1
|
Patel HV, Shah FD. Mapping the intricacies of GLI1 in hedgehog signaling: A combined bioinformatics and clinical analysis in Head & Neck cancer in Western India. Curr Probl Cancer 2024; 53:101146. [PMID: 39265246 DOI: 10.1016/j.currproblcancer.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Activation of various cancer stem cell pathways are thought to be responsible for treatment failure and loco-regional recurrence in Head and Neck cancer. Hedgehog signaling, a major cancer stem signaling pathway plays a major role in relapse of disease. GLI1, a transcription activator, plays an important role in canonical/non-canonical activation of Hedgehog signaling. METHODS Data for H&N cancer patients were collected from The Cancer Genome Atlas- H&N Cancer (TCGA-HNSC). GLI1 co-expressed genes in TCGA-HNSC were then identified using cBioPortal and subjected to KEGG pathway analysis by DAVID tool. Network Analyzer and GeneMania plugins from CytoScape were used to identify hub genes and predict a probable pathway from the identified hub genes respectively. To confirm the hypothesis, real-time gene expression was carried out in 75 patients of head and neck cancer. RESULTS Significantly higher GLI1 expression was observed in tumor tissues of H&N cancer and it also showed worst overall survival. Using cBioPortal tool, 2345 genes were identified that were significantly co-expressed with GLI1. From which, 15 hub genes were identified through the Network Analyzer plugin in CytoScape. A probable pathway prediction based on hub genes showed the interconnected molecular mechanism and its role in non-canonical activation of Hedgehog pathway by altering the GLI1 activity. The expressions of SHH, GLI1 and AKT1 were significant with each other and were found to be significantly associated with Age, Lymph-Node status and Keratin. CONCLUSION The study emphasizes the critical role of the Hh pathway's activation modes in H&N cancer, particularly highlighting the non-canonical activation through GLI1 and AKT1. The identification of SHH, GLI1 and AKT1 as potential diagnostic biomarkers and their association with clinic-pathological parameters underscores their relevance in prognostication and treatment planning. Hh pathway activation through GLI1 and its cross-talk with various pathways opens up the possibility of newer treatment strategies and developing a panel of therapeutic targets in H&N cancer patients.
Collapse
Affiliation(s)
- Hitarth V Patel
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
2
|
Ghosh A, Moorthy A. Prevalence and effect of PIK3CA H1047R somatic mutation among Indian head and neck cancer patients. Saudi J Biol Sci 2024; 31:104029. [PMID: 38873617 PMCID: PMC11170471 DOI: 10.1016/j.sjbs.2024.104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024] Open
Abstract
PIK3CA is one among the several mutated genes in cancer, including head and neck squamous cell carcinoma (HNSCC). H1047R is a hotspot somatic mutation in PIK3CA that occurs most frequently in several forms of cancers. Distribution of PIK3CA H1047R mutation in Indian HNSCC patients was screened and its effect on disease progression and response to treatment was analysed in this study. Genomic DNA was extracted from tumour biopsies of HNSCC patients (n = 48) and polymerase chain reaction coupled restriction fragment length polymorphism (PCR-RFLP) technique was used to screen for the mutation. Overall survival (OS) and Progression-free survival (PFS) of the patients were calculated in order to study effect of this mutation on survival and response to treatment respectively. Results showed that irrespective of patients' criteria, twenty-five patients (52 %) carried a heterozygous form of mutation (His/Arg) and the rest (48 %) were wild type (His/His). The mean OS of the cohort with the mutation was 20.451 months (SE ± 1.710 months) while 26.31 months (SE ± 2.431) was in wild type population. PFS of the patients with the mutation was 18.612 months (SE ± 2.072), and for the wild type population, it was 26.31 months (SE ± 2.431). These observations suggest that Indian HNSCC patients with PIK3CA H1047R mutation have poor prognosis.
Collapse
Affiliation(s)
| | - Anbalagan Moorthy
- Corresponding author at: School of Bioscience and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
3
|
Thi Thanh Nguyen N, Yoon Lee S. Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction. Biochem Pharmacol 2024; 224:116221. [PMID: 38641308 DOI: 10.1016/j.bcp.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown. Here, we examined the Detroit562 and FaDu cell lines as HNC models with and without a hyperactive PIK3CA mutation (H1047R), respectively, regarding their possible distinct responses to the NSAIDs celecoxib and sulindac sulfide (SUS). Detroit562 cells exhibited relatively high PI3K/Akt pathway-dependent cyclooxygenase-2 (COX-2) expression, associated with cell proliferation. Celecoxib treatment restricted cell proliferation and upregulated endoplasmic reticulum (ER) stress-related markers, including GRP78, C/EBP-homologous protein, activating transcription factor 4, death receptor 5, and reactive oxygen species (ROS). These effects were much stronger in Detroit562 cells than in FaDu cells and were largely COX-2-independent. SUS treatment yielded similar results. Salubrinal (an ER stress inhibitor) and N-acetyl-L-cysteine (a ROS scavenger) prevented NSAID-induced ROS generation and ER stress, respectively, indicating crosstalk between ER and oxidative stress. In addition, celecoxib and/or SUS elevated cleaved caspase-3 levels, Bcl-2-associated X protein/Bcl-2-interacting mediator of cell death expression, and mitochondrial damage, which was more pronounced in Detroit562 than in FaDu cells. Salubrinal and N-acetyl-L-cysteine attenuated celecoxib-induced mitochondrial dysfunction. Collectively, our results suggest that celecoxib and SUS efficiently suppress activating PIK3CA mutation-harboring HNC progression by inducing ER and oxidative stress and mitochondrial dysfunction, leading to apoptotic cell death, further supporting NSAID treatment as a useful strategy for oncogenic PIK3CA-mutated HNC therapy.
Collapse
Affiliation(s)
- Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea.
| |
Collapse
|
4
|
Zheng S, He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X. Understanding PI3K/Akt/mTOR signaling in squamous cell carcinoma: mutated PIK3CA as an example. MOLECULAR BIOMEDICINE 2024; 5:13. [PMID: 38616230 PMCID: PMC11016524 DOI: 10.1186/s43556-024-00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 04/16/2024] Open
Abstract
Compared with those in adenocarcinoma, PIK3CA mutations are more common in squamous cell carcinoma (SCC), which arises from stratified squamous epithelia that are usually exposed to adverse environmental factors. Although hotspot mutations in exons 9 and 20 of PIK3CA, including E542K, E545K, H1047L and H1047R, are frequently encountered in the clinic, their clinicopathological meaning remains to be determined in the context of SCC. Considering that few reviews on PIK3CA mutations in SCC are available in the literature, we undertook this review to shed light on the clinical significance of PIK3CA mutations, mainly regarding the implications and ramifications of PIK3CA mutations in malignant cell behavior, prognosis, relapse or recurrence and chemo- or radioresistance of SCC. It should be noted that only those studies regarding SCC in which PIK3CA was mutated were cherry-picked, which fell within the scope of this review. However, the role of mutated PIK3CA in adenocarcinoma has not been discussed. In addition, mutations occurring in other main members of the PI3K-AKT-mTOR signaling pathway other than PIK3CA were also excluded.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Yan Liang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China.
| |
Collapse
|
5
|
Kompuinen J, Keskin M, Yilmaz D, Gürsoy M, Gürsoy UK. Human β-Defensins in Diagnosis of Head and Neck Cancers. Cells 2023; 12:cells12060830. [PMID: 36980171 PMCID: PMC10047923 DOI: 10.3390/cells12060830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Head and neck cancers are malignant growths with high death rates, which makes the early diagnosis of the affected patients of utmost importance. Over 90% of oral cavity cancers come from squamous cells, and the tongue, oral cavity, and salivary glands are the most common locations for oral squamous cell carcinoma lesions. Human β-defensins (hBDs), which are mainly produced by epithelial cells, are cationic peptides with a wide antimicrobial spectrum. In addition to their role in antimicrobial defense, these peptides also take part in the regulation of the immune response. Recent studies produced evidence that these small antimicrobial peptides are related to the gene and protein expression profiles of tumors. While the suppression of hBDs is a common finding in head and neck cancer studies, opposite findings were also presented. In the present narrative review, the aim will be to discuss the changes in the hBD expression profile during the onset and progression of head and neck cancers. The final aim will be to discuss the use of hBDs as diagnostic markers of head and neck cancers.
Collapse
Affiliation(s)
- Jenna Kompuinen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Mutlu Keskin
- Oral and Dental Health Department, Altınbaş University, İstanbul 34147, Turkey
| | - Dogukan Yilmaz
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya 54050, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20101 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
6
|
Afshari K, Sohal KS. Potential Alternative Therapeutic Modalities for Management Head and Neck Squamous Cell Carcinoma: A Review. Cancer Control 2023; 30:10732748231185003. [PMID: 37328298 DOI: 10.1177/10732748231185003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes malignancies of the lip and oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. It is among the most common malignancy worldwide, affecting nearly 1 million people annually. The traditional treatment options for HNSCC include surgery, radiotherapy, and conventional chemotherapy. However, these treatment options have their specific sequelae, which produce high rates of recurrence and severe treatment-related disabilities. Recent technological advancements have led to tremendous progress in understanding tumor biology, and hence the emergence of several alternative therapeutic modalities for managing cancers (including HNSCC). These treatment options are stem cell targeted therapy, gene therapy, and immunotherapy. Therefore, this review article aims to provide an overview of these alternative treatments of HNSCC.
