1
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2024:10.1007/s12035-024-04457-1. [PMID: 39240280 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Werner H, LeRoith D. Hallmarks of cancer: The insulin-like growth factors perspective. Front Oncol 2022; 12:1055589. [PMID: 36479090 PMCID: PMC9720135 DOI: 10.3389/fonc.2022.1055589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/07/2022] [Indexed: 08/30/2023] Open
Abstract
The identification of a series of attributes or hallmarks that are shared by virtually all cancer cells constitutes a true milestone in cancer research. The conceptualization of a catalogue of common genetic, molecular, biochemical and cellular events under a unifying Hallmarks of Cancer idea had a major impact in oncology. Furthermore, the fact that different types of cancer, ranging from pediatric tumors and leukemias to adult epithelial cancers, share a large number of fundamental traits reflects the universal nature of the biological events involved in oncogenesis. The dissection of a complex disease like cancer into a finite directory of hallmarks is of major basic and translational relevance. The role of insulin-like growth factor-1 (IGF1) as a progression/survival factor required for normal cell cycle transition has been firmly established. Similarly well characterized are the biochemical and cellular activities of IGF1 and IGF2 in the chain of events leading from a phenotypically normal cell to a diseased one harboring neoplastic traits, including growth factor independence, loss of cell-cell contact inhibition, chromosomal abnormalities, accumulation of mutations, activation of oncogenes, etc. The purpose of the present review is to provide an in-depth evaluation of the biology of IGF1 at the light of paradigms that emerge from analysis of cancer hallmarks. Given the fact that the IGF1 axis emerged in recent years as a promising therapeutic target, we believe that a careful exploration of this signaling system might be of critical importance on our ability to design and optimize cancer therapies.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, Di Gregorio S, Russo M, Malandrino P, Vigneri P. Activation of the IGF Axis in Thyroid Cancer: Implications for Tumorigenesis and Treatment. Int J Mol Sci 2019; 20:E3258. [PMID: 31269742 PMCID: PMC6651760 DOI: 10.3390/ijms20133258] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
The Insulin-like growth factor (IGF) axis is one of the best-established drivers of thyroid transformation, as thyroid cancer cells overexpress both IGF ligands and their receptors. Thyroid neoplasms encompass distinct clinical and biological entities as differentiated thyroid carcinomas (DTC)-comprising papillary (PTC) and follicular (FTC) tumors-respond to radioiodine therapy, while undifferentiated tumors-including poorly-differentiated (PDTC) or anaplastic thyroid carcinomas (ATCs)-are refractory to radioactive iodine and exhibit limited responses to chemotherapy. Thus, safe and effective treatments for the latter aggressive thyroid tumors are urgently needed. Despite a strong preclinical rationale for targeting the IGF axis in thyroid cancer, the results of the available clinical studies have been disappointing, possibly because of the crosstalk between IGF signaling and other pathways that may result in resistance to targeted agents aimed against individual components of these complex signaling networks. Based on these observations, the combinations between IGF-signaling inhibitors and other anti-tumor drugs, such as DNA damaging agents or kinase inhibitors, may represent a promising therapeutic strategy for undifferentiated thyroid carcinomas. In this review, we discuss the role of the IGF axis in thyroid tumorigenesis and also provide an update on the current knowledge of IGF-targeted combination therapies for thyroid cancer.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Marco Russo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| |
Collapse
|
4
|
Lawnicka H, Motylewska E, Borkowska M, Kuzdak K, Siejka A, Swietoslawski J, Stepien H, Stepien T. Elevated serum concentrations of IGF-1 and IGF-1R in patients with thyroid cancers. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:77-83. [PMID: 31132076 DOI: 10.5507/bp.2019.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The rising incidence of thyroid cancer observed in the last few decades requires an improvement in diagnostic tools and management techniques for patients with thyroid nodules. AIMS The aim of this study was to assess serum concentrations of IGF-1 and IGF-1R in patients diagnosed with thyroid cancers. METHODS 36 patients diagnosed with papillary thyroid cancer (PTC), 11 subjects with follicular thyroid cancer (FTC), 9 patients with anaplastic thyroid cancer (ATC) and 19 subjects with multinodular nontoxic goiter (MNG) were enrolled to the study. The control group (CG) consisted of 20 healthy volunteers. Blood samples were collected one day before surgery. Serum IGF-1 and IGF-1R concentrations were measured using specific ELISA methods. RESULTS Significantly higher concentrations of IGF-1 were found in patients with PTC as compared with controls but not that obtained from subjects diagnosed with MNG. The concentration of IGF-1R was significantly elevated in subjects with PTC and ATC as compared with healthy volunteers. Similarly, patients diagnosed with PTC or ATC presented significantly higher serum concentration of IGF-1R in comparison to the MNG group. CONCLUSIONS Our results show that the IGF-1 - IGF-1R axis plays a significant role in the development of PTC and ATC and imply that serum concentrations of both cytokines may be considered as additional markers for the differentiation of malignancies during the preoperative diagnosis of patients with thyroid gland tumors. These results indicate that IGF-1R serum concentrations allow us to differentiate between MNG and PTC or ATC. Moreover IGF-1R serum values appear to be better predictor of PTC and ATC than IGF-1 concentrations.
