Department of Medical Research; Chung Shan Medical University Hospital; Taichung City Taiwan
| |
Collapse
|
8
|
The sodium/iodide symporter NIS is a transcriptional target of the p53-family members in liver cancer cells. Cell Death Dis 2013; 4:e807. [PMID: 24052075 PMCID: PMC3789165 DOI: 10.1038/cddis.2013.302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023]
Abstract
Thyroid iodide accumulation via the sodium/iodide symporter (NIS; SLC5A5) has been the basis for the longtime use of radio-iodide in the diagnosis and treatment of thyroid cancers. NIS is also expressed, but poorly functional, in some non-thyroid human cancers. In particular, it is much more strongly expressed in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) cell lines than in primary human hepatocytes (PHH). The transcription factors and signaling pathways that control NIS overexpression in these cancers is largely unknown. We identified two putative regulatory clusters of p53-responsive elements (p53REs) in the NIS core promoter, and investigated the regulation of NIS transcription by p53-family members in liver cancer cells. NIS promoter activity and endogenous NIS mRNA expression are stimulated by exogenously expressed p53-family members and significantly reduced by member-specific siRNAs. Chromatin immunoprecipitation analysis shows that the p53–REs clusters in the NIS promoter are differentially occupied by the p53-family members to regulate basal and DNA damage-induced NIS transcription. Doxorubicin strongly induces p53 and p73 binding to the NIS promoter, leading to an increased expression of endogenous NIS mRNA and protein in HCC and CCA cells, but not in PHH. Silencing NIS expression reduced doxorubicin-induced apoptosis in HCC cells, pointing to a possible role of a p53-family-dependent expression of NIS in apoptotic cell death. Altogether, these results indicate that the NIS gene is a direct target of the p53 family and suggests that the modulation of NIS by DNA-damaging agents is potentially exploitable to boost NIS upregulation in vivo.
Collapse
|
9
|
Enhanced effectivity of an ALK5-inhibitor after cell-specific delivery to hepatic stellate cells in mice with liver injury. PLoS One 2013; 8:e56442. [PMID: 23441194 PMCID: PMC3575413 DOI: 10.1371/journal.pone.0056442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 01/13/2013] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a major pro-fibrotic cytokine, causing the overproduction of extracellular matrix molecules in many fibrotic diseases. Inhibition of its type-I receptor (ALK5) has been shown to effectively inhibit fibrosis in animal models. However, apart from its pro-fibrotic effects, TGF-β also has a regulatory role in the immune system and influences tumorigenesis, which limits the use of inhibitors. We therefore explored the cell-specific delivery of an ALK5-inhibitor to hepatic stellate cells, a key cell in the development of liver fibrosis. We synthesized a conjugate of the ALK5-inhibitor LY-364947 coupled to mannose-6-phosphate human serum albumin (M6PHSA), which binds to the insulin-like growth factor II receptor on activated HSC. The effectivity of the conjugate was evaluated in primary HSC and in an acute liver injury model in mice. In vitro, the free drug and the conjugate significantly inhibited fibrotic markers in HSC. In hepatocytes, TGF-β-dependent signaling was inhibited by free drug, but not by the conjugate, thus showing its cell-specificity. In vivo, the conjugate localized in desmin-positive cells in the liver and not in hepatocytes or immune cells. In the acute liver injury model in mice, the conjugate reduced fibrogenic markers and collagen deposition more effectively than free drug. We conclude that we can specifically deliver an ALK5-inhibitor to HSC using the M6PHSA carrier and that this targeted drug reduces fibrogenic parameters in vivo, without affecting other cell-types.
Collapse
|
10
|
Abstract
The p53 homolog p73 is frequently overexpressed in cancers. Especially the transactivation domain truncated isoform ΔNp73 has oncogenic properties and its upregulation is associated with poor patient survival. It has been shown that ΔNp73 has an inhibitory effect on the transactivation capacity of p53 and other p73 isoforms. Here, we confirm this finding but surprisingly find that ΔNp73 may also stimulate the expression of TGF-β signaling targets. Promoter-reporter analysis indicated that the presence of Smad Binding Elements (SBE) in the promoter is sufficient for stimulation of gene expression by ΔNp73. TGF-β signaling was less efficient in ΔNp73 downregulated cells, whereas tetracycline induced ΔNp73 increased expression of endogenous TGF-β regulated genes PAI-1 and Col1a1. Pull-down assays with SBE DNA suggest that ΔNp73 enhances smad3/4 binding to SBEs, thereby stimulating TGF-β signaling. Chromatin immunoprecipitation assays confirmed a direct interaction between ΔNp73 and SBE. Given the role of TGF-β signaling in carcinogenesis, tumor invasion and metastasis via targets like PAI-1 and Col1a1, our data suggest a model on how this effect of ΔNp73 could be a contributing factor in cancer progression.