Collapse
Affiliation(s)
- Keihan Afshari
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Karpal Singh Sohal
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
7
|
Das A, Bhattacharya B, Roy S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis 2022; 9:868-888. [PMID: 35685456 PMCID: PMC9170611 DOI: 10.1016/j.gendis.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer is one of those leading diseases worldwide, which takes millions of lives every year. Researchers are continuously looking for specific approaches to eradicate the deadly disease, ensuring minimal adverse effects along with more therapeutic significance. Targeting of different aberrantly regulated signaling pathways, involved in cancer, is surely one of the revolutionary chemotherapeutic approach. In this instance, GSK3 and PI3K signaling cascades are considered as important role player for both the oncogenic activation and inactivation which further leads to cancer proliferation and metastasis. In this review, we have discussed the potential role of GSK3 and PI3K signaling in cancer, and we further established the crosstalk between PI3K and GSK3 signaling, through showcasing their cross activation, cross inhibition and convergence pathways in association with cancer. We also exhibited the effect of GSK3 on the efficacy of PI3K inhibitors to overcome the drug resistance and preventing the cell proliferation, metastasis in a combinatorial way with GSK3 inhibitors for a better treatment strategy in clinical settings.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| |
Collapse
|
8
|
Michmerhuizen NL, Heenan C, Wang J, Leonard E, Bellile E, Loganathan SK, Wong SY, Lei YL, Brenner JC. Combined Pik3ca-H1047R and loss-of-function Notch1 alleles decrease survival time in a 4-nitroquinoline N-oxide-driven head and neck squamous cell carcinoma model. Oral Oncol 2022; 126:105770. [DOI: 10.1016/j.oraloncology.2022.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
|
9
|
Dechaphunkul A, Thongwatchara P, Thongsuksai P, Dechaphunkul T, Geater SL. Frequency of PIK3CA mutations in different subsites of head and neck squamous cell carcinoma in southern Thailand. J Pathol Transl Med 2022; 56:126-133. [PMID: 35209701 PMCID: PMC9119806 DOI: 10.4132/jptm.2022.01.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations have been reported in many cancers, including head and neck squamous cell carcinoma (HNSCC). The frequency of these mutations varies among tumor locations and might be relevant to treatment outcomes among HNSCC. In this study, we examined the frequency of PIK3CA mutations in the different subsites of HNSCC. Methods Ninety-six fresh biopsy specimens were investigated for mutations in PIK3CA exons 4, 9, and 20 using allele-specific real-time polymerase chain reaction. Patient characteristics and survival were analyzed and compared between specimens with or without PIK3CA mutations. Results The study included primary tumors originating from the oral cavity (n = 63), hypopharynx (n = 23), and oropharynx (n = 10). We identified mutations in 10.4% of patients (10 of 96 specimens). The overall mutational frequency was 17.4% (4/23) and 9.5% (6/63) in the hypopharynx and oral cavity, respectively. No patients with oropharyngeal carcinoma had mutations. Among the 10 mutant specimens, five were missense mutations (exon 9 [E545K] in two samples and exon 20 [H1047R] in three samples) and five were silent mutations in exon 20 (T1025T). Mutations were not found in exon 4. Among 84 patients with available clinical data, we found no significant differences in clinical characteristics and survival based on the presence or absence of PIK-3CA mutations. Conclusions The results indicate that PIK3CA mutations are involved in HNSCC carcinogenesis, and the hypopharynx should be considered a primary site of interest for future studies, particularly in Southeast Asian populations.
Collapse
Affiliation(s)
- Arunee Dechaphunkul
- Holistic Center for Cancer Study and Care (HOCC-PSU), Medical Oncology Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Phatcharaporn Thongwatchara
- Holistic Center for Cancer Study and Care (HOCC-PSU), Medical Oncology Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Tanadech Dechaphunkul
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarayut Lucien Geater
- Division of Respiratory and Respiratory Critical Care Medicine, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
10
|
Proliferation and Apoptosis Pathways and Factors in Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031562. [PMID: 35163485 PMCID: PMC8836072 DOI: 10.3390/ijms23031562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is the most common form of head and neck squamous cell carcinoma (HNSCC) and most frequently presents as oral squamous cell carcinoma (OSCC), which is associated with an alarmingly high mortality rate. Internationally, a plethora of research to further our understanding of the molecular pathways related to oral cancer is performed. This research is of value for early diagnosis, prognosis, and the investigation of new drugs that can ameliorate the harmful effects of oral cancer and provide optimal patient outcomes with minimal long-term complications. Two pathways on which the progression of OSCC depends on are those of proliferation and apoptosis, which overlap at many junctions. Herein, we aim to review these pathways and factors related to OSCC progression. Publicly available search engines, PubMed and Google Scholar, were used with the following keywords to identify relevant literature: oral cancer, proliferation, proliferation factors, genes, mutations, and tumor suppressor. We anticipate that the use of information provided through this review will further progress translational cancer research work in the field of oral cancer.
Collapse
|
11
|
Lin J, Wang Y, Lin Z. HAX1 maintains the glioma progression in hypoxia through promoting mitochondrial fission. J Cell Mol Med 2021; 25:11170-11184. [PMID: 34755451 PMCID: PMC8650040 DOI: 10.1111/jcmm.17038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
HCLS1‐associated protein X‐1 (HAX1), an anti‐apoptotic molecular, overexpresses in glioma. However, the role of HAX1 in glioma cell surviving in hypoxic environment remains unclear. Western blotting, qRT‐PCR, Transwell assay, TUNEL assay, wounding healing assay, clone formation, tumour xenograft model and immunohistochemical staining were used to investigate the role of HAX1 in glioma. HAX1 regulated by HIF‐1α was increased in glioma cells cultured in hypoxia. Silencing of HAX1 could cause an increased apoptosis of glioma cells cultured in hypoxia. Silencing of HAX1 also decreased the proliferation, migration and invasion of glioma cells cultured in hypoxia. Increased mitochondrial fission could prevent glioma cells from the damage induced by HAX1 knockdown in hypoxia. Furthermore, HAX1 was found to regulate glioma cells through phosphorylated AKT/Drp signal pathway. In conclusion, our study suggested that HAX1 promoted survival of glioma cells in hypoxic environment via AKT/Drp signal pathway. Our study also provided a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Jinghui Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Yang Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
12
|
Hsueh WT, Chen SH, Chien CH, Chou SW, Chi PI, Chu JM, Chang KY. SOD2 Enhancement by Long-Term Inhibition of the PI3K Pathway Confers Multi-Drug Resistance and Enhanced Tumor-Initiating Features in Head and Neck Cancer. Int J Mol Sci 2021; 22:ijms222011260. [PMID: 34681918 PMCID: PMC8537886 DOI: 10.3390/ijms222011260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
The phosphoinositide-3-kinase (PI3K) pathway has widely been considered as a potential therapeutic target for head and neck cancer (HNC); however, the application of PI3K inhibitors is often overshadowed by the induction of drug resistance with unknown mechanisms. In this study, PII3K inhibitor resistant cancer cells were developed by prolonged culturing of cell lines with BEZ235, a dual PI3K and mammalian target of rapamycin (mTOR) inhibitor. The drug resistant HNC cells showed higher IC50 of the proliferation to inhibitors specifically targeting PI3K and/or mTOR, as compared to their parental cells. These cells also showed profound resistance to drugs of other classes. Molecular analysis revealed persistent activation of phosphorylated AKT at threonine 308 in the drug resistant cells and increased expression of markers for tumor-initiating cells. Interestingly, increased intra-cellular ROS levels were observed in the drug resistant cells. Among anti-oxidant molecules, the expression of SOD2 was increased and was associated with the ALDH-positive tumor-initiating cell features. Co-incubation of SOD inhibitors and BEZ235 decreased the stemness feature of the cells in vitro, as shown by results of the spheroid formation assay. In conclusion, dysregulation of SOD2 might contribute to the profound resistance to PI3K inhibitors and the other drugs in HNC cells.
Collapse
Affiliation(s)
- Wei-Ting Hsueh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan; (W.-T.H.); (S.-H.C.)
| | - Shang-Hung Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan; (W.-T.H.); (S.-H.C.)
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (C.-H.C.); (S.-W.C.); (P.-I.C.); (J.-M.C.)
| | - Chia-Hung Chien
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (C.-H.C.); (S.-W.C.); (P.-I.C.); (J.-M.C.)
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shao-Wen Chou
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (C.-H.C.); (S.-W.C.); (P.-I.C.); (J.-M.C.)
| | - Pei-I Chi
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (C.-H.C.); (S.-W.C.); (P.-I.C.); (J.-M.C.)
| | - Jui-Mei Chu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (C.-H.C.); (S.-W.C.); (P.-I.C.); (J.-M.C.)
| | - Kwang-Yu Chang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70456, Taiwan; (W.-T.H.); (S.-H.C.)
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan; (C.-H.C.); (S.-W.C.); (P.-I.C.); (J.-M.C.)
- Correspondence: ; Tel.: +886-6-208-3422
| |
Collapse
|
13
|
Moura ACD, Assad DX, Amorim Dos Santos J, Porto de Toledo I, Barra GB, Castilho RM, Squarize CH, Guerra ENS. Worldwide prevalence of PI3K-AKT-mTOR pathway mutations in head and neck cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 160:103284. [PMID: 33675910 DOI: 10.1016/j.critrevonc.2021.103284] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
A systematic review (SR) and meta-analysis were conducted to determine the prevalence of PI3K-AKT-mTOR signaling pathway mutations in patients with head and neck cancer (HNC). Overall, 105 studies comprising 8630 patients and 1306 mutations were selected. The estimated mutations prevalence was 13 % for PIK3CA (95 % confidence interval [CI] = 11-14; I2 = 82 %; p < 0.0001), 4% for PTEN (95 % CI = 3-5; I2 = 55 %; p < 0.0001), 3% for MTOR (95 % CI = 2-4; I2 = 5%; p = 0.40), and 2% for AKT (95 % CI = 1-2; I2 = 50 %; p = 0.0001). We further stratified the available data of the participants according to risk factors and tumor characteristics, including HPV infection, tobacco use, alcohol exposure, TNM stage, and histological tumor differentiation, and performed subgroup analysis. We identified significant associations between PI3K-AKT-mTOR pathway-associated mutations and advanced TNM stage (odds ratio [OR] = 0.20; 95 % CI = 0.09-0.44; I² = 71 %; p = 0.0001) and oropharyngeal HPV-positive tumors and PIK3CA mutations (OR = 17.48; 95 % CI = 4.20-72.76; I² = 69 %; p < 0.0002). No associations were found between alcohol and tobacco exposure, and tumor differentiation grade. This SR demonstrated that the PI3K-AKT-mTOR pathway emerges as a potential prognostic factor and could offer a molecular basis for future studies on therapeutic targeting in HNC patients.
