1
|
Kansikas M, Vähätalo L, Kantelinen J, Kasela M, Putula J, Døhlen A, Paloviita P, Kärkkäinen E, Lahti N, Arnez P, Kilpinen S, Alcala-Repo B, Pylvänäinen K, Pöyhönen M, Peltomäki P, Järvinen HJ, Seppälä TT, Renkonen-Sinisalo L, Lepistö A, Mecklin JP, Nyström M. Tumor-independent Detection of Inherited Mismatch Repair Deficiency for the Diagnosis of Lynch Syndrome with High Specificity and Sensitivity. CANCER RESEARCH COMMUNICATIONS 2023; 3:361-370. [PMID: 36875157 PMCID: PMC9979712 DOI: 10.1158/2767-9764.crc-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Lynch syndrome (LS) is the most common hereditary cancer syndrome. Early diagnosis improves prognosis and reduces health care costs, through existing cancer surveillance methods. The problem is finding and diagnosing the cancer predisposing genetic condition. The current workup involves a complex array of tests that combines family cancer history and clinical phenotypes with tumor characteristics and sequencing data, followed by a challenging task to interpret the found variant(s). On the basis of the knowledge that an inherited mismatch repair (MMR) deficiency is a hallmark of LS, we have developed and validated a functional MMR test, DiagMMR, that detects inherited MMR deficiency directly from healthy tissue without need of tumor and variant information. The validation included 119 skin biopsies collected from clinically pathogenic MMR variant carriers (MSH2, MSH6) and controls, and was followed by a small clinical pilot study. The repair reaction was performed on proteins extracted from primary fibroblasts and the interpretation was based on the MMR capability of the sample in relation to cutoff, which distinguishes MMR proficient (non-LS) from MMR deficient (LS) function. The results were compared with the reference standard (germline NGS). The test was shown to have exceptional specificity (100%) with high sensitivity (89%) and accuracy (97%). The ability to efficiently distinguish LS carriers from controls was further shown with a high area under the receiving operating characteristic (AUROC) value (0.97). This test offers an excellent tool for detecting inherited MMR deficiency linked to MSH2 or MSH6 and can be used alone or with conventional tests to recognize genetically predisposed individuals. SIGNIFICANCE Clinical validation of DiagMMR shows high accuracy in distinguishing individuals with hereditary MSH2 or MSH6 MMR deficiency (i.e., LS). The method presented overcomes challenges faced by the complexity of current methods and can be used alone or with conventional tests to improve the ability to recognize genetically predisposed individuals.
Collapse
Affiliation(s)
- Minttu Kansikas
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Laura Vähätalo
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka Kantelinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mariann Kasela
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Putula
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni Døhlen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pauliina Paloviita
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Emmi Kärkkäinen
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Niklas Lahti
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Philippe Arnez
- LS CancerDiag Ltd., Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sami Kilpinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Kirsi Pylvänäinen
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
| | - Minna Pöyhönen
- Department of Genetics, HUSLAB, Helsinki University Hospital Diagnostic Center, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | | | - Toni T. Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Medical Technology, University of Tampere, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Laura Renkonen-Sinisalo
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anna Lepistö
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Applied Tumor Genomics, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Liao CK, Lin YC, Hsu YJ, Chern YJ, You JF, Chiang JM. Deciding the operation type according to mismatch repair status among hereditary nonpolyposis colorectal cancer patients: should a tailored approach be applied, or does one size fit all? Hered Cancer Clin Pract 2021; 19:29. [PMID: 34187536 PMCID: PMC8243908 DOI: 10.1186/s13053-021-00186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although extended colectomy (EC) was recommended for HNPCC patients, previous studies did not show significantly improved overall survival. Immunohistochemical (IHC) stain of mismatch repair (MMR) gene protein expression is now a feasible and reliable test clinically. Therefore, we tried to investigate whether we could use MMR IHC stain to select operation types in HNPCC patients. PATIENTS AND METHODS Between 1995 and 2013, 186 HNPCC patients were collected. Status of MMR protein expression, perioperative clinic-pathological variables and post-operative follow up status were analyzed by multivariate analyses. RESULTS Sixty-five percent (121 of 186) patients of these HNPCC patients demonstrated loss of at least one MMR protein. There were several significant differences existing between deficient MMR (dMMR) and proficient MMR (pMMR) subgroups in terms of clinic-pathological characteristics. With the average follow-up duration of 93.9 months, we observed significantly high risk of developing metachronous CRC between SC and EC subgroups (crude rate 8.5% vs. 0%, p = 0.035). However, no significant difference was observed among the presence of extra-colonic tumors (12.4% vs. 5.8%, p = 0.284). The positive and negative prediction rate of metachronous CRC in dMMR subgroup was 12.8 and 87.2% while 1.9 and 98.1% in the pMMR subgroup. Survival outcomes were significantly affected by MMR status and resection types by multivariate analysis. Significantly better OS in dMMR subgroup (HR = 0.479, 95% CI: 0.257-0.894, p = 0.021) comparing with pMMR subgroup was observed. However, significant improved DFS (HR = 0.367, 95% CI: 0.172-.0787, p = 0.010) but not significant for OS (HR = 0.510, 95% CI: 0.219-1.150, p = 0.103) for EC subgroup compared with SC subgroup. Differences existing among different subgroups by combing extent of resection and MMR status. In dMMR subgroup, SC, compared with EC, demonstrated significantly worse DFS by multivariate analyses (HR = 3.526, 95% CI: 1.346-9.236, p = 0.010) but not for OS (HR = 2.387, 95% CI: 0.788-7.229, p = 0.124), however, no significantly differences of OS and DFS in pMMR subgroup between SC and EC were found. CONCLUSIONS Significantly better overall survival and higher rate of metachronous CRC exist in dMMR subgroup of HNPCC patients comparing with pMMR subgroup. Extended colectomy significantly improved DFS and was thus recommended for dMMR subgroup but not pMMR subgroup of HNPCC patients.
Collapse
Affiliation(s)
- Chun-Kai Liao
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist,, Taoyuan, Taiwan, 33305
| | - Yueh-Chen Lin
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist,, Taoyuan, Taiwan, 33305
| | - Yu-Jen Hsu
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist,, Taoyuan, Taiwan, 33305
| | - Yih-Jong Chern
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist,, Taoyuan, Taiwan, 33305
| | - Jeng-Fu You
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist,, Taoyuan, Taiwan, 33305
| | - Jy-Ming Chiang
- Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist,, Taoyuan, Taiwan, 33305. .,College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Abstract
AbstractLynch syndrome was formerly known as Hereditary Nonpolyposis Colorectal Cancer. Currently, these two nomenclatures each have their unique definitions and are no longer used interchangeably. The history of hereditary nonpolyposis colorectal cancer was first recognized formally in the literature by Henry Lynch in 1967. With advances of molecular genetics, there has been a transformation from clinical phenotype to genotype diagnostics. This has led to the ability to diagnose affected patients before they manifest with cancer, and therefore allow preventative surveillance strategies. Genotype diagnostics has shown a difference in penetrance of different cancer risks dependent on the gene containing the mutation. Surgery is recommended as prevention for some cancers; for others they are reserved for once cancer is noted. Various surveillance strategies are recommended dependent on the relative risk of cancer and the ability to intervene with surgery to impact on survival. Risk reduction through aspirin has shown some recent promise, and continues to be studied.
Collapse
|
4
|
Xu Y, Li C, Zhang Y, Guo T, Zhu C, Xu Y, Liu F. Comparison Between Familial Colorectal Cancer Type X and Lynch Syndrome: Molecular, Clinical, and Pathological Characteristics and Pedigrees. Front Oncol 2020; 10:1603. [PMID: 32984025 PMCID: PMC7493642 DOI: 10.3389/fonc.2020.01603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Objective This study aimed to compare the molecular, clinical, and pathological characteristics and pedigrees of familial colorectal cancer type X (FCCTX) with those of Lynch syndrome (LS) to provide a theoretical basis for the management of FCCTX. Methods Overall, 46 cases of FCCTX and 47 LS probands and affected families were enrolled between June 2008 and September 2018 for this study. Multigene cancer panel tests that included 139 genes were performed for all patients, and variants in each group were described. The clinical, pathological, and pedigree characteristics were also compared between the two groups. Results In total, 42 variants were detected in 27 (58.7%) cases in the FCCTX group, with BRCA1, BRCA2, POLE, POLD1, ATR, and ATM being the most frequently mutated genes. The mean onset age of colorectal cancer (CRC) was significantly older in the FCCTX group than in the LS group (53.57 ± 12.88 years vs. 44.36 ± 11.26 years, t = −9.204, p < 0.001). The proportion of patients with rectal cancer was also higher in the FCCTX group than in the LS group [43.5% (20/46) vs. 10.6% (5/47), χ2 = 12.823, p = 0.005]. Within a median follow-up time of 53.9 ± 37.0 months, the proportion of patients who developed metachronous CRC was significantly higher in the LS group than in the FCCTX group [34.0% (16/47) vs. 13.0% (6/46), χ2 = 5.676, p = 0.017]. When comparing pedigrees, older age at cancer onset and rectal cancer clustering were observed in the FCCTX families. A higher prevalence in male patients was also observed in the FCCTX families. Conclusion FCCTX is an entity distinct from LS, but its genetic etiology remains unknown. A larger multigene panel would be recommended for determining the underlying pathogenic variants. Considering the pathology and moderate penetrance of the CRC link to FCCTX, less stringent surgical treatments and colonoscopy surveillance would be preferable. Rectum preference is a typical feature of FCCTX. Colonoscopy surveillance in FCCTX families could be less intensive, and more attention should be given to male members.
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqin Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian'an Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
5
|
Xu Y, Huang Z, Li C, Zhu C, Zhang Y, Guo T, Liu F, Xu Y. Comparison of Molecular, Clinicopathological, and Pedigree Differences Between Lynch-Like and Lynch Syndromes. Front Genet 2020; 11:991. [PMID: 32973888 PMCID: PMC7466573 DOI: 10.3389/fgene.2020.00991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, we compared the molecular, clinical, and pathological characteristics, as well as pedigrees, between patients with Lynch-like syndrome (LLS) and confirmed Lynch syndrome (LS) to develop appropriate management strategies for patients with LLS and their affected family members. Between June 2008 and September 2018, 81 patients with LLS and 47 patients with LS who developed colorectal cancer (CRC) were enrolled in this study. Multigene panel testing included 139 genes and was performed for all patients. The variants identified in each group were described, and clinicopathological characteristics and pedigrees were compared between the two groups. In the LLS group, a total of 52 variants were detected in 44 (54.3%) patients. Among the 52 variants, 17 were variants of unknown significance in mismatch repair genes, and the other most frequently mutated genes were MUYTH, POLE, BRCA2, and GJB2. The proportion of early-onset patients was significantly higher among the LS probands than among the LLS probands (74.5 and 53.1%, respectively; χ2 = 5.712, P = 0.017). On the other hand, the proportion of primary CRC developed in the rectum was higher in the LLS group than in the LS group (25.9 and 10.6%, respectively; χ2 = 2.358, P = 0.046). There were no significant differences in the occurrence of metachronous CRC (P = 0.632) and extra-colorectal cancer (extra-CRC) (P = 0.145) between the two groups. However, analysis of pedigrees showed that more patients developed CRC in the LS families (P = 0.013), whereas more patients with extra-CRC were observed in the LLS families (P = 0.045). A higher prevalence of male patients was observed in the LLS families (P = 0.036). In conclusion, LLS should be classified as a mixed entity, containing cases of LS, other hereditary cancer syndromes, and sporadic CRC. The high risks of CRC and extra-CRCs, which were found in this study, suggest tailored management policy and surveillance should be formulated based on individual and family risk. The surveillance regimen can be based on the presence of confirmed pathogenic/likely pathogenic germline variant(s) and family history.