Collapse
|
11
|
Westbury C, Yarnold J. Radiation Fibrosis — Current Clinical and Therapeutic Perspectives. Clin Oncol (R Coll Radiol) 2012; 24:657-72. [DOI: 10.1016/j.clon.2012.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/07/2012] [Accepted: 04/12/2012] [Indexed: 01/08/2023]
|
12
|
Lara PC, Lloret M, Valenciano A, Clavo B, Pinar B, Rey A, Henríquez-Hernández LA. Plasminogen activator inhibitor-1 (PAI-1) expression in relation to hypoxia and oncoproteins in clinical cervical tumors. Strahlenther Onkol 2012; 188:1139-45. [PMID: 23111469 DOI: 10.1007/s00066-012-0216-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/16/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Explore the role of plasminogen activator inhibitor-1 (PAI-1) in cervical cancer and its relationship to hypoxia and the expression of p53, Ku70/80, and cyclin D1. MATERIAL AND METHODS The expression of PAI-1, cyclin D1, and p53, together with tumor oxygenation, were determined in 43 consecutive patients suffering from localized cervical carcinoma. Oncoprotein expression was determined by immunohistochemistry. Tumor oxygenation was measured using a polarographic probe system, "pO2 histography." RESULTS PAI expression was considered negative in 32.6% and overexpressed in 18.6% of cases. Cyclin D1 showed a median expression of 5.0 (range 0-70). We observed a positive association between PAI expression and altered p53 (p = 0.049) and cyclin D1 (p = 0.020). An inverse association was detected between PAI and Ku70/80 expression (p = 0.042). Cyclin D1 staining increased according to tumor volume (r = 0.314, p = 0.009). We did not observe a significant association between PAI and hypoxia or other clinicopathological parameters. CONCLUSION The present results show that PAI-1 overexpression is associated with nonhomologous end-joining DNA repair down-regulation (low Ku70/80 expression) and with increased p53 and cyclin D1 expression, and they suggest that PAI-1 plays a role in the tumor behavior in cervical carcinoma.
Collapse
Affiliation(s)
- P C Lara
- Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Ebrahimian TG, Squiban C, Roque T, Lugo-Martinez H, Hneino M, Buard V, Gourmelon P, Benderitter M, Milliat F, Tamarat R. Plasminogen activator inhibitor-1 controls bone marrow-derived cells therapeutic effect through MMP9 signaling: role in physiological and pathological wound healing. Stem Cells 2012; 30:1436-46. [PMID: 22570200 DOI: 10.1002/stem.1126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We assessed the role of plasminogen activator inhibitor-1 (PAI-1) and matrix metalloproteinase 9 (MMP9) in wound healing process and in the bone marrow mononuclear cells (BMMNC)-related effects on physiological and pathological wound healing. A full thickness excision wound was created by removal of the skin on the midback of irradiated and nonirradiated animals. Angiogenesis and re-epithelialization were markedly increased in PAI-1-/- mice compared to wild-type (WT) animals. We revealed high MMP activity in tissue of PAI-1-/- animals. Of interest, the wound healing process was reduced in PAI-1-/-:MMP9-/- animals compared to PAI-1-/- mice, suggesting a key role of MMP9 in beneficial effect of PAI-1 deficiency on wound closure. To unravel the role of PAI-1 in BMMNC relative effects, mice were treated with or without local injection of BMMNC isolated from WT, PAI-1-/-, and PAI-1-/-: MMP9-/- animals for 14 days (10(6) cells, n = 6 per group). In WT nonirradiated mice, transplantation of BMMNC isolated from PAI-1-/- animals enhanced wound formation when compared with WT BMMNC. BMMNC differentiation into cells with endothelial phenotype was enhanced by PAI-1 deficiency. These effects were abrogated in PAI-1-/-:MMP9-/- and MMP9-/- BMMNC. In addition, using chimeric mice, we demonstrated that PAI-1 deficiency environment increased the BMMNC-GFP recruitment to the wound site, whereas this effect was abrogated when using PAI-1-/-:MMP9-/- BMMNC. PAI-1 deficiency, at least through MMP9 upregulation, enhanced wound healing and BMMNC therapeutic potential in irradiated and nonirradiated animals.
Collapse
Affiliation(s)
- Teni G Ebrahimian
- Institute of Radioprotection and Nuclear Safety (IRSN), DRPH/SRBE/LRTE, BP 17, Fontenay-aux-Roses Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One 2012; 7:e35740. [PMID: 22563394 PMCID: PMC3338537 DOI: 10.1371/journal.pone.0035740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/20/2012] [Indexed: 01/18/2023] Open
Abstract
Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury.
Collapse
|
15
|
Niemantsverdriet M, van Goethem MJ, Bron R, Hogewerf W, Brandenburg S, Langendijk JA, van Luijk P, Coppes RP. High and low LET radiation differentially induce normal tissue damage signals. Int J Radiat Oncol Biol Phys 2012; 83:1291-7. [PMID: 22245200 DOI: 10.1016/j.ijrobp.2011.09.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/13/2011] [Accepted: 09/29/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE Radiotherapy using high linear energy transfer (LET) radiation is aimed at efficiently killing tumor cells while minimizing dose (biological effective) to normal tissues to prevent toxicity. It is well established that high LET radiation results in lower cell survival per absorbed dose than low LET radiation. However, whether various mechanisms involved in the development of normal tissue damage may be regulated differentially is not known. Therefore the aim of this study was to investigate whether two actions related to normal tissue toxicity, p53-induced apoptosis and expression of the profibrotic gene PAI-1 (plasminogen activator inhibitor 1), are differentially induced by high and low LET radiation. METHODS AND MATERIALS Cells were irradiated with high LET carbon ions or low LET photons. Cell survival assays were performed, profibrotic PAI-1 expression was monitored by quantitative polymerase chain reaction, and apoptosis was assayed by annexin V staining. Activation of p53 by phosphorylation at serine 315 and serine 37 was monitored by Western blotting. Transfections of plasmids expressing p53 mutated at serines 315 and 37 were used to test the requirement of these residues for apoptosis and expression of PAI-1. RESULTS As expected, cell survival was lower and induction of apoptosis was higher in high -LET irradiated cells. Interestingly, induction of the profibrotic PAI-1 gene was similar with high and low LET radiation. In agreement with this finding, phosphorylation of p53 at serine 315 involved in PAI-1 expression was similar with high and low LET radiation, whereas phosphorylation of p53 at serine 37, involved in apoptosis induction, was much higher after high LET irradiation. CONCLUSIONS Our results indicate that diverse mechanisms involved in the development of normal tissue damage may be differentially affected by high and low LET radiation. This may have consequences for the development and manifestation of normal tissue damage.
