1
|
Arar A, Heglin A, Veluri S, Alnablsi MW, Benjamin JL, Choudhary M, Pillai A. Radioembolization of HCC and secondary hepatic tumors: a comprehensive review. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:270-287. [PMID: 39088238 DOI: 10.23736/s1824-4785.24.03572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Transarterial radioembolization (TARE), also called Selective Internal Radiation Therapy (SIRT), has emerged as an effective locoregional therapy for primary and secondary hepatic tumors, utilizing yttrium-90 (Y90) microspheres and other agents such as holmium-166 and rhenium-188. TARE has various applications in the management of HCC across different BCLC stages. Radiation segmentectomy, which involves administering high doses of Y90 (>190 Gy), can be both curative and ablative, achieving complete necrosis of the tumor. In contrast, radiation lobectomy involves administering a lower dose of Y90 (80-120 Gy) as a neoadjuvant treatment modality to improve local control and induce future liver remnant (FLR) hypertrophy in patients who are planned to undergo surgery but have insufficient FLR. Modified radiation lobectomy combines both techniques and offers several advantages over portal vein embolization (PVE). Y90 is also used in downstaging HCC patients outside liver transplantation criteria, as well as bridging those awaiting liver transplantation (LT). Multiple studies and combined analyses were described to highlight the outcomes of TARE and compare it with other treatment modalities, including TACE and sorafenib. Additionally, the review delves into the efficacy and safety of radioembolization in managing metastatic colorectal cancer and other metastatic tumors to the liver. Recent studies have emphasized the role of personalized dosimetry for improved outcomes, and thus we described the different methods used for this purpose. Pretherapy imaging, estimating lung shunt, selection of therapeutic radionuclides, adverse effects, and cost-effectiveness were all discussed as well.
Collapse
Affiliation(s)
- Ahmad Arar
- Division of Interventional Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA -
| | - Alex Heglin
- Division of Nuclear Medicine, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shriya Veluri
- The University of Texas Health Science Center, San Antonio, TX, USA
| | - Mhd Wisam Alnablsi
- Division of Interventional Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamaal L Benjamin
- Division of Interventional Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Moaz Choudhary
- Division of Interventional Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anil Pillai
- Division of Interventional Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
3
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
4
|
Chakraborty K, Mondal J, An JM, Park J, Lee YK. Advances in Radionuclides and Radiolabelled Peptides for Cancer Therapeutics. Pharmaceutics 2023; 15:pharmaceutics15030971. [PMID: 36986832 PMCID: PMC10054444 DOI: 10.3390/pharmaceutics15030971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Radiopharmaceutical therapy, which can detect and treat tumours simultaneously, was introduced more than 80 years ago, and it has changed medical strategies with respect to cancer. Many radioactive radionuclides have been developed, and functional, molecularly modified radiolabelled peptides have been used to produce biomolecules and therapeutics that are vastly utilised in the field of radio medicine. Since the 1990s, they have smoothly transitioned into clinical application, and as of today, a wide variety of radiolabelled radionuclide derivatives have been examined and evaluated in various studies. Advanced technologies, such as conjugation of functional peptides or incorporation of radionuclides into chelating ligands, have been developed for advanced radiopharmaceutical cancer therapy. New radiolabelled conjugates for targeted radiotherapy have been designed to deliver radiation directly to cancer cells with improved specificity and minimal damage to the surrounding normal tissue. The development of new theragnostic radionuclides, which can be used for both imaging and therapy purposes, allows for more precise targeting and monitoring of the treatment response. The increased use of peptide receptor radionuclide therapy (PRRT) is also important in the targeting of specific receptors which are overexpressed in cancer cells. In this review, we provide insights into the development of radionuclides and functional radiolabelled peptides, give a brief background, and describe their transition into clinical application.
Collapse
Affiliation(s)
- Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Research Institute for Biomedical & Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Correspondence: (J.P.); (Y.-K.L.); Tel.: +82-43-841-5224 (Y.-K.L.)
| |
Collapse
|
5
|
Evaluation of Therapeutic Efficacy and Imaging Capabilities of 153Sm 2O 3-Loaded Polystyrene Microspheres for Intra-Tumoural Radionuclide Therapy of Liver Cancer Using Sprague-Dawley Rat Model. Pharmaceutics 2023; 15:pharmaceutics15020536. [PMID: 36839858 PMCID: PMC9958749 DOI: 10.3390/pharmaceutics15020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Neutron-activated samarium-153-oxide-loaded polystyrene ([153Sm]Sm2O3-PS) microspheres has been developed in previous study as a potential theranostic agent for hepatic radioembolization. In this study, the therapeutic efficacy and diagnostic imaging capabilities of the formulation was assessed using liver cancer Sprague-Dawley (SD) rat model. Methods: Twelve male SD rats (150-200 g) that implanted with N1-S1 hepatoma cell line orthotopically were divided into two groups (study versus control) to monitor the tumour growth along 60 days of treatment. The study group received an intra-tumoural injection of approximately 37 MBq of [153Sm]Sm2O3-PS microspheres, while control group received an intra-tumoural injection of 0.1 mL of saline solution. A clinical single photon emission computed tomography/computed tomography (SPECT/CT) system was used to scan the rats at Day 5 post-injection to investigate the diagnostic imaging capabilities of the microspheres. All rats were monitored for change in tumour volume using a portable ultrasound system throughout the study period. Histopathological examination (HPE) was performed after the rats were euthanized at Day 60. Results: At Day 60, no tumour was observed on the ultrasound images of all rats in the study group. In contrast, the tumour volumes in the control group were 24-fold larger compared to baseline. Statistically significant difference was observed in tumour volumes between the study and control groups (p < 0.05). The SPECT/CT images clearly displayed the location of [153Sm]Sm2O3-PS in the liver tumour of all rats at Day 5 post-injection. Additionally, the [153Sm]Sm2O3-PS microspheres was visible on the CT images and this has added to the benefits of 153Sm as a CT contrast agent. The HPE results showed that the [153Sm]Sm2O3-PS microspheres remained concentrated at the injection site with no tumour cells observed in the study group. Conclusions: Neutron-activated [153Sm]Sm2O3-PS microspheres demonstrated excellent therapeutic and diagnostic imaging capabilities for theranostic treatment of liver cancer in a SD rat model. Further studies with different animal and tumour models are planned to validate this finding.
Collapse
|
6
|
Microspheres as a Carrier System for Therapeutic Embolization Procedures: Achievements and Advances. J Clin Med 2023; 12:jcm12030918. [PMID: 36769566 PMCID: PMC9917963 DOI: 10.3390/jcm12030918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The targeted delivery of anti-cancer drugs and isotopes is one of the most pursued goals in anti-cancer therapy. One of the prime examples of such an application is the intra-arterial injection of microspheres containing cytostatic drugs or radioisotopes during hepatic embolization procedures. Therapy based on the application of microspheres revolves around vascular occlusion, complemented with local therapy in the form of trans-arterial chemoembolization (TACE) or radioembolization (TARE). The broadest implementation of these embolization strategies currently lies within the treatment of untreatable hepatocellular cancer (HCC) and metastatic colorectal cancer. This review aims to describe the state-of-the-art TACE and TARE technologies investigated in the clinical setting for HCC and addresses current trials and new developments. In addition, chemical properties and advancements in microsphere carrier systems are evaluated, and possible improvements in embolization therapy based on the modification of and functionalization with therapeutical loads are explored.