Collapse
Affiliation(s)
- Adriana Castelo de Moura
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Hospital Universitário de Brasília (HUB-UnB/Ebserh), Brasília, DF, Brazil; Hospital Santa Lúcia, Brasília, DF, Brazil
| | - Daniele Xavier Assad
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Medical Oncology Department, Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Juliana Amorim Dos Santos
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Isabela Porto de Toledo
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Gustavo Barcelos Barra
- Sabin Medicina Diagnóstica, SAAN Quadra 03 Lotes 145/185, Brasília, 70632-340, DF, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasília, Brasília, Brazil; Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA.
| |
Collapse
|
14
|
Xu C, Zhang Y, Shen Y, Shi Y, Zhang M, Zhou L. Integrated Analysis Reveals ENDOU as a Biomarker in Head and Neck Squamous Cell Carcinoma Progression. Front Oncol 2021; 10:522332. [PMID: 33614471 PMCID: PMC7894080 DOI: 10.3389/fonc.2020.522332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a leading cancer with high morbidity and mortality worldwide. The aim is to identify genes with clinical significance by integrated bioinformatics analysis and investigate their function in HNSCC. Methods We downloaded and analyzed two gene expression datasets of GSE6631 and GSE107591 to screen differentially expressed genes (DEGs) in HNSCC. Common DEGs were functionally analyzed by Gene ontology and KEGG pathway enrichment analysis. Protein-protein interaction (PPI) network was constructed with STRING database and Cytoscape. ENDOU was overexpressed in FaDu and Cal-27 cell lines, and cell proliferation and migration capability were evaluated with MTT, scratch and transwell assay. The prognostic performance of ENDOU and expression correlation with tumor infiltrates in HNSCC were validated with TCGA HNSCC datasets. Results Ninety-eight genes shared common differential expression in both datasets, with core functions like extracellular matrix organization significantly enriched. 15 genes showed prognostic significance, and COBL and ENDOU serve as independent survival markers in HNSCC. In-vitro ENDOU overexpression inhibited FaDu and Cal-27 cells proliferation and migration, indicating its tumor-suppressing role in HNSCC progression. GSEA analysis indicated ENDOU down-stream pathways like DNA replication, mismatch repair, cell cycle and IL-17 signaling pathway. ENDOU showed relative lower expression in HNSCC, especially HPV-positive HNSCC samples. At last, ENDOU showed negative correlation with tumor purity and tumor infiltrating macrophages, especially M2 macrophages. Conclusion This study identified ENDOU as a biomarker with prognostic significance in HNSCC progression.
Collapse
Affiliation(s)
- Chengzhi Xu
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yunbin Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Department of Respirology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yupeng Shen
- Department of Otolaryngology-Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yong Shi
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Liang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Starzyńska A, Sejda A, Adamska P, Marvaso G, Sakowicz-Burkiewicz M, Adamski Ł, Jereczek-Fossa BA. Prognostic value of the PIK3CA, AKT, and PTEN mutations in oral squamous cell carcinoma: literature review. Arch Med Sci 2021; 17:207-217. [PMID: 33488873 PMCID: PMC7811327 DOI: 10.5114/aoms.2020.100780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Over 260,000 (2013) new oral squamous cell carcinoma (OSCC) cases are reported annually worldwide. Despite development in OSCC management, the outcome is still unsatisfactory. Identification of new molecular markers may be of use in prevention, prognosis, and choice of an appropriate therapy. The intracellular molecular signalling pathway of phosphatidyl-inositol-3-kinase is involved in the process of cell growth, differentiation, migration, and survival. The main components of this pathway: PIK3CA (phosphatidylinositol-4,5-bisphosphate-3-kinase catalytic subunit α), PTEN (phosphatase and tensin homologue deleted on chromosome 10), and AKT (serine-threonine kinase) are potential objects of research when introducing new therapeutic agents. The aim of this paper is to evaluate the PIK3CA, PTEN, and AKT gene mutations as prognostic factors in OSCC and to describe their role in aggressive disease progression. This is crucial for oral cancer biology understanding and for indicating which direction new clinical treatments should take.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology, University of Warmia and Mazury, Olsztyn, Poland
| | - Paulina Adamska
- Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Giulia Marvaso
- Department of Radiotherapy, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | | | - Łukasz Adamski
- Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland
| | - Barbara A. Jereczek-Fossa
- Department of Radiotherapy, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
17
|
L. Michmerhuizen N, Wang J, Brenner J. Integrated Molecular Profiling as an Approach to Identify PI3K Inhibitor Resistance Mechanisms. Mol Pharmacol 2020. [DOI: 10.5772/intechopen.92875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The identification of drug resistance pathways and approaches to target these pathways remains a significant and important challenge in cancer biology. Here, we address this challenge in the context of ongoing efforts to advance phosphatidylinositol 3-kinase (PI3K) inhibitors for the treatment of PI3K-aberrant cancers. While PI3K inhibitors have had tremendous success in some diseases, such as breast cancer, early clinical trials in other malignancies, such as head and neck squamous cell carcinoma (HNSCC), have not had the same level of success. Since HNSCC and other cancers display relatively high PI3K pathway alteration rates (>45%), these underwhelming results suggest that additional or unexpected factors may contribute to the lower response rates. Here, we highlight some of the emerging functional genomic and sequencing approaches being used to identify predictive biomarkers of PI3K inhibitor response using both cancer cell lines and clinical trial specimens. Importantly, these approaches have uncovered both innate genetic and adaptive mechanisms driving PI3K inhibitor resistance. In this chapter, we describe recent technological advances that have revolutionized our understanding of PI3K inhibitor resistance pathways in HNSCC and highlight how these and other approaches lay the groundwork to make significant strides in our understanding of molecular pharmacology in the cancer field.
Collapse
|
18
|
Starzyńska A, Adamska P, Sejda A, Sakowicz-Burkiewicz M, Adamski ŁJ, Marvaso G, Wychowański P, Jereczek-Fossa BA. Any Role of PIK3CA and PTEN Biomarkers in the Prognosis in Oral Squamous Cell Carcinoma? Life (Basel) 2020; 10:E325. [PMID: 33287350 PMCID: PMC7761816 DOI: 10.3390/life10120325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for 95% of the lesions in the oral cavity. Despite development in OSCC management, the outcome is still unsatisfactory. Identification of new therapies in OSCC is urgently needed. One objective of such treatment may be a signaling pathway of phosphatidylinositol 3-kinase. The study group included 92 patients treated for OSCC at the University Clinical Centre in Gdańsk, Poland. Study was performed on formalin-fixed paraffin-embedded samples from primary OSCC. Phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA) and phosphatase and tensin homolog encoded on chromosome 10 (PTEN) protein expression was assessed by immunohistochemistry (IHC). PIK3CA gene copy number was analyzed using chromogenic and silver in situ hybridization where molecular probes are marked by chromogens and silver ions. PIK3CA IHC H-score ≥ 70 was found in 51.65% patients, and loss of PTEN protein was noticed in 31.46% cases. PIK3CA amplification was detected in 5 tumors. In the case of PTEN protein expression, there was an inverse correlation with the T stage of the primary tumor (r = -0.243) and positive correlation with a 5-year survival (r = 0.235). The number of copies of the PIK3CA gene was associated with the tumor grading (r = 0.208). The present study shows that loss of PTEN protein and the grading (p = 0.040), distant metastases (p = 0.033), smoking (p = 0.016), and alcohol abuse (p = 0.042) were prognostic factors for the survival of patients with OSCC. In contrast, the presence of amplification and OSCC on the floor of the mouth resulted in a nearly six-fold increase in the risk of shortening survival (p = 0.037). Our finding suggests a potential prognostic significance of PTEN loss and PIK3CA amplification in OSCC. Future studies are needed to confirm our results.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (Ł.J.A.)
| | - Paulina Adamska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (Ł.J.A.)
| | - Aleksandra Sejda
- Department of Pathomorphology, University of Warmia and Mazury, 18 Żołnierska Street, 10-561 Olsztyn, Poland;
| | - Monika Sakowicz-Burkiewicz
- Department of Molecular Medicine, Medical University of Gdańsk, 17 Smoluchowskiego Street, 80-214 Gdańsk, Poland;
| | - Łukasz Jan Adamski
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (Ł.J.A.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy
| |
Collapse
|
19
|
[Tumor biology of oropharyngeal carcinoma]. HNO 2020; 69:249-255. [PMID: 33215226 DOI: 10.1007/s00106-020-00964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Etiologically, oropharyngeal squamous cell carcinoma (OPSCC) can be divided into OPSCC caused by noxious agents and human papillomavirus (HPV)-driven carcinoma. These types differ with regard to clinical features and prognosis-differences which are rooted in the underlying molecular biology of the tumor. OBJECTIVE The aim of this work is to provide an overview of the molecular biological characteristics of the genetics, epigenetics, and immunology of OPSCC. MATERIALS AND METHODS A literature review was performed on a selection of genetic, epigenetic, and immunological factors characterizing OPSCC. RESULTS The understanding of genetic aberrations and their consequences for cancerogenesis and tumor biology is increasing. Epigenetic phenomena are complementing functional relationships. However, epigenetic mechanisms of gene regulation are complex and much research is still required in this field. Immunological aspects of cancer molecular biology have moved into the focus in light of recent advances in the field of immunotherapy. CONCLUSION The tumor biology of OPSCC is primarily defined by its HPV status. Additionally, HPV-independent genetic, epigenetic, and immunological signatures are being defined. From these advances, rationales for new treatment concepts may evolve.
Collapse
|
20
|
Wilson GD, Wilson TG, Hanna A, Dabjan M, Buelow K, Torma J, Marples B, Galoforo S. Dacomitinib and gedatolisib in combination with fractionated radiation in head and neck cancer. Clin Transl Radiat Oncol 2020; 26:15-23. [PMID: 33251343 PMCID: PMC7677653 DOI: 10.1016/j.ctro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/05/2023] Open
Abstract
We evaluated radiation with dual EGFR and PI3K targeting in head and neck cancer. Dacomitinib, showed an inverse correlation between growth inhibition and EGFR expression. Gedatolisib was effective in each cell line. Neither drug caused radiosensitization in vitro. Gedatolisib was relatively ineffective in vivo in combination with dacomitinib and/or radiation. Dacomitinib was highly effective alone and in combination with radiation and/or gedatolisib. Immunoblotting studies in vivo mirrored the effects seen with growth delay.
Background and purpose There has been little success targeting individual genes in combination with radiation in head and neck cancer. In this study we investigated whether targeting two key pathways simultaneously might be more effective. Materials and methods We studied the effect of combining dacomitinib (pan-HER, irreversible inhibitor) and gedatolisib (dual PI3K/MTOR inhibitor) with radiation in well characterized, low passage xenograft models of HNSCC in vitro and in vivo. Results Dacomitinib showed differential growth inhibition in vitro that correlated to EGFR expression whilst gedatolisib was effective in both cell lines. Neither agent radiosensitized the cell lines in vitro. In vivo studies demonstrated that dacomitinib was an effective agent alone and in combination with radiation whilst the addition of gedatolisib did not enhance the effect of these two modalities despite inhibiting phosphorylation of key genes in the PI3K/MTOR pathway. Conclusions Our results showed that combining two drugs with radiation provided no added benefit compared to the single most active drug. Dacomitinib deserves more investigation as a radiation sensitizing agent in HNSCC.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Thomas G Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Alaa Hanna
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Mohamad Dabjan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Katie Buelow
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - John Torma
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Sandra Galoforo
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| |
Collapse
|
21
|
Lenze N, Chera B, Sheth S. An evaluation of buparlisib for the treatment of head and neck squamous cell carcinoma. Expert Opin Pharmacother 2020; 22:135-144. [PMID: 33121281 DOI: 10.1080/14656566.2020.1825684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Five-year overall survival for head and neck squamous cell carcinoma (HNSCC) is relatively poor at around 50-66%, and there has been little improvement over the past several decades. PIK3CA alterations are common in HNSCC and offer a promising therapeutic target. AREAS COVERED The authors discuss the PIK3 pathway and the use of PIK3 inhibitors in cancer, with a particular focus on HNSCC. A summary of the safety and efficacy of buparlisib, a class I pan-PI3K inhibitor, from several phase I and phase II HNSCC trials is provided. EXPERT OPINION With a maximum tolerated dose of 100 mg/day and an acceptable toxicity profile, buparlisib may be effective in HNSCC, irrespective of PIK3CA mutational status. On-going clinical trials will help determine the developmental strategy of buparlisib while novel combinatory strategies including combination with immune checkpoint inhibitors should be considered. Importantly, biomarker strategies, including wider use of tumor sequencing and circulating tumor DNA, should be utilized to improve patient selection.