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zonghao Huang
- Hospital Information Centre, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Congcong Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqin Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tian'an Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Sun CY, Chiang JM, Chen TC, Hung HY, You JF. Different surgical outcome and follow-up status between dMMR and pMMR colorectal cancer patients who fulfilled with Amsterdam-II criteria. World J Surg Oncol 2020; 18:195. [PMID: 32767993 PMCID: PMC7414700 DOI: 10.1186/s12957-020-01976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background Although hereditary non-polyposis colorectal cancer (HNPCC) could be subtyped into proficient or deficient mismatch repair gene expression (pMMR or dMMR), distinct clinical features between these two subgroups patients were rarely reported. Methods We retrospectively analyzed 175 hereditary non-polyposis colorectal cancer (HNPCC) patients between January 1995 and December 2012. Cox proportional hazards model was used to compare the differences between two subgroups. Results Significant differences of disease free survival (DFS) and overall survival (OS) exist between dMMR and pMMR. In addition to other factors including younger mean age of diagnosis for dMMR patients (48.6 years vs. 54.3 years), operation type (more extended colectomy for dMMR 35.8% vs. 14.5%), tumor location (right colon predominance for dMMR 61.7% vs. 27.3% and more rectum cases for pMMR 41.8% vs. 11.7%), tumor differentiation (more poor differentiation for dMMR 23.3% vs. 9.0%), N staging (more N0 cases for dMMR 70.8% vs. 50.9%), more frequently presence of extra-colonic tumors for dMMR (16.7% vs.1.8%), and lower recurrence rates (9.1% vs.35.3%). Significantly different cumulative incidences of developing metachronous colorectal cancer were observed with 6.18 for pMMR patients and 20.57 person-years for dMMR patients (p < 0.001). Conclusions Distinct clinicopathological features significantly exist between dMMR and pMMR subtypes patient, MMR status should be consider to tailor operation types and follow up surveillance between these two subgroups patients who all fulfilled with Amsterdam-II criteria.
Collapse
Affiliation(s)
- Ci-Yuan Sun
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan. .,College of Medicine, Chang Gung University, No. 5, Fu-Hsing Rd. Kuei-Shan, Tao-Yuan, 333, Taiwan.
| | - Jy-Ming Chiang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan.,Chang Gung University, College of Medicine, Tao-Yuan, Taiwan
| | - Tse-Ching Chen
- Chang Gung University, College of Medicine, Tao-Yuan, Taiwan.,Department of Pathology, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan
| | - Hsin-Yun Hung
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan
| | - Jeng-Fu You
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Lin-Kou Medical Center, Tao-Yuan, Taiwan
| |
Collapse
|
7
|
Choi YH, Lakhal-Chaieb L, Kröl A, Yu B, Buchanan D, Ahnen D, Le Marchand L, Newcomb PA, Win AK, Jenkins M, Lindor NM, Briollais L. Risks of Colorectal Cancer and Cancer-Related Mortality in Familial Colorectal Cancer Type X and Lynch Syndrome Families. J Natl Cancer Inst 2020; 111:675-683. [PMID: 30380125 DOI: 10.1093/jnci/djy159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The risk of cancers is well characterized in Lynch syndrome (LS) families but has been less studied in familial colorectal cancer type X (FCCTX) families. METHODS In this article, we compare the risk estimates of first and second colorectal cancers (CRCs) in 168 FCTTX and 780 LS families recruited through the Colon Cancer Family Registry as well as the risk of cancer-related deaths and disease-free survival (DFS) after a first CRC. Our methodology is based on a survival analysis approach, developed specifically to model the occurrence of successive cancers (ie, first and second CRCs) in the presence of competing risk events (ie, death from any causes). RESULTS We found an excess risk of first and second CRC in individuals with LS compared to FCCTX family members. However, for an average age at first CRC of 60 years in FCCTX families and 50 years in LS families, the DFS rates were comparable in men but lower in women from FCCTX vs LS families, eg , 75.1% (95% confidence interval [CI] = 69.0% to 80.9%) vs 78.9% (95% CI = 76.3% to 81.3%) for the 10-year DFS. The 10-year risk of cancer-related death was higher in FCCTX families vs LS families, eg, 15.4% in men (95% CI = 10.9% to 19.8%) and 19.3% in women (95% CI = 13.6% to 24.7%) vs 8.9% (95% CI = 7.5% to 11.4%) and 8.7% (95% CI = 7.1% to 10.8%), respectively. CONCLUSIONS Individuals with CRCs arising in the context of FCCTX do not experience the same improved DFS and overall survival of those with LS, and that difference may be relevant in management decisions.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Lajmi Lakhal-Chaieb
- Department of Mathematics and Statistics, Laval University, Québec, QC, Canada
| | - Agnieszka Kröl
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bing Yu
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Daniel Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Dennis Ahnen
- Division of Gastroenterology, Faculty of Medicine, University of Colorado, Aurora, CO
| | - Loic Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI
| | - Polly A Newcomb
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Mark Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | - Laurent Briollais
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Xu Y, Li C, Wang Z, Liu F, Xu Y. Comparison of suspected Lynch syndrome patients carrying BRCA and BRCA-like variants with Lynch syndrome probands: Phenotypic characteristics and pedigree analyses. Mol Genet Genomic Med 2020; 8:e1359. [PMID: 32548945 PMCID: PMC7434599 DOI: 10.1002/mgg3.1359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) patients diagnosed with Lynch syndrome (LS) are recommended genetic testing. Increasing numbers of germline variants involved in homologous recombination have been identified in suspected LS patients. This study compared phenotypic the characteristics of suspected LS patients carrying BRCA and BRCA‐like variants with those of LS patients. Methods Forty‐two patients carrying pathogenic variants of DNA mismatch repair (MMR) genes (MMR group), 9 carrying BRCA variants, and 11 carrying BRCA‐like variants (BRCA/BRCA‐like group) who met LS clinical criteria were enrolled in this study. Clinical characteristics, pedigrees, and survival rates were compared and BRCA variants were analyzed. Results The earliest CRC‐onset age and tumor differentiation were higher in the BRCA/BRCA‐like group than in the MMR group. Metachronous CRCs were more numerous in the MMR group, resulting in a higher progression‐free survival rate in the BRCA/BRCA‐like group. Extra‐colorectal cancers were more frequently observed in the BRCA/BRCA‐like group. BRCA2 and BRCA1 variants were clustered in exons 11 and 4/7, respectively. Conclusion BRCA and BRCA‐like variants in CRC patients with LS showed moderate penetrance. BRCA/BRCA‐like variant carriers had a higher risk for extra‐colorectal cancers. Surveillance of susceptible organs other than the intestine should be performed for probands and affected family members.
Collapse
Affiliation(s)
- Yun Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Academy of Science & Technology, Shanghai, China
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Xicola RM, Clark JR, Carroll T, Alvikas J, Marwaha P, Regan MR, Lopez-Giraldez F, Choi J, Emmadi R, Alagiozian-Angelova V, Kupfer SS, Ellis NA, Llor X. Implication of DNA repair genes in Lynch-like syndrome. Fam Cancer 2019; 18:331-342. [PMID: 30989425 DOI: 10.1007/s10689-019-00128-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients and determined their tumor's mutational profiles using FFPE DNA. Six hundred and fifty-four consecutive CRC patients were screened for suspected LS using MSI and absence of MLH1 methylation. Suspected LS cases were exome sequenced to identify germline and somatic mutations. Single nucleotide variants were used to characterize mutational signatures. We identified 23 suspected LS cases. Germline sequence analysis of 16 available samples identified five cases with LS mutations and 11 cases without LS mutations, LLS. Most LLS tumors had a combination of somatic MMR gene mutation and loss of heterozygosity. LLS patients were relatively young and had excess first-degree relatives with cancer. Four of the 11 LLS patients had rare likely pathogenic variants in genes that maintain genome integrity. Moreover, tumors from this group had a distinct mutational signature compared to tumors from LLS patients lacking germline mutations in these genes. In summary, more than a third of the LLS patients studied had germline mutations in genes that maintain genome integrity and their tumors had a distinct mutational signature. The possibility of hereditary factors in LLS warrants further studies so counseling can be properly informed.
Collapse
Affiliation(s)
- Rosa M Xicola
- Department of Internal Medicine and Cancer Center, Yale University School of Medicine, P. O. Box 208019, 333 Cedar Street/LMP 1080, New Haven, CT, 06520-8019, USA
| | - Julia R Clark
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Timothy Carroll
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Jurgis Alvikas
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Priti Marwaha
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Maureen R Regan
- Department of Medicine and Cancer Center, University of Illinois at Chicago, 1020N CSB, Chicago, IL, 60612, USA
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis, Yale University, 830 West Campus Drive, Orange, CT, 06477, USA
| | - Jungmin Choi
- Department of Genetics and Yale Center for Genome Analysis, Yale University School of Medicine, 830 West Campus Drive, Orange, CT, 06477, USA
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL, 60612, USA
| | | | - Sonia S Kupfer
- Center for Clinical Cancer Genetics, The University of Chicago, 900 East 57th Street, Chicago, IL, 60637, USA
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724-5024, USA
| | - Xavier Llor
- Department of Internal Medicine and Cancer Center, Yale University School of Medicine, P. O. Box 208019, 333 Cedar Street/LMP 1080, New Haven, CT, 06520-8019, USA.
| |
Collapse
|
10
|
Kamiza AB, Hsieh L, Tang R, Chien H, Lai C, Chiu L, Lo T, Hung K, You J, Wang W, Hsiung CA, Yeh C. Polymorphisms of DNA repair genes are associated with colorectal cancer in patients with Lynch syndrome. Mol Genet Genomic Med 2018; 6:533-540. [PMID: 29664240 PMCID: PMC6081223 DOI: 10.1002/mgg3.402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA repair genes are crucial for maintaining genomic stability by preventing mutagenesis and carcinogenesis. The present retrospective cohort study aimed at investigating whether MLH1, APEX1, MUTYH, OGG1, NUDT1, XRCC5, XPA, and ERCC2 single nucleotide polymorphisms (SNPs) are associated with colorectal cancer (CRC) in Chinese population with Lynch syndrome. METHODS From Amsterdam criteria family registry, we identified 270 patients with Lynch syndrome. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between DNA repair SNPs and CRC were calculated using a weighted Cox proportional hazard regression model. RESULTS Heterozygous variants of rs1799832 in NUDT1 (HR = 2.97, 95% CI = 1.51-5.83) and rs13181 in ERCC2 (HR = 2.69, 95% CI = 1.10-6.55) were significantly associated with an increased risk of CRC compared with wild-type homozygous CC and TT genotypes, respectively. However, the variant CG+GG genotype of MUTYH rs3219489 was associated with a decreased risk of CRC (HR = 0.49, 95% CI = 0.26-0.91) compared with the homozygous CC wild-type counterparts. CONCLUSION Our findings revealed that polymorphisms of DNA repair genes that include NUDT1, ERCC2, and MUTYH are associated with CRC in patients with Lynch syndrome in Chinese population. Further studies with large sample size are needed to confirm our findings.