Collapse
Affiliation(s)
- Maarten Niemantsverdriet
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem J 2011; 435:127-42. [PMID: 21231916 DOI: 10.1042/bj20101247] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (polyglutamine)-expanded Huntingtin fragment. Overexpressed chaperones that suppressed polyQ aggregation were found not to be able to stimulate luciferase refolding. Inversely, chaperones that supported luciferase refolding were poor suppressors of polyQ aggregation. This was not related to client specificity itself, as the polyQ aggregation inhibitors often also suppressed heat-induced aggregation of luciferase. Surprisingly, the exclusively heat-inducible HSPA6 lacks both luciferase refolding and polyQ aggregation-suppressing activities. Furthermore, whereas overexpression of HSPA1A protected cells from heat-induced cell death, overexpression of HSPA6 did not. Inversely, siRNA (small interfering RNA)-mediated blocking of HSPA6 did not impair the development of heat-induced thermotolerance. Yet, HSPA6 has a functional substrate-binding domain and possesses intrinsic ATPase activity that is as high as that of the canonical HSPA1A when stimulated by J-proteins. In vitro data suggest that this may be relevant to substrate specificity, as purified HSPA6 could not chaperone heat-unfolded luciferase but was able to assist in reactivation of heat-unfolded p53. So, even within the highly sequence-conserved HSPA family, functional differentiation is larger than expected, with HSPA6 being an extreme example that may have evolved to maintain specific critical functions under conditions of severe stress.
Collapse
|
17
|
Filiano AN, Fathallah-Shaykh HM, Fiveash J, Gage J, Cantor A, Kharbanda S, Johnson MR. Gene expression analysis in radiotherapy patients and C57BL/6 mice as a measure of exposure to ionizing radiation. Radiat Res 2011; 176:49-61. [PMID: 21361780 DOI: 10.1667/rr2419.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dose assessment after radiological disasters is imperative to decrease mortality through rationally directed medical intervention. Our goal was to identify biomarkers capable of qualitative (nonirradiated/irradiated) and/or quantitative (dose) assessment of radiation exposure. Using real-time quantitative PCR, biodosimetry genes were identified in blood samples from cancer patients undergoing total-body irradiation. Time- (5, 12, 23, 48 h) and dose- (0-8 Gy) dependent changes in gene expression were examined in C57BL/6 mice. A training set was used to derive weighted voting classification algorithms (nonirradiated/irradiated) and continuous regression (dose assessment) models that were tested in a separate validation set of mice. Of eight biodosimetry genes identified in cancer patients ( ACTA2 , BBC3 , CCNG1 , CDKN1A , GADD45A , MDK , SERPINE1 , Tnfrsf10b ), expression of BBC3 , CCNG1 , CDKN1A , SERPINE1 and Tnfrsf10b was significantly (P < 0.05) increased in irradiated mice. CCNG1 and CDKN1A expression segregated irradiated mice from controls with an accuracy, specificity and sensitivity of 96.3, 100.0 and 94.4%, respectively, at 48 h. Multiple linear regression analysis predicted doses for the 0-, 1-, 2-, 4-, 6- and 8-Gy treatment groups as 0.0 ± 0.2, 1.6 ± 1.0, 2.9 ± 1.4, 5.1 ± 2.0, 5.3 ± 0.7 and 10.5 ± 5.6 Gy, respectively. These results suggest that gene expression analysis could be incorporated into biodosimetry protocols for qualitative and quantitative assessment of radiation exposure.
Collapse
Affiliation(s)
- Ashley N Filiano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Niemantsverdriet M, de Jong E, Langendijk JA, Kampinga HH, Coppes RP. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53. Radiother Oncol 2011; 97:33-5. [PMID: 20435362 DOI: 10.1016/j.radonc.2010.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/16/2022]
Abstract
Radiation-induced fibrosis is a severe side effect of radiotherapy. TGF-β and radiation synergistically induce expression of the profibrotic PAI-1 gene and this cooperation potentially involves p53. Here, we demonstrate that p53 is both indispensable and sufficient for the radiation effect inducing synergistic activation of PAI-1 by radiation and TGF-β.