Collapse
Affiliation(s)
- Nicholas Lenze
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Bhisham Chera
- Department of Radiation Oncology, The University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Siddharth Sheth
- Division of Medical Oncology, Department of Medicine, The University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| |
Collapse
|
22
|
Whi W, Ha S, Bae S, Choi H, Paeng JC, Cheon GJ, Kang KW, Lee DS. Relationship of EGFR Mutation to Glucose Metabolic Activity and Asphericity of Metabolic Tumor Volume in Lung Adenocarcinoma. Nucl Med Mol Imaging 2020; 54:175-182. [PMID: 32831963 DOI: 10.1007/s13139-020-00646-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose EGFR-mutation (EGFR-mt) is a major oncogenic driver mutation in lung adenocarcinoma (ADC) and is more often observed in Asian population. In lung ADC, some radiomics parameters of FDG PET have been reported to be associated with EGFR-mt. Here, the associations between EGFR-mt and PET parameters, particularly asphericity (ASP), were evaluated in Asian population. Methods Lung ADC patients who underwent curative surgical resection as the first treatment were retrospectively enrolled. EGFR mutation was defined as exon 19 deletion and exon 21 point mutation and was evaluated using surgical specimens. On FDG PET, image parameters of maximal standardized uptake value (SUVmax), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and ASP were obtained. The parameters were compared between EGFR-mt and wild type (EGFR-wt) groups, and the relationships between these PET parameters and EGFR-mt were evaluated. Results A total of 64 patients (median age 66 years, M:F = 34:30) were included in the analysis, and 29 (45%) patients showed EGFR-mt. In EGFR-mt group, all the image parameters of SUVmax, MTV, TLG, and ASP were significantly lower than in EGFR-wt group (all adjusted P < 0.050). In univariable logistic regression, SUVmax (P = 0.003) and ASP (P = 0.010) were significant determinants for EGFR-mt, whereas MTV was not (P = 0.690). Multivariate analysis revealed that SUVmax and ASP are independent determinants for EGFR-mt, regardless of inclusion of MTV in the analysis (P < 0.05). Conclusion In Asian NSCLC/ADC patients, SUVmax, MTV, and ASP on FDG PET are significantly related to EGFR mutation status. Particularly, low SUVmax and ASP are independent determinants for EGFR-mt.
Collapse
Affiliation(s)
- Wonseok Whi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea
| | - Seunggyun Ha
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Division of Nuclear Medicine Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 South Korea
| | - Sungwoo Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology Seoul National University, Seoul, South Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| |
Collapse
|
23
|
García-Carracedo D, Cai Y, Qiu W, Saeki K, Friedman RA, Lee A, Li Y, Goldberg EM, Stratikopoulos EE, Parsons R, Lu C, Efstratiadis A, Philipone EM, Yoon AJ, Su GH. PIK3CA and p53 Mutations Promote 4NQO-Initated Head and Neck Tumor Progression and Metastasis in Mice. Mol Cancer Res 2020; 18:822-834. [PMID: 32152233 PMCID: PMC7272268 DOI: 10.1158/1541-7786.mcr-19-0549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
The PI3K signaling pathway is frequently mutated in head and neck squamous cell carcinoma (HNSCC), often via gain-of-function (GOF) mutations in the PIK3CA gene. Here, we present novel genetically engineered mouse models (GEMM) carrying a GOF allele Loxp-STOP-Loxp(LSL)-PIK3CAH1047R (E20) alone or in combination with heterozygous LSL-p53+/R172H (p53) mutation with tissue-specific expression to interrogate the role of oncogenic PIK3CA in transformation of upper aerodigestive track epithelium. We demonstrated that the GOF PIK3CA mutation promoted progression of 4-nitroquinoline 1-oxide-induced oral squamous cell carcinoma (OSCC) in both E20 single mutant and E20/p53 double mutant mice, with frequent distal metastasis detected only in E20/p53 GEMM. Similar to in human OSCC, loss of p16 was associated with progression of OSCC in these mice. RNA-seq analyses revealed that among the common genes differentially expressed in primary OSCC cell lines derived from E20, p53, and E20/p53 GEMMs compared with those from the wild-type mice, genes associated with proliferation and cell cycle were predominantly represented, which is consistent with the progressive loss of p16 detected in these GEMMs. Importantly, all of these OSCC primary cell lines exhibited enhanced sensitivity to BYL719 and cisplatin combination treatment in comparison with cisplatin alone in vitro and in vivo, regardless of p53 and/or p16 status. Given the prevalence of mutations in p53 and the PI3K pathways in HNSCC in conjunction with loss of p16 genetically or epigenetically, this universal increased sensitivity to cisplatin and BYL719 combination therapy in cancer cells with PIK3CA mutation represents an opportunity to a subset of patients with HNSCC. IMPLICATIONS: Our results suggest that combination therapy of cisplatin and PI3K inhibitor may be worthy of consideration in patients with HNSCC with PIK3CA mutation.
Collapse
Affiliation(s)
- Darío García-Carracedo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yi Cai
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Wanglong Qiu
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kiyoshi Saeki
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Andrew Lee
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Elizabeth M Goldberg
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Elias E Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | | | - Elizabeth M Philipone
- Division of Oral and Maxillofacial Pathology, Columbia University College of Dental Medicine, New York, New York
| | - Angela J Yoon
- Division of Oral and Maxillofacial Pathology, Columbia University College of Dental Medicine, New York, New York
| | - Gloria H Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York.
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Irving Medical Center, New York, New York
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
24
|
Lee MJ, Jin N, Grandis JR, Johnson DE. Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118679. [PMID: 32061630 PMCID: PMC7671657 DOI: 10.1016/j.bbamcr.2020.118679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid, genetically unstable disease derived from the mucoepithelium of the upper aerodigestive tract. Recent characterization of this disease has implicated the PI3K-Akt-mTOR pathway as one of the most frequently dysregulated pathways. As such, there are several classes of PI3K inhibitors currently undergoing clinical trials. In this article, we review the PI3K pathway, mutations of this pathway in HNSCC, drugs that target PI3K, the impact of these agents on the PI3K and GSK-3 signaling axes, ongoing clinical trials evaluating PI3K inhibitors, and the challenges of using these drugs in the clinic. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Collapse
Affiliation(s)
- Michelle J Lee
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nan Jin
- Department of Otolaryngology, University of California, San Francisco, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of California, San Francisco, USA
| | - Daniel E Johnson
- Department of Otolaryngology, University of California, San Francisco, USA.
| |
Collapse
|
25
|
Tan MT, Wu JG, Callejas-Valera JL, Schwarz RA, Gillenwater AM, Richards-Kortum RR, Vigneswaran N. A PIK3CA transgenic mouse model with chemical carcinogen exposure mimics human oral tongue tumorigenesis. Int J Exp Pathol 2020; 101:45-54. [PMID: 32436348 DOI: 10.1111/iep.12347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/01/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancer causes significant global mortality and has a five-year survival rate of around 64%. Poor prognosis results from late-stage diagnosis, highlighting an important need to develop better approaches to detect oral premalignant lesions (OPLs) and identify which OPLs are at highest risk of progression to oral squamous cell carcinoma (OSCC). An appropriate animal model that reflects the genetic, histologic, immunologic, molecular and gross visual features of human OSCC would aid in the development and evaluation of early detection and risk assessment strategies. Here, we present an experimental PIK3CA + 4NQO transgenic mouse model of oral carcinogenesis that combines the PIK3CA oncogene mutation with oral exposure to the chemical carcinogen 4NQO, an alternate experimental transgenic mouse model with PIK3CA as well as E6 and E7 mutations, and an existing wild-type mouse model based on oral exposure to 4NQO alone. We compare changes in dorsal and ventral tongue gross visual appearance, histologic features and molecular biomarker expression over a time course of carcinogenesis. Both transgenic models exhibit cytological and architectural features of dysplasia that mimic human disease and exhibit slightly increased staining for Ki-67, a cell proliferation marker. The PIK3CA + 4NQO model additionally exhibits consistent lymphocytic infiltration, presents with prominent dorsal and ventral tongue tumours, and develops cancer quickly relative to the other models. Thus, the PIK3CA + 4NQO model recapitulates the multistep genetic model of human oral carcinogenesis and host immune response in carcinogen-induced tongue cancer, making it a useful resource for future OSCC studies.
Collapse
Affiliation(s)
- Melody T Tan
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jean G Wu
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry, Houston, TX, USA
| | | | | | - Ann M Gillenwater
- Department of Head and Neck Surgery, M.D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | | | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry, Houston, TX, USA
| |
Collapse
|
26
|
Epithelial-mesenchymal transition gene signature is associated with prognosis and tumor microenvironment in head and neck squamous cell carcinoma. Sci Rep 2020; 10:3652. [PMID: 32107458 PMCID: PMC7046610 DOI: 10.1038/s41598-020-60707-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
In this study we assessed the clinical significance of an epithelial-mesenchymal transition (EMT) gene signature and explored its association with the tumor microenvironment related to immunotherapy in patients with head and neck squamous cell carcinoma (HNSCC). Genes were selected when mRNA levels were positively or negatively correlated with at least one well-known EMT marker. We developed an EMT gene signature consisting of 82 genes. The patients were classified into epithelial or mesenchymal subgroups according to EMT signature. The clinical significance of the EMT signature was validated in three independent cohorts and its association with several immunotherapy-related signatures was investigated. The mesenchymal subgroup showed worse prognosis than the epithelial subgroup, and significantly elevated PD-1, PD-L1, and CTLA-4 levels, and increased interferon-gamma, cytolytic, T cell infiltration, overall immune infiltration, and immune signature scores. The relationship between PD-L1 expression and EMT status in HNSCC after treatment with TGF-β was validated in vitro. In conclusion, the EMT gene signature was associated with prognosis in HNSCC. Additionally, our results suggest that EMT is related to immune activity of the tumor microenvironment with elevated immune checkpoint molecules.