Collapse
Affiliation(s)
- Abram B. Kamiza
- School of Public HealthCollege of Public HealthTaipei Medical UniversityTaipeiTaiwan
| | - Ling‐Ling Hsieh
- Department of Public HealthCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Reiping Tang
- Colorectal SectionDepartment of SurgeryChang Gung Memorial HospitalTaoyuanTaiwan
- School of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Huei‐Tzu Chien
- Department of Public HealthCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Nutrition and Health SciencesChang Gung University of Science and TechnologyTaoyuanTaiwan
| | - Chih‐Hsiung Lai
- Department of Public HealthCollege of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Li‐Ling Chiu
- Department of Public HealthCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Nutrition and Health SciencesChang Gung University of Science and TechnologyTaoyuanTaiwan
| | - Tsai‐Ping Lo
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Kuan‐Yi Hung
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Jeng‐Fu You
- Colorectal SectionDepartment of SurgeryChang Gung Memorial HospitalTaoyuanTaiwan
- School of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Wen‐Chang Wang
- Ph.D. Program for Translational MedicineCollege of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Chao A. Hsiung
- Institute of Population Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Chih‐Ching Yeh
- School of Public HealthCollege of Public HealthTaipei Medical UniversityTaipeiTaiwan
- Department of Public HealthChina Medical UniversityTaichungTaiwan
| |
Collapse
|
11
|
Dominguez-Valentin M, Nakken S, Tubeuf H, Vodak D, Ekstrøm PO, Nissen AM, Morak M, Holinski-Feder E, Martins A, Møller P, Hovig E. Identification of genetic variants for clinical management of familial colorectal tumors. BMC MEDICAL GENETICS 2018; 19:26. [PMID: 29458332 PMCID: PMC5819082 DOI: 10.1186/s12881-018-0533-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
Background The genetic mechanisms for families who meet the clinical criteria for Lynch syndrome (LS) but do not carry pathogenic variants in the mismatch repair (MMR) genes are still undetermined. We aimed to study the potential contribution of genes other than MMR genes to the biological and clinical characteristics of Norwegian families fulfilling Amsterdam (AMS) criteria or revised Bethesda guidelines. Methods The Hereditary Cancer Biobank of the Norwegian Radium Hospital was interrogated to identify individuals with a high risk of developing colorectal cancer (CRC) for whom no pathogenic variants in MMR genes had been found in routine diagnostic DNA sequencing. Forty-four cancer susceptibility genes were selected and analyzed by using our in-house designed TruSeq amplicon-based assay for targeted sequencing. RNA splicing- and protein-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as likely to affect splicing were experimentally analyzed by resorting to minigene assays. Results We identified a patient who met the revised Bethesda guidelines and carried a likely pathogenic variant in CHEK2 (c.470 T > C, p.I157T). In addition, 25 unique VUS were identified in 18 individuals, of which 2 exonic variants (MAP3K1 c.764A > G and NOTCH3 c.5854G >A) were analyzed in the minigene splicing assay and found not to have an effect on RNA splicing. Conclusions Among high-risk CRC patients that fulfill the AMS criteria or revised Bethesda guidelines, targeted gene sequencing identified likely pathogenic variant and VUS in other genes than the MMR genes (CHEK2, NOTCH3 and MAP3K1). Our study suggests that the analysis of genes currently excluded from routine molecular diagnostic screens may confer cancer susceptibility. Electronic supplementary material The online version of this article (10.1186/s12881-018-0533-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Daniel Vodak
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Per Olaf Ekstrøm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anke M Nissen
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Monika Morak
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Campus Innenstadt, Klinikum der Universität München, Ziemssenstr. 1, Munich, Germany.,MGZ-Medizinisch Genetisches Zentrum, Munich, Germany
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie Univ, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pål Møller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Human Medicine, Universität Witten, Herdecke, Germany.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway.,Institute of Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Russo A, Sala P, Alberici P, Gazzoli I, Radice P, Montefusco C, Torrini M, Mareni C, Fornasarig M, Santarosa M, Viel A, Benatti P, Pedroni M, De Leon MP, Lucci-Cordisco E, Genuardi M, Messerini L, Stigliano V, Cama A, Curia MC, De Lellis L, Signoroni S, Pierotti MA, Bertario L. Prognostic Relevance of MLH1 and MSH2 Mutations in Hereditary Non-Polyposis Colorectal Cancer Patients. TUMORI JOURNAL 2018; 95:731-8. [DOI: 10.1177/030089160909500616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background Colorectal carcinoma patients from hereditary non-polyposis colorectal cancer families are suggested to have a better prognosis than sporadic colorectal carcinoma cases. Since the majority of hereditary non-polyposis colorectal cancer-related colorectal carcinomas are characterized by microsatellite instability due to germline mutations in DNA mismatch repair genes, this is consistent with the prolonged survival observed in sporadic microsatellite instability-positive colorectal carcinoma compared to microsatellite stable cases. However, a fraction of colorectal carcinoma cases belongs to families that, despite fulfilling the clinical criteria for hereditary non-polyposis colorectal cancer, do not carry mismatch repair gene mutations. Our aim was to verify to what extent the genotypic heterogeneity influences the prognosis of hereditary non-polyposis colorectal cancer patients. Methods A survival analysis was performed on 526 colorectal carcinoma cases from 204 Amsterdam Criteria-positive hereditary non-polyposis colorectal cancer families. Enrolled cases were classified as MLH1-positive, MSH2-positive and mutation-negative, according to the results of genetic testing in each family. Results Five-year survival rates were 0.73 (95% CI, 0.66-0.80), 0.75 (95% CI, 0.66-0.84) and 0.62 (95% CI, 0.55-0.68) for MLH1-positive, MSH2-positive and mutation-negative groups, respectively (logrank test, P = 0.01). Hazard ratio, computed using Cox regression analysis and adjusted for age, sex, tumor site and stage, was 0.71 (95% CI, 0.51-0.98) for the mutation-positive compared to the mutation-negative group. Moreover, in the latter group, patients with microsatellite instability-positive colorectal carcinomas showed a better outcome than microsatellite stable cases (5-year survival rates, 0.81 and 0.60, respectively; logrank test, P = 0.006). Conclusions Our results suggest that the prognosis of hereditary non-polyposis colorectal cancer-related colorectal carcinoma patients depends on the associated constitutional mismatch repair genotype.
Collapse
Affiliation(s)
| | - Paola Sala
- Department of Preventive-Predictive Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| | - Paola Alberici
- Department of Experimental Oncology and Molecular Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| | - Isabella Gazzoli
- Department of Experimental Oncology and Molecular Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| | - Paolo Radice
- Department of Experimental Oncology and Molecular Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| | - Claudia Montefusco
- Department of Experimental Oncology and Molecular Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| | | | | | - Mara Fornasarig
- Gastroenterology Unit, National Cancer Institute, Aviano (PN)
| | | | - Alessandra Viel
- Experimental Oncology 1, National Cancer Institute, Aviano (PN)
| | - Piero Benatti
- First Medical Division, Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena
| | - Monica Pedroni
- First Medical Division, Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena
| | - Maurizio Ponz De Leon
- First Medical Division, Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena
| | | | - Maurizio Genuardi
- Genetics Unit, Department of Clinical Pathophysiology, University of Florence, Florence
| | - Luca Messerini
- Department of Clinical Pathology, University of Florence, Florence
| | - Vittoria Stigliano
- Gastroenterology and Digestive Endoscopy Unit, Regina Elena Cancer Institute, Rome
| | - Alessandro Cama
- Department of Oncology and Neurosciences, University “G. D'Annunzio”, and Center of Excellence on Aging “G. D'Annunzio”, Chieti
| | - Maria Cristina Curia
- Department of Oncology and Neurosciences, University “G. D'Annunzio”, and Center of Excellence on Aging “G. D'Annunzio”, Chieti
| | - Laura De Lellis
- Department of Oncology and Neurosciences, University “G. D'Annunzio”, and Center of Excellence on Aging “G. D'Annunzio”, Chieti
| | - Stefano Signoroni
- Department of Preventive-Predictive Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| | - Marco A Pierotti
- IRCCS Istituto Nazionale Tumori Foundation, Milan, and Molecular Genetics of Cancer, FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Lucio Bertario
- Department of Preventive-Predictive Medicine, IRCCS Istituto Nazionale Tumori Foundation, Milan
| |
Collapse
|
13
|
Sepulveda AR, J. Del Portillo A. Molecular Basis of Diseases of the Gastrointestinal Tract. MOLECULAR PATHOLOGY 2018:387-415. [DOI: 10.1016/b978-0-12-802761-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Nejadtaghi M, Jafari H, Farrokhi E, Samani KG. Familial Colorectal Cancer Type X (FCCTX) and the correlation with various genes-A systematic review. Curr Probl Cancer 2017; 41:388-397. [PMID: 29096939 DOI: 10.1016/j.currproblcancer.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/10/2017] [Accepted: 10/12/2017] [Indexed: 02/09/2023]
Abstract
Familial Colorectal Cancer Type X (FCCTX) is a type of hereditary nonpolyposis colorectal cancer in accordance to Amsterdam criteria-1 for Lynch syndrome, with no related mutation in mismatch repair gene. FCCTX is microsatellite stable and is accounted for 40% of families with Amsterdam criteria-1 with a high age of onset. Thus, the carcinogenesis of FCCTX is different compared to Lynch syndrome. In addition to the microsatellite stability and the presence of less predominant tumors in proximal colon, various clinical features have also been associated with FCCTX in comparison with Lynch syndrome such as no increased risk of extra-colonic cancers, older age of diagnosis and higher adenoma/carcinoma rate. Genetic etiology of this type of cancer which is autosomal dominant is unknown. In this review, we focus on the genes and their variants identified in this type of CRC. In order to find out the correlation between FCCTX and various genes database such as PubMed and PMC, search engine such as Google scholar and portals such as Springer and Elsevier have been searched. Based on our literature search, several studies suggest that FCCTX is a heterogeneous type of disease with different genetic variants. Recent studies describe the correlation between FCCTX and genes such as BRCA2, SEMA4, NTS, RASSF9, GALNT12, KRAS, BRAF, APC, BMPR1A, and RPS20. Considering the fact that BRCA2 has the highest mutation rate (60%) and is one of the most crucial DNA repair genes, it will be considered as a big role player in this type of cancer in comparison with other genes.
Collapse
Affiliation(s)
- Mahdieh Nejadtaghi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Hamideh Jafari
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Effat Farrokhi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran.