Collapse
|
7
|
Osipitan OO, Sun M, Gordish-Dressman H, Wendt R, Wight-Carter M, Balkus KJ, Di Pasqua AJ. Laminated holmium-166-containing electrospun bandages for use against skin cancer. Nucl Med Biol 2022; 114-115:78-85. [PMID: 36270073 DOI: 10.1016/j.nucmedbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 12/27/2022]
Abstract
The number of non-melanoma skin cancer (NMSC) cases in the US will increase significantly over the next decade due to a rise in UV exposure. One of the treatment methods used to remove NMSC lesions is radiation therapy. The two types of radiation therapy used in the clinic are external beam therapy and brachytherapy. However, both require specialized on-site instrumentation and for patients to remain immobile. In this work, we studied an alternative radiation therapy - one that does not require expensive on-site equipment and would allow for enhanced patient mobility and, thus, comfort. We prepared sealed source, nylon-laminated holmium-166-containing radiotherapeutic bandages and used them in C3H/HeN mice with murine SCCVII tumor grafts. Overall, tumor sizes were smallest when treated with therapeutically relevant radiation doses via radiotherapeutic bandages (compared to controls), and no histological evidence of toxicity to tissues was observed. Thus, our optimized radiotherapeutic bandage offers a flexible approach to treating NMSC.
Collapse
Affiliation(s)
- Ositomiwa O Osipitan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, 96 Corliss Ave., Johnson City, NY 13790, United States of America; Department of Biomedical Engineering, The Thomas J. Watson College of Engineering and Applied Science, Binghamton University, 4400 Vestal Pkwy. E., Binghamton, NY 13902, United States of America
| | - Mengwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, 96 Corliss Ave., Johnson City, NY 13790, United States of America; Department of Biomedical Engineering, The Thomas J. Watson College of Engineering and Applied Science, Binghamton University, 4400 Vestal Pkwy. E., Binghamton, NY 13902, United States of America
| | - Heather Gordish-Dressman
- Center for Translational Science, Division of Biostatistics and Study Design, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010, United States of America
| | - Richard Wendt
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Unit 1352, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Mary Wight-Carter
- Animal Resource Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Kenneth J Balkus
- Department of Chemistry, University of Texas at Dallas, Richardson, 800 West Campbell Road, Richardson, TX 75080, United States of America.
| | - Anthony J Di Pasqua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, 96 Corliss Ave., Johnson City, NY 13790, United States of America; Department of Biomedical Engineering, The Thomas J. Watson College of Engineering and Applied Science, Binghamton University, 4400 Vestal Pkwy. E., Binghamton, NY 13902, United States of America.
| |
Collapse
|
8
|
Sadler AWE, Hogan L, Fraser B, Rendina LM. Cutting edge rare earth radiometals: prospects for cancer theranostics. EJNMMI Radiopharm Chem 2022; 7:21. [PMID: 36018527 PMCID: PMC9418400 DOI: 10.1186/s41181-022-00173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background With recent advances in novel approaches to cancer therapy and imaging, the application of theranostic techniques in personalised medicine has emerged as a very promising avenue of research inquiry in recent years. Interest has been directed towards the theranostic potential of Rare Earth radiometals due to their closely related chemical properties which allow for their facile and interchangeable incorporation into identical bifunctional chelators or targeting biomolecules for use in a diverse range of cancer imaging and therapeutic applications without additional modification, i.e. a “one-size-fits-all” approach. This review will focus on recent progress and innovations in the area of Rare Earth radionuclides for theranostic applications by providing a detailed snapshot of their current state of production by means of nuclear reactions, subsequent promising theranostic capabilities in the clinic, as well as a discussion of factors that have impacted upon their progress through the theranostic drug development pipeline. Main body In light of this interest, a great deal of research has also been focussed towards certain under-utilised Rare Earth radionuclides with diverse and favourable decay characteristics which span the broad spectrum of most cancer imaging and therapeutic applications, with potential nuclides suitable for α-therapy (149Tb), β−-therapy (47Sc, 161Tb, 166Ho, 153Sm, 169Er, 149Pm, 143Pr, 170Tm), Auger electron (AE) therapy (161Tb, 135La, 165Er), positron emission tomography (43Sc, 44Sc, 149Tb, 152Tb, 132La, 133La), and single photon emission computed tomography (47Sc, 155Tb, 152Tb, 161Tb, 166Ho, 153Sm, 149Pm, 170Tm). For a number of the aforementioned radionuclides, their progression from ‘bench to bedside’ has been hamstrung by lack of availability due to production and purification methods requiring further optimisation. Conclusions In order to exploit the potential of these radionuclides, reliable and economical production and purification methods that provide the desired radionuclides in high yield and purity are required. With more reactors around the world being decommissioned in future, solutions to radionuclide production issues will likely be found in a greater focus on linear accelerator and cyclotron infrastructure and production methods, as well as mass separation methods. Recent progress towards the optimisation of these and other radionuclide production and purification methods has increased the feasibility of utilising Rare Earth radiometals in both preclinical and clinical settings, thereby placing them at the forefront of radiometals research for cancer theranostics.
Collapse
Affiliation(s)
| | - Leena Hogan
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Benjamin Fraser
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW, 2232, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Subramanian S, Mallia MB, Shinto AS, Mathew AS. Clinical Management of Liver Cancer in India and Other Developing Nations: A Focus on Radiation Based Strategies. Oncol Ther 2021; 9:273-295. [PMID: 34046873 PMCID: PMC8593115 DOI: 10.1007/s40487-021-00154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global killer with preponderance in Asian and African countries. It poses a challenge for successful management in less affluent or developing nations like India, with large populations and limited infrastructures. This review aims to assess the available options and future directions for management of HCC applicable to such countries. While summarizing current and emerging clinical strategies for detection, staging and therapy of the disease, it highlights radioisotope- and radioactivity-based strategies as part of an overall program. Using the widely accepted Barcelona Clinic Liver Cancer (BCLC) staging system as a base, it evaluates the applicability of different therapeutic approaches and their synergistic combination(s) in the context of a patient-specific dynamic results-based strategy. It distills the conclusions of multiple HCC management-focused consensus recommendations to provide a picture of clinical strategies, especially radiation-related approaches. Additionally, it discusses the logistical and economic feasibility of these approaches in the context of the limitations of the burdened public health infrastructure in India (and like nations) and highlights possible strategies both at the clinical level and in terms of an administrative health policy on HCC to provide the maximum possible benefit to the widest swathe of the affected population.
Collapse
Affiliation(s)
- Suresh Subramanian
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, RLG Building, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India
| | - Ajit S Shinto
- Apollo Proton Cancer Centre, Chennai, 600096, Tamil Nadu, India
| | | |
Collapse
|
10
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
11
|
Byun BH, Kim MH, Han YH, Jeong HJ. KSNM60 in Non-thyroidal Radionuclide Therapy: Leaping into the Future. Nucl Med Mol Imaging 2021; 55:203-209. [PMID: 34721713 DOI: 10.1007/s13139-021-00703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/02/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
This year, the Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary. Treatment, as well as diagnosis, has played a very important role in the development of nuclear medicine. Since I-131 was used for thyroid therapy in 1959, other radionuclide therapy is still being used, and attempts to use new radionuclide are increasing. In this review, we briefly summarize and introduce the therapies such as radioimmunotherapy, transarterial radioembolization, radionuclide therapy for neuroendocrine tumors, peptide receptor radionuclide therapy, control of metastatic bone pain, radiation synovectomy, radionuclide brachytherapy, alpha particle therapy, and boron neutron capture therapy, which has been being attempted so far in the field of nuclear medicine.