Collapse
Affiliation(s)
- Maarten Niemantsverdriet
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Artman T, Schilling D, Gnann J, Molls M, Multhoff G, Bayer C. Irradiation-induced regulation of plasminogen activator inhibitor type-1 and vascular endothelial growth factor in six human squamous cell carcinoma lines of the head and neck. Int J Radiat Oncol Biol Phys 2010; 76:574-82. [PMID: 20117293 DOI: 10.1016/j.ijrobp.2009.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 08/07/2009] [Accepted: 08/17/2009] [Indexed: 01/22/2023]
Abstract
PURPOSE It has been shown that plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are involved in neo-angiogenesis. The aim of this study was to investigate the irradiation-induced regulation of PAI-1 and VEGF in squamous cell carcinomas of the head and neck (SCCHN) cell lines of varying radiation sensitivity. METHODS AND MATERIALS Six cell lines derived from SCCHN were investigated in vitro. The colorimetric AlamarBlue assay was used to detect metabolic activity of cell lines during irradiation as a surrogate marker for radiation sensitivity. PAI-1 and VEGF secretion levels were measured by enzyme-linked immunosorbent assay 24, 48, and 72 h after irradiation with 0, 2, 6, and 10 Gy. The direct radioprotective effect of exogenous PAI-1 was measured using the clonogenic assay. For regulation studies, transforming growth factor-beta1 (TGF-beta1), hypoxia-inducible factor-1alpha (HIF-1alpha), hypoxia-inducible factor-2alpha (HIF-2alpha), or both HIF-1alpha and HIF-2alpha were downregulated using siRNA. RESULTS Although baseline levels varied greatly, irradiation led to a comparable dose-dependent increase in PAI-1 and VEGF secretion in all six cell lines. Addition of exogenous stable PAI-1 to the low PAI-1-expressing cell lines, XF354 and FaDu, did not lead to a radioprotective effect. Downregulation of TGF-beta1 significantly decreased VEGF secretion in radiation-sensitive XF354 cells, and downregulation of HIF-1alpha and HIF-2alpha reduced PAI-1 and VEGF secretion in radiation-resistant SAS cells. CONCLUSIONS Irradiation dose-dependently increased PAI-1 and VEGF secretion in all SCCHN cell lines tested regardless of their basal levels and radiation sensitivity. In addition, TGF-beta1 and HIF-1alpha could be partly responsible for VEGF and PAI-1 upregulation after irradiation.
Collapse
Affiliation(s)
- Tuuli Artman
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Scharpfenecker M, Floot B, Russell NS, Ten Dijke P, Stewart FA. Endoglin haploinsufficiency reduces radiation-induced fibrosis and telangiectasia formation in mouse kidneys. Radiother Oncol 2009; 92:484-91. [PMID: 19576647 DOI: 10.1016/j.radonc.2009.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/02/2009] [Accepted: 06/05/2009] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Endoglin is a transforming growth factor beta (TGF-beta) co-receptor mainly expressed in dividing endothelial cells. It regulates cell proliferation and survival and is upregulated at sites of vessel repair. Mutations in endoglin have been linked to the vascular disease hereditary hemorrhagic telangiectasia (HHT). HHT patients display dilated capillaries (telangiectasia) that are prone to rupture. Cancer patients receiving radiotherapy develop similar vascular damage in normal tissues lying in the irradiation field. If located in the mucosa, irradiation-induced telangiectasia can lead to severe bleeding. Therefore, this study was aimed at investigating the role of endoglin in radiation-induced telangiectasia formation. MATERIALS AND METHODS Kidneys of endoglin heterozygous (Eng(+/-)) or wild type mice were irradiated with 16 Gy. Mice were sacrificed after 20 weeks and changes in gene expression and protein levels were analysed. RESULTS Expression of TGF-beta target genes involved in radiation-induced fibrosis and fibrosis development in the kidney decreased in Eng(+/-) compared to wild type mice. Unexpectedly, Eng(+/-) mice also displayed reduced telangiectasia formation in the irradiated kidney. CONCLUSIONS Endoglin plays an important role in the development of irradiation-induced normal tissue damage. Future studies will show whether interfering with endoglin functions protects tissues from late radiation toxicity.
Collapse
Affiliation(s)
- Marion Scharpfenecker
- Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Scharpfenecker M, Kruse JJCM, Sprong D, Russell NS, Ten Dijke P, Stewart FA. Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. Int J Radiat Oncol Biol Phys 2009; 73:506-13. [PMID: 19147015 DOI: 10.1016/j.ijrobp.2008.09.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/05/2008] [Accepted: 09/26/2008] [Indexed: 02/07/2023]
Abstract
PURPOSE Transforming growth factor-beta (TGF-beta) and Notch signaling pathways are important regulators of vascular homeostasis and vessel remodeling; mutations in these pathways can lead to vascular disorders. Similar vascular phenotypes develop in the normal tissues of cancer patients as a long-term effect of radiotherapy. Irradiation most severely affects the capillaries, which become leaky and dilated and might eventually rupture. To investigate the mechanism of such capillary damage, we studied the effect of TGF-beta and Notch signaling in microvascular endothelial cells. METHODS AND MATERIALS Human microvascular endothelial cells were irradiated with 5 or 10 Gy and activation of TGF-beta and Notch signaling pathways was assessed by biochemical methods and a cell migration assay. RESULTS Ionizing radiation induced Smad2 phosphorylation and nuclear translocation and increased mRNA and protein expression of the activin-like kinase 5 (ALK5) target gene plasminogen activator inhibitor-1 (PAI-1). At the same time, we observed diminished Smad1/5/8 activation and downregulation of the ALK1 downstream target, inhibitor of DNA binding-1 (ID-1). We also measured an upregulation of the Notch ligand Jagged-1 and the target gene Hey1. Decreased inhibitor of DNA binding-1 levels coincided with a reduced ability of the cells to migrate. CONCLUSION Ionizing radiation shifts the balance from ALK1 to ALK5 signaling and activates the Notch pathway in endothelial cells. This combination of anti-angiogenic signals contributes to reduced cell migration after irradiation.