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| |
Collapse
|
15
|
Zetner DB, Bisgaard ML. Familial Colorectal Cancer Type X. Curr Genomics 2017; 18:341-359. [PMID: 29081690 PMCID: PMC5635618 DOI: 10.2174/1389202918666170307161643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 12/26/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022] Open
Abstract
The genetic background is unknown for the 50-60% of the HNPCC families, who fulfill the Amsterdam criteria, but do not have a mutation in an MMR gene, and is referred to as FCCTX. This study reviews the clinical, morphological and molecular characteristics of FCCTX, and discusses the molecular genetic methods used to localize new FCCTX genes, along with an overview of the genes and chromosomal areas that possibly relate to FCCTX. FCCTX is a heterogeneous group, mainly comprising cases caused by single high-penetrance genes, or by multiple low-penetrance genes acting together, and sporadic CRC cases. FCCTX differs in clinical, morphological and molecular genetic characteristics compared to LS, including a later age of onset, distal location of tumours in the colon, lower risk of developing extracolonic tumours and a higher adenoma/carcinoma ratio, which indicates a slower progression to CRC. Certain characteristics are shared with sporadic CRC, e.g. similarities in gene expression and a high degree of CIN+, with significanly increased 20q gain in FCCTX. Other molecular characteristics of FCCTX include longer telomere length and hypomethylation of LINE-1, both being a possible explanation for CIN+. Some genes in FCCTX families (RPS20, BMPR1A, SEMA4A) have been identified by using a combination of linkage analysis and sequencing. Sequencing strategies and subsequent bioinformatics are improving fast. Exome sequencing and whole genome sequencing are currently the most promising tools. Finally, the involvement of CNV’s and regulatory sequences are widely unexplored and would be interesting for further investigation in FCCTX.
Collapse
Affiliation(s)
- Diana Bregner Zetner
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Luise Bisgaard
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Anele CC, Adegbola SO, Askari A, Rajendran A, Clark SK, Latchford A, Faiz OD. Risk of metachronous colorectal cancer following colectomy in Lynch syndrome: a systematic review and meta-analysis. Colorectal Dis 2017; 19:528-536. [PMID: 28407411 DOI: 10.1111/codi.13679] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/26/2017] [Indexed: 12/23/2022]
Abstract
AIM Lynch syndrome (LS) accounts for 2-4% of all colorectal cancer (CRC) cases, and is associated with an increased risk of developing metachronous colorectal cancer (mCRC). The role of extended colectomy in LS CRC is controversial. There are limited studies comparing the risk of mCRC following segmental colectomy and extended colectomy. The objective of this systematic review is to evaluate the risk of developing mCRC following segmental and extended colectomy for LS CRC and endoscopic compliance. METHOD A systematic review of major databases was performed using predefined terms. All original articles published in English comparing the risk of mCRC in LS patients after segmental and extended colectomy from 1950 to January 2016 were included. RESULTS The search retrieved 324 studies. Six studies involving 871 patients met the inclusion criteria. Of these, 705 (80.9%) underwent segmental colectomy and 166 (19.1%) extended colectomy. Average follow-up was 91.2 months. The mCRC rate was 22.8% and 6% in the segmental and extended colectomy groups, respectively. The segmental group were over four times more likely to develop mCRC (OR 4.02, 95% CI: 2.01-8.04, P < 0.0001). mCRC occurred in patients after segmental colectomy despite 1-2-yearly postoperative endoscopic surveillance. CONCLUSION This result suggests that extended colectomy reduces the risk of mCRC by over four-fold compared with segmental colectomy. mCRC occurred in the segmental group despite postoperative endoscopic surveillance. This needs to be borne in mind when deciding on the appropriate surgical management of LS patients with CRC. We recommend that extended colectomy should be considered for patients with confirmed LS CRC.
Collapse
Affiliation(s)
- C C Anele
- Department of Surgery and Cancer, Imperial College London, London, UK.,St Mark's Hospital and Academic Institute, Middlesex, UK
| | - S O Adegbola
- Department of Surgery and Cancer, Imperial College London, London, UK.,St Mark's Hospital and Academic Institute, Middlesex, UK
| | - A Askari
- Surgical Epidemiology Trials and Outcomes Centre, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - A Rajendran
- Department of Gastroenterology, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - S K Clark
- Department of Surgery and Cancer, Imperial College London, London, UK.,St Mark's Hospital and Academic Institute, Middlesex, UK
| | - A Latchford
- Department of Gastroenterology, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - O D Faiz
- Department of Surgery and Cancer, Imperial College London, London, UK.,St Mark's Hospital and Academic Institute, Middlesex, UK
| |
Collapse
|
17
|
DNA Methylation Identifies Loci Distinguishing Hereditary Nonpolyposis Colorectal Cancer Without Germ-Line MLH1/MSH2 Mutation from Sporadic Colorectal Cancer. Clin Transl Gastroenterol 2016; 7:e208. [PMID: 27977020 PMCID: PMC5288582 DOI: 10.1038/ctg.2016.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Objectives: Roughly half of hereditary nonpolyposis colorectal cancer (HNPCC) cases are Lynch syndrome and exhibit germ-line mutations in DNA mismatch repair (MMR) genes; the other half are familial colorectal cancer (CRC) type X (FCCTX) and are MMR proficient. About 70% of Lynch syndrome tumors have germ-line MLH1 or MSH2 mutations. The clinical presentation, histopathological features, and carcinogenesis of FCCTX resemble those of sporadic MMR-proficient colorectal tumors. It is of interest to obtain biomarkers that distinguish FCCTX from sporadic microsatellite stable (MSS) CRC, to develop preventive strategies. Methods: The tumors and adjacent normal tissues of 40 patients with HNPCC were assayed using the Illumina Infinium HumanMethylation27 (HM27) BeadChip to assess the DNA methylation level at about 27,000 loci. The germ-line mutation status of MLH1 and MSH2 and the microsatellite instability status in these patients were obtained. Genome-wide DNA methylation measurements of three groups of patients with general CRC were downloaded from public domain databases. Probes with DNA methylation levels that differed significantly between patients with sporadic MSS CRC and FCCTX were examined, to explore their potential as biomarkers. Results: We found that MSS HNPCC tumors were overwhelmingly hypomethylated compared with those from patient groups with other types of CRC, including germ-line MLH1/MSH2-mutated HNPCC and sporadic MSS CRC. Five gene-marker panels that exhibited a sensitivity of 100% and a specificity higher than 90% in both discovery and validation cohorts were proposed to distinguish MSS HNPCC tumors from sporadic MSS CRC. Conclusions: Our results warrant further investigation and validation. The loci identified here may become useful biomarkers for distinguishing between FCCTX and sporadic MSS CRC tumors.
Collapse
|
18
|
DNA copy number profiling in microsatellite-stable and microsatellite-unstable hereditary non-polyposis colorectal cancers by targeted CNV array. Funct Integr Genomics 2016; 17:85-96. [DOI: 10.1007/s10142-016-0532-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/19/2023]
|
19
|
Medina-Arana V, Rahy-Martín A, Delgado-Plasencia L, Martínez-Riera A, León-Ayllón D, Rodríguez-Castellano D, Bravo-Gutiérrez A, Fernández-Peralta A, González-Aguilera JJ. Clinicopathological differences between familial colorectal cancer type X and sporadic cancer in an isolated area of spain. Colorectal Dis 2016; 18:O388-O396. [PMID: 27671100 DOI: 10.1111/codi.13532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
AIM Very few studies have compared the epidemiological characteristics of patients with familial colorectal cancer Type X (FCCTX) with those of sporadic colorectal cancer (S-CRC). The aim of this study was to compare clinicopathological characteristics and survival between FCCTX and S-CRC in patients from a historically isolated geographical region. METHOD A retrospective study was carried out of patients with S-CRC and FCCTX treated in the Canary Islands. Family and personal history of colorectal cancer (CRC) were recorded, together with genetic (microsatellite instability), immunohistochemical and clinical variables. RESULTS Forty-eight (10.6%) of 451 patients were classified as FCCTX and the remaining 403 (89.4%) as S-CRC. Age at the diagnosis of tumour was significantly lower in FCCTX than in S-CRC (64.06 ± 12.65 years vs 69.13 ± 10.80 years; P = 0.01; Z = -2.48). Patients with FCCTX had a larger number of synchronous tumours (P = 0.09). Recurrence was significantly higher in FCCTX than in S-CRC (18.7% vs 8.6%; P = 0.01). Survival correlated significantly with the number of first-degree and second-degree relatives with CRC (P = 0.04; OR: 1.368, 95% CI: 1.01-1.84, and P = 0.04; OR: 1.363, 95% CI: 1.08-1.65) and with the total number of cases of CRC in the immediate family (P < 0.01; OR: 1.377, 95% CI: 1.17-1.61). Recurrence-free time was significantly lower in patients with FCCTX (log-rank = 0.01). CONCLUSION Significant differences were found in several demographic and clinicopathological variables between patients with FCCTX and patients with S-CRC. These included increased tumour presentation under the age of 50 years and a higher recurrence rate in patients with FCCTX, suggesting an increased risk of CRC in this group.
Collapse
Affiliation(s)
- V Medina-Arana
- Department of General and Digestive Surgery, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - A Rahy-Martín
- Department of General and Digestive Surgery, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - L Delgado-Plasencia
- Department of General and Digestive Surgery, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain. ,
| | - A Martínez-Riera
- Department of Internal Medicine, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - D León-Ayllón
- Department of General and Digestive Surgery, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - D Rodríguez-Castellano
- Department of General and Digestive Surgery, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - A Bravo-Gutiérrez
- Department of General and Digestive Surgery, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - A Fernández-Peralta
- Department of Biology-Genetics, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Stoffel EM, Yurgelun MB. Genetic predisposition to colorectal cancer: Implications for treatment and prevention. Semin Oncol 2016; 43:536-542. [PMID: 27899184 DOI: 10.1053/j.seminoncol.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/17/2016] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed in men and women and approximately 5% of cases are associated with identifiable germline mutations associated with hereditary cancer syndromes. Lifetime risks for CRC can approach 50%-80% for mutation carriers in the absence of endoscopic and/or surgical intervention, and early identification of at-risk individuals can guide clinical interventions for cancer prevention and treatment. Personal and family history and molecular phenotype of CRC tumors are used in determining which patients should be referred for clinical genetic evaluation. Outcomes of genetic testing performed using next-generation sequencing (NGS) multigene panels suggest there can be significant overlap in clinical features among the various hereditary cancer syndromes. This review summarizes new developments in diagnosis and management of patients with genetic predisposition to CRC.
Collapse
|
21
|
Abstract
Although almost all gastrointestinal cancers develop from sporadic genomic events, approximately 5% arise from germline mutations in genes associated with cancer predisposition. The number of these genes continues to increase. Tumor phenotypes and family history provide the framework for identifying at-risk individuals. The diagnosis of a hereditary cancer syndrome has implications for management of patients and their families. Systematic approaches that integrate family history and molecular characterization of tumors and polyps facilitate identification of individuals with this genetic predisposition. This article summarizes diagnosis and management of hereditary cancer syndromes associated with gastrointestinal cancers.