Collapse
Affiliation(s)
- Byung Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Myoung Hyoun Kim
- Department of Nuclear Medicine, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do South Korea
| | - Yeon-Hee Han
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, 20, Geonji-ro, Duckjin-gu, Jeonju-si, Jeollabuk-do 561-803 South Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, 20, Geonji-ro, Duckjin-gu, Jeonju-si, Jeollabuk-do 561-803 South Korea
| |
Collapse
|
12
|
Recent update of toxicity aspects of nanoparticulate systems for drug delivery. Eur J Pharm Biopharm 2021; 161:100-119. [PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
|
13
|
Laubach J, Joseph M, Brenza T, Gadhamshetty V, Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J Control Release 2021; 329:971-987. [DOI: 10.1016/j.jconrel.2020.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
14
|
Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Amirani E, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. Int J Biol Macromol 2020; 164:456-467. [PMID: 32693135 DOI: 10.1016/j.ijbiomac.2020.07.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K)-AKT pathway is one of the most important kinase signaling networks in the context of cancer development and treatment. Aberrant activation of AKT, the central mediator of this pathway, has been implicated in numerous malignancies including endometrial, hepatocellular, breast, colorectal, prostate, and, cervical cancer. Thus regulation and blockage of this kinase and its key target nodes is an attractive approach in cancer therapy and diverse efforts have been done to achieve this aim. Chitosan is a carbohydrate with multiple interesting applications in cancer diagnosis and treatment strategies. This bioactive polymer and its derivative oligomers commonly used in drug/DNA delivery methods due to their functional properties which improve efficiency of delivery systems. Further, these compounds exert anti-tumor roles through the stimulation of apoptosis, immune enhancing potency, anti-oxidative features and anti-angiogenic roles. Due to the importance of PI3K-AKT signaling in cancer targeting and treatment resistance, this review discusses the involvement of chitosan, oligochitosaccharides and carriers based on these chemicals in the regulation of this pathway in different tumors.
Collapse
Affiliation(s)
- Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Lohar S, Jadhav S, Chakravarty R, Chakraborty S, Sarma HD, Dash A. A kit based methodology for convenient formulation of 166Ho-Chitosan complex for treatment of liver cancer. Appl Radiat Isot 2020; 161:109161. [PMID: 32250846 DOI: 10.1016/j.apradiso.2020.109161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 11/30/2022]
Abstract
The effectiveness of 166Ho-chitosan complex as a radiopharmaceutical for trans-arterial radiation therapy of liver cancer has been established in clinical trials. We have developed a simple kit-bade strategy for convenient formulation of therapeutically relevant doses of 166Ho-chitosan complex in a hospital radiopharmacy in order to facilitate its widespread utilization. Quality control studies established the suitability of the radiopharmaceutical formulated using the developed strategy for in vivo administration. Biodistribution studies in normal Wistar rats showed excellent retention of the radiopharmaceutical in the liver, thus, paving the way towards utility of this approach in clinical context.
Collapse
Affiliation(s)
- Sharad Lohar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Sachin Jadhav
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India.
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
17
|
Arranja AG, Hennink WE, Chassagne C, Denkova AG, Nijsen JFW. Preparation and characterization of inorganic radioactive holmium-166 microspheres for internal radionuclide therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110244. [PMID: 31753348 DOI: 10.1016/j.msec.2019.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022]
Abstract
Microspheres with high specific activities of radionuclides are very interesting for internal radiotherapy treatments. This work focuses on the formulation and characterization of inorganic microspheres with a high content of holmium and therefore a high specific radioactivity of holmium-166. Two novel formulations of inorganic microspheres were obtained by dispersing solid holmium acetylacetonate microspheres (Ho2(AcAc)3-ms) in NaH2PO4 or NaOH solutions followed by 2 h incubation at room temperature. By exchange of acetylacetonate with phosphate or hydroxyl ions, holmium phosphate microspheres (HoPO4-ms) and holmium hydroxide microspheres (Ho(OH)3-ms) were formed respectively. The inorganic microspheres had a significantly smaller diameter (28.5 ± 4.4 μm (HoPO4-ms) and 25.1 ± 3.5 μm (Ho(OH)3-ms)) than those of Ho2(AcAc)3-ms (32.6 ± 5.2 μm). The weight percentage of holmium-165 in the microspheres increased significantly from 47% (Ho2(AcAc)3-ms) to 55% (HoPO4-ms) and 73% (Ho(OH)3-ms). After preparation of both HoPO4-ms and Ho(OH)3-ms, the stable holmium-165 isotope was partly converted by neutron activation into radioactive holmium-166 to yield radioactive microspheres. High specific activities were achieved ranging from 21.7 to 59.9 MBq/mg (166HoPO4-ms) and from 28.8 to 79.9 MBq/mg (166Ho(OH)3-ms) depending on the neutron activation time. The structure of both microspheres was preserved up to neutron activations of 6 h in a thermal neutron flux of 4.72 × 1016 n m-2 s-1. After activation, both microspheres revealed excellent stability in administration fluids (saline and phosphate buffer) having less than 0.05% of holmium released after 72 h incubation. Finally, the hemocompatibility of these inorganic microspheres was evaluated and it was shown that the microspheres did cause neither hemolysis nor depletion or inhibition of the coagulation factors of the intrinsic blood coagulation pathway meaning that the microspheres have a good hemocompatibility. Overall, this work shows that radioactive inorganic microspheres with high specific activities of holmium-166 can be prepared which potentially can be used for internal radionuclide therapy.
Collapse
Affiliation(s)
- A G Arranja
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508 TB, Utrecht, the Netherlands; Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands; Radboudumc, Department of Radiology and Nuclear Medicine, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - W E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - C Chassagne
- Department of Hydraulic Engineering, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - A G Denkova
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB, Delft, the Netherlands
| | - J F W Nijsen
- Radboudumc, Department of Radiology and Nuclear Medicine, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands; Quirem Medical B.V, Zutphenseweg 55, 7418 AH, Deventer, the Netherlands.
| |
Collapse
|
18
|
Klaassen NJM, Arntz MJ, Gil Arranja A, Roosen J, Nijsen JFW. The various therapeutic applications of the medical isotope holmium-166: a narrative review. EJNMMI Radiopharm Chem 2019; 4:19. [PMID: 31659560 PMCID: PMC6682843 DOI: 10.1186/s41181-019-0066-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022] Open
Abstract
Over the years, a broad spectrum of applications of the radionuclide holmium-166 as a medical isotope has been established. The isotope holmium-166 is attractive as it emits high-energy beta radiation which can be used for a therapeutic effect and gamma radiation which can be used for nuclear imaging purposes. Furthermore, holmium-165 can be visualized by MRI because of its paramagnetic properties and by CT because of its high density. Since holmium-165 has a natural abundance of 100%, the only by-product is metastable holmium-166 and no costly chemical purification steps are necessary for production of nuclear reactor derived holmium-166. Several compounds labelled with holmium-166 are now used in patients, such Ho166-labelled microspheres for liver malignancies, Ho166-labelled chitosan for hepatocellular carcinoma (HCC) and [166Ho]Ho DOTMP for bone metastases. The outcomes in patients are very promising, making this isotope more and more interesting for applications in interventional oncology. Both drugs as well as medical devices labelled with radioactive holmium are used for internal radiotherapy. One of the treatment possibilities is direct intratumoural treatment, in which the radioactive compound is injected with a needle directly into the tumour. Numerous other applications have been developed, like patches for treatment of skin cancer and holmium labelled antibodies and peptides. The second major application that is currently clinically applied is selective internal radiation therapy (SIRT, also called radioembolization), a novel treatment option for liver malignancies. This review discusses medical drugs and medical devices based on the therapeutic radionuclide holmium-166.