Collapse
Affiliation(s)
- Hanna Lawnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Ewelina Motylewska
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Magdalena Borkowska
- Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Krzysztof Kuzdak
- Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Agnieszka Siejka
- Clinic of Endocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jacek Swietoslawski
- Department of Neuroendocrinology, Interdepartmental Chair of Laboratory and Molecular Diagnostics, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Henryk Stepien
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Tomasz Stepien
- Clinic of Endocrinological and General Surgery, Chair of Endocrinology, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| |
Collapse
|
5
|
Argiris A, Lee JW, Stevenson J, Sulecki MG, Hugec V, Choong NW, Saltzman JN, Song W, Hansen RM, Evans TL, Ramalingam SS, Schiller JH. Phase II randomized trial of carboplatin, paclitaxel, bevacizumab with or without cixutumumab (IMC-A12) in patients with advanced non-squamous, non-small-cell lung cancer: a trial of the ECOG-ACRIN Cancer Research Group (E3508). Ann Oncol 2018; 28:3037-3043. [PMID: 28950351 DOI: 10.1093/annonc/mdx534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Cixutumumab is a fully human IgG1 monoclonal antibody to the insulin-like growth factor type I receptor that can potentially reverse resistance and enhance the efficacy of chemotherapy. Methods Bevacizumab-eligible patients with stage IV or recurrent non-squamous, non-small-cell lung cancer and good performance status were randomized to receive standard doses of paclitaxel, carboplatin, and bevacizumab to a maximum of six cycles followed by bevacizumab maintenance (CPB) until progression (arm A) or CPB plus cixutumumab 6 mg/kg i.v. weekly (arm B). Results Of 175 patients randomized, 153 were eligible and treated (78 in arm A; 75 in arm B). The median progression-free survival was 5.8 months (95% CI 5.4-7.1) in arm A versus 7 months (95% CI 5.7-7.6) in arm B (P = 0.33); hazard ratio 0.92 (95% CI 0.65-1.31). Objective response was 46.2% versus 58.7% in arm A versus arm B (P = 0.15). The median overall survival was 16.2 months in arm A versus 16.1 months in arm B (P = 0.95). Grade 3/4 neutropenia and febrile neutropenia, thrombocytopenia, fatigue, and hyperglycemia were increased with cixutumumab. Conclusions The addition of cixutumumab to CPB increased toxicity without improving efficacy and is not recommended for further development in non-small-cell lung cancer. Both treatment groups had longer OS than historical controls which may be attributed to several factors, and emphasizes the value of a comparator arm in phase II trials. ClinicalTrials.gov Identifier NCT00955305.
Collapse
Affiliation(s)
- A Argiris
- Medical Oncology, Hygeia Hospital, Athens, Greece.,Medical Oncology, Thomas Jefferson University, Philadelphia
| | - J W Lee
- Dana-Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston
| | - J Stevenson
- Medical Oncology, Cleveland Clinic Foundation, Cleveland
| | - M G Sulecki
- Medical Oncology, University of Pittsburgh Cancer Institute, Pittsburgh
| | - V Hugec
- Medical Oncology, Minnesota Oncology, Minneapolis, Lake Elmo
| | | | - J N Saltzman
- Medical Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland
| | - W Song
- Pottstown Memor Reg Cancer Ctr, Pottstown
| | - R M Hansen
- Medical Oncology, Oconomowoc Memorial Hospital, Oconomowoc
| | - T L Evans
- Medical Oncology, University of Pennsylvania, Philadelphia
| | - S S Ramalingam
- The Winship Cancer Institute of Emory University, Atlanta
| | - J H Schiller
- Medical Oncology, The University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
6
|
Zovko A, Novak M, Hååg P, Kovalerchick D, Holmlund T, Färnegårdh K, Ilan M, Carmeli S, Lewensohn R, Viktorsson K. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells. Oncotarget 2018; 7:50258-50276. [PMID: 27384680 PMCID: PMC5226581 DOI: 10.18632/oncotarget.10361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/15/2016] [Indexed: 11/25/2022] Open
Abstract
In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.