Collapse
Affiliation(s)
- Elena M Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Health System, 2150A Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Xicola RM, Bontu S, Doyle BJ, Rawson J, Garre P, Lee E, de la Hoya M, Bessa X, Clofent J, Bujanda L, Balaguer F, Castellví-Bel S, Alenda C, Jover R, Ruiz-Ponte C, Syngal S, Andreu M, Carracedo A, Castells A, Newcomb PA, Lindor N, Potter JD, Baron JA, Ellis NA, Caldes T, LLor X. Association of a let-7 miRNA binding region of TGFBR1 with hereditary mismatch repair proficient colorectal cancer (MSS HNPCC). Carcinogenesis 2016; 37:751-758. [PMID: 27234654 PMCID: PMC4967215 DOI: 10.1093/carcin/bgw064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to identify novel colorectal cancer (CRC)-causing alleles in unexplained familial CRC cases. In order to do so, coding regions in five candidate genes (MGMT, AXIN2, CTNNB1, TGFBR1 and TGFBR2) were sequenced in 11 unrelated microsatellite-stable hereditary non-polyposis CRC (MSS HNPCC) cases. Selected genetic variants were genotyped in a discovery set of 27 MSS HNPCC cases and 85 controls. One genetic variant, rs67687202, in TGFBR1 emerged as significant (P = 0.002), and it was genotyped in a replication set of 87 additional MSS HNPCC-like cases and 338 controls where it was also significantly associated with MSS HNPCC cases (P = 0.041). In the combined genotype data, rs67687202 was associated with a moderate increase in CRC risk (OR = 1.68; 95% CI = 1.13-2.50; P = 0.010). We tested a highly correlated SNP rs868 in 723 non-familial CRC cases compared with 629 controls, and it was not significantly associated with CRC risk (P = 0.370). rs868 is contained in a let-7 miRNA binding site in the 3'UTR of TGFBR1, which might provide a functional basis for the association in MSS HNPCC. In luciferase assays, the risk-associated allele for rs868 was associated with half the luciferase expression in the presence of miRNA let-7b-5p compared with protective allele, suggesting more binding of let-7b-5p and less TGFBR1 expression. Thus, rs868 potentially is a CRC risk-causing allele. Our results support the concept that rs868 is associated with lower TGFBR1 expression thereby increasing CRC risk.
Collapse
Affiliation(s)
- Rosa M Xicola
- Department of Medicine and Cancer Center, Yale University, New Haven, CT, USA
| | - Sneha Bontu
- Department of Medicine and Cancer Center, Yale University, New Haven, CT, USA
| | - Brian J Doyle
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jamie Rawson
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Pilar Garre
- Laboratorio de Oncología Molecular, Hospital Clinico San Carlos, IdISSC , Madrid, Spain
| | - Esther Lee
- Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Miguel de la Hoya
- Laboratorio de Oncología Molecular, Hospital Clinico San Carlos, IdISSC , Madrid, Spain
| | - Xavier Bessa
- Department of Gastroenterology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Joan Clofent
- Department of Gastroenterology, Hospital de Sagunto, Sagunto, Valencia, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, CIBERehd, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Department of Gastroenterology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Cristina Alenda
- Department of Gastroenterology and Department of Pathology, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rodrigo Jover
- Department of Gastroenterology and Department of Pathology, Hospital General Universitario de Alicante, Alicante, Spain
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Galiza, Spain
| | - Sapna Syngal
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Galiza, Spain
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | | | - Noralane Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Department of Epidemiology, University of Washington, Seattle, WA, USA Centre for Public Health Research, Wellington, New Zealand
| | - John A Baron
- Department of Biostatistics and Epidemiology, Dartmouth College, Lebanon, NH, USA
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Trinidad Caldes
- Laboratorio de Oncología Molecular, Hospital Clinico San Carlos, IdISSC , Madrid, Spain
| | - Xavier LLor
- Department of Medicine and Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
23
|
Stoffel EM, Boland CR. Genetics and Genetic Testing in Hereditary Colorectal Cancer. Gastroenterology 2015; 149:1191-1203.e2. [PMID: 26226567 DOI: 10.1053/j.gastro.2015.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains the third most common cancer affecting men and women in the United States. Approximately one-third of CRCs are diagnosed in individuals who have family members also affected with the disease. Although the vast majority of colorectal neoplasms develop as a consequence of somatic genomic alterations arising in individual cells, approximately 5% of all CRCs arise in the setting of germline mutations in genes involved in key cellular processes. To date, multiple genes have been implicated in single-gene hereditary cancer syndromes, many of which are associated with increased risk for CRC, as well as other tumor types. This review outlines the clinical, pathologic, and genetic features of the hereditary cancer syndromes known to be associated with increased risk for CRC and delineates strategies for implementing genetic risk assessments in clinical settings.
Collapse
Affiliation(s)
- Elena M Stoffel
- Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan.
| | - C Richard Boland
- Division of Gastroenterology, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
24
|
Sánchez-Tomé E, Rivera B, Perea J, Pita G, Rueda D, Mercadillo F, Canal A, Gonzalez-Neira A, Benitez J, Urioste M. Genome-wide linkage analysis and tumoral characterization reveal heterogeneity in familial colorectal cancer type X. J Gastroenterol 2015; 50:657-66. [PMID: 25381643 DOI: 10.1007/s00535-014-1009-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Familial colorectal cancer type X (FCCTX) fulfils clinical criteria defining Lynch syndrome (LS), but is not related to germline mutations in DNA mismatch-repair genes. Its aetiology remains unexplained and there is little evidence of involvement of the common colorectal carcinogenetic pathways. We aimed to identify susceptibility loci and gain insights into carcinogenic pathways involved FCCTX tumour development. METHODS We performed a linkage analysis in 22 FCCTX families. We also constructed a tissue microarray in order to define an immunohistochemical (IHC) profile for FCCTX tumours (N = 27) by comparing them to three other types of colorectal tumors: LS (N = 18), stable early-onset (N = 31) and other sporadic disease (N = 80). Additionally, we screened for BRAF/KRAS mutations and determined CpG island methylator phenotype (CIMP) status for all FCCTX tumours. RESULTS We found suggestive evidence of linkage at four chromosomal regions; 2p24.3, 4q13.1, 4q31.21 and 12q21.2-q21.31. We screened genes in 12q21 and ruled out the implication of RASSF9 and NTS, good candidates due to their potential involvement in carcinogenesis and colorectal epithelium development. Based on IHC profiles FCCTX tumours did not form a single, exclusive cluster. They were clearly different from LS, but very similar to stable early onset tumours. The CIMP and chromosomal instability pathways were implicated in one-third and one-quarter of FCCTX cases, respectively. The remaining cases did not have alterations in any known carcinogenic pathways. CONCLUSIONS Our results highlight the heterogeneity of FCCTX tumours and call into question the utility of using only clinical criteria to identify FCCTX cases.
Collapse
Affiliation(s)
- E Sánchez-Tomé
- Familial Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cancer risk and overall survival in mismatch repair proficient hereditary non-polyposis colorectal cancer, Lynch syndrome and sporadic colorectal cancer. Fam Cancer 2015; 13:109-19. [PMID: 24061861 DOI: 10.1007/s10689-013-9683-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mismatch repair proficient hereditary non-polyposis colorectal cancer (MSS-HNPCC) encloses a heterogeneous group of families consisting of different unknown genetic syndromes and/or aggregations cases. The lack of information about the hereditability of cancer risk in these families makes it difficult to carry out an individualized Genetic Counseling. Therefore, deep description of such families becomes important for a better classification and search for underlying susceptibility causes. The aim of this study is to describe and compare the clinical, morphological features, tumor KRAS status and overall survival in MSS-HNPCC, Lynch and sporadic colorectal cancer. A total of 37 MSS-HNPCC families, 50 Lynch families and 612 sporadic CRC were included. Clinical and morphological data were evaluated by reviewing medical and pathology reports of 55, 69 and 102 tumors respectively. KRAS/BRAF status were detected by allele specific real-time PCR. Standardized incidence ratios (SIR) were calculated among 602 MSS-HNPCC relatives and 668 Lynch relatives. Main features distinguishing MSS-HNPCC were diagnosis age (55.1 ± 12.6), preferential distal location (76%), polyp detection (45%) and familial colorectal cancer incidence (SIR = 6.6). In addition, we found increased incidences rates for kidney, stomach and uterus tumors. KRAS mutation rates were similar in the study populations (48.8 ± 5.8) but higher than those described before by Sanger sequencing. MSS-HNPCC overall survival was similar to Lynch in B Dukes' stage tumors and between Lynch and sporadic in C stage tumors. Anatomical and morphological data of MSS-HNPCC are consistent with other described populations. Our studies disclose an increased HNPCC-extracolonic tumors incidence and improved overall survival in MSS-HNPCC families.
Collapse
|
26
|
Abstract
Colorectal cancer is a serious health problem, a challenge for research, and a model for studying the molecular mechanisms involved in its development. According to its incidence, this pathology manifests itself in three forms: family, hereditary, and most commonly sporadic, apparently not associated with any hereditary or familial factor. For the types having inheritance patterns and a family predisposition, the tumours develop through defined stages ranging from adenomatous lesions to the manifestation of a malignant tumour. It has been established that environmental and hereditary factors contribute to the development of colorectal cancer, as indicated by the accumulation of mutations in oncogenes, genes which suppress and repair DNA, signaling the existence of various pathways through which the appearance of tumours may occur. In the case of the suppressive and mutating tracks, these are characterised by genetic disorders related to the phenotypical changes of the morphological progression sequence in the adenoma/carcinoma. Moreover, alternate pathways through mutation in BRAF and KRAS genes are associated with the progression of polyps to cancer. This review surveys the research done at the cellular and molecular level aimed at finding specific alternative therapeutic targets for fighting colorectal cancer.
Collapse
Affiliation(s)
- Francisco Arvelo
- Centre for Biosciences, Institute for Advanced Studies Foundation-IDEA, Caracas 1015-A, Apartado 17606, Venezuela ; Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| | - Felipe Sojo
- Centre for Biosciences, Institute for Advanced Studies Foundation-IDEA, Caracas 1015-A, Apartado 17606, Venezuela ; Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| | - Carlos Cotte
- Laboratory for Tissue Culture and Tumour Biology, Institute of Experimental Biology, Central University of Venezuela, Apartado 47114, Caracas, Venezuela
| |
Collapse
|
27
|
Abstract
Lynch syndrome, which is now recognized as the most common hereditary colorectal cancer condition, is characterized by the predisposition to a spectrum of cancers, primarily colorectal cancer and endometrial cancer. We chronicle over a century of discoveries that revolutionized the diagnosis and clinical management of Lynch syndrome, beginning in 1895 with Warthin's observations of familial cancer clusters, through the clinical era led by Lynch and the genetic era heralded by the discovery of causative mutations in mismatch repair (MMR) genes, to ongoing challenges.
Collapse
Affiliation(s)
- Henry T Lynch
- Department of Preventive Medicine and Public Health, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Carrie L Snyder
- Department of Preventive Medicine and Public Health, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Trudy G Shaw
- Department of Preventive Medicine and Public Health, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Christopher D Heinen
- Center for Molecular Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3101, USA
| | - Megan P Hitchins
- Department of Medicine (Oncology), Stanford Cancer Institute, Stanford University, Grant Building S169, 1291 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
28
|
Dominguez-Valentin M, Therkildsen C, Da Silva S, Nilbert M. Familial colorectal cancer type X: genetic profiles and phenotypic features. Mod Pathol 2015; 28:30-6. [PMID: 24743215 DOI: 10.1038/modpathol.2014.49] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 12/19/2022]
Abstract
Heredity is a major cause of colorectal cancer, but although several rare high-risk syndromes have been linked to disease-predisposing mutations, the genetic mechanisms are undetermined in the majority of families suspected of hereditary cancer. We review the clinical presentation, histopathologic features, and the genetic and epigenetic profiles of the familial colorectal cancer type X (FCCTX) syndrome with the aim to delineate tumor characteristics that may contribute to refined diagnostics and optimized tumor prevention.