Collapse
Affiliation(s)
- Marion Scharpfenecker
- Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Hageman J, Kampinga HH. Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress Chaperones 2009; 14:1-21. [PMID: 18686016 PMCID: PMC2673897 DOI: 10.1007/s12192-008-0060-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/19/2008] [Accepted: 06/19/2008] [Indexed: 11/30/2022] Open
Abstract
In this manuscript, we describe the generation of a gene library for the expression of HSP110/HSPH, HSP70/HSPA and HSP40/DNAJ members. First, the heat shock protein (HSP) genes were collected from the gene databases and the gene families were analyzed for expression patterns, heat inducibility, subcellular localization, and protein homology using several bioinformatics approaches. These results can be used as a working draft model until data are confirmed by experimental approaches. In addition, we describe the generation of a HSPA/DNAJ overexpression library and tested the effect of different fusion tags on HSPA and DNAJ members using different techniques for measuring chaperone activity. These results show that we have cloned a high-quality heat shock protein expression library containing most members from the HSPH, HSPA, DNAJA and DNAJB families which will be useful for the chaperone community to unravel the function of the highly diverse family of human molecular chaperones.
Collapse
Affiliation(s)
- Jurre Hageman
- Section of Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | |
Collapse
|
23
|
Haase MG, Klawitter A, Bierhaus A, Yokoyama KK, Kasper M, Geyer P, Baumann M, Baretton GB. Inactivation of AP1 proteins by a nuclear serine protease precedes the onset of radiation-induced fibrosing alveolitis. Radiat Res 2008; 169:531-42. [PMID: 18439036 DOI: 10.1667/rr0946.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 12/10/2007] [Indexed: 11/03/2022]
Abstract
Radiation-induced lung damage comprises inflammation (alveolitis) as well as disturbed regulation of cell differentiation and proliferation (fibrosis). The transcriptional regulation of this process is poorly understood. One key transcription factor involved in the regulation of proliferation and differentiation is AP1 (activator protein 1). The present study examined changes in the DNA-binding activity of AP1 after irradiation and defined the underlying molecular mechanisms in an animal model. The right lungs of Fischer rats received a single radiation dose of 20 Gy. Lung tissue was tested for AP1 DNA-binding activity, AP1 mRNA, and levels of AP1 proteins as well as for c-Jun specific proteolytic activity. After an initial increase, the AP1 DNA-binding activity was completely lost starting at 5.5 weeks after irradiation, which is 2.5 weeks before the onset of fibrosing alveolitis. This was not caused by reduction of mRNA levels or size. Instead, a selective nuclear cleavage of c-Jun by a serine protease caused the loss of AP1 activity. Considering the central role of AP1 in cell proliferation and differentiation and the strict timely correlation to the onset of the disease, the complete loss of AP1 function is likely to play a critical role in radiation-induced fibrosing alveolitis.
Collapse
Affiliation(s)
- Michael G Haase
- Department of Pathology, Dresden University of Technology, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sugihara T, Murano H, Tanaka K, Oghiso Y. Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate gamma-ray irradiated murine cells. JOURNAL OF RADIATION RESEARCH 2008; 49:231-40. [PMID: 18285661 DOI: 10.1269/jrr.07074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Based on the results of previous microarray analyses of murine NIH3T3/PG13Luc cells irradiated with continuous low-dose-rate (LDR) gamma-ray or end-high-dose-rate-irradiations (end-HDR) at the end of the LDR-irradiation period, the inverse dose-rate-effects on gene expression levels were observed. To compare differences of the effects between LDR-irradiation and HDR-irradiation, HDR-irradiations at 2 different times, one (ini-HDR) at the same time at the start of LDR-irradiation and the other (end-HDR), were performed. The up-regulated genes were classified into two types, in which one was up-regulated in LDR-, ini-HDR-, and end-HDR irradiation such as Cdkn1a and Ccng1, which were reported as p53-dependent genes, and the other was up-regulated in LDR- and ini-HDR irradiations such as pro-collagen TypeIa2/Col1a2, TenascinC/Tnc, and Fibulin5/Fbln5, which were reported as extra-cellular matrix-related (ECM) genes. The time dependent gene expression patterns in LDR-irradiation were also classified into two types, in which one was an early response such as in Cdkn1a and Ccng1 and the other was a delayed response such as the ECM genes which have no linearity to total dose. The protein expression pattern of Cdkn1a increased dose dependently in LDR- and end-HDR-irradiations, but those of p53Ser15/18 and MDM2 in LDR-irradiations were different from end-HDR-irradiations. Furthermore, the gene expression levels of the ECM genes in embryonic fibroblasts from p53-deficient mice were not increased by LDR- and end-HDR-irradiation, so the delayed expressions of the ECM genes seem to be regulated by p53. Consequently, the inverse dose-rate-effects on the expression levels of the ECM genes in LDR- and end-HDR-irradiations may be explained from different time responses by p53 status.