Collapse
Affiliation(s)
- Ana Zovko
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Metka Novak
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Dimitry Kovalerchick
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Teresa Holmlund
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Färnegårdh
- Science for Life Laboratory, Drug Discovery and Development Platform, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Micha Ilan
- Department of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Carmeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology and Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
8
|
Marotta V, Sciammarella C, Vitale M, Colao A, Faggiano A. The evolving field of kinase inhibitors in thyroid cancer. Crit Rev Oncol Hematol 2015; 93:60-73. [DOI: 10.1016/j.critrevonc.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/15/2014] [Accepted: 08/19/2014] [Indexed: 01/04/2023] Open
|
9
|
Pivonello C, De Martino MC, Negri M, Cuomo G, Cariati F, Izzo F, Colao A, Pivonello R. The GH-IGF-SST system in hepatocellular carcinoma: biological and molecular pathogenetic mechanisms and therapeutic targets. Infect Agent Cancer 2014; 9:27. [PMID: 25225571 PMCID: PMC4164328 DOI: 10.1186/1750-9378-9-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignancy worldwide. Different signalling pathways have been identified to be implicated in the pathogenesis of HCC; among these, GH, IGF and somatostatin (SST) pathways have emerged as some of the major pathways implicated in the development of HCC. Physiologically, GH-IGF-SST system plays a crucial role in liver growth and development since GH induces IGF1 and IGF2 secretion and the expression of their receptors, involved in hepatocytes cell proliferation, differentiation and metabolism. On the other hand, somatostatin receptors (SSTRs) are exclusively present on the biliary tract. Importantly, the GH-IGF-SST system components have been indicated as regulators of hepatocarcinogenesis. Reduction of GH binding affinity to GH receptor, decreased serum IGF1 and increased serum IGF2 production, overexpression of IGF1 receptor, loss of function of IGF2 receptor and appearance of SSTRs are frequently observed in human HCC. In particular, recently, many studies have evaluated the correlation between increased levels of IGF1 receptors and liver diseases and the oncogenic role of IGF2 and its involvement in angiogenesis, migration and, consequently, in tumour progression. SST directly or indirectly influences tumour growth and development through the inhibition of cell proliferation and secretion and induction of apoptosis, even though SST role in hepatocarcinogenesis is still opened to argument. This review addresses the present evidences suggesting a role of the GH-IGF-SST system in the development and progression of HCC, and describes the therapeutic perspectives, based on the targeting of GH-IGF-SST system, which have been hypothesised and experimented in HCC.
Collapse
Affiliation(s)
- Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | | | - Federica Cariati
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Francesco Izzo
- National Cancer Institute G Pascale Foundation, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università Federico II di Napoli, Via Sergio Pansini, 5, Naples 80131, Italy
| |
Collapse
|
10
|
Weigel B, Malempati S, Reid JM, Voss SD, Cho SY, Chen HX, Krailo M, Villaluna D, Adamson PC, Blaney SM. Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children's Oncology Group. Pediatr Blood Cancer 2014; 61:452-6. [PMID: 23956055 PMCID: PMC4511811 DOI: 10.1002/pbc.24605] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE This phase 2 study was designed to assess the efficacy of single agent cixutumumab (IMC-A12) and gain further information about associated toxicities and pharmacodynamics in children, adolescents, and young adults with recurrent or refractory solid tumors. PATIENTS AND METHODS Patients with relapsed or refractory solid tumors were treated with 9 mg/kg of cixutumumab as a 1-hour IV infusion once weekly. Strata included: osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, neuroblastoma (evaluable disease), neuroblastoma (measurable disease), Wilms tumor, adrenocortical carcinoma, synovial sarcoma, hepatoblastoma, and retinoblastoma. Correlative studies in consenting patients included an assessment of c-peptide, IGFBP-3, IGF-1, IGF-2, hGH, and insulin in consenting patients. RESULTS One hundred sixteen patients with 114 eligible having a median age of 12 years (range, 2-30) were enrolled. Five patients achieved a partial response: 4/20 with neuroblastoma (evaluable only) and 1/20 with rhabdomyosarcoma. Fourteen patients had stable disease for a median of 10 cycles. Hematologic and non-hematologic toxicities were generally mild and infrequent. Serum IGF-1 and IGFBP-3 increased in response to therapy with cixutumumab. CONCLUSION Cixutumumab is well tolerated in children with refractory solid tumors. Limited objective single-agent activity of cixutumumab was observed; however, prolonged stable disease was observed in 15% of patients. Ongoing studies are evaluating the toxicity and benefit of cixutumumab in combination with other agents that inhibit the IGF pathway.
Collapse
Affiliation(s)
| | - Suman Malempati
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | | | - Stephan D. Voss
- Children's Hospital-Boston and Dana Farber Cancer Institute, Boston, MA
| | | | | | - Mark Krailo
- Department of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA
| | | | | | - Susan M. Blaney
- Texas Children's Cancer Center/Baylor College of Medicine, Houston, TX
| |
Collapse
|
11
|
The insulin and igf-I pathway in endocrine glands carcinogenesis. JOURNAL OF ONCOLOGY 2012; 2012:635614. [PMID: 22927847 PMCID: PMC3423951 DOI: 10.1155/2012/635614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/20/2012] [Indexed: 12/26/2022]
Abstract
Endocrine cancers are a heterogeneous group of diseases that may arise from endocrine cells in any gland of the endocrine system. These malignancies may show an aggressive behavior and resistance to the common anticancer therapies. The etiopathogenesis of these tumors remains mostly unknown. The normal embryological development and differentiation of several endocrine glands are regulated by specific pituitary tropins, which, in adult life, control the function and trophism of the endocrine gland. Pituitary tropins act in concert with peptide growth factors, including the insulin-like growth factors (IGFs), which are considered key regulators of cell growth, proliferation, and apoptosis. While pituitary TSH is regarded as tumor-promoting factor for metastatic thyroid cancer, the role of other pituitary hormones in endocrine cancers is uncertain. However, multiple molecular abnormalities of the IGF system frequently occur in endocrine cancers and may have a role in tumorigenesis as well as in tumor progression and resistance to therapies. Herein, we will review studies indicating a role of IGF system dysregulation in endocrine cancers and will discuss the possible implications of these findings for tumor prevention and treatment, with a major focus on cancers from the thyroid, adrenal, and ovary, which are the most extensively studied.