Collapse
|
27
|
Guan Y, Wang G, Fails D, Nagarajan P, Ge Y. Unraveling cancer lineage drivers in squamous cell carcinomas. Pharmacol Ther 2020; 206:107448. [PMID: 31836455 PMCID: PMC6995404 DOI: 10.1016/j.pharmthera.2019.107448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Cancer hijacks embryonic development and adult wound repair mechanisms to fuel malignancy. Cancer frequently originates from de-regulated adult stem cells or progenitors, which are otherwise essential units for postnatal tissue remodeling and repair. Cancer genomics studies have revealed convergence of multiple cancers across organ sites, including squamous cell carcinomas (SCCs), a common group of cancers arising from the head and neck, esophagus, lung, cervix and skin. In this review, we summarize our current knowledge on the molecular drivers of SCCs, including these five major organ sites. We especially focus our discussion on lineage dependent driver genes and pathways, in the context of squamous development and stratification. We then use skin as a model to discuss the notion of field cancerization during SCC carcinogenesis, and cancer as a wound that never heals. Finally, we turn to the idea of context dependency widely observed in cancer driver genes, and outline literature support and possible explanations for their lineage specific functions. Through these discussions, we aim to provide an up-to-date summary of molecular mechanisms driving tumor plasticity in squamous cancers. Such basic knowledge will be helpful to inform the clinics for better stratifying cancer patients, revealing novel drug targets and providing effective treatment options.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Danielle Fails
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
28
|
Zhao Y, Ruan X. Identification of PGRMC1 as a Candidate Oncogene for Head and Neck Cancers and Its Involvement in Metabolic Activities. Front Bioeng Biotechnol 2020; 7:438. [PMID: 31970154 PMCID: PMC6960204 DOI: 10.3389/fbioe.2019.00438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1/Sigma-2 receptor) is located on chromosome Xq21 and encodes a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450, with function in tumor proliferation and chemoresistance. Although the over-expression of PGRMC1 reported in many different types of human cancers, systematic analysis of its oncogenic role of PGRMC1 has not been performed for any cancer. In this work, we analyzed the transcriptomics, genomics, and clinical data of 498 head-neck squamous cell carcinoma (HNSC) samples from the public-accessible database, The Cancer Genome Atlas (TCGA). The Cox regression was performed to calculate the hazard ratio (HR) of PGRMC1 expression as a prognosis feature for overall survival (OS). Our results demonstrated that PGRMC1 expression served as a predictor for worse OS (HR = 1.95, P = 0.0005) in head-neck squamous cell carcinoma. And the over-expression of PGRMC1 was strongly correlated with various metabolic process activity as well as cancer metastasis and cell proliferation features in human head-neck squamous cell carcinoma patient's cohort. Besides, the over-expression and unfavorable prognosis value of PGRMC1 were also observed in many other cancer types. This study provides insights into the potential oncogenic functional significance of PGRMC1 in cancer research.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Denninghoff V, Muino A, Diaz M, Harada L, Lence A, Turon P, Labbrozzi M, Aguas S, Peñaloza P, Avagnina A, Adler I. Mutational status of PIK3ca oncogene in oral cancer-In the new age of PI3K inhibitors. Pathol Res Pract 2019; 216:152777. [PMID: 31831300 DOI: 10.1016/j.prp.2019.152777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022]
Abstract
In the new age of PI3K inhibitors, the mutational status of PI3Kca oncogene in the Cavity Squamous Cell Carcinoma (OC-SCC) needs further analysis. It is the sixth most common cancer in the world. The aim of this study was to evaluate PI3Kca oncogene mutations and to correlate them with the clinical-histological characteristics of individuals presenting these tumors. We recruited 74 individuals with OC-SCC diagnosis (period 2000-2014). Histological sections were used. DNA was purified; PIK3ca gene exons 9 and 20 were amplified and sequenced. In 49/74 cases (66 %), the complete sequence of both codons was analyzed by Sanger method. We found that 7/49 (14 %) individuals mutated. In exon 9 we found 1/49 (2 %), and in exon 20 M1043I 8/49 (16 %). We have found the coexistence of more than one mutation in a same individual (E542 K and M1043I). A positive association was observed between the mutational status of the codon 9 (E542 K) and the tongue location. In conclusion, the frequency of PI3Kca gene mutation in OC-SCC was 16 %, which is similar to that reported for other populations. We found a mutation not previously described (M1043I) in this pathology. Should its biological effect be confirmed, it must be added to the list of PIK3ca mutations. Total mutations in the PIK3ca were 32 %, with tongue being the site at the greatest risk (E542K-E545K-M1043I). These findings would facilitate the identification of patients with therapeutic targets in the near future.
Collapse
Affiliation(s)
- V Denninghoff
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina; Pathology Department, Center for Medical Education and Clinical Research (CEMIC), Argentina; National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - A Muino
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - M Diaz
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - L Harada
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - A Lence
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - P Turon
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - M Labbrozzi
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - S Aguas
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - P Peñaloza
- Pathology Department, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - A Avagnina
- Pathology Department, Center for Medical Education and Clinical Research (CEMIC), Argentina
| | - I Adler
- Stomatology, Faculty of Dentistry, University of Buenos Aires, Argentina
| |
Collapse
|
30
|
Chen X, Cao Y, Sedhom W, Lu L, Liu Y, Wang H, Oka M, Bornstein S, Said S, Song J, Lu SL. Distinct roles of PIK3CA in the enrichment and maintenance of cancer stem cells in head and neck squamous cell carcinoma. Mol Oncol 2019; 14:139-158. [PMID: 31600013 PMCID: PMC6944113 DOI: 10.1002/1878-0261.12584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/20/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
Recurrence and metastasis are the major causes of mortality in head and neck squamous cell carcinoma (HNSCC). It is suggested that cancer stem cells (CSCs) play pivotal roles in recurrence and metastasis. Thus, a greater understanding of the mechanisms of CSC regulation may provide opportunities to develop novel therapies for improving survival by controlling recurrence or metastasis. Here, we report that overexpression of the gene encoding the catalytic subunit of PI3K (PIK3CA), the most frequently amplified oncogene in HNSCC, promotes epithelial‐to‐mesenchymal transition and enriches the CSC population. However, PIK3CA is not required to maintain these traits and inhibition of the phosphatidylinositol 3‐kinase (PI3K) signaling pathway paradoxically promotes CSC population. Molecular analysis revealed that overexpression of PIK3CA activates multiple receptor tyrosine kinases (RTKs), in which ephrin receptors (Ephs), tropomyosin receptor kinases (TRK) and mast/stem cell growth factor receptor (c‐Kit) contribute to maintain CSC population. Accordingly, simultaneous inhibition of these RTKs using a multi‐kinase inhibitor ponatinib has a superior effect at eliminating the CSC population and reduces metastasis of PIK3CA‐overexpressing HNSCC cells. Our result suggests that co‐targeting of Ephs, TRKs and the c‐Kit pathway may be effective at eliminating the PI3K‐independent CSC population, thereby providing potential targets for future development of a novel anti‐CSC therapeutic approach for HNSCC patients, particularly for patients with PIK3CA amplification.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yu Cao
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, First Hospital of China Medical University, Shengyang, China
| | - Wafik Sedhom
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Institute of Integrative Medicine, Dalian Medical University, China
| | - Haibo Wang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgical Oncology, Second Hospital of Dalian Medical University, China
| | - Masako Oka
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Bornstein
- Department of Radiation Oncology, Cornell University, New York, NY, USA
| | - Sherif Said
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, Seykora JT, Sapkota B, Gutman DA, Cooper LA, Lesinski GB, Waller EK, Thomas SN, Kotenko SV, Boss JM, Moreno CS, Swerlick RA, Pollack BP. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Mol Cancer Res 2019; 17:2395-2409. [PMID: 31548239 DOI: 10.1158/1541-7786.mcr-19-0545] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Molecular events activating the PI3K pathway are frequently detected in human tumors and the activation of PI3K signaling alters numerous cellular processes including tumor cell proliferation, survival, and motility. More recent studies have highlighted the impact of PI3K signaling on the cellular response to interferons and other immunologic processes relevant to antitumor immunity. Given the ability of IFNγ to regulate antigen processing and presentation and the pivotal role of MHC class I (MHCI) and II (MHCII) expression in T-cell-mediated antitumor immunity, we sought to determine the impact of PI3K signaling on MHCI and MHCII induction by IFNγ. We found that the induction of cell surface MHCI and MHCII molecules by IFNγ is enhanced by the clinical grade PI3K inhibitors dactolisib and pictilisib. We also found that PI3K inhibition increases STAT1 protein levels following IFNγ treatment and increases accessibility at genomic STAT1-binding motifs. Conversely, we found that pharmacologic activation of PI3K signaling can repress the induction of MHCI and MHCII molecules by IFNγ, and likewise, the loss of PTEN attenuates the induction of MHCI, MHCII, and STAT1 by IFNγ. Consistent with these in vitro studies, we found that within human head and neck squamous cell carcinomas, intratumoral regions with high phospho-AKT IHC staining had reduced MHCI IHC staining. IMPLICATIONS: Collectively, these findings demonstrate that MHC expression can be modulated by PI3K signaling and suggest that activation of PI3K signaling may promote immune escape via effects on antigen presentation.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Maiko Sasaki
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Haydn T Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Urology Emory University School of Medicine, Atlanta, Georgia
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly R Magliocca
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - John T Seykora
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bishu Sapkota
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - David A Gutman
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Susan N Thomas
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Carlos S Moreno
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert A Swerlick
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia. .,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Shahoumi LA, Yeudall WA. Targeted therapies for non-HPV-related head and neck cancer: challenges and opportunities in the context of predictive, preventive, and personalized medicine. EPMA J 2019; 10:291-305. [PMID: 31462945 DOI: 10.1007/s13167-019-00177-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops in the mucosal lining of the upper aerodigestive tract, principally as a result of exposure to carcinogens present in tobacco products and alcohol, with oncogenic papillomaviruses also being recognized as etiological agents in a limited proportion of cases. As such, there is considerable scope for prevention of disease development and progression. However, despite multimodal approaches to treatment, tumor recurrence and metastatic disease are common problems, and clinical outcome is unsatisfactory. As our understanding of the genetics and biochemical aberrations in HNSCC has improved, so the development and use of molecularly targeted drugs to combat the disease have come to the fore. In this article, we review molecular mechanisms that alter signal transduction downstream of the epidermal growth factor receptor (EGFR) as well as those that perturb orderly cell cycle progression, such as p53 mutation, cyclin overexpression, and loss of cyclin-dependent kinase inhibitor function. We outline some of the tactics that have been employed to combat the altered biochemistry. These include blockade of the EGFR using humanized monoclonal antibodies such as cetuximab and small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib/gefitinib and subsequent generations of TKIs, restoration of p53 function using MIRA compounds, and inhibition of cyclin-dependent kinase and aurora kinase activity using drugs such as palbociclib and alisertib. Knowledge of the underlying molecular mechanisms may be utilizable in order to predict disease behavior and tailor therapeutic interventions in a more personalized approach to improve clinical response. Use of liquid biopsy, omics platforms, and salivary diagnostics hold promise in this regard.