Collapse
Affiliation(s)
- Nienke J M Klaassen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Mark J Arntz
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Alexandra Gil Arranja
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, 3508, TB, Utrecht, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629, JB, Delft, The Netherlands
| | - Joey Roosen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - J Frank W Nijsen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Radboud Institute for Health Sciences, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Zhang E, Xing R, Liu S, Qin Y, Li K, Li P. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr Polym 2019; 222:115004. [PMID: 31320066 DOI: 10.1016/j.carbpol.2019.115004] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023]
Abstract
Chitosan has attracted considerable attention as an anti-tumor drug carrier material in recent years, which is due to its biocompatibility and biodegradability, as well as the simple and mild preparing techniques of drug-loaded nanoparticles. Chitosan-based nanoparticles can deliver various anti-tumor agents to specific tumor tissues by passive and active targeting mechanisms, including traditional chemotherapeutic agents, DNA or siRNA, proteins, photosensitizers and so on. In this review, we summarized the factors affecting the anti-tumor efficacy of chitosan-based nanoparticles, to aid exploring the function-structure relationship. The recent studies on chitosan-based nanoparticles for oncotherapy were highlighted, including their structures, properties and pharmacological effects. Finally, we offered our perspectives on the challenges and future development of this area.
Collapse
Affiliation(s)
- Enhui Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
20
|
Pandey U, Subramanian S, Shaikh S, Gamre N, Kumar S, Dash A. Synthesis and Preliminary Biological Evaluation of 177Lu-Labeled Polyhydroxamic Acid Microparticles Toward Therapy of Hepatocellular Carcinoma. Cancer Biother Radiopharm 2019; 34:306-315. [PMID: 31188652 DOI: 10.1089/cbr.2018.2747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Transarterial radioembolization (TARE) represents an effective targeted therapeutic option for hepatocellular carcinoma (HCC), a cancer with high mortality and poor prognosis. The aim of this study was the preparation and preliminary biological evaluation of 177Lu-labeled polyhydroxamic acid (PHA) microparticles toward possible use in the therapy of HCC. Materials and Methods: PHA microparticles were synthesized starting from polyacrylamide. They were characterized by Fourier-transform infrared spectroscopy (FT-IR), visual color test, and laser diffraction particle size analysis. Experimental variables such as reaction pH, amount of PHA microparticles, carrier Lu content, and incubation time were optimized for maximum uptake of 177Lu on PHA microparticles. Stability of 177Lu-PHA microparticles was tested in the presence of competing Fe(III) ions in solution. In vitro stability of 177Lu-PHA microparticles was evaluated in 0.05 M sodium phosphate solution (pH 7.5), saline, and serum. Bioevaluation studies were performed in normal Wistar rats by intrahepatic artery injection of the 177Lu-PHA microparticles. Results: Successful synthesis of PHA microparticles could be confirmed from the results of FT-IR analysis and visual color test. Laser diffraction-based particle size analysis confirmed median particle size to be 54 μm, suitable for TARE. Under the optimized conditions, >99% loading of 177Lu on PHA microparticles could be achieved. Even in the presence of high concentration of Fe(III) ions, 177Lu binding to PHA microparticles was stable. 177Lu-PHA microparticles exhibited excellent in vitro stability in sodium phosphate solution, saline, and serum up to 5 d at 37°C. In the bioevaluation studies performed in normal Wistar rats, 92.8% ± 3.1% of 177Lu-PHA microparticles were retained in the liver at 96 h postinjection without any significant leakage to other organs. Conclusion: This preliminary study demonstrates the potential of synthesized PHA microparticles as carriers of therapeutic radioisotopes such as 177Lu for treatment of HCC.
Collapse
Affiliation(s)
- Usha Pandey
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| | - Suresh Subramanian
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| | - Samina Shaikh
- 2 Homi Bhabha National Institute, Mumbai, India.,3 Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Naresh Gamre
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjukta Kumar
- 2 Homi Bhabha National Institute, Mumbai, India.,3 Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashutosh Dash
- 1 Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.,2 Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
21
|
Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019; 20:E2323. [PMID: 31083402 PMCID: PMC6539387 DOI: 10.3390/ijms20092323] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
In the last two decades, various nanomaterials have attracted increasing attention in medical science owing to their unique physical and chemical characteristics. Incorporating radionuclides into conventionally used nanomaterials can confer useful additional properties compared to the original material. Therefore, various radionuclides have been used to synthesize functional nanomaterials for biomedical applications. In particular, several α- or β-emitter-labeled organic and inorganic nanoparticles have been extensively investigated for efficient and targeted cancer treatment. This article reviews recent progress in cancer therapy using radiolabeled nanomaterials including inorganic, polymeric, and carbon-based materials and liposomes. We first provide an overview of radiolabeling methods for preparing anticancer agents that have been investigated recently in preclinical studies. Next, we discuss the therapeutic applications and effectiveness of α- or β-emitter-incorporated nanomaterials in animal models and the emerging possibilities of these nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
22
|
Bouvry C, Palard X, Edeline J, Ardisson V, Loyer P, Garin E, Lepareur N. Transarterial Radioembolization (TARE) Agents beyond 90Y-Microspheres. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1435302. [PMID: 30687734 PMCID: PMC6330886 DOI: 10.1155/2018/1435302] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Liver malignancies, either primary tumours (mainly hepatocellular carcinoma and cholangiocarcinoma) or secondary hepatic metastases, are a major cause of death, with an increasing incidence. Among them, hepatocellular carcinoma (HCC) presents with a dark prognosis because of underlying liver diseases and an often late diagnosis. A curative surgical treatment can therefore only be proposed in 20 to 30% of the patients. However, new treatment options for intermediate to advanced stages, such as internal radionuclide therapy, seem particularly attractive. Transarterial radioembolization (TARE), which consists in the use of intra-arterial injection of a radiolabelled embolising agent, has led to very promising results. TARE with 90Y-loaded microspheres is now becoming an established procedure to treat liver tumours, with two commercially available products (namely, SIR-Sphere® and TheraSphere®). However, this technology remains expensive and is thus not available everywhere. The aim of this review is to describe TARE alternative technologies currently developed and investigated in clinical trials, with special emphasis on HCC.