Collapse
|
12
|
Malempati S, Weigel B, Ingle AM, Ahern CH, Carroll JM, Roberts CT, Reid JM, Schmechel S, Voss SD, Cho SY, Chen HX, Krailo MD, Adamson PC, Blaney SM. Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 2012; 30:256-62. [PMID: 22184397 PMCID: PMC3269952 DOI: 10.1200/jco.2011.37.4355] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/12/2011] [Indexed: 12/16/2022] Open
Abstract
PURPOSE A phase I/II study of cixutumumab (IMC-A12) in children with refractory solid tumors was conducted. This study was designed to assess the toxicities, pharmacokinetics, and pharmacodynamics of cixutumumab in children to determine a recommended phase II dose and to assess antitumor activity in Ewing sarcoma (ES). PATIENTS AND METHODS Pediatric patients with relapsed or refractory solid tumors were treated with cixutumumab as a 1-hour intravenous infusion once per week. Two dose levels-6 and 9 mg/kg-were evaluated using a standard three-plus-three cohort design. Patients with refractory ES were treated in an expanded phase II cohort at each dose level. RESULTS Forty-seven eligible patients with a median age of 15 years (range, 4 to 28 years) were enrolled. Twelve patients were treated in the dose-finding phase. Hematologic and nonhematologic toxicities were generally mild and infrequent. Dose-limiting toxicities included grade 4 thrombocytopenia at 6 mg/kg and grade 3 dehydration at 9 mg/kg. Mean trough concentration (± standard deviation) at 9 mg/kg was 106 ± 57 μg/mL, which exceeded the effective trough concentration of 60 μg/mL observed in xenograft models. Three patients with ES had confirmed partial responses: one of 10 at 6 mg/kg and two of 20 at 9 mg/kg. Serum insulin-like growth factor I (IGF-I) levels consistently increased after one dose of cixutumumab. Tumor IGF-I receptor expression by immunohistochemistry did not correlate with response in patients with ES. CONCLUSION Cixutumumab is well tolerated in children with refractory solid tumors. The recommended phase II dose is 9 mg/kg. Limited single-agent activity of cixutumumab was seen in ES.
Collapse
Affiliation(s)
- Suman Malempati
- Department of Pediatrics, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, CDRC-P, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yang J, Ylipää A, Sun Y, Zheng H, Chen K, Nykter M, Trent J, Ratner N, Lev DC, Zhang W. Genomic and molecular characterization of malignant peripheral nerve sheath tumor identifies the IGF1R pathway as a primary target for treatment. Clin Cancer Res 2011; 17:7563-73. [PMID: 22042973 DOI: 10.1158/1078-0432.ccr-11-1707] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumor (MPNST) is a rare sarcoma that lacks effective therapeutic strategies. We gain insight into the most recurrent genetically altered pathways with the purpose of scanning possible therapeutic targets. EXPERIMENTAL DESIGN We conducted a microarray-based comparative genomic hybridization profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center and 26 patients from Tianjin Cancer Hospital. Immunohistochemistry (IHC) and cell biology detection and validation were carried out on human MPNST tissues and cell lines. RESULTS Genomic characterization of 51 MPNST tissue samples identified several frequently amplified regions harboring 2,599 genes and regions of deletion including 4,901 genes. At the pathway level, we identified a significant enrichment of copy number-altering events in the insulin-like growth factor 1 receptor (IGF1R) pathway, including frequent amplifications of the IGF1R gene itself. To validate the IGF1R pathway as a potential target in MPNSTs, we first confirmed that high IGF1R protein correlated with worse tumor-free survival in an independent set of samples using IHC. Two MPNST cell lines (ST88-14 and STS26T) were used to determine the effect of attenuating IGF1R. Inhibition of IGF1R in ST88-14 cells using siRNAs or an IGF1R inhibitor, MK-0646, led to significant decreases in cell proliferation, invasion, and migration accompanied by attenuation of the PI3K/AKT and mitogen-activated protein kinase pathways. CONCLUSION These integrated genomic and molecular studies provide evidence that the IGF1R pathway is a potential therapeutic target for patients with MPNST.
Collapse
Affiliation(s)
- Jilong Yang
- Departments of Bone and Soft Tissue Tumor, Pathology, and Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol 2011; 344:1-24. [PMID: 21782884 DOI: 10.1016/j.mce.2011.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417, NVP-AEW541, NVP-ADW742, AG1024, potent quinolinyl-derived imidazo (1,5-a)pyrazine PQIP, picropodophyllin PPP, nordihydroguaiaretic acid Insm-18/NDGA). And the other end point is to yield an overview on the recent progress about usage of this receptor as a novel anticancer agent of targeted therapies in treatment of prostate carcinoma.