Collapse
Affiliation(s)
- Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, Kamikita, Aomori, Japan.
| | | | | | | |
Collapse
|
25
|
Angenete E, Langenskiöld M, Palmgren I, Falk P, Oresland T, Ivarsson ML. uPA and PAI-1 in rectal cancer--relationship to radiotherapy and clinical outcome. J Surg Res 2008; 153:46-53. [PMID: 18533186 DOI: 10.1016/j.jss.2008.02.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 12/26/2007] [Accepted: 02/19/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND It is well known that the fibrinolytic system is of importance in inflammation, wound healing, and fibrosis development. However, it is also important in the process of tumor invasion and metastasis. We have investigated protein levels of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in rectal cancer and effects of radiotherapy, links to clinical outcome, and potential use as prognostic factors. MATERIALS AND METHODS Ninety-one patients with rectal cancer were studied. Blood samples and biopsies were taken during surgery and assayed with enzyme-linked immunosorbent assay for uPA and PAI-1, and patients were followed prospectively (0-96 mo). RESULTS Higher levels of uPA (P < 0.0001) and PAI-1 (P < 0.0001) were found in tumor compared with mucosa. Mucosa exposed to radiotherapy had higher levels of uPA (P < 0.0001) and of PAI-1 (P < 0.0001). Irradiated tumor tissue had higher levels of PAI-1 (P < 0.001). PAI-1 in tumor was correlated with T stage (P < 0.001) and N stage (P < 0.01). PAI-1 in plasma was higher in patients with synchronous distant metastases (P < 0.001). Cox regression was used to identify high levels of PAI-1 in tumor as an independent factor related to short disease-free survival (P < 0.01) and the ratio of uPA/PAI-1 to development of metastases (P < 0.01). CONCLUSIONS There is a relationship between PAI-1 in plasma and rectal cancer metastases. PAI-1 in tumor tissue is correlated to histopathological data and to outcome of rectal cancer. If these findings can be confirmed in larger trials, there will be a possibility to use PAI-1 as a prognostic factor.
Collapse
Affiliation(s)
- Eva Angenete
- Department of Surgery, Sahlgrenska University Hospital/Ostra, Göteborg University, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Milliat F, Sabourin JC, Tarlet G, Holler V, Deutsch E, Buard V, Tamarat R, Atfi A, Benderitter M, François A. Essential role of plasminogen activator inhibitor type-1 in radiation enteropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:691-701. [PMID: 18276785 DOI: 10.2353/ajpath.2008.070930] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intestinal radiation injury is a dose-limiting factor in radiation therapy for abdominal and pelvic cancers. Because transforming growth factor-beta1 is a key mediator involved in radiation-induced damage, we hypothesized that its target gene, plasminogen activator inhibitor type 1 (PAI-1), is an essential mediator of intestinal radiation toxicity. In a model of radiation enteropathy, survival was monitored and intestinal radiation injury was assessed in both wild-type (Wt) and PAI-1 knockout mice. Immunohistochemical labeling of PAI-1 was also assessed in patients treated with preoperative radiotherapy for rectal adenocarcinoma. Finally, the molecular mechanisms involved in radiation-induced PAI-1 expression were investigated. We found that PAI-1 -/- mice exhibited increased survival and better intestinal function compared with Wt mice. Intestinal radiation injury was attenuated in irradiated PAI-1 -/- mice compared with irradiated Wt mice, and irradiation increased blood cell-endothelial cell interactions in Wt but not PAI-1 -/- mice. In vivo, radiation-induced intestinal damage in mice, as well as in patients treated with radiotherapy, was associated with the up-regulation of PAI-1 in the endothelium. In vitro, irradiation increased PAI-1 expression in endothelial cells by a p53/Smad3-dependent mechanism. Together, these data demonstrate that PAI-1 plays a critical role in radiation-induced intestinal damage, suggesting that PAI-1 is an attractive target for preventing or reducing the side effects of radiation therapy.