Collapse
Affiliation(s)
- C. Bouvry
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - X. Palard
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inserm, LTSI (Laboratoire Traitement du Signal et de l'Image), UMR_S 1099, 35000 Rennes, France
| | - J. Edeline
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - V. Ardisson
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
| | - P. Loyer
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - E. Garin
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - N. Lepareur
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| |
Collapse
|
23
|
Anticancer Activity of Chitosan, Chitosan Derivatives, and Their Mechanism of Action. Int J Biomater 2018; 2018:2952085. [PMID: 30693034 PMCID: PMC6332982 DOI: 10.1155/2018/2952085] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Tailoring of chitosan through the involvement of its amino, acetamido, and hydroxy groups can give derivatives of enhanced solubility and remarkable anticancer activity. The general mechanism of such activity is associated with the disturbances in normal functioning of cell cycle, interference to the central dogma of biological system from DNA to RNA to protein or enzymatic synthesis, and the disruption of hormonal path to biosynthesis to inhibit the growth of cancer cells. Both chitosan and its various derivatives have been reported to selectively permeate through the cancer cell membranes and show anticancer activity through the cellular enzymatic, antiangiogenic, immunoenhancing, antioxidant defense mechanism, and apoptotic pathways. They get sequestered from noncancer cells and provide their enhanced bioavailability in cancer cells in a sustained release manner. This review presents the putative mechanisms of anticancer activity of chitosan and mechanistic approaches of structure activity relation upon the modification of chitosan through functionalization, complex formation, and graft copolymerization to give different derivatives.
Collapse
|
24
|
Radioactive holmium phosphate microspheres for cancer treatment. Int J Pharm 2018; 548:73-81. [PMID: 29913219 DOI: 10.1016/j.ijpharm.2018.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/21/2022]
Abstract
The aim of this study was the development of radioactive holmium phosphate microspheres (HoPO4-MS) with a high holmium content and that are stable in human serum for selective internal radiation therapy (SIRT) of liver cancer. To this end, holmium acetylacetonate microspheres (HoAcAc-MS) were prepared (34.2 ± 1.0 µm in diameter, holmium content of 46.2 ± 0.8 and density of 1.7 g/cm3) via an emulsification and solvent evaporation method. The concentration of HoAcAc in the organic solvent, the temperature of emulsification and the stirring speed were varied for the preparation of the HoAcAc-MS to obtain microspheres with different diameters ranging from 11 to 35 µm. Subsequently, the AcAc ligands of the HoAcAc-MS were replaced by phosphate ions by simply incubating neutron irradiated HoAcAc-MS in a phosphate buffer solution (0.116 M, pH 4.2) to yield radioactive HoPO4-MS. The obtained microspheres were analyzed using different techniques such as SEM-EDS, ICP-OES and HPLC. The prepared HoPO4-MS (29.5 ± 1.2 µm in diameter and a density of 3.1 g/cm3) present an even higher holmium content (52 wt%) than the HoAcAc-MS precursor (46 wt%). Finally, the stability of the HoPO4-MS was tested by incubation in human serum at 37 °C which showed no visible changes of the microspheres morphology and only 0.1% of holmium release was observed during the 2 weeks period of incubation. In conclusion, this study shows that stable radioactive HoPO4-MS can be prepared with suitable properties to be used for cancer therapy.
Collapse
|
25
|
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700513. [PMID: 29721408 PMCID: PMC5908359 DOI: 10.1002/advs.201700513] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide-based drug delivery systems.
Collapse
Affiliation(s)
- Tianxin Miao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Collaborative Innovation Center of Guangxi Biological Medicine and theMedical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Yun Zeng
- Department of PharmacologyXiamen Medical CollegeXiamen361008China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
26
|
Müller C, van der Meulen NP, Benešová M, Schibli R. Therapeutic Radiometals Beyond 177Lu and 90Y: Production and Application of Promising α-Particle, β−-Particle, and Auger Electron Emitters. J Nucl Med 2017; 58:91S-96S. [DOI: 10.2967/jnumed.116.186825] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022] Open
|
27
|
Bakker RC, Lam MG, van Nimwegen SA, Rosenberg AJ, van Es RJ, Nijsen JFW. Intratumoral treatment with radioactive beta-emitting microparticles: a systematic review. JOURNAL OF RADIATION ONCOLOGY 2017; 6:323-341. [PMID: 29213358 PMCID: PMC5700992 DOI: 10.1007/s13566-017-0315-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to review the role of radioactive microparticles (1-100 μm) for the treatment of solid tumors and provide a comprehensive overview of the feasibility, safety, and efficacy. METHODS A systematic search was performed in MEDLINE, EMBASE, and The Cochrane Library (January 2017) by combining synonyms for the determinants "tumor," "injection," and "radionuclide." Data on injection technique, toxicity, tumor response, and survival were collected. RESULTS The search yielded 7271 studies, and 37 were included for analysis. Twelve studies were performed in human patients and 25 animal studies. The studies were heterogeneous in patient population, tumors, follow-up time, and treatment characteristics. The direct intratumoral injection of radioactive microparticles resulted in a response rate of 71% in a variety of tumors and uncomplicated procedures with high cumulative doses of >19,000 Gy were reported. CONCLUSION The large variety of particles, techniques, and treated tumors in the studies provided an important insight into issues concerning efficacy, safety, particle and isotope choice, and other concepts for future research. Animal studies showed efficacy and a dose response. Most studies in humans concluded that intratumoral treatment with radioactive beta-emitting microparticles is relatively safe and effective. Conflicting evidence about safety and efficacy might be explained by the considerable variation in the treatment characteristics. Larger particles had a better retention which resulted in higher anti-tumor effect. Leakage seems to follow the path of least resistance depending on anatomical structures. Subsequently, a grid-like injection procedure with small volume depots is advised over a single large infusion. Controlled image-guided treatment is necessary because inadequate local delivery and inhomogeneous dose distribution result in reduced treatment efficacy and in potential complications.