Collapse
Affiliation(s)
- Emine Elif Ozkan
- OSM Middle East Health Center, Department of Radiation Oncology, Sanliurfa 63000, Turkey.
| |
Collapse
|
15
|
Hasskarl J, Kaufmann M, Schmid HA. Somatostatin receptors in non-neuroendocrine malignancies: the potential role of somatostatin analogs in solid tumors. Future Oncol 2011; 7:895-913. [PMID: 21732759 DOI: 10.2217/fon.11.66] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Somatostatin receptors (sstrs) are G-protein-coupled receptors that mediate various physiological effects when activated by the neuropeptide somatostatin or its synthetic analogs. In addition to the well-documented antisecretory effects of sstr2-preferential somatostatin analogs octreotide and lanreotide, ligand binding to sstr initiates an inhibitory action on tumor growth. This effect may result from both indirect actions (suppression of growth factors and growth-promoting hormones [e.g., GH/IGF-1 axis] and inhibition of angiogenesis) and direct actions (activation of antigrowth activities [e.g., apoptosis]). As solid tumor cells express multiple sstrs, there is a rationale to evaluate the potential antitumor effects of pasireotide (SOM230), a multireceptor-targeted somatostatin analog with high binding affinity for sstr1–3 and sstr5. Pasireotide reduces systemic IGF-1 levels more potently than currently available somatostatin analogs and has been well tolerated in clinical trials.
Collapse
Affiliation(s)
| | - Martina Kaufmann
- Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| | - Herbert A Schmid
- Novartis Pharma AG, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
16
|
Wagner L. Camptothecin-based regimens for treatment of ewing sarcoma: past studies and future directions. Sarcoma 2011; 2011:957957. [PMID: 21512587 PMCID: PMC3075817 DOI: 10.1155/2011/957957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/17/2011] [Indexed: 01/01/2023] Open
Abstract
New therapies are needed to improve survival for patients with Ewing sarcoma. Over the past decade, camptothecin agents such as topotecan and irinotecan have demonstrated activity against Ewing sarcoma, especially in combination with alkylating agents. Previous studies have shown camptothecin-based combinations to be tolerable outpatient strategies that are attractive for salvage therapy. This paper highlights important issues related to drug dosing, schedule of administration, pharmacokinetics, toxicity, and activity of commonly used camptothecin-based regimens. Also discussed are strategies for incorporating these regimens into therapy for newly diagnosed patients, including several potential possibilities for combination with targeted agents.
Collapse
Affiliation(s)
- Lars Wagner
- Division of Pediatric Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, MLC 7015, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Cunha LL, Ferreira RC, Marcello MA, Vassallo J, Ward LS. Clinical and pathological implications of concurrent autoimmune thyroid disorders and papillary thyroid cancer. J Thyroid Res 2011; 2011:387062. [PMID: 21403889 PMCID: PMC3043285 DOI: 10.4061/2011/387062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 10/26/2010] [Accepted: 12/16/2010] [Indexed: 01/13/2023] Open
Abstract
Cooccurrences of chronic lymphocytic thyroiditis (CLT) and thyroid cancer (DTC) have been repeatedly reported. Both CLT and DTC, mainly papillary thyroid carcinoma (PTC), share some epidemiological and molecular features. In fact, thyroid lymphocytic inflammatory reaction has been observed in association with PTC at variable frequency, although the precise relationship between the two diseases is still debated. It also remains a matter of debate whether the association with a CLT or even an autoimmune disorder could influence the prognosis of PTC. A better understanding about clinical implications of autoimmunity in concurrent thyroid cancer could raise new insights of thyroid cancer immunotherapy. In addition, elucidating the molecular mechanisms involved in autoimmune disease and concurrent cancer allowed us to identify new therapeutic strategies against thyroid cancer. The objective of this article was to review recent literature on the association of these disorders and its potential significance.
Collapse
Affiliation(s)
- L L Cunha
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), 126 Tessalia Vieira de Camargo St., Cidade Universitária, Barão Geraldo, Campinas, 13083-970 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
Ye L, Santarpia L, Gagel RF. The evolving field of tyrosine kinase inhibitors in the treatment of endocrine tumors. Endocr Rev 2010; 31:578-99. [PMID: 20605972 DOI: 10.1210/er.2009-0031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of tyrosine kinase receptors (TKRs) and their related pathways has been associated with development of endocrine tumors. Compounds that target and inactivate the kinase function of these receptors, tyrosine kinase inhibitors (TKIs), are now being applied to the treatment of endocrine tumors. Recent clinical trials of TKIs in patients with advanced thyroid cancer, islet cell carcinoma, and carcinoid have shown promising preliminary results. Significant reductions in tumor size have been described in medullary and papillary thyroid carcinoma, although no complete responses have been reported. Case reports have described significant tumor volume reductions of malignant pheochromocytomas and paragangliomas. In addition, these compounds showed an initial tumoricidal or apoptotic response followed by long-term static effects on tumor growth. Despite the promising preliminary results, this class of therapeutic agents has a broad spectrum of adverse effects, mediated by inhibition of kinase activities in normal tissues. These adverse effects will have to be balanced with their benefit in clinical use. New strategies will have to be applied in clinical research to achieve optimal benefits. In this review, we will address the genetic alterations of TKRs, the rationale for utilizing TKIs for endocrine tumors, and current information on tumor and patient responses to specific TKIs. We will also discuss the adverse effects related to TKI treatment and the mechanisms involved. Finally, we will summarize the challenges associated with use of this class of compounds and potential solutions.