Collapse
Affiliation(s)
- Linah A Shahoumi
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA
| | - W Andrew Yeudall
- 1Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA.,2The Graduate School, Augusta University, Augusta, GA USA.,3Georgia Cancer Center, Augusta University, Augusta, GA USA
| |
Collapse
|
33
|
Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20112662. [PMID: 31151182 PMCID: PMC6600143 DOI: 10.3390/ijms20112662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer encompass different malignancies that develop in and around the throat, larynx, nose, sinuses and mouth. Most head and neck cancers are squamous cell carcinomas (HNSCC) that arise in the flat squamous cells that makeup the thin layer of tissue on the surface of anatomical structures in the head and neck. Each year, HNSCC is diagnosed in more than 600,000 people worldwide, with about 50,000 new cases. HNSCC is considered extremely curable if detected early. But the problem remains in treatment of inoperable cases, residues or late stages. Circadian rhythm regulation has a big role in developing various carcinomas, and head and neck tumors are no exception. A number of studies have reported that alteration in clock gene expression is associated with several cancers, including HNSCC. Analyses on circadian clock genes and their association with HNSCC have shown that expression of PER1, PER2, PER3, CRY1, CRY2,CKIε, TIM, and BMAL1 are deregulated in HNSCC tissues. This review paper comprehensively presents data on deregulation of circadian genes in HNSCC and critically evaluates their potential diagnostics and prognostics role in this type of pathology.
Collapse
Affiliation(s)
- Sadia Rahman
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Elitza Markova-Car
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| |
Collapse
|
34
|
Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells. Cancer Chemother Pharmacol 2018; 83:451-461. [DOI: 10.1007/s00280-018-3746-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
|
35
|
Sathiyamoorthy J, Shyam Sundar V, Babu NA, Shanmugham S, .G.Mani J, Chinnaiyan P, Kalyanaraman A, Hari R. Study on PIK3CA Gene Mutations in Oral Squamous Cell Carcinoma among South Indian populations. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present investigation was performed in South Indian Populations to determine the hotspot mutation frequency in Oral Squamous Cell Carcinoma (OSCC) patients with PIK3CA gene Exon 9 and Exon 20 and its correlations with help of their clinical characteristics leading to these mutations. PI3KCA belongs to a group of regulatory heterodimeric lipid kinase which is involved in proliferation of cells, apoptosis and as well in metastasis which is controlled by PIK3CA gene is subjected to high frequency of somatic mutation in various tumors including OSCC. Total of 25 OSCC patients samples comprising of male and female subjects from Government tertiary care Centre were included in this study. Tumor specimen samples were collected and amplified for PIK3CA gene by PCR and subjected to genomic DNA Sequencing. Our findings showed total of 20% of oncogenic frequency in PIK3CA gene. We also observed two hot spot mutations (E545K) in exon 9 gene and three hot spot mutations (H1047Q, H1047Y, H1048Q) in exon 20 gene in our study populations. 0 Based on our findings it may be concluded that PIK3CA gene Exon 9 and Exon 20 contributes to a major role in pathogenesis on OSCC among South Indian populations may act as therapeutic target for a anticancer drug for the treatment OSCC.
Collapse
Affiliation(s)
- Jayalalitha Sathiyamoorthy
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute Maduravoyal, Chennai-95, India
| | - Vidyarani Shyam Sundar
- Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education (Bharath University), Pallikaranai, Chennai-99, India
| | - N. Aravindha Babu
- Centre of Oral Cancer Prevention and Research, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education (Bharath University), Pallikaranai, Chennai-99, India
| | - Subbaih Shanmugham
- Centre of Surgical Oncology Government Royapettah hospital and Kilpauk Medical College, Chennai, India
| | - Jagadeesan .G.Mani
- Centre of Surgical Oncology Government Royapettah hospital and Kilpauk Medical College, Chennai, India
| | - Ponnuraja Chinnaiyan
- Department of Statistics, National Institute of Research in Tuberculosis, No:1, Sathiyamoorthy Road, Chetpet, 600031,Chennai, India
| | - Aparna Kalyanaraman
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute Maduravoyal, Chennai-95, India
| | - Rajeswary Hari
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute Maduravoyal, Chennai-95, India
| |
Collapse
|
36
|
Matsuo FS, Andrade MF, Loyola AM, da Silva SJ, Silva MJB, Cardoso SV, de Faria PR. Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients. Virchows Arch 2018; 472:983-997. [PMID: 29713826 DOI: 10.1007/s00428-018-2318-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol-3-kinases are kinases that lead to AKT phosphorylation and thus mTOR and GSK3β activation. These proteins are linked to tumorigenesis, but their roles in driving cervical lymph node (CLN) metastasis of oral squamous cell carcinoma (OSCC) cells are unknown. This study aimed to investigate the role of AKT, mTOR, and GSK3β proteins in the occurrence of CLN metastasis in OSCC patients. Ninety and 18 paraffin-embedded OSCC and oral mucosa samples were included, respectively. We divided our OSCC patients into non-metastasizing (PNM) and metastasizing (PM) groups, and the expression of total AKT, pAKT1Thr308, pAKTSer473, GSK3β, pGSK3βSer9, and pmTORSer2448 was analyzed by immunohistochemistry. The mean expression of GSK3β, pGSK3βSer9, total AKT, and pmTOR2448 was always higher in the OSCC tissues than that in the controls. A positive correlation was also found among these proteins. Total AKT, pmTORSer2448, and pGSK3βSer9 expression was significantly higher in the PNM and PM groups than that in the control group. However, only GSK3β expression was significantly higher in the PM group compared with the PNM group. High expression levels of GSK3β and pGSK3βSer9 were significantly associated with CLN metastasis, but only GSK3β remained an independent predictor of CLN metastasis. pGSK3βSer9 and CLN metastasis were associated with a poor prognosis, but only the latter remained an independent prognostic parameter. Kaplan-Meier survival curves showed that pGSK3βSer9 and CLN metastasis were significantly related to reduced survival rates. These results suggest that AKT and mTOR proteins are involved in OSCC biology and that GSK3β itself may drive CLN metastatic spread of OSCC cells.
Collapse
Affiliation(s)
- Flávia Sayuri Matsuo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, School of Medicine, University of São Paulo, 1900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, Brazil
| | - Marília Ferreira Andrade
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, 1720 Pará Avenue, Block 4C, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Adriano Mota Loyola
- Department of Oral Pathology, School of Dentistry, Federal University of Uberlândia, 1720 Pará Avenue, Block 4L, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Sindeval José da Silva
- Department of Surgery, School of Medicine, Federal University of Uberlândia, 1720 Pará Avenue, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, 1720 Pará Avenue, Block 4C, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Sérgio Vitorino Cardoso
- Department of Oral Pathology, School of Dentistry, Federal University of Uberlândia, 1720 Pará Avenue, Block 4L, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Paulo Rogério de Faria
- Department of Morphology, Institute of Biomedical Science, Federal University of Uberlândia, 1720 Pará Avenue, Block 2B, Uberlândia, Minas Gerais, 38400-902, Brazil. .,Instituto de Ciências Biomédicas, Laboratório de Histologia, Universidade Federal de Uberlândia, Avenida Amazonas S/N, Bloco 2B, Sala 2B-254, Uberlândia, Minas Gerais, 38405-320, Brazil.
| |
Collapse
|
37
|
Clonal evolution and heterogeneity in metastatic head and neck cancer-An analysis of the Austrian Study Group of Medical Tumour Therapy study group. Eur J Cancer 2018; 93:69-78. [PMID: 29477794 DOI: 10.1016/j.ejca.2018.01.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/30/2017] [Accepted: 01/06/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tumour heterogeneity and clonal evolution within a cancer patient are deemed responsible for relapse in malignancies and present challenges to the principles of targeted therapy, for which treatment modality is often decided based on the molecular pathology of the primary tumour. Nevertheless, the clonal architecture in distant relapse of head and neck cancer is fairly unknown. PATIENTS AND METHODS For this project, we analysed a cohort of 386 patients within the Austrian Registry of head and neck cancer. We identified 26 patients with material from the primary tumour, the distant metastasis after curative first-line treatment and a germline sample for analysis of clonal evolution. After pathological analyses, these samples were analysed using a targeted massively parallel sequencing (MPS) panel of 257 genes known to be recurrently mutated in head and neck cancer plus a genome-wide SNP-set. RESULTS Despite histological diagnosis of distant metastasis, no corresponding mutation in the supposed metastases was found in two of 23 (8.6%) evaluable patients suggesting a primary tumour of the lung instead of a distant metastasis of head and neck cancer. We observed a branched pattern of evolution in 31.6% of the analysed patients. This pattern was associated with a shorter time to distant metastasis, compared with a pattern of punctuated evolution. Structural genomic changes over time were also present in 7 of 12 (60%) evaluable patients with metachronous metastases. CONCLUSION Targeted MPS demonstrated substantial heterogeneity at the time of diagnosis and a complex pattern of evolution during disease progression in head and neck cancer. Copy number analyses revealed additional changes that were not detected by mutational analyses. Mutational and structural changes contribute to tumour heterogeneity at diagnosis and progression.
Collapse
|
38
|
Kemmer JD, Johnson DE, Grandis JR. Leveraging Genomics for Head and Neck Cancer Treatment. J Dent Res 2018; 97:603-613. [PMID: 29420101 DOI: 10.1177/0022034518756352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The genomic landscape of head and neck squamous cell carcinoma (HNSCC) has been recently elucidated. Key epigenetic and genetic characteristics of this cancer have been reported and substantiated in multiple data sets, including those distinctive to the growing subset of human papilloma virus (HPV)-associated tumors. This increased understanding of the molecular underpinnings of HNSCC has not resulted in new approaches to treatment. Three Food and Drug Administration-approved molecular targeting agents are currently available to treat recurrent/metastatic disease, but these have exhibited efficacy only in subsets of HNSCC patients, and thus surgery, chemotherapy, and/or radiation remain as standard approaches. The lack of predictive biomarkers to any therapy represents an obstacle to achieving the promise of precision medicine. This review aims to familiarize the reader with current insights into the HNSCC genomic landscape, discuss the currently approved and promising molecular targeting agents under exploration in laboratories and clinics, and consider precision medicine approaches to HNSCC.