Collapse
Affiliation(s)
- Robbert C. Bakker
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan A. van Nimwegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Antoine J.W.P. Rosenberg
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert J.J. van Es
- Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - J. Frank W. Nijsen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
28
|
Kim J, Luo ZX, Wu Y, Lu X, Jay M. In-Situ Formation of Holmium Oxide in Pores of Mesoporous Carbon Nanoparticles as Substrates for Neutron-Activatable Radiotherapeutics. CARBON 2017; 117:92-99. [PMID: 28966368 PMCID: PMC5619678 DOI: 10.1016/j.carbon.2017.02.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Radionuclide therapy with nano-sized carriers is a very promising approach to treat various types of cancer. The preparation of radioactive nanocarriers can be achieved with minimum handling using a neutron-activation approach. However, the nanocarrier material must possess certain characteristics such as low density, heat-resistance, high metal adsorption, easy surface modification and low toxicity in order to be useful. Mesoporous Carbon Nanoparticles (MCNs) in which holmium oxide is formed in their pores by a wet-impregnation process are investigated as a suitable material for this application. Holmium (165Ho) has a natural abundance of 100% and possesses a large cross-section for capturing thermal neutrons. After irradiation of Ho-containing MCNs in a neutron flux, 166Ho, which emits therapeutic high energy beta particles as well as diagnostic low energy gamma photons that can be imaged externally, is produced. The wet impregnation process (16 w/w% Ho loading) is shown to completely prevent the leaching of radioactive holmium from the MCNs without compromising their structural integrity. In vitro studies showed that the MCNs containing non-radioactive holmium do not exhibit toxicity and the same formulation with radioactive holmium (166Ho) demonstrated a tumoricidal effect. Post-irradiation PEGylation of the MCN surfaces endows dispersibility and biocompatibility.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| | - Zhi-Xiang Luo
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
| | - Yue Wu
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269
| | - Michael Jay
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
29
|
Affiliation(s)
- Yi Shi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, New York, USA
| | - Amanda M. Johnsen
- Radiation Science and Engineering Center, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anthony J. Di Pasqua
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
30
|
Optimized production, quality control and biodistribution assessment of 166Ho–DOTATOC: a novel radiolabelled somatostatin analog. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5225-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Hong SC, Yoo SY, Kim H, Lee J. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics. Mar Drugs 2017; 15:md15030060. [PMID: 28257059 PMCID: PMC5367017 DOI: 10.3390/md15030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022] Open
Abstract
Chitosan has been widely used as a key biomaterial for the development of drug delivery systems intended to be administered via oral and parenteral routes. In particular, chitosan-based microparticles are the most frequently employed delivery system, along with specialized systems such as hydrogels, nanoparticles and thin films. Based on the progress made in chitosan-based drug delivery systems, the usefulness of chitosan has further expanded to anti-cancer chemoembolization, tissue engineering, and stem cell research. For instance, chitosan has been used to develop embolic materials designed to efficiently occlude the blood vessels by which the oxygen and nutrients are supplied. Indeed, it has been reported to be a promising embolic material. For better anti-cancer effect, embolic materials that can locally release anti-cancer drugs were proposed. In addition, a complex of radioactive materials and chitosan to be locally injected into the liver has been investigated as an efficient therapeutic tool for hepatocellular carcinoma. In line with this, a number of attempts have been explored to use chitosan-based carriers for the delivery of various agents, especially to the site of interest. Thus, in this work, studies where chitosan-based drug delivery systems have successfully been used for local delivery will be presented along with future perspectives.
Collapse
Affiliation(s)
- Seong-Chul Hong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Seung-Yup Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
32
|
Padia SA, Lewandowski RJ, Johnson GE, Sze DY, Ward TJ, Gaba RC, Baerlocher MO, Gates VL, Riaz A, Brown DB, Siddiqi NH, Walker TG, Silberzweig JE, Mitchell JW, Nikolic B, Salem R. Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. J Vasc Interv Radiol 2017; 28:1-15. [DOI: 10.1016/j.jvir.2016.09.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 02/09/2023] Open
|
33
|
Wang H, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B 2017; 5:6986-7007. [DOI: 10.1039/c7tb01624g] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in the preparation and biomedical applications of engineered chitosan-based nanogels has been comprehensively reviewed.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
34
|
Transarterial chemoembolization versus transarterial radioembolization in hepatocellular carcinoma: optimization of selecting treatment modality. Hepatol Int 2016; 10:883-892. [PMID: 27126821 DOI: 10.1007/s12072-016-9722-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) of intermediate stage consists of diverse tumor and patient factors in terms of tumor number, size and liver function resulting in various outcomes given by transarterial chemoembolization (TACE). Transarterial radioembolization (TARE) using radioactive isotope, β-ray emitting Yttrium-90 with a short half-life and penetration depth, is an emerging intra-arterial brachytherapy characterized by potent anti-cancer effect given by radiation but minimal embolic effect. Although there is lack of study directly comparing the efficacy and safety between TACE and TARE in patients with unresectable HCC, several retrospective or small-scaled studies suggest that overall efficacy indicated by overall survival and time to progression is similar between two modalities and TARE has a superiority in the safety including postembolization syndrome, hospitalization days and outpatient-based therapy. In advanced HCC with portal vein (PV) invasion, TACE is not consistently recommended due to risk of hepatic decompensation or failure after procedure. On the contrary, available data suggest that TARE might be a promising treatment option in HCC with PV thrombosis if patient's liver function is preserved and the level of PV invasion is less than main trunk. Ongoing trials comparing TARE and sorafenib in advanced HCC would elucidate the role of this locoregional therapy. The need of a multidisciplinary team, complex steps of procedure and high cost of TARE are the hurdles to widespread recommendation of this therapy in intermediate or advanced HCC. The optimization of selection between TACE and TARE might be dependent on availability, experience, tumor factors and patient factors.
Collapse
|
35
|
Riaz A, Lewandowski RJ, Salem R. Locoregional Therapies for Primary and Secondary Hepatic Malignancies. Cancer Treat Res 2016; 168:233-256. [PMID: 29206376 DOI: 10.1007/978-3-319-34244-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Management of hepatic malignancies is a multidisciplinary task with the involvement of hepatologists, medical/surgical oncologists, transplant surgeons, and interventional radiologists. The patients should be selected for a specific targeted therapy after multidisciplinary consensus. Interventional oncology has established its role in the management of hepatic malignancies. Image-guided locoregional therapies decrease the rate of systemic toxicity without compromising tumoricidal effect.
Collapse
|
36
|
|
37
|
Kalogeridi MA, Zygogianni A, Kyrgias G, Kouvaris J, Chatziioannou S, Kelekis N, Kouloulias V. Role of radiotherapy in the management of hepatocellular carcinoma: A systematic review. World J Hepatol 2015; 7:101-112. [PMID: 25625001 PMCID: PMC4295187 DOI: 10.4254/wjh.v7.i1.101] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/26/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Many patients with hepatocellular carcinoma (HCC) present with advanced disease, not amenable to curative therapies such as surgery, transplantation or radiofrequency ablation. Treatment options for this group of patients include transarterial chemoembolization (TACE) and radiation therapy. Especially TACE, delivering a highly concentrated dose of chemotherapy to tumor cells while minimizing systemic toxicity of chemotherapy, has given favorable results on local control and survival. Radiotherapy, as a therapeutic modality of internal radiation therapy with radioisotopes, has also achieved efficacious tumor control in advanced disease. On the contrary, the role of external beam radiotherapy for HCC has been limited in the past, due to the low tolerance of surrounding normal liver parenchyma. However, technological innovations in the field of radiotherapy treatment planning and delivery, have provided the means of delivering radical doses to the tumor, while sparing normal tissues. Advanced and highly conformal radiotherapy approaches such as stereotactic body radiotherapy and proton therapy, evaluated for efficacy and safety for HCC, report encouraging results. In this review, we present the role of radiotherapy in hepatocellular carcinoma patients not suitable for radical treatment.