Collapse
Affiliation(s)
- Lei Ye
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | |
Collapse
|
19
|
Advances in cellular therapy for the treatment of thyroid cancer. JOURNAL OF ONCOLOGY 2010; 2010:179491. [PMID: 20671939 PMCID: PMC2910457 DOI: 10.1155/2010/179491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 05/06/2010] [Indexed: 12/21/2022]
Abstract
Up to now, there are no curative therapies available for the subset of metastasized undifferentiated/anaplastic thyroid carcinomas. This review describes the possible use of immunocompetent cells which may help to restore the antitumor immune recognition for treating an existing tumor or preventing its recurrence. The most prominent experimental strategy is the use of dendritic cells (DCs) which are highly potent in presenting tumor antigens. Activated DCs subsequently migrate to draining lymph nodes where they present antigens to naïve lymphocytes and induce cytotoxic T cells (CTL). Alternatively to DC therapy, adoptive cell transfer may be performed by either using natural killer cells or ex vivo maturated CTLs. Within this review article we will focus on recent advances in the understanding of anti-tumor immune responses, for example, in thyroid carcinomas including the advances which have been made for the identification of potential tumor antigens in thyroid malignancies.
Collapse
|
20
|
Abstract
The IGF pathway plays a major role in cancer cell proliferation, survival and resistance to antineoplastic therapies in many human malignancies. As such, interference with this pathway is the target of many investigational pharmacologic agents. Cixutumumab, a monoclonal antibody to IGF-1R, utilizes this concept. In this review, we summarize preclinical, pharmacologic and early clinical data regarding this agent and discuss the impact this drug might have on the future treatment of human cancers.
Collapse
Affiliation(s)
- Kevin P McKian
- Mayo Clinic College of Medicine, Division of Medical Oncology, 200 First St. SW Rochester, MN 55905, USA
| | | |
Collapse
|
21
|
Nucera C, Nehs MA, Mekel M, Zhang X, Hodin R, Lawler J, Nose V, Parangi S. A novel orthotopic mouse model of human anaplastic thyroid carcinoma. Thyroid 2009; 19:1077-84. [PMID: 19772429 PMCID: PMC2833178 DOI: 10.1089/thy.2009.0055] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Orthotopic mouse models of human cancer represent an important in vivo tool for drug testing and validation. Most of the human thyroid carcinoma cell lines used in orthotopic or subcutaneous models are likely of melanoma and colon cancer. Here, we report and characterize a novel orthotopic model of human thyroid carcinoma using a unique thyroid cancer cell line. METHODS We used the cell line 8505c, originated from a thyroid tumor histologically characterized by anaplastic carcinoma cell features. We injected 8505c cells engineered using a green fluorescent protein-positive lentiviral vector orthotopically into the thyroid of severe combined immunodeficient mice. RESULTS Orthotopic implantation with the 8505c cells produced thyroid tumors after 5 weeks, showing large neck masses, with histopathologic features of a high-grade neoplasm (anaplasia, necrosis, high mitotic and proliferative indexes, p53 positivity, extrathyroidal invasion, lymph node and distant metastases) and immunoprofile of follicular thyroid cell origin with positivity for thyroid transcription factor-1 and PAX8, and for cytokeratins. CONCLUSIONS Here we describe a novel orthotopic thyroid carcinoma model using 8505c cells. This model can prove to be a reliable and useful tool to investigate in vivo biological mechanisms determining thyroid cancer aggressiveness, and to test novel therapeutics for the treatment of refractory or advanced thyroid cancers.
Collapse
Affiliation(s)
- Carmelo Nucera
- Thyroid Cancer Research Laboratory, Unit of Endocrine Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew A. Nehs
- Thyroid Cancer Research Laboratory, Unit of Endocrine Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michal Mekel
- Thyroid Cancer Research Laboratory, Unit of Endocrine Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xuefeng Zhang
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Richard Hodin
- Thyroid Cancer Research Laboratory, Unit of Endocrine Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack Lawler
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vânia Nose
- Endocrine Pathology, Department of Pathology, Brigham and Women's Hospital; Harvard Medical School, Boston, Massachusetts
| | - Sareh Parangi
- Thyroid Cancer Research Laboratory, Unit of Endocrine Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Isakoff MS, Marina N. Anti-insulin growth factor receptor therapy in Ewing sarcoma. F1000 MEDICINE REPORTS 2009; 1. [PMID: 20948718 PMCID: PMC2948310 DOI: 10.3410/m1-62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The insulin-like growth factor (IGF) signal transduction pathway appears to play a key role in the development and proliferation of the Ewing sarcoma family of tumors. Integration of anti-IGF-1 receptor therapy into the standard treatment for these patients is a novel approach that will likely be incorporated into future treatment to determine whether such agents will improve the outcome for patients with this malignancy.