Collapse
Affiliation(s)
- Fabien Milliat
- Laboratory of Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses; Unité Propre de Recherche et de l'Enseignement Supérieur, Equipe d'Accueil-2710, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) in basement membranes and interstitial tissues, resulting from increased synthesis or decreased degradation of ECM or both. The plasminogen activator/plasmin system plays an important role in ECM degradation, whereas the plasminogen activator inhibitor 1 (PAI-1) is a physiologic inhibitor of plasminogen activators. PAI-1 expression is increased in the lung fibrotic diseases and in experimental fibrosis models. The deletion of the PAI-1 gene reduces, whereas the overexpression of PAI-1 enhances, the susceptibility of animals to lung fibrosis induced by different stimuli, indicating an important role of PAI-1 in the development of lung fibrosis. Many growth factors, including transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha), as well as other chemicals/agents, induce PAI-1 expression in cultured cells and in vivo. Reactive oxygen and nitrogen species (ROS/RNS) have been shown to mediate the induction of PAI-1 by many of these stimuli. This review summarizes some recent findings that help us to understand the role of PAI-1 in the development of lung fibrosis and ROS/RNS in the regulation of PAI-1 expression during fibrogenesis.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
28
|
Das F, Ghosh-Choudhury N, Venkatesan B, Li X, Mahimainathan L, Choudhury GG. Akt kinase targets association of CBP with SMAD 3 to regulate TGFbeta-induced expression of plasminogen activator inhibitor-1. J Cell Physiol 2007; 214:513-27. [PMID: 17671970 DOI: 10.1002/jcp.21236] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor-beta (TGFbeta) controls expression of plasminogen activator inhibitor type 1 (PAI-1), which regulates degradation of extracellular matrix proteins in fibrotic diseases. The TGFbeta receptor-specific Smad 3 has been implicated in the PAI-1 expression. The mechanism by which non-Smad signaling contributes to this process is not known. We studied the cross-talk between Smad 3 and PI 3 kinase/Akt signaling in TGFbeta-induced PAI-1 expression in renal mesangial cells. Inhibition of PI 3 kinase and Akt kinase blocked TGFbeta- and Smad 3-mediated expression of PAI-1. In contrast, constitutively active PI 3 kinase and Akt kinase increased PAI-1 expression, similar to TGFbeta. Inhibition of PI 3 kinase and Akt kinase had no effect on TGFbeta-induced Smad 3 phosphorylation and its translocation to the nucleus. Notably, inhibition of PI 3 kinase-dependent Akt kinase abrogated TGFbeta-induced PAI-1 transcription, without affecting binding of Smad 3 to the PAI-1 Smad binding DNA element. However, PI 3 kinase inhibition and dominant negative Akt kinase antagonized the association of the transcriptional coactivator CBP with Smad 3 in response to TGFbeta, resulting in inhibition of Smad 3 acetylation. Together our findings identify TGFbeta-induced PI 3 kinase/Akt signaling as a critical regulator of Smad 3-CBP interaction and Smad 3 acetylation, which cause increased PAI-1 expression.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schilling D, Bayer C, Geurts-Moespot A, Sweep FCGJ, Pruschy M, Mengele K, Sprague LD, Molls M. Induction of plasminogen activator inhibitor type-1 (PAI-1) by hypoxia and irradiation in human head and neck carcinoma cell lines. BMC Cancer 2007; 7:143. [PMID: 17663760 PMCID: PMC1973081 DOI: 10.1186/1471-2407-7-143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/30/2007] [Indexed: 11/16/2022] Open
Abstract
Background Squamous cell carcinoma of the head and neck (SCCHN) often contain highly radioresistant hypoxic regions, nonetheless, radiotherapy is a common treatment modality for these tumours. Reoxygenation during fractionated radiotherapy is desired to render these hypoxic tumour regions more radiosensitive. Hypoxia additionally leads to up-regulation of PAI-1, a protein involved in tumour progression and an established prognostic marker for poor outcome. However, the impact of reoxygenation and radiation on PAI-1 levels is not yet clear. Therefore, we investigated the kinetics of PAI-1 expression and secretion after hypoxia and reoxygenation, and determined the influence of ionizing radiation on PAI-1 levels in the two human SCCHN cell lines, BHY and FaDu. Methods HIF-1α immunoblot was used to visualize the degree of hypoxia in the two cell lines. Cellular PAI-1 expression was investigated by immunofluorescence microscopy. ELISA was used to quantify relative changes in PAI-1 expression (cell lysates) and secretion (cell culture supernatants) in response to various lengths (2 – 4 h) of hypoxic exposure (< 0.66 % O2), reoxygenation (24 h, 20 % O2), and radiation (0, 2, 5 and 10 Gy). Results HIF-1α expression was induced between 2 and 24 h of hypoxic exposure. Intracellular PAI-1 expression was significantly increased in BHY and FaDu cells as early as 4 h after hypoxic exposure. A significant induction in secreted PAI-1 was seen after 12 to 24 h (BHY) and 8 to 24 h (FaDu) hypoxia, as compared to the normoxic control. A 24 h reoxygenation period caused significantly less PAI-1 secretion than a 24 h hypoxia period in FaDu cells. Irradiation led to an up-regulation of PAI-1 expression and secretion in both, BHY and FaDu cells. Conclusion Our data suggest that both, short-term (~4 – 8 h) and long-term (~20 – 24 h) hypoxic exposure could increase PAI-1 levels in SCCHN in vivo. Importantly, radiation itself could lead to PAI-1 up-regulation in head and neck tumours, whereas reoxygenation of hypoxic tumour cells during fractionated radiotherapy could counteract the increased PAI-1 levels.