Collapse
|
38
|
Cationic Polymers for the Delivery of Therapeutic Nucleotides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_44-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Taleb J, Janier M, Bonazza P, Roux P, Miladi I, Goutain-Majorel C, Billotey C, Kryza D. Radiation dose measurements for staff members involved in holmium-166 preclinical trial. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Lee S, Kim BK, Kim SU, Park Y, Chang S, Park JY, Kim DY, Ahn SH, Chon CY, Han KH. Efficacy of sorafenib monotherapy versus sorafenib-based loco-regional treatments in advanced hepatocellular carcinoma. PLoS One 2013; 8:e77240. [PMID: 24155932 PMCID: PMC3796498 DOI: 10.1371/journal.pone.0077240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/31/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Although sorafenib is accepted as the standard of care in advanced hepatocellular carcinoma (HCC), its therapeutic benefit is marginal. Here, we aimed to compare the efficacy and safety of sorafenib monotherapy (S-M) and sorafenib-based loco-regional treatments (S-LRTs) in advanced HCC. METHODS From 2007 to 2012, 290 patients with advanced HCC (Barcelona Clinic Liver Cancer stage C) with S-M (n = 226) or S-LRTs (n = 64) were reviewed retrospectively. Survival outcomes and treatment-related toxicities between two groups were analyzed. RESULTS Variables related to tumor burden and liver function were similar between the groups (all P > 0.05). Within the entire population, the S-LRTs group had both longer median overall survival (OS) (8.5 vs 5.5 months, P = 0.001) and progression-free survival (PFS) (5.3 vs 3.0 months, P = 0.002) than the S-M group. Furthermore, the S-LRTs group had longer Os than the S-M group in a subgroup with neither extrahepatic spread (EHS) nor regional nodal involvement (RNI) (18.0 vs 7.8 months, P = 0.019) and in a subgroup with EHS and/or RNI (8.3 vs 4.8 months, P = 0.028). In addition, the S-LRTs group had longer PFS than the S-M group in the subgroup with neither EHS nor RNI (9.6 vs 3.2 months, P = 0.027). TREATMENT Related toxicity was similar between two groups. CONCLUSION Combined use of sorafenib and LRTs may provide better treatment outcomes without significantly increasing treatment-related toxicities, even in patients with EHS and/or RNI. Therefore, addition of active LRTs might be considered, if feasible.
Collapse
Affiliation(s)
- Sangheun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cancer Special Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Republic of Korea
- * E-mail: (SUK); (KHH)
| | - Yehyun Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sooyun Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cancer Special Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cancer Special Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cancer Special Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Republic of Korea
- Brain Korea Project for Medical Science, Seoul, Republic of Korea
| | - Chae Yoon Chon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cancer Special Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Republic of Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cancer Special Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Republic of Korea
- Brain Korea Project for Medical Science, Seoul, Republic of Korea
- * E-mail: (SUK); (KHH)
| |
Collapse
|
41
|
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65:1234-70. [PMID: 23872012 PMCID: PMC7103275 DOI: 10.1016/j.addr.2013.07.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 01/19/2023]
Abstract
Alternatives to efficient viral vectors in gene therapy are desired because of their poor safety profiles. Chitosan is a promising non-viral nucleotide delivery vector because of its biocompatibility, biodegradability, low immunogenicity and ease of manufacturing. Since the transfection efficiency of chitosan polyplexes is relatively low compared to viral counterparts, there is an impetus to gain a better understanding of the structure-performance relationship. Recent progress in preparation and characterisation has enabled coupling analysis of chitosans structural parameters that has led to increased TE by tailoring of chitosan's structure. In this review, we summarize the recent advances that have lead to a more rational design of chitosan polyplexes. We present an integrated review of all major areas of chitosan-based transfection, including preparation, chitosan and polyplexes physicochemical characterisation, in vitro and in vivo assessment. In each, we present the obstacles to efficient transfection and the strategies adopted over time to surmount these impediments.
Collapse
Affiliation(s)
- Michael D Buschmann
- Dept. Chemical Engineering and Inst. Biomedical Engineering, Ecole Polytechnique, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S. Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2013; 2:1037-44. [PMID: 23355508 DOI: 10.1002/adhm.201200409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Indexed: 11/05/2022]
Abstract
A method to functionalize steerable magnetic microdevices through the co-electrodeposition of drug loaded chitosan hydrogels is presented. The characteristics of the polymer matrix have been investigated in terms of fabrication, morphology, drug release and response to different environmental conditions. Modifications of the matrix behavior could be achieved by simple chemical post processing. The system is able to load and deliver 40-80 μg cm(-2) of a model drug (Brilliant Green) in a sustained manner with different profiles. Chitosan allows a pH responsive behavior with faster and more efficient release under slightly acidic conditions as can be present in tumor or inflamed tissue. A prototype of a microrobot functionalized with the hydrogel is presented and proposed for the treatment of posterior eye diseases.
Collapse
Affiliation(s)
- Stefano Fusco
- Institute of Robotics and Intelligent Systems, Tannenstrasse 3, ETH Zürich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Hosseini SH, Enferadi M, Sadeghi M. Dosimetric aspects of 166Ho brachytherapy biodegradable glass seed. Appl Radiat Isot 2012; 73:109-15. [PMID: 23313765 DOI: 10.1016/j.apradiso.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/27/2012] [Accepted: 12/04/2012] [Indexed: 11/20/2022]
Abstract
The purpose of this study is to perform absorbed dose calculations based on Monte Carlo simulations for a novel beta emitter bioglass Ho-166 seed which is proposed for treating small hepatocellular carcinomas (HCCs). The bioactive glass seed has been developed by use of the sol-gel method. Monte Carlo simulations were carried out for the seed using the version 5 of the (MCNP) Monte Carlo radiation transport code to investigate the dosimetric parameters recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were obtained at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 6.71 ± 0.4 cGy h(-1) μCi(-1). The anisotropy function values ranging from 0.745 to 1.928 were obtained for radial distances of 0.3-8 mm and polar angles of 0°-90°. The (166)Ho seed source can deliver high radiation doses to the tumor, while the short range of the beta particles limits damage to the adjacent normal tissue.
Collapse
Affiliation(s)
- S Hamed Hosseini
- Department of Biomedical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | |
Collapse
|
44
|
Tumor accumulation of neutron-activatable holmium-containing mesoporous silica nanoparticles in an orthotopic non-small cell lung cancer mouse model. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Di Pasqua AJ, Yuan H, Chung Y, Kim JK, Huckle JE, Li C, Sadgrove M, Tran TH, Jay M, Lu X. Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. J Nucl Med 2012; 54:111-6. [PMID: 23100452 DOI: 10.2967/jnumed.112.106609] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Mesoporous silica nanoparticles (MSNs) were explored as a carrier material for the stable isotope (165)Ho and, after neutron capture, its subsequent therapeutic radionuclide, (166)Ho (half-life, 26.8 h), for use in radionuclide therapy of ovarian cancer metastasis. METHODS (165)Ho-MSNs were prepared using (165)Ho-acetylacetonate and MCM-41 silica particles, and stability was determined after irradiation in a nuclear reactor (reactor power, 1 MW; thermal neutron flux of approximately 5.5 × 10(12) neutrons/cm(2)s). SPECT/CT and tissue biodistribution studies were performed after intraperitoneal administration of (166)Ho-MSNs to SKOV-3 ovarian tumor-bearing mice. Radiotherapeutic efficacy was studied by using PET/CT with (18)F-FDG to determine tumor volume and by monitoring survival. RESULTS The holmium-MSNs were able to withstand long irradiation times in a nuclear reactor and did not release (166)Ho after significant dilution. SPECT/CT images and tissue distribution results revealed that (166)Ho-MSNs accumulated predominantly in tumors (32.8% ± 8.1% injected dose/g after 24 h; 81% ± 7.5% injected dose/g after 1 wk) after intraperitoneal administration. PET/CT images showed reduced (18)F-FDG uptake in tumors, which correlated with a marked increase in survival after treatment with approximately 4 MBq of (166)Ho-MSNs. CONCLUSION The retention of holmium in nanoparticles during irradiation and in vivo after intraperitoneal administration as well as their efficacy in extending survival in tumor-bearing mice underscores their potential as a radiotherapeutic agent for ovarian cancer metastasis.