Collapse
Affiliation(s)
- Michael S Isakoff
- Division of Hematology-Oncology, Connecticut Children's Medical Center282 Washington Street, Hartford, CT 06092USA
| | - Neyssa Marina
- Division of Hematology-Oncology, Stanford University and Lucile Packard Children's HospitalMail Code 5798, 1000 Welch Road, Suite 300, Palo Alto, CA 94304-1812USA
| |
Collapse
|
23
|
Abstract
The insulin-like growth factor-I receptor (IGF-IR) mediates the biological actions of both IGF-I and IGF-II. The IGF-IR is expressed in most transformed cells, where it displays potent antiapoptotic, cell-survival, and transforming activities. IGF-IR expression is a fundamental prerequisite for the acquisition of a malignant phenotype, as suggested by the finding that IGF-IR-null cells (derived from IGF-IR knock-out embryos) are unable to undergo transformation when exposed to cellular or viral oncogenes. This review article will focus on the underlying molecular mechanisms that are responsible for the normal, physiological control of IGF-IR gene expression, as well as the cellular pathways that underlie its aberrant expression in cancer. Examples from the clinics will be presented, including a description of how the IGF system is involved in breast, prostate, pediatric, and gynecological cancers. Finally, current attempts to target the IGF-IR as a therapeutic approach will be described.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
24
|
Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11:1165-90. [PMID: 19014342 DOI: 10.1089/ars.2008.2161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor (IGF)-induced signaling networks are vital in modulating multiple fundamental cellular processes, such as cell growth, survival, proliferation, and differentiation. Aberrations in the generation or action of IGF have been suggested to play an important role in several pathological conditions, including metabolic disorders, neurodegenerative diseases, and multiple types of cancer. Yet the exact mechanism involved in the pathogenesis of these diseases by IGFs remains obscure. Redox pathways involving reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenetic mechanism of various diseases by modifying key signaling pathways involved in cell growth, proliferation, survival, and apoptosis. Furthermore, ROS and RNS have been demonstrated to alter IGF production and/or action, and vice versa, and thereby have the ability to modulate cellular functions, leading to clinical manifestations of diseases. In this review, we provide an overview on the IGF system and discuss the potential role of IGF-1/IGF-1 receptor and redox pathways in the pathophysiology of several diseases.
Collapse
Affiliation(s)
- George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
25
|
Phosphorylated Insulin Like Growth Factor-I Receptor Expression and Its Clinico-Pathological Significance in Histologic Subtypes of Human Thyroid Cancer. Exp Biol Med (Maywood) 2009; 234:372-86. [DOI: 10.3181/0809-rm-284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Overexpression of insulin-like growth factor-I receptor (IGF-IR) is seen in a multitude of human thyroid cancers and correlates with poor prognosis. However, recent studies suggest that low phospho-IGF-IR (pIGF-IR) expression rather than its overexpression may be an indicator of poorly differentiated disease. No previous study has evaluated the expression of pIGF-IR to determine if activation or loss of expression of this receptor is associated with thyroid tumor progression. Accordingly, a quantitative immunohistochemical (IHC) method was used to evaluate the clinico-pathological significance of pIGF-IR expression in archival samples of human thyroid carcinomas. Quantitative analysis of pIGF-IR levels revealed a significant difference in the median index of pIGF-IR between different histological subtypes of thyroid cancer ( P < 0.001). Specifically, the median pIGF-IR index of differentiated thyroid cancers was significantly higher than the median index of other poorly differentiated thyroid cancer ( P < 0.001). This was further confirmed in individual tumor sections of thyroid carcinoma where anaplastic and differentiated components co-existed. No significant difference was noted in the pIGF-IR index of tumors grouped by size or stage but a trend towards lower mean pIGF-IR index was noted in older patients. Our data indicates that pIGF-IR is upregulated in a majority of follicular thyroid carcinomas, suggesting it may be a potential target for therapy for patients with this disease. In addition, since low pIGF-IR expression was found to correlate with aggressive human thyroid carcinoma, it also suggests that IGF-IR may not be needed for progression of anaplastic thyroid carcinoma possibly because other cell signaling pathways are activated, obviating the need for IGF-IR signaling. However, more mechanistic studies would be necessary to substantiate the possibility that pIGF-IR may be important for differentiation of thyroid tissues and is lost with disease progression.