Collapse
Affiliation(s)
- J D Kemmer
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - D E Johnson
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - J R Grandis
- 1 Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
García-Carracedo D, Villaronga MÁ, Álvarez-Teijeiro S, Hermida-Prado F, Santamaría I, Allonca E, Suárez-Fernández L, Gonzalez MV, Balbín M, Astudillo A, Martínez-Camblor P, Su GH, Rodrigo JP, García-Pedrero JM. Impact of PI3K/AKT/mTOR pathway activation on the prognosis of patients with head and neck squamous cell carcinomas. Oncotarget 2018; 7:29780-93. [PMID: 27119232 PMCID: PMC5045433 DOI: 10.18632/oncotarget.8957] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT/mTOR signaling pathway has emerged as one of the most frequently deregulated in head and neck squamous cell carcinomas (HNSCC). Numerous alterations of various upstream and downstream components have been described; however, their prognostic significance and impact on HNSCC patient survival remains to be established. This was addressed using an unbiased cohort of 93 consecutive and homogeneous surgically treated HNSCC patients and results confirmed in 432 HNSCC patients. Our findings reveal the high prevalence of S6 phosphorylation, a surrogate marker of mTORC1 activation, in HNSCC specimens (>70%) and, more importantly, demonstrate its relevance on clinical outcome. Phosphorylation of ribosomal protein S6 on either Ser235/236 or Ser240/244 was consistently and significantly correlated with favorable prognosis, although with differences depending on the tumor site. Thus, p-S6 expression was significantly correlated with better disease-specific survival specifically in the subgroup of laryngeal carcinoma patients (P< 0.001). In addition, multivariate regression models revealed p-S6 to be an inverse and independent predictor of lymph-node metastasis (P= 0.004) and distant metastasis (P= 0.006). Taken together, this study unveils an unprecedented correlation of mTOR activation with improved clinical outcome in patients with laryngeal carcinomas and uncovers the potential of p-S6 expression as a good prognostic biomarker and an inverse predictor of lymph node and distant metastases. These results should be of broad interest as immunohistochemical detection of p-S6 may help to stratify patients and guide treatment decisions.
Collapse
Affiliation(s)
- Darío García-Carracedo
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Maria Ángeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Iñigo Santamaría
- Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Suárez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Maria Victoria Gonzalez
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Milagros Balbín
- Department of Molecular Oncology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Gloria H Su
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.,Departments of Pathology, Columbia University Medical Center, New York, NY, USA.,Departments of Otolaryngology/Head and Neck Surgery, Columbia University Medical Center, New York, NY, USA
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Juana María García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
40
|
Hosseini S, Behjati F, Rahimi M, Taheri N, Khoram Khorshid H, Aghakhani Moghaddam F, Ghasemi S, Karimlou M, Sirati F, Keyhani E. Relationship Between PIK3CA Amplification and P110α and CD34 Tissue Expression as Angiogenesis Markers in Iranian Women with Sporadic Breast Cancer. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:447-453. [PMID: 30774684 PMCID: PMC6358562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/13/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The PI3K/AKT/mTOR pathway is known to play an important role in regulating angiogenesis both in normal and breast cancer (BC) tissues. PIK3CA amplification was reported in various malignancies, including approximately 10% of BC cases. The aim of this study was to identify the frequency of PIK3CA amplification in Iranian female patients suffering from BC. Additionally, possible association between PIK3CA amplification and P110α expression with microvascular density (MVD) was examined. METHODS DNA samples were extracted from paraffin embedded tumor tissue blocks and copy number changes were evaluated by MLPA Technique. The results were analyzed by coffalyzer software. The tissue expression of P110α and CD34 was assessed using immunohistochemistry. RESULTS Ten out of 40 samples (17.5%) showed amplification in PIK3CA gene and 22 out of 40 samples (55%) showed overexpression in P110α. For CD34, from 40 samples, 20 (50%), 15 (37.5%) and 5 (12.5%) had scores 1+, 2+ and 3+, respectively. CONCLUSION No significant association was detected between gain of PIK3CA copy number and P110α or CD34 tissue expression.
Collapse
Affiliation(s)
- Shadi Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Rahimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nazanin Taheri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Saghar Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Karimlou
- Dept. of Epidemiology and Biostatistics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fereidoon Sirati
- Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Keyhani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran,Corresponding information: Elahe Keyhani, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran, E-mail :
| |
Collapse
|
41
|
Foy JP, Tortereau A, Caulin C, Le Texier V, Lavergne E, Thomas E, Chabaud S, Perol D, Lachuer J, Lang W, Hong WK, Goudot P, Lippman SM, Bertolus C, Saintigny P. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer. Oncotarget 2017; 7:35932-35945. [PMID: 27027432 PMCID: PMC5094973 DOI: 10.18632/oncotarget.8321] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/06/2016] [Indexed: 12/24/2022] Open
Abstract
A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the “tumor gene set” (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the aerodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.
Collapse
Affiliation(s)
- Jean-Philippe Foy
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, France.,Department of Oral and Maxillofacial Surgery, University of Pierre Marie Curie-Paris 6, Pitié-Salpêtrière Hospital, Paris, France
| | - Antonin Tortereau
- Université de Lyon, VetAgro Sup, UPSP 2011-03-101, ICE, Marcy-l'Étoile, France
| | - Carlos Caulin
- Head and Neck Surgery at The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Emilie Lavergne
- Department of Biostatistics, Centre Léon Bérard, Lyon, France
| | - Emilie Thomas
- Department of Bioinformatics, Centre Léon Bérard, Lyon, France
| | - Sylvie Chabaud
- Department of Biostatistics, Centre Léon Bérard, Lyon, France
| | - David Perol
- Department of Biostatistics, Centre Léon Bérard, Lyon, France
| | - Joël Lachuer
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, France.,Université Lyon 1, Université de Lyon, Lyon, France.,ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Lyon, France
| | - Wenhua Lang
- Thoracic/Head and Neck Medical Oncology at The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Waun Ki Hong
- Division of Cancer Medicine at The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Goudot
- Department of Oral and Maxillofacial Surgery, University of Pierre Marie Curie-Paris 6, Pitié-Salpêtrière Hospital, Paris, France
| | | | - Chloé Bertolus
- Department of Oral and Maxillofacial Surgery, University of Pierre Marie Curie-Paris 6, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Saintigny
- INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, France.,Departments of Medicine and Translational Research and Innovation, Centre Leon Berard, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
42
|
Liu X, Xu Y, Zhou Q, Chen M, Zhang Y, Liang H, Zhao J, Zhong W, Wang M. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment. Future Oncol 2017; 14:665-674. [PMID: 29219001 DOI: 10.2217/fon-2017-0588] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of PI3K in cancer has been well established, and mutations of PIK3CA, the gene coding for catalytic subunit p110α of PI3K, are found in approximately 30% human cancers. The hyperactivated PI3K pathway plays a central role in the tumor cell activities such as proliferation, differentiation, chemotaxis, survival, trafficking and metabolism. Besides, PI3K pathway is involved in the regulation of angiogenesis and the host immune response against cancer. Therefore, the inhibition of PI3K pathway can yield multifaceted tumor cell-extrinsic effects that may synergize with chemotherapy, and more importantly, with the newly revived immunotherapy. Here, we review the structures and activation modes of PI3Ks and its implications in angiogenesis, extracellular matrix remodeling and tumor immunity.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yan Xu
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Qing Zhou
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Minjiang Chen
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yu Zhang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Hongge Liang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Jing Zhao
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Wei Zhong
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Mengzhao Wang
- Department of Pulmonary Medicine, Lung Cancer Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| |
Collapse
|
43
|
Pereira TDSF, Diniz MG, França JA, Moreira RG, Menezes GHFD, Sousa SFD, Castro WHD, Gomes CC, Gomez RS. The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 125:172-178. [PMID: 29239811 DOI: 10.1016/j.oooo.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The molecular pathogenesis of cemento ossifying fibroma (COF) is unclear. The purpose of this study was to investigate mutations in 50 oncogenes and tumor suppressor genes, including APC and CTNNB1, in which mutations in COF have been previously reported. In addition, we assessed the transcriptional levels of the Wnt/β-catenin pathway genes in COF. STUDY DESIGN We used a quantitative polymerase chain reaction array to evaluate the transcriptional levels of 44 Wnt/β-catenin pathway genes in 6 COF samples, in comparison with 6 samples of healthy jaws. By using next-generation sequencing (NGS) in 7 COF samples, we investigated approximately 2800 mutations in 50 genes. RESULTS The expression assay revealed 12 differentially expressed Wnt/β-catenin pathway genes in COF, including the upregulation of CTNNB1, TCF7, NKD1, and WNT5 A, and downregulation of CTNNBIP1, FRZB, FZD6, RHOU, SFRP4, WNT10 A, WNT3 A, and WNT4, suggesting activation of the Wnt/β-catenin signaling pathway. NGS revealed 5 single nucleotide variants: TP53 (rs1042522), PIK3 CA (rs2230461), MET (rs33917957), KIT (rs3822214), and APC (rs33974176), but none of them was pathogenic. CONCLUSIONS Although NGS detected no oncogenic mutation, deregulation of key Wnt/β-catenin signaling pathway genes appears to be relevant to the molecular pathogenesis of COF.
Collapse
Affiliation(s)
| | - Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Josiane Alves França
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Rennan Garcias Moreira
- Genomics Multi-user Laboratory, Biological Sciences Institute, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Sílvia Ferreira de Sousa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Wagner Henriques de Castro
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
44
|
Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget 2017; 8:22203-22217. [PMID: 28108737 PMCID: PMC5400658 DOI: 10.18632/oncotarget.14729] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/09/2017] [Indexed: 02/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is the most commonly mutated pathway in head and neck squamous cell carcinoma (HNSCC). There are several drugs targeting members of the PI3K signaling pathway in development for HNSCC. In this article, we review the genetic alterations reported in the pathway pertinent to HNSCC, various agents in development targeting various mediators of the pathway, results from clinical trials, and remaining challenges in the development of PI3K pathway inhibitors.