Collapse
Affiliation(s)
- Anthony J Di Pasqua
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hawken J, Troy SB. Adjuvants and inactivated polio vaccine: a systematic review. Vaccine 2012; 30:6971-9. [PMID: 23041122 DOI: 10.1016/j.vaccine.2012.09.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 11/17/2022]
Abstract
Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by use of universal inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV.
Collapse
|
47
|
Bult W, Vente MAD, Vandermeulen E, Gielen I, Seevinck PR, Saunders J, van Het Schip AD, Bakker CJG, Krijger GC, Peremans K, Nijsen JFW. Microbrachytherapy using holmium-166 acetylacetonate microspheres: a pilot study in a spontaneous cancer animal model. Brachytherapy 2012; 12:171-7. [PMID: 22999975 DOI: 10.1016/j.brachy.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/29/2011] [Accepted: 03/13/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Holmium-166 acetylacetonate microspheres ((166)Ho-AcAc-MS) are proposed as an intratumoral radioablation device. This article presents a pilot study in housecats with unresectable liver cancer. Feasibility and tolerability of intratumoral administrations of (166)Ho-AcAc-MS was investigated. METHODS AND MATERIALS Three cats with unresectable liver tumors of different histotype were included. One cat had hepatocellular carcinoma (HCC), one had cholangiocarcinoma (CC), and one had a malignant epithelial liver tumor (MELT) of unspecified histotype. (166)Ho-AcAc-MS were injected percutaneously under ultrasound guidance into the tumors. Followup consisted of physical examinations and hematologic and biochemical analyses. RESULTS (166)Ho-AcAc-MS were administered to three liver tumor-bearing cats. The treatment was well tolerated and the clinical condition, that is body weight, alertness, mobility, and coat condition of the animals improved markedly. Most biochemical and hematologic parameters normalized shortly after treatment. Life of all cats was extended and associated with a good quality of life. The HCC cat that received 33-Gy tumor-absorbed dose was euthanized 6 months after the first administration owing to disease progression. The MELT cat received 99-Gy tumor dose and was euthanized 3 months posttreatment owing to bacterial meningitis. The CC cat received 333Gy and succumbed 4 months after the first treatment owing to the formation of a pulmonary embolism. CONCLUSIONS Percutaneous intratumoral injection of radioactive (166)Ho-AcAc-MS is feasible in liver tumor-bearing cats. The findings of this pilot study indicate that (166)Ho-AcAc-MS may constitute safe brachytherapeutic microspheres and warrant studies to confirm the clinical utility of this novel brachytherapy device.
Collapse
Affiliation(s)
- Wouter Bult
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lee IJ, Seong J. The optimal selection of radiotherapy treatment for hepatocellular carcinoma. Gut Liver 2012; 6:139-48. [PMID: 22570744 PMCID: PMC3343153 DOI: 10.5009/gnl.2012.6.2.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/18/2011] [Indexed: 12/20/2022] Open
Abstract
The majority of patients who present with hepatocellular carcinoma (HCC) are already at an advanced stage, and the tumors are unresectable. Radiotherapy (RT) technology can safely provide focused high-dose irradiation to these patients. A wide spectrum of RT technologiesis currently available, including internal RT consisting of Yttrium-90 ((90)Y), Iodine-131 ((131)I) anti-ferritin antibody and Homium-199 ((199)Ho) and external RT, such as three-dimensional conformal RT, intensity-modulated RT, helical tomotherapy, stereotactic body RT, and image-guided RT. However, it may be difficult for physicians to understand all of the available options and to select the optimal RT treatment. Physicians frequently query radiation oncologists on the practical indications of RT for managing patients with HCC. According to the Korean Liver Cancer Study Group practice guidelines, RT is considered appropriate for unresectable, locally advanced HCC without extrahepatic metastasis, a Child-Pugh class A or B, and tumors that occupy less than two-thirds of the liver with level II evidence. In this review, we discuss the application of various RT modalities based on disease status and the detailed indications for RT according to the Barcelona Clinic Liver Cancer staging system.
Collapse
Affiliation(s)
- Ik Jae Lee
- Department of Radiation Oncology, Yonsei Liver Cancer Clinic, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Liver Cancer Clinic, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Memon K, Lewandowski RJ, Kulik L, Riaz A, Mulcahy MF, Salem R. Radioembolization for primary and metastatic liver cancer. Semin Radiat Oncol 2012; 21:294-302. [PMID: 21939859 DOI: 10.1016/j.semradonc.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of hepatocellular carcinoma is increasing. Most patients present beyond potentially curative options and are usually affected by underlying cirrhosis. In this scenario, transarterial therapies, such as radioembolization, are rapidly gaining acceptance as a potential therapy for hepatocellular carcinoma and liver metastases. Radioembolization is a catheter-based liver-directed therapy that involves the injection of micron-sized embolic particles loaded with a radioisotope by use of percutaneous transarterial techniques. Cancer cells are preferentially supplied by arterial blood and normal hepatocytes by portal venous blood; therefore, radioembolization specifically targets tumor cells with a high dose of lethal radiation and spares healthy hepatocytes. The antitumor effect mostly comes from radiation rather than embolization. The most commonly used radioisotope is yttrium-90. The commercially available devices are TheraSphere (glass based; MDS Nordion, Ottawa, Canada) and SIR-Sphere (resin based; Sirtex, Lane Cove, Australia). The procedure is performed on an outpatient basis. The incidence of complications is comparatively less than other locoregional therapies and may include nausea, fatigue, abdominal pain, hepatic dysfunction, biliary injury, fibrosis, radiation pneumonitis, gastrointestinal ulcers, and vascular injury. However, these complications can be avoided by meticulous pretreatment assessment, careful patient selection, and adequate dosimetry. This article focuses on both the technical and clinical aspects of radioembolization with emphasis on patient selection, uses and complications.
Collapse
Affiliation(s)
- Khairuddin Memon
- Department of Radiology, Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
50
|
Lee IJ, Seong J. Radiotherapeutic strategies in the management of hepatocellular carcinoma. Oncology 2011; 81 Suppl 1:123-33. [PMID: 22212946 DOI: 10.1159/000333275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although potentially curative therapies for hepatocellular carcinoma (HCC) are well established, they are offered only to a limited number of patients. For advanced HCC, sorafenib is now the treatment of choice. Radiotherapy technology has evolved remarkably during the past decade and can be precisely delivered, thereby permitting higher doses to the tumor and reduced doses to surrounding normal tissues. According to the Korean Liver Cancer Study Group (KLCSG) practice guidelines, radiation therapy is considered appropriate for unresectable, locally advanced HCC without extrahepatic metastasis, Child-Pugh class A or B, and tumors occupying less than two thirds of the liver with level II evidence. In this review, we discuss the radiotherapeutic strategies for each clinical setting in patients with HCC.
Collapse
Affiliation(s)
- Ik Jae Lee
- Department of Radiation Oncology, Yonsei Liver Cancer Clinic, Yonsei University College of Medicine, Seoul, Korea
| | | |
Collapse
|