Collapse
Affiliation(s)
- Mev Dominguez-Valentin
- 1] HNPCC-Register, Clinical Research Centre, Hvidovre Hospital, Copenhagen University, Copenhagen, Denmark [2] Institute of Clinical Sciences, Department of Oncology, Lund University, Lund, Sweden
| | - Christina Therkildsen
- HNPCC-Register, Clinical Research Centre, Hvidovre Hospital, Copenhagen University, Copenhagen, Denmark
| | - Sabrina Da Silva
- Lady Davis Institute for Medical Research and Segal Cancer Centre, Sir Mortimer B. Davis-Jewish General Hospital, Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Mef Nilbert
- 1] HNPCC-Register, Clinical Research Centre, Hvidovre Hospital, Copenhagen University, Copenhagen, Denmark [2] Institute of Clinical Sciences, Department of Oncology, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Valle L. Genetic predisposition to colorectal cancer: Where we stand and future perspectives. World J Gastroenterol 2014; 20:9828-9849. [PMID: 25110415 PMCID: PMC4123366 DOI: 10.3748/wjg.v20.i29.9828] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can be influenced by genetic factors in both familial cases and sporadic cases. Familial CRC has been associated with genetic changes in high-, moderate- and low-penetrance susceptibility genes. However, despite the availability of current gene-identification techniques, the genetic causes of a considerable proportion of hereditary cases remain unknown. Genome-wide association studies of CRC have identified a number of common low-penetrance alleles associated with a slightly increased or decreased risk of CRC. The accumulation of low-risk variants may partly explain the familial risk of CRC, and some of these variants may modify the risk of cancer in patients with mutations in high-penetrance genes. Understanding the predisposition to develop CRC will require investigators to address the following challenges: the identification of genes that cause uncharacterized hereditary cases of CRC such as familial CRC type X and serrated polyposis; the classification of variants of unknown significance in known CRC-predisposing genes; and the identification of additional cancer risk modifiers that can be used to perform risk assessments for individual mutation carriers. We performed a comprehensive review of the genetically characterized and uncharacterized hereditary CRC syndromes and of low- and moderate-penetrance loci and variants identified through genome-wide association studies and candidate-gene approaches. Current challenges and future perspectives in the field of CRC predisposition are also discussed.
Collapse
|
30
|
Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology 2014; 147:502-26. [PMID: 25043945 DOI: 10.1053/j.gastro.2014.04.001] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Multi-Society Task Force, in collaboration with invited experts, developed guidelines to assist health care providers with the appropriate provision of genetic testing and management of patients at risk for and affected with Lynch syndrome as follows: Figure 1 provides a colorectal cancer risk assessment tool to screen individuals in the office or endoscopy setting; Figure 2 illustrates a strategy for universal screening for Lynch syndrome by tumor testing of patients diagnosed with colorectal cancer; Figures 3-6 provide algorithms for genetic evaluation of affected and at-risk family members of pedigrees with Lynch syndrome; Table 10 provides guidelines for screening at-risk and affected persons with Lynch syndrome; and Table 12 lists the guidelines for the management of patients with Lynch syndrome. A detailed explanation of Lynch syndrome and the methodology utilized to derive these guidelines, as well as an explanation of, and supporting literature for, these guidelines are provided.
Collapse
Affiliation(s)
| | - John I Allen
- Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | - Jason A Dominitz
- VA Puget Sound Health Care System, Seattle, Washington; University of Washington, Seattle, Washington
| | | | | | | | | | - Douglas J Robertson
- White River Junction VA Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, White River Junction, Vermont
| | - Sapna Syngal
- Brigham and Women's Hospital, Boston, Massachusetts; Dana Farber Cancer Institute, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Douglas K Rex
- Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
31
|
Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc 2014; 80:197-220. [PMID: 25034835 DOI: 10.1016/j.gie.2014.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol 2014; 109:1159-79. [PMID: 25070057 DOI: 10.1038/ajg.2014.186] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Multi-Society Task Force, in collaboration with invited experts, developed guidelines to assist health care providers with the appropriate provision of genetic testing and management of patients at risk for and affected with Lynch syndrome as follows: Figure 1 provides a colorectal cancer risk assessment tool to screen individuals in the office or endoscopy setting; Figure 2 illustrates a strategy for universal screening for Lynch syndrome by tumor testing of patients diagnosed with colorectal cancer; Figures 3,4,5,6 provide algorithms for genetic evaluation of affected and at-risk family members of pedigrees with Lynch syndrome; Table 10 provides guidelines for screening at-risk and affected persons with Lynch syndrome; and Table 12 lists the guidelines for the management of patients with Lynch syndrome. A detailed explanation of Lynch syndrome and the methodology utilized to derive these guidelines, as well as an explanation of, and supporting literature for, these guidelines are provided.
Collapse
Affiliation(s)
| | - John I Allen
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | - Jason A Dominitz
- 1] VA Puget Sound Health Care System, Seattle, Washington, USA [2] University of Washington, Seattle, Washington, USA
| | | | | | | | | | - Douglas J Robertson
- 1] White River Junction VA Medical Center, White River Junction, Vermont, USA [2] Geisel School of Medicine at Dartmouth, White River Junction, Vermont, USA
| | - Sapna Syngal
- 1] Brigham and Women's Hospital, Boston, Massachusetts, USA [2] Dana Farber Cancer Institute, Boston, Massachusetts, USA [3] Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas K Rex
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Shiovitz S, Copeland WK, Passarelli MN, Burnett-Hartman AN, Grady WM, Potter JD, Gallinger S, Buchanan DD, Rosty C, Win AK, Jenkins M, Thibodeau SN, Haile R, Baron JA, Marchand LL, Newcomb PA, Lindor NM. Characterisation of familial colorectal cancer Type X, Lynch syndrome, and non-familial colorectal cancer. Br J Cancer 2014; 111:598-602. [PMID: 24918813 PMCID: PMC4119982 DOI: 10.1038/bjc.2014.309] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Familial Colorectal Cancer Type X (FCCTX) is defined as individuals with colorectal cancer (CRC) who families meet Amsterdam Criteria-1 (AC1), but whose tumours are DNA-mismatch-repair-proficient, unlike Lynch syndrome (LS). FCCTX does not have an increased risk of extra-colonic cancers. This analysis compares epidemiologic and clinicopathologic features among FCCTX, LS, and 'non-familial' (non-AC1) CRC cases. METHODS From the Colon Cancer Family Registry, FCCTX (n=173), LS (n=303), and non-AC1 (n=9603) CRC cases were identified. Questionnaire-based epidemiologic information and CRC pathologic features were compared across case groups using polytomous logistic regression. RESULTS Compared with LS, FCCTX cases were less likely to be current (vs never) smokers; have a proximal subsite (vs rectal) tumour; or have mucinous histology, poor differentiation, or tumour-infiltrating lymphocytes. There were no observed differences in co-morbidities or medication usage. CONCLUSIONS FCCTX were less likely to be current tobacco users; other exposures were similar between these groups. Histopathologic differences highly suggestive of LS CRCs do not appear to be shared by FCCTX.
Collapse
Affiliation(s)
- S Shiovitz
- 1] Department of Medicine, University of Washington, Seattle, WA, USA [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - W K Copeland
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M N Passarelli
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A N Burnett-Hartman
- 1] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - W M Grady
- 1] Department of Medicine, University of Washington, Seattle, WA, USA [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [3] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - J D Potter
- 1] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Epidemiology, University of Washington, Seattle, WA, USA [3] Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - S Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - D D Buchanan
- 1] University of Melbourne, Parkville, VIC, Australia [2] Cancer and Population Studies Group, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - C Rosty
- 1] Cancer and Population Studies Group, Queensland Institute of Medical Research, Brisbane, QLD, Australia [2] University of Queensland, School of Medicine, Herston, QLD, Australia [3] Envoi Pathology, Herston, QLD, Australia
| | - A K Win
- University of Melbourne, Parkville, VIC, Australia
| | - M Jenkins
- University of Melbourne, Parkville, VIC, Australia
| | - S N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Haile
- Stanford Cancer Institute, Palo Alto, CA, USA
| | - J A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - L L Marchand
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - P A Newcomb
- 1] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - N M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
34
|
Bellido F, Pineda M, Sanz-Pamplona R, Navarro M, Nadal M, Lázaro C, Blanco I, Moreno V, Capellá G, Valle L. Comprehensive molecular characterisation of hereditary non-polyposis colorectal tumours with mismatch repair proficiency. Eur J Cancer 2014; 50:1964-72. [PMID: 24841217 DOI: 10.1016/j.ejca.2014.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/12/2014] [Accepted: 04/23/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hereditary non-polyposis colorectal cancer (CRC) without mismatch repair (MMR) defects occurs in almost half of high-risk CRC families, but its genetic cause(s) is(are) still unknown. We aimed to identify unique molecular features that differentiate hereditary from sporadic MMR-proficient colorectal tumours. METHODS Genomic alterations in 16 tumours from 14 Amsterdam I-II families were studied using the genome-wide copy number OncoScan™ FFPE microarray. Somatic mutation hotspots in BRAF, KRAS, PIK3CA and TP53 were analysed in 37 colorectal tumours from 26 families and in 99 sporadic MMR-proficient CRCs, using direct automated sequencing and KASPar genotyping assays. CpG methylation index was studied in 25 tumours from 19 families by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). RESULTS Our findings indicate that hereditary MMR-proficient tumours have overlapping genomic profiles to those obtained in sporadic cases, both suggestive of high chromosomal instability, and no high CpG methylation index. Nevertheless, we identified a significant increase in the frequency of chromosome 2p and 2q gains, and of 10 q loss in Amsterdam I families, as well as low frequency of >2 Mb copy-neutral or -gained loss of heterozygosity (LOH). No statistically significant differences in the frequency of BRAF, KRAS, PIK3CA and TP53 mutations or in the gene mutation patterns were observed. However, TP53 mutations appeared almost twice more frequently in sporadic tumours. CONCLUSIONS Overall, hereditary MMR-proficient CRCs display similar molecular characteristics than their sporadic counterparts. However, the differences identified, such as the chromosome 2 gain, 10 q loss, or the under-representation of TP53 mutations, if validated in larger series, might be of relevance in the clinical setting and/or in the identification of germline defects underlying some of these familial cases.
Collapse
Affiliation(s)
- Fernando Bellido
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Marga Nadal
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Ignacio Blanco
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain.
| |
Collapse
|
35
|
Pérez-Cabornero L, Infante M, Velasco E, Lastra E, Miner C, Durán M. Genotype-phenotype correlation in MMR mutation-positive families with Lynch syndrome. Int J Colorectal Dis 2013; 28:1195-201. [PMID: 23588873 DOI: 10.1007/s00384-013-1685-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by heterozygous mutations in mismatch repair (MMR) genes. Approximately 85 % of genetically defined HNPCC patients have germline mutations in MLH1 and MSH2. HNPCC patients are at increased risk of developing extracolonic cancers. The early age of onset, predominantly right-sided colon cancers, and synchronous and metachronous cancers are other features of the syndrome. HNPCC shows heterogeneous clinical phenotypes, and differences in gene mutation frequencies have been observed in some countries. Several investigators have tried to correlate the phenotype with the affected gene. METHODS A total of 46 individuals from 22 unrelated families, of the 264 families fulfilling the inclusion criteria, with deleterious mutations in MLH1, MSH2, or MSH6 genes were identified. We evaluated these clinicopathological features in their relation to different genetic parameters (gene mutated, type of mutation, or alteration of the MMR system in high-risk families) in order to establish a relationship between the phenotype and the genotype in our series. RESULTS The phenotype of the disease seems not to be influenced by the type of mutation, but rather by the mutated gene. The presence of multiple tumors is associated with mutations in the MSH2 gene. The mean age at diagnosis of the first colorectal cancer (CRC) was almost identical in families with mutations in MLH1 and MSH2, about 50 years of age, but this age may increase by almost 10 years for MSH6 mutation carriers. CONCLUSION The identification of genotype-phenotype correlations could provide a more specific surveillance program focused on the individualized risk.