Collapse
|
45
|
Antitumor activity of the dual PI3K/MTOR inhibitor, PF-04691502, in combination with radiation in head and neck cancer. Radiother Oncol 2017; 124:504-512. [PMID: 28823407 DOI: 10.1016/j.radonc.2017.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Head and neck squamous cell carcinoma (HNSCC) remains a clinical challenge where new treatments are required to supplement the current-standard-of care of concurrent chemoradiation. The PI3K/AKT/MTOR pathway has been identified from several next generation DNA sequencing studies to be commonly altered and activated in HNSCC. MATERIAL AND METHODS In this study we investigated the activity of PF-04691502, an orally active ATP-competitive, dual inhibitor of PI3K and mTOR, in combination with a clinically relevant fractionated radiation treatment in two contrasting, well characterized, low passage HNSCC models. RESULTS We found that PF-04691502 combined synergistically with radiation in the UT-SCC-14 model derived from a primary cancer but was ineffective in the UT-SCC-15 model which was derived from a nodal recurrence. Further examination of the status of key signaling pathways combined with next generation DNA sequencing of a panel of 160 cancer-associated genes revealed crucial differences between the two models that could account for the differential effect. The UT-SCC-15 cell line was characterized by a higher mutational burden, an excess of variants in the PI3K/AKT/MTOR pathway, increased constitutive activity of PI3K, AKT1 and 2 and MTOR and an inability to inhibit key phosphorylation events in response to the treatments. CONCLUSION This study clearly highlights the promise of agents such as PF-04691502 in selected HNSCCs but also emphasizes the need for molecular characterization and alternative treatment strategies in non-responsive HNSCCs.
Collapse
|
46
|
Nisa L, Häfliger P, Poliaková M, Giger R, Francica P, Aebersold DM, Charles RP, Zimmer Y, Medová M. PIK3CA hotspot mutations differentially impact responses to MET targeting in MET-driven and non-driven preclinical cancer models. Mol Cancer 2017; 16:93. [PMID: 28532501 PMCID: PMC5441085 DOI: 10.1186/s12943-017-0660-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
Background The MET receptor tyrosine kinase represents a promising target in cancer. PIK3CA activating mutations are common in several tumor types and can potentially confer resistance to anti-receptor tyrosine kinase therapy. Methods MET and/or PI3K pathway inhibition was assessed in NIH3T3 cells harboring MET-activating point mutation with or without ectopic expression of PIK3CAE545K and PIK3CAH1047R, as well as in MET-expressing head and neck cancer cells with endogenous PIK3CA mutations. Endpoints included PI3K pathway activation, cell proliferation, colony-forming ability, cell death, wound-healing, and an in vivo model. Results PIK3CAE545K and PIK3CAH1047R confer resistance to MET inhibition in MET-driven models. PIK3CAH1047R was more potent than PIK3CAE545K at inducing resistance in PI3K pathway activation, cell proliferation, colony-forming ability, induction of cell death and wound-healing upon MET inhibition. Resistance to MET inhibition could be synergistically overcome by co-targeting PI3K. Furthermore, combined MET/PI3K inhibition led to enhanced anti-tumor activity in vivo in tumors harboring PIK3CAH1047R. In head and neck cancer cells the combination of MET/PI3K inhibitors led to more-than-additive effects. Conclusions PIK3CA mutations can lead to resistance to MET inhibition, supporting future clinical evaluation of combinations of PI3K and MET inhibitors in common scenarios of malignant neoplasms featuring aberrant MET expression and PIK3CA mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0660-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lluís Nisa
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, 3008, Bern, Switzerland. .,Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland. .,Department of Otorhinolaryngology - Head and Neck Surgery, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland.
| | - Pascal Häfliger
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Michaela Poliaková
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, 3008, Bern, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland
| | - Roland Giger
- Department of Otorhinolaryngology - Head and Neck Surgery, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland
| | - Paola Francica
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, 3008, Bern, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland
| | - Daniel Matthias Aebersold
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, 3008, Bern, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Yitzhak Zimmer
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, 3008, Bern, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland
| | - Michaela Medová
- Department of Clinical Research, Inselspital, Bern University Hospital, and University of Bern, 3008, Bern, Switzerland. .,Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
47
|
Arunkumar G, Murugan AK, Nagarajan M, Ajay C, Rajaraman R, Munirajan AK. Absence of the frequently reported PIK3CA, CASP8, and NOTCH1 mutations in South Indian oral cancers. Oral Dis 2017; 23:669-673. [PMID: 28181739 DOI: 10.1111/odi.12655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/08/2017] [Accepted: 01/21/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Somatic mutations of the PIK3CA, CASP8, and NOTCH1 have been frequently detected in various human cancers. Our study aimed to analyze the mutational status of these genes in South Indian oral cancers. SUBJECTS AND METHODS We performed mutational analysis of the PIK3CA (exons 9 and 20), CASP8 (exon 9), and NOTCH1 (exons 5, 6, 7, 8, and 9) genes in 96, 48, and 44 oral cancer samples, respectively. All the specified exons were PCR (polymerase chain reaction)-amplified and directly sequenced by Sanger sequencing. RESULTS PIK3CA gene mutations were not found; however, a synonymous single nucleotide polymorphism (SNP) [rs17849079] was observed frequently [35/96 (36.4%)] in oral cancer samples. Further, no mutations were detected in the CASP8 gene, but observed a frequent [32/48 (66.6%)] SNP [rs1045487] in the oral cancer samples. We did not detect any mutation in the NOTCH1 gene (exons 5, 6, 7, 8, and 9) in all the [0/44] analyzed oral cancer samples. CONCLUSIONS This is the first study that reports the status of the PIK3CA, CASP8, and NOTCH1 mutations in South Indian oral cancer samples. Our study suggests that either mutations in these genes are uncommon in South Indian oral cancer samples or likely other genes in this pathway might be mutated.
Collapse
Affiliation(s)
- G Arunkumar
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - A K Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - M Nagarajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - C Ajay
- Center for Oncology, Royapettah Government Hospital and Kilpauk Medical College, Chennai, India
| | - R Rajaraman
- Center for Oncology, Royapettah Government Hospital and Kilpauk Medical College, Chennai, India
| | - A K Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
48
|
Lindsay C, Seikaly H, Biron VL. Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J Otolaryngol Head Neck Surg 2017; 46:9. [PMID: 28143553 PMCID: PMC5282807 DOI: 10.1186/s40463-017-0185-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/20/2017] [Indexed: 12/29/2022] Open
Abstract
Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs. Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review, important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as well as the potential clinical utility of this knowledge.This material has never been published and is not currently under evaluation in any other peer-reviewed publication.
Collapse
Affiliation(s)
- Cameron Lindsay
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Hadi Seikaly
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada
| | - Vincent L Biron
- Faculty of Medicine and Dentistry, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, 1E4.34 WMC, 8440 112 Street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
49
|
Koerdt S, Tanner N, Rommel N, Rohleder NH, Frohwitter G, Ristow O, Wolff KD, Kesting MR. NOS1-, NOS3-, PIK3CA-, and MAPK-pathways in skin following radiation therapy. Biomark Res 2017; 5:3. [PMID: 28127430 PMCID: PMC5251289 DOI: 10.1186/s40364-017-0084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
Background Essential molecular pathways such as the MAPK pathway, NO system, or the influence of PIK3CA as an oncogene are known to regulate fundamental signalling networks. However, few knowledge about their role in the occurrence of wound healing disorders (WHD) following radiation therapy (RT) exists. This study aims to evaluate the expression profiles of specific molecular pathway marker genes. Methods Expression profiles of the genes encoding MAPK, NOS1, NOS3, and PIK3CA were analyzed, by RT-PCR, in specimens from patients with and without a history of RT to the head and neck. Clinical data on the occurrence of cervical WHDs were analyzed. Results Expression analysis of patients with postoperative WHDs revealed a significant increase in MAPK expression compared to the control group without occurrence of postoperative WHDs. PIK3CA showed a significantly increased expression in patients with a history of RT. Expression analysis of all other investigated genes did not reveal significant differences. Conclusions This current study is able to show the influence of RT on different molecular pathways. This underlines the crucial role of specific molecular networks, responsible for the occurrence of long-term radiation toxicity such as WHDs. Additional studies should be carried out to identify possible starting points for therapeutic interventions.
Collapse
Affiliation(s)
- Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Nadine Tanner
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Niklas Rommel
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Nils H Rohleder
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Gesche Frohwitter
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| | - Marco R Kesting
- Department of Oral and Maxillofacial Surgery, Technical University of Munich (TUM), Ismaninger Str. 22, D-81675 Munich, Germany
| |
Collapse
|
50
|
Baba Y, Maeda T, Suzuki A, Takada S, Fujii M, Kato Y. Deguelin Potentiates Apoptotic Activity of an EGFR Tyrosine Kinase Inhibitor (AG1478) in PIK3CA-Mutated Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18020262. [PMID: 28134774 PMCID: PMC5343798 DOI: 10.3390/ijms18020262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 12/03/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is known to be intrinsically resistant to inhibitors for epidermal growth factor receptor (EGFR). Until now, clinical outcomes for HNSCC using EGFR inhibitors as single agents have yielded disappointing results. Here, we aimed to study whether combinatorial treatment using AG1478 (EGFR tyrosine kinase inhibitor) and deguelin, which is a rotenoid isolated from the African plant Mundulea sericea, could enhance the anti-tumor effects of AG1478 in HNSCC. For Ca9-22 cells with EGFR, KRAS, and PIK3CA wild types, AG1478 alone suppressed both phosphorylated levels of ERK and AKT and induced apoptosis. On the contrary, for HSC-4 cells with EGFR and KRAS wild types, and a PIK3CA mutant, AG1478 alone did not suppress the phosphorylated level of AKT nor induce apoptosis, while it suppressed ERK phosphorylation. Forced expression of constitutively active PIK3CA (G1633A mutation) significantly reduced the apoptotic effect of AG1478 on the PIK3CA wild-type Ca9-22 cells. When HSC-4 cells with the PIK3CA G1633A mutation were treated with a combination of AG1478 and deguelin, combination effects on apoptosis induction were observed through the inhibition of the AKT pathway. These results suggest that the combination of EGFR tyrosine kinase inhibitor with deguelin is a potential therapeutic approach to treat PIK3CA-mutated HNSCC.
Collapse
Affiliation(s)
- Yuh Baba
- Department of General Clinical Medicine, Ohu University School of Dentistry, 31-1, Mitsumido, Tomita-machi, Koriyama City, Fukushima 963-8611, Japan.
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1, Mitsumido, Tomita-machi, Koriyama City, Fukushima 963-8611, Japan.
| | - Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1, Mitsumido, Tomita-machi, Koriyama City, Fukushima 963-8611, Japan.
| | - Satoshi Takada
- Department of Oral and Maxillofacial Surgery, Ohu University School of Dentistry, 31-1, Mitsumido, Tomita-machi, Koriyama City, Fukushima 963-8611, Japan.
| | - Masato Fujii
- National Institute of Sensory Organs, National Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro, Tokyo 152-8902, Japan.
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1, Mitsumido, Tomita-machi, Koriyama City, Fukushima 963-8611, Japan.
| |
Collapse
|