Collapse
Affiliation(s)
- Daniela Schilling
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- GSF – Institute of Pathology, KKG, Innate Immunity in Tumor Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Christine Bayer
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Anneke Geurts-Moespot
- Department of Chemical Endocrinology, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, The Netherlands
| | - Fred CGJ Sweep
- Department of Chemical Endocrinology, Radboud University Nijmegen Medical Centre, Geert Grooteplein 8, 6500 HB Nijmegen, The Netherlands
| | - Martin Pruschy
- Department of Radiation Oncology, University Hospital Zürich, Ramistr. 100, 8091 Zürich, Switzerland
| | - Karin Mengele
- Clinical Research Unit of the Department of Obstetrics and Gynaecology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 München, Germany
| | - Lisa D Sprague
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Naumburgerstr. 96a, 07743 Jena, Germany
| | - Michael Molls
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
30
|
Wiegman EM, Blaese MA, Loeffler H, Coppes RP, Rodemann HP. TGFbeta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGFbeta-receptor I signalling. Radiother Oncol 2007; 83:289-95. [PMID: 17560675 DOI: 10.1016/j.radonc.2007.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/03/2007] [Accepted: 05/03/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGFbeta-1 and that this may be due to TGFbeta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGFbeta-1-receptor I-Smad signalling in mediating ATM activity following radiation exposure. MATERIALS AND METHODS A549 cells were stably transfected with a conditionally regulatable TGFbeta-1 antisense construct (Tet-on-system) to test clonogenic activity following irradiation. Phosphorylation profile of ATM, p53, and chk2 was determined in non-cycling, serum-starved cells by immunoblotting. Likewise, A549 wild type cells were used to identify cell cycle distribution as a function of irradiation with or without pretreatment with CMK, a specific inhibitor of furin protease involved in activation of latent TGFbeta-1. Furthermore Western and immunoblot analyses were performed on serum-starved cells to investigate the dependence of ATM- and p53-stimulation on TGFbeta-1-receptor I-Smad signalling by applying a specific TGFbeta-1-receptor I inhibitor. RESULTS Knock down of TGFbeta-1 by an antisense construct significantly increased clonogenic cell survival following exposure to ionizing radiation. Likewise, CMK treatment diminished the radiation induced G1 arrest of A549 cells. Moreover, both TGFbeta-1-knock down as well as CMK treatment inhibited the fast post-radiation phosphorylation of ATM, p53, and chk2. However, as shown by the use of a specific inhibitor TGFbeta-1-receptor I-Smad signalling was not involved in this fast activation of ATM and p53. CONCLUSIONS We confirm that TGFbeta-1 plays a critical role in the stimulation of ATM- and p53 signalling in irradiated cells. However, this fast stimulation seems not to be dependent on activation of TGFbeta-1-receptor I-Smad signalling as recently proposed.
Collapse
Affiliation(s)
- Erwin M Wiegman
- Department of Radiation Oncology, Eberhard-Karls-University Tuebingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
Radiation-induced alterations in cellular tissue homeostasis triggered by various molecular responses at the level of inter- and intracellular signaling processes cause both acute and late effects in normal tissue after radiation therapy. Some of the underlying molecular and cellular response pathways leading to radiation-induced tissue remodeling will be discussed, with special emphasis on vascular and parenchymal tissues.
Collapse
Affiliation(s)
- H Peter Rodemann
- Department of Radiation Oncology, Division of Radiobiology and Molecular Environmental Research, Eberhard-Karls University, Tübingen, Germany.
| | | |
Collapse
|
32
|
Akudugu JM, Bell RS, Catton C, Davis AM, Griffin AM, O'Sullivan B, Waldron JN, Ferguson PC, Wunder JS, Hill RP. Wound healing morbidity in STS patients treated with preoperative radiotherapy in relation to in vitro skin fibroblast radiosensitivity, proliferative capacity and TGF-β activity. Radiother Oncol 2006; 78:17-26. [PMID: 16380182 DOI: 10.1016/j.radonc.2005.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 11/04/2005] [Accepted: 12/02/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE In a recent study, we demonstrated that the ability of dermal fibroblasts, obtained from soft tissue sarcoma (STS) patients, to undergo initial division in vitro following radiation exposure correlated with the development of wound healing morbidity in the patients following their treatment with preoperative radiotherapy. Transforming growth factor beta (TGF-beta) is thought to play an important role in fibroblast proliferation and radiosensitivity both of which may impact on wound healing. Thus, in this study we examined the interrelationship between TGF-beta activity, radiosensitivity and proliferation of cultured fibroblasts and the wound healing response of STS patients after preoperative radiotherapy to provide a validation cohort for our previous study and to investigate mechanisms. PATIENTS AND METHODS Skin fibroblasts were established from skin biopsies of 46 STS patients. The treatment group consisted of 28 patients who received preoperative radiotherapy. Eighteen patients constituted a control group who were either irradiated postoperatively or did not receive radiation treatment. Fibroblast cultures were subjected to the colony forming and cytokinesis-blocked binucleation assays (low dose rate: approximately 0.02 Gy/min) and TGF-beta assays (high dose-rate: approximately 1.06 Gy/min) following gamma-irradiation. Fibroblast radiosensitivity and initial proliferative ability were represented by the surviving fraction at 2.4 Gy (SF(2.4)) and binucleation index (BNI), respectively. Active and total TGF-beta levels in fibroblast cultures were determined using a biological assay. Wound healing complication (WHC), defined as the requirement for further surgery or prolonged deep wound packing, was the clinical endpoint examined. RESULTS Of the 28 patients treated with preoperative radiotherapy, 8 (29%) had wound healing difficulties. Fibroblasts from patients who developed WHC showed a trend to retain a significantly higher initial proliferative ability after irradiation compared with those from individuals in the treatment group with normal wound healing, consistent with the results of our previous study. No link was observed between fibroblast radiosensitivity and WHC. Neither active nor total TGF-beta levels in cultures were significantly affected by irradiation. Fibroblast proliferation in unirradiated and irradiated cultures, as well as radiosensitivity, was not influenced by TGF-beta content. TGF-beta expression in fibroblast cultures did not reflect wound healing morbidity. CONCLUSIONS These data are consistent with our previous study and combined the results suggest that in vitro fibroblast proliferation after irradiation may be a useful predictor of wound healing morbidity in STS patients treated with preoperative radiotherapy. TGF-beta levels in culture do not predict WHC, suggesting that the role of TGF-beta in wound healing is likely controlled by other in vivo factors.
Collapse
Affiliation(s)
- John M Akudugu
- Division of Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ont., Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|