Collapse
|
36
|
Dominguez-Valentin M, Therkildsen C, Veerla S, Jönsson M, Bernstein I, Borg A, Nilbert M. Distinct gene expression signatures in lynch syndrome and familial colorectal cancer type x. PLoS One 2013; 8:e71755. [PMID: 23951239 PMCID: PMC3741139 DOI: 10.1371/journal.pone.0071755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/02/2013] [Indexed: 02/01/2023] Open
Abstract
Introduction Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects. Purpose We addressed the gene expression signatures in colorectal cancer linked to Lynch syndrome and FCCTX with the aim to identify candidate genes and to map signaling pathways relevant in hereditary colorectal carcinogenesis. Experimental design The 18 k whole-genome c-DNA-mediated annealing, selection, extension, and ligation (WG-DASL) assay was applied to 123 colorectal cancers, including 39 Lynch syndrome tumors and 37 FCCTX tumors. Target genes were technically validated using real-time quantitative RT-PCR (qRT-PCR) and the expression signature was validated in independent datasets. Results Colorectal cancers linked to Lynch syndrome and FCCTX showed distinct gene expression profiles, which by significance analysis of microarrays (SAM) differed by 2188 genes. Functional pathways involved were related to G-protein coupled receptor signaling, oxidative phosphorylation, and cell cycle function and mitosis. qRT-PCR verified altered expression of the selected genes NDUFA9, AXIN2, MYC, DNA2 and H2AFZ. Application of the 2188-gene signature to independent datasets showed strong correlation to MMR status. Conclusion Distinct genetic profiles and deregulation of different canonical pathways apply to Lynch syndrome and FCCTX and key targets herein may be relevant to pursue for refined diagnostic and therapeutic strategies in hereditary colorectal cancer.
Collapse
|
37
|
Mishra N, Hall J. Identification of patients at risk for hereditary colorectal cancer. Clin Colon Rectal Surg 2013; 25:67-82. [PMID: 23730221 DOI: 10.1055/s-0032-1313777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diagnosis of hereditary colorectal cancer syndromes requires clinical suspicion and knowledge of such syndromes. Lynch syndrome is the most common cause of hereditary colorectal cancer. Other less common causes include familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome (PJS), juvenile polyposis syndrome, and others. There have been a growing number of clinical and molecular tools used to screen and test at risk individuals. Screening tools include diagnostic clinical criteria, family history, genetic prediction models, and tumor testing. Patients who are high risk based on screening should be referred for genetic testing.
Collapse
Affiliation(s)
- Nitin Mishra
- Department of Colon and Rectal Surgery, Lahey Clinic, Burlington, Massachusetts
| | | |
Collapse
|
38
|
Chen W, Yuan L, Cai Y, Chen X, Chi Y, Wei P, Zhou X, Shi D. Identification of chromosomal copy number variations and novel candidate loci in hereditary nonpolyposis colorectal cancer with mismatch repair proficiency. Genomics 2013; 102:27-34. [PMID: 23434627 DOI: 10.1016/j.ygeno.2013.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/04/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
The pathogenesis of microsatellite stable hereditary non-polyposis colorectal cancers (MSS HNPCC) is unclear. To identify genomic regions that might be involved in MSS HNPCC pathogenesis, we selected 20 pairs of MSS HNPCC for a genome-wide study using copy number variation targeted (CNV-targeted) CytoScan HD Array. A remarkably increased frequency of 20q gain (70%) and high levels of copy-neutral loss of heterozygosity (40%) were observed. The most frequent tumor-specific CNVs included amplifications (7p21.3-15.1, 8q13.3-24.3, 13q14.1-33.3 and 20q12-13.33) and deletions (8p11.23-23.1, 15q11.2-26.1, 17p13.1-13.3 and 18q11.2-21.33). In addition, 10 novel CNVs were discovered and led to identification of WDR16 and RAPGEF5 as candidate genes involved in tumorigenesis, displaying a robust correlation between expression and genomic alterations. Moreover, WDR16 and RAPGEF5 exhibited altered protein expression levels as assessed by immunohistochemistry (IHC) in 41 other independent samples. Finally, high consistencies (68-84%) were observed between CNVs by Array and quantitative PCR. These findings are important for further elucidating MSS HNPCC pathogenesis.
Collapse
Affiliation(s)
- Weixiang Chen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hiljadnikova-Bajro M, Josifovski T, Panovski M, J. Dimovski A. Molecular profile of the Lynch Syndrome in the Republic of Macedonia. MAKEDONSKO FARMACEVTSKI BILTEN 2012. [DOI: 10.33320/maced.pharm.bull.2012.58.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most frequent type of hereditary colorectal cancer, the one occurring in the setting of the Lynch syndrome (LS) is considered a phenotypic manifestation of a germline defect in the mismatch repair mechanism i.e. in the MLH1, MSH2, MSH6 or PMS2 gene. Aiming towards establishment of a standardized protocol involving molecular analyses for diagnosis of this syndrome and developing a unique national register of families with hereditary colorectal cancer syndromes in the Republic of Macedonia, we began a prospective study to reveal the genetic defects among Macedonian patients with colorectal cancer (CRC) and identifying families with hereditary CRC. A total of 53 patients fulfilling the revised Bethesda criteria for MSI-genetic testing were compared to 350 patients with sporadic CRC. The results reveal significant differences in age at diagnosis (p=0.03), involvement of microsatellite instability (p<0.0001) and localization
of the tumor in respect to flexura lienalis (p=0.009) and suggest affiliation of the majority of the “Bethesda+” CRCs to the so called Familial Colorectal cancer Type X group. The molecular characterization of LS suspects identified the novel MLH1 c.392C>G nonsense mutation with a possible founder effect in the Macedonian population, the MLH1 ex.3-12 deletion, as well as the c.244A>G mutation, IVS14- 19A>G and IVS4+65A>C changes in MLH1 without confirmed pathological significance. The observed high frequency (87.5%) of the Ile219Val (c.655A>G) variant in MLH1 among the LS suspects prompts further analyses to evaluate its involvement in the development of hereditary CRC by itself or as a risk modifying factor among the patients from the Republic of Macedonia.
Collapse
|
40
|
Neumaier C, Nittka S, Neumaier M. Loss of expression of the tumor suppressor CEACAM1 links different hereditary colorectal carcinoma subtypes to the genesis of sporadic colorectal carcinoma. ACTA ACUST UNITED AC 2012; 35:563-8. [PMID: 23038226 DOI: 10.1159/000342673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
According to their carcinogenesis, colorectal cancer (CRC) subtypes show distinct molecular parameters. Hereditary non-polypous colorectal cancer (HNPCC) is the most common inherited CRC characterized by clinical criteria and confirmed microsatellite instability (MSI). Interestingly, a recently identified subtype, familial colorectal cancer type X (FCC-X), shows the same clinical criteria but microsatellite stability (MSS). CEACAM1 is a known tumor suppressor that regulates apoptosis in colon cells, and its loss is one of the most frequent events in early tumorigenesis of CRC. Therefore its loss may characterize precursor colon cells prior to neoplastic transformation. We analyzed tumor specimens of HNPCC and FCC-X patients in order to investigate whether there is a loss of CEACAM1 expression analogous to sporadic CRC and whether the expression of CEACAM1 would distinguish between these tumor entities. No differences in CEACAM1 expression were noted between HNPPC (n = 38) and FCC-X (n = 30) tumors. CEACAM1 was reduced in near-identical frequencies in 36/38 (95%) HNPCC and 29/30 (97%) FCC-X. This is the first report to demonstrate the loss of CEACAM1 expression in hereditary CRC. There was no difference between HNPCC and FCC-X. The frequency of expression loss was comparable to sporadic CRC, indicating that loss of CEACAM1 is an early event in colorectal tumorigenesis linking the genesis of sporadic and hereditary CRC.
Collapse
Affiliation(s)
- Christian Neumaier
- Clinic of Radiation Oncology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|
41
|
Bozzao C, Lastella P, Stella A. Anticipation in lynch syndrome: where we are where we go. Curr Genomics 2012; 12:451-65. [PMID: 22547953 PMCID: PMC3219841 DOI: 10.2174/138920211797904070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/08/2011] [Accepted: 07/20/2011] [Indexed: 02/06/2023] Open
Abstract
Lynch syndrome (LS) is the most common form of inherited predisposition to develop cancer mainly in the colon and endometrium but also in other organ sites. Germline mutations in DNA mismatch repair (MMR) gene cause the transmission of the syndrome in an autosomal dominant manner. The management of LS patients is complicated by the large variation in age at cancer diagnosis which requires these patients to be enrolled in surveillance protocol starting as early as in their second decade of life. Several environmental and genetic factors have been proposed to explain this phenotypic heterogeneity, but the molecular mechanisms remain unknown. Although the presence of genetic anticipation in Lynch syndrome has been suspected since 15 years, only recently the phenomenon has been increasingly reported to be present in different cancer genetic syndromes including LS. While the biological basis of earlier cancer onset in successive generations remains poorly known, recent findings point to telomere dynamics as a mechanism significantly contributing to genetic anticipation in Lynch syndrome and in other familial cancers. In this review, we summarize the clinical and molecular features of Lynch syndrome, with a particular focus on the latest studies that have investigated the molecular mechanisms of genetic anticipation.
Collapse
Affiliation(s)
- Cristina Bozzao
- Medical Genetics Unit, Department of Biomedicine in Childhood, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | | |
Collapse
|
42
|
Ku CS, Cooper DN, Wu M, Roukos DH, Pawitan Y, Soong R, Iacopetta B. Gene discovery in familial cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X. Mod Pathol 2012; 25:1055-68. [PMID: 22522846 DOI: 10.1038/modpathol.2012.62] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advances in genotyping and sequencing technologies have provided powerful tools with which to explore the genetic basis of both Mendelian (monogenic) and sporadic (polygenic) diseases. Several hundred genome-wide association studies have so far been performed to explore the genetics of various polygenic or complex diseases including those cancers with a genetic predisposition. Exome sequencing has also proven very successful in elucidating the etiology of a range of hitherto poorly understood Mendelian disorders caused by high-penetrance mutations. Despite such progress, the genetic etiology of several familial cancers, such as familial colorectal cancer type X, has remained elusive. Familial colorectal cancer type X and Lynch syndrome are similar in terms of their fulfilling certain clinical criteria, but the former group is not characterized by germline mutations in DNA mismatch-repair genes. On the other hand, the genetics of sporadic colorectal cancer have been investigated by genome-wide association studies, leading to the identification of multiple new susceptibility loci. In addition, there is increasing evidence to suggest that familial and sporadic cancers exhibit similarities in terms of their genetic etiologies. In this review, we have summarized our current knowledge of familial colorectal cancer type X, discussed current approaches to probing its genetic etiology through the application of new sequencing technologies and the recruitment of the results of colorectal cancer genome-wide association studies, and explore the challenges that remain to be overcome given the uncertainty of the current genetic model (ie, monogenic vs polygenic) of familial colorectal cancer type X.