Collapse
|
26
|
Castellone MD, Carlomagno F, Salvatore G, Santoro M. Receptor tyrosine kinase inhibitors in thyroid cancer. Best Pract Res Clin Endocrinol Metab 2008; 22:1023-38. [PMID: 19041829 DOI: 10.1016/j.beem.2008.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thyroid cancer is frequently associated with the oncogenic conversion of receptor tyrosine kinases (RTKs) or their downstream signalling molecules. Hence, there is a strong biological rationale for assessing the efficacy of RTK blockade to treat patients who are resistant to or not candidates for treatment with radioactive iodine. The first results of clinical trials based on the use of RTK inhibitors in thyroid cancer patients have recently been published. Here we discuss targeting of specific RTKs as a potential therapeutic strategy for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- Istituto di Endocrinologia ed Oncologia Sperimentale CNR, 80131 Naples, Italy c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita' Federico II, 80131 Naples, Italy
| | | | | | | |
Collapse
|
27
|
Moser C, Schachtschneider P, Lang SA, Gaumann A, Mori A, Zimmermann J, Schlitt HJ, Geissler EK, Stoeltzing O. Inhibition of insulin-like growth factor-I receptor (IGF-IR) using NVP-AEW541, a small molecule kinase inhibitor, reduces orthotopic pancreatic cancer growth and angiogenesis. Eur J Cancer 2008; 44:1577-86. [PMID: 18445520 DOI: 10.1016/j.ejca.2008.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 03/28/2008] [Accepted: 04/02/2008] [Indexed: 01/19/2023]
Abstract
The insulin-like growth factor-I receptor (IGF-IR) is frequently overexpressed and constitutively activated in pancreatic cancer, thus representing a promising target for therapy. We investigated the impact of a novel inhibitor of IGF-IR (NVP-AEW541) on signalling and growth of pancreatic cancer. Human pancreatic cancer cells and endothelial cells were employed, and effects of NVP-AEW541 on signalling pathways investigated by Western blotting. NVP-AEW541 diminished the activation of IGF-IR, IRS-1, Erk, Akt and STAT3. Furthermore, NVP-AEW541 reduced cancer cell proliferation and abrogated migratory effects of IGF-I. NVP-AEW541 elicited a direct effect on endothelial cells in terms of reducing endothelial cell migration. In vivo, treatment of mice with NVP-AEW541 significantly reduced orthotopic pancreatic tumour growth, vascularisation, and VEGF expression. Interestingly, NVP-AEW541 lowered serum levels of IGF-binding-protein-3 (IGFBP-3). In conclusion, the IGF-IR inhibitor NVP-AEW541 effectively disrupts IGF-I signalling and reduces pancreatic tumour growth. Hence, blocking IGF-IR could prove valuable for targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Christian Moser
- Departments of Surgery and Surgical Oncology, University of Regensburg Medical Center, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Rowinsky EK, Youssoufian H, Tonra JR, Solomon P, Burtrum D, Ludwig DL. IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clin Cancer Res 2007; 13:5549s-5555s. [PMID: 17875788 DOI: 10.1158/1078-0432.ccr-07-1109] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted monoclonal antibody therapy is an important strategy in cancer therapeutics. Among the most promising characteristics of therapeutic targets are those that modulate the growth and survival of malignant neoplasms and their sensitivity to anticancer therapies. The insulin-like growth factor-I receptor (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and has been implicated as a principal cause of heightened proliferative and survival signaling. IGF-IR has also been shown to confer resistance to cytotoxic, hormonal, and targeted therapies, suggesting that therapeutics targeting IGF-IR may be effective against a broad range of malignancies. IMC-A12 (ImClone Systems Incorporated), a fully human monoclonal IgG1 antibody that binds with high affinity to the IGF-IR, inhibits ligand-dependent receptor activation and downstream signaling. IMC-A12 also mediates robust internalization and degradation of the IGF-IR. In human tumor xenograft models, IGF-IR blockade by IMC-A12 results in rapid and profound growth inhibition of cancers of the breast, lung, colon, and pancreas, and many other neoplasms. Although promising single-agent activity has been observed, the most impressive effects of targeting the IGF-IR with IMC-A12 have been noted when this agent was combined with cytotoxic agents or other targeted therapeutics. The results with IMC-A12 to date suggest that it may be an effective therapeutic in a diverse array of oncologic indications.
Collapse
Affiliation(s)
- Eric K Rowinsky
- Department of Clinical Research and Regulatory Affairs, ImClone Systems Incorporated, Branchburg, New Jersey 08876, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Stoeltzing O, Liu W, Fan F, Wagner C, Stengel K, Somcio RJ, Reinmuth N, Parikh AA, Hicklin DJ, Ellis LM. Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system. Cancer Lett 2007; 258:291-300. [PMID: 17950526 DOI: 10.1016/j.canlet.2007.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 09/15/2007] [Accepted: 09/17/2007] [Indexed: 01/18/2023]
Abstract
Both the insulin-like growth factor-I receptor (IGF-IR) and cyclooxygenase-2 (COX-2) are frequently overexpressed in pancreatic cancer. We hypothesized that IGF-IR is directly involved in induction of COX-2 and sought to investigate signaling pathways mediating this effect. Pancreatic cancer cells (L3.6pl) were stably transfected with a dominant-negative receptor (IGF-IR DN) construct or empty vector (pcDNA). Cells were stimulated with IGF-I to determine activated signaling intermediates and induction of COX-2. Signaling pathways mediating COX-2 induction were identified using signaling inhibitors. IGF-I up-regulated COX-2 selectively via the MAPK/(Erk-1/2) pathway. In addition, IGF-IR DN cells showed a marked decrease in constitutive COX-2 and a blunted response to IGF-I. Similarly, treatment with an anti-IGF-IR antibody effectively inhibited IGF-IR and MAPK/Erk activation and decreased COX-2 in parental cells. In conclusion, activation of IGF-IR mediates COX-2 expression in human pancreatic cancer cells.
Collapse
Affiliation(s)
- Oliver Stoeltzing
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230-1402, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|