Collapse
Affiliation(s)
- Chee-Seng Ku
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
43
|
Colas C, Coulet F, Svrcek M, Collura A, Fléjou JF, Duval A, Hamelin R. Lynch or not Lynch? Is that always a question? Adv Cancer Res 2012; 113:121-66. [PMID: 22429854 DOI: 10.1016/b978-0-12-394280-7.00004-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The familial cancer syndrome referred to as Lynch I and II was renamed hereditary nonpolyposis colorectal cancer (HNPCC) only to revert later to Lynch syndrome (LS). LS is the most frequent human predisposition for the development of colorectal cancer (CRC), and probably also for endometrial and gastric cancers, although it has yet to acquire a consensus name. Its estimated prevalence ranges widely from 2% to 7% of all CRCs due to the fact that tumors from patients with LS are difficult to recognize at both the clinical and molecular level. This review is based on two assumptions. First, all LS patients inherit a predisposition to develop CRC (without polyposis) and/or other tumors from the Lynch spectrum. Second, all LS patients have a germline defect in one of the DNA mismatch repair (MMR) genes. When a somatic second hit inactivates the relevant MMR gene, the consequence is instability of DNA repeat sequences such as microsatellites and the tumors are referred to as having the microsatellite instability (MSI) phenotype. However, some of the inherited predisposition to develop CRC without concurrent polyposis, termed HNPCC, is found in non-LS patients, while not all MSI tumors are from LS cases. LS tumors are therefore at the junction of inherited and MSI cases. We describe here the defining characteristics of LS tumors that differentiate them from inherited non-MSI tumors and from non-inherited MSI tumors.
Collapse
Affiliation(s)
- Chrystelle Colas
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancers, Paris, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Castellví-Bel S, Ruiz-Ponte C, Fernández-Rozadilla C, Abulí A, Muñoz J, Bessa X, Brea-Fernández A, Ferro M, Giráldez MD, Xicola RM, Llor X, Jover R, Piqué JM, Andreu M, Castells A, Carracedo A. Seeking genetic susceptibility variants for colorectal cancer: the EPICOLON consortium experience. Mutagenesis 2012; 27:153-9. [PMID: 22294762 DOI: 10.1093/mutage/ger047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The EPICOLON consortium was initiated in 1999 by the Gastrointestinal Oncology Group of the Spanish Gastroenterology Association. It recruited consecutive, unselected, population-based colorectal cancer (CRC) cases and control subjects matched by age and gender without personal or familial history of cancer all over Spain with the main goal of gaining knowledge in Lynch syndrome and familial CRC. This epidemiological, prospective and multicentre study collected extensive clinical data and biological samples from ∼2000 CRC cases and 2000 controls in Phases 1 and 2 involving 25 and 14 participating hospitals, respectively. Genetic susceptibility projects in EPICOLON have included candidate-gene approaches evaluating single-nucleotide polymorphisms/genes from the historical category (linked to CRC risk by previous studies), from human syntenic CRC susceptibility regions identified in mouse, from the CRC carcinogenesis-related pathways Wnt and BMP, from regions 9q22 and 3q22 with positive linkage in CRC families, and from the mucin gene family. This consortium has also participated actively in the identification 5 of the 16 common, low-penetrance CRC genetic variants identified so far by genome-wide association studies. Finishing their own pangenomic study and performing whole-exome sequencing in selected CRC samples are among EPICOLON future research prospects.
Collapse
Affiliation(s)
- Sergi Castellví-Bel
- Department of Gastroenterology, Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, Villarroel 170, 08036 Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Adonizio C, Gazzillo M, Knezetic J, Snyder C, Lynch HT, Rybak C, Hall MJ, Lowstuter K, Eggington J, Morris GJ. Thirty-Nine-Year-Old With Familial Colon Cancer, and Variant of Undetermined Significance in MSH6. Semin Oncol 2012; 39:125-31. [DOI: 10.1053/j.seminoncol.2012.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
When should we suspect hereditary colorectal cancer syndrome? Clin Gastroenterol Hepatol 2012; 10:363-7; quiz e39; e41. [PMID: 22178459 DOI: 10.1016/j.cgh.2011.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
|
47
|
Xicola RM, Llor X. [DNA methylation defects in sporadic and hereditary colorectal cancer]. GASTROENTEROLOGIA Y HEPATOLOGIA 2012; 35:480-7. [PMID: 22459641 DOI: 10.1016/j.gastrohep.2012.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/17/2022]
Abstract
DNA methylation is a fundamental epigenetic mechanism in regulating the expression of genes controlling crucial cell functions in cancer development. Methylation defects (both global hypomethylation and hypermethylation of CpG islands) are implicated in colorectal carcinogenesis. Some nutrients have a clear effect on methylation, suggesting that some dietary-associated differences in the incidence of colorectal cancer could be due to the effect of diet on methylation. The presence of methylation defects has clear diagnostic and prognostic implications. Thus, several tests are being used for colorectal cancer screening based on methylated gene analysis, whether in feces or blood. In addition, the reversibility of methylation processes allows the development of chemotherapies that regulate this process through their antineoplastic activity.
Collapse
Affiliation(s)
- Rosa M Xicola
- Univerisity of Illinois at Chicago, Digestive Disease and Nutrition, Chicago, IL, USA.
| | | |
Collapse
|
48
|
Abstract
In a fraction of families fulfilling the Amsterdam criteria for hereditary non-polyposis colorectal cancer, colorectal cancers are microsatellite stable and DNA mismatch repair gene (MMR) mutations are not found. These families were designated as familial colorectal cancer type X (FCCTX). We aimed to characterise a group of FCCTX families defined by the Amsterdam criteria and MSS tumours at clinical and molecular level. Twenty-four tumours from 15 FCCTX families were analysed for loss of known tumour suppressor gene (TSG) loci (APC, TP53, SMAD4 and DCC), MGMT and MMR genes promoter methylation, and also APC and KRAS somatic mutations. FCCTX families presented specific clinical features: absence of endometrial tumours, high adenoma/carcinoma ratio (1.91) and prevalence of rectal cancers (13/27, 48%). New molecular features were found: the majority of FCCTX tumours (13/18; 72%) presented TSG loss. TSG loss positive tumours presented frequent APC and KRAS somatic mutations and MGMT methylation [10/13 (77%), 7/13 (54%) and 6/11 (54%), respectively]. In TSG loss negative tumours (5/18; 28%), the same molecular events were found in 2/5 (40%), 2/5 (40%) and 1/3 (33%) tumours, respectively. Transition mutations in KRAS were more frequent among MGMT methylated tumours than in unmethylated [5/8 (63%) vs. 1/10 (10%), P = 0.03]. Although sharing similar clinical features, at least two different molecular entities should exist among FCCTX families, one whose tumours present frequent TSG loss, APC and KRAS somatic mutations, and MGMT promoter methylation, and a second, lesser predominant, with no evidence of TSG loss and rarely presenting promoter methylation.
Collapse
|
49
|
Kovac M, Laczko E, Haider R, Jiricny J, Mueller H, Heinimann K, Marra G. Familial colorectal cancer: eleven years of data from a registry program in Switzerland. Fam Cancer 2012; 10:605-16. [PMID: 21671081 DOI: 10.1007/s10689-011-9458-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Deleterious germ-line variants involving the DNA mismatch repair (MMR) genes have been identified as the cause of the hereditary nonpolyposis colorectal cancer syndrome known as the Lynch syndrome, but in numerous familial clusters of colon cancer, the cause remains obscure. We analyzed data for 235 German-speaking Swiss families with nonpolyposis forms of colorectal cancer (one of the largest and most ethnically homogeneous cohorts of its kind) to identify the phenotypic features of forms that cannot be explained by MMR deficiency. Based on the results of microsatellite instability analysis and immunostaining of proband tumor samples, the kindreds were classified as MMR-proficient (n = 134, 57%) or MMR-deficient (n = 101, 43%). In 81 of the latter kindreds, deleterious germ-line MMR-gene variants have already been found (62 different variants, including 13 that have not been previously reported), confirming the diagnosis of Lynch syndrome. Compared with MMR-deficient kindreds, the 134 who were MMR proficient were less likely to meet the Amsterdam Criteria II regarding autosomal dominant transmission. They also had primary cancers with later onset and colon-segment distribution patterns resembling those of sporadic colorectal cancers, and they had lower frequencies of metachronous colorectal cancers and extracolonic cancers in general. Although the predisposition to colorectal cancer in these kindreds is probably etiologically heterogeneous, we were unable to identify distinct phenotypic subgroups solely on the basis of the clinical data collected in this study. Further insight, however, is expected to emerge from the molecular characterization of their tumors.
Collapse
Affiliation(s)
- Michal Kovac
- Research Group Human Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Middeldorp A, van Eijk R, Oosting J, Forte GI, van Puijenbroek M, van Nieuwenhuizen M, Corver WE, Ruano D, Caldes T, Wijnen J, Morreau H, van Wezel T. Increased frequency of 20q gain and copy-neutral loss of heterozygosity in mismatch repair proficient familial colorectal carcinomas. Int J Cancer 2011; 130:837-46. [PMID: 21445971 DOI: 10.1002/ijc.26093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/14/2011] [Indexed: 12/28/2022]
Abstract
Many hereditary nonpolyposis colorectal cancers (CRCs) cannot be explained by Lynch syndrome. Other high penetrance genetic risk factors are likely to play a role in these mismatch repair (MMR)-proficient CRC families. Because genomic profiles of CRC tend to vary with CRC susceptibility syndromes, our aim is to analyze the genomic profile of MMR-proficient familial CRC to obtain insight into the biological basis of MMR-proficient familial CRC. We studied 30 MMR-proficient familial colorectal carcinomas, from 15 families, for genomic aberrations, including gains, physical losses, and copy-neutral loss of heterozygosity LOH (cnLOH) using SNP array comparative genomic hybridization. In addition, we performed somatic mutation analysis for KRAS, BRAF, PIK3CA and GNAS. The frequency of 20q gain (77%) is remarkably increased when compared with sporadic CRC, suggesting that 20q gain is involved in tumor progression of familial CRC. There is also a significant increase in the frequency of cnLOH and, as a consequence, a reduced frequency of physical loss compared with sporadic CRC. The most frequent aberrations observed included gains of 7p, 7q, 8q, 13q, 20p and 20q as well as physical losses of 17p, 18p and 18q. Most of these changes are also observed in sporadic CRC. Mutations in KRAS were identified in 37% of the MMR-proficient CRCs, and mutations in BRAF were identified in 16%. No mutations were identified in PIK3CA or chromosome 20 candidate gene GNAS. We show that the patterns of chromosomal instability of MMR-proficient familial CRC are clearly distinct from those from sporadic CRC. Both the increased gain on chromosome 20 and the increased levels of cnLOH suggest the presence of yet undiscovered germline defects that can, in part, underlie the cancer risk in these families.
Collapse
Affiliation(s)
- A Middeldorp
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|