1
|
Cucurbitacin E Induces G(2)/M Phase Arrest through STAT3/p53/p21 Signaling and Provokes Apoptosis via Fas/CD95 and Mitochondria-Dependent Pathways in Human Bladder Cancer T24 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:952762. [PMID: 22272214 PMCID: PMC3261502 DOI: 10.1155/2012/952762] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/25/2011] [Accepted: 10/02/2011] [Indexed: 11/28/2022]
Abstract
Cucurbitacin E, a tetracyclic triterpenes compound extracted from cucurbitaceous plants, has been shown to exhibit anticancer and anti-inflammatory activities. The purpose of this study was to elucidate whether cucurbitacin E promotes cell cycle arrest and induces apoptosis in T24 cells and further to explore the underlying molecular mechanisms. The effects of cucurbitacin E on T24 cell's growth and accompanied morphological changes were examined by MTT assay and a phase-contrast microscope. DNA content, mitochondrial membrane potential (ΔΨm) and annexin V/PI staining were determined by flow cytometry. The protein levels were measured by Western blotting. Our results demonstrated that cucurbitacin E-induced G2/M arrest was associated with a marked increase in the levels of p53, p21 and a decrease in phospho-signal transducer and activator of transcription 3 (STAT3), cyclin-dependent kinase 1 (CDK1) and cyclin B. Cucurbitacin E-triggered apoptosis was accompanied with up-regulation of Fas/CD95, truncated BID (t-BID) and a loss of ΔΨm, resulting in the releases of cytochrome c, apoptotic protease activating factor 1 (Apaf-1) and apoptosis-inducing factor (AIF), and sequential activation of caspase-8, caspase-9, and caspase-3. Our findings provided the first evidence that STAT3/p53/p21 signaling, Fas/CD95 and mitochondria-dependent pathways play critical roles in cucurbitacin E-induced G2/M phase arrest and apoptosis of T24 cells.
Collapse
|
2
|
Su JC, Lin KL, Chien CM, Tseng CH, Chen YL, Chang LS, Lin SR. Furano-1,2-naphthoquinone inhibits EGFR signaling associated with G2/M cell cycle arrest and apoptosis in A549 cells. Cell Biochem Funct 2011; 28:695-705. [PMID: 21104938 DOI: 10.1002/cbf.1710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Furano-1,2-naphthoquinone (FNQ), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. FNQ exerted anti-proliferative activity with the G(2)/M cell cycle arrest and apoptosis in A549 cells. FNQ-induced G(2)/M arrest was correlated with a marked decrease in the expression levels of cyclin A and cyclin B, and their activating partner cyclin-dependent kinases (Cdk) 1 and 2 with concomitant induction of p53, p21, and p27. FNQ-induced apoptosis was accompanied with Bax up-regulation and the down-regulation of Bcl-2, X-linked inhibitor of apoptosis (XIAP), and survivin, resulting in cytochrome c release and sequential activation of caspase-9 and caspase-3. Western blot analysis revealed that FNQ suppressed EGFR phosphorylation and JAK2, STAT3, and STAT5 activation, but increased in activation of p38 MAPK and c-Jun NH2-terminal kinase (JNK) stress signal. The combined treatment of FNQ with AG1478 (a specific EGFR inhibitor) significantly enhanced the G(2)/M arrest and apoptosis, and also led to up-regulation in Bax, p53, p21, p27, release of mitochondrial cytochrome c, and down-regulation of Bcl-2, XIAP, survivin, cyclin A, cyclin B, Cdk1, and Cdk2 in A549 cells. These findings suggest that FNQ-mediated cytotoxicity of A549 cell related with the G(2)/M cell cycle arrest and apoptosis via inactivation of EGFR-mediated signaling pathway.
Collapse
Affiliation(s)
- J C Su
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
3
|
Su JC, Lin KL, Chien CM, Tseng CH, Chen YL, Chang LS, Lin SR. Naphtho[1,2-b]furan-4,5-dione inactivates EGFR and PI3K/Akt signaling pathways in human lung adenocarcinoma A549 cells. Life Sci 2009; 86:207-13. [PMID: 20036260 DOI: 10.1016/j.lfs.2009.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/04/2009] [Indexed: 12/31/2022]
Abstract
AIMS Naphtho[1,2-b]furan-4,5-dione (NFD), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. This study was performed to elucidate whether EGFR and PI3K signaling pathways are involved in NFD-induced apoptosis of human lung adenocarcinoma A549 cells. MAIN METHODS The effect of NFD on cell viability and apoptosis was measured by the MTT assay and flow cytometry. The phosphorylation levels of EGFR and its regulatory molecules by NFD treatment were studied by immunoblots. KEY FINDINGS Immunoblot showed that NFD inhibited EGFR phosphorylation and the activation of PI3K/Akt, downstream molecules of EGFR pathway, in A549 cells. The levels of downstream targets of Akt, including phospho-glycogen synthase kinase-3beta (p-GSK-3beta), GSK-3beta, forkhead transcription factor (FKHR), and cyclin D1, were also reduced after NFD treatment. Moreover, inactivation of nuclear factor-kappaB (NFkappaB), modulation of IkappaKalpha/beta and IkappaBalpha, up-regulation of Bad and Bax, and down-regulation of anti-apoptotic proteins including phospho-Bad, Bcl-2, survivin, and XIAP were also found in NFD-treated cells. In addition, NFD treatment disrupted mitochondrial membrane potential (DeltaPsim) and resulted in release of mitochondrial cytochrome c and activation of both caspases-9 and caspase-3. SIGNIFICANCE These findings indicate that EGFR and PI3K/Akt signaling pathways play important roles in NFD-induced apoptosis of A549 cells.
Collapse
Affiliation(s)
- Jung-Chen Su
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
4
|
Novel indoloquinoline derivative, IQDMA, induces G2/M phase arrest and apoptosis in A549 cells through JNK/p38 MAPK signaling activation. Life Sci 2009; 85:505-16. [DOI: 10.1016/j.lfs.2009.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022]
|
5
|
Fan CD, Zhao BX, Wei F, Zhang GH, Dong WL, Miao JY. Synthesis and discovery of autophagy inducers for A549 and H460 lung cancer cells, novel 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1H-pyrazole-5-carbohydrazide derivatives. Bioorg Med Chem Lett 2008; 18:3860-4. [PMID: 18595694 DOI: 10.1016/j.bmcl.2008.06.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/20/2008] [Accepted: 06/17/2008] [Indexed: 01/07/2023]
Abstract
A series of novel 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1H-pyrazole-5-carbohydrazide derivatives were synthesized, and the effects of the compounds on A549 cell growth were investigated. The results showed that all of the 1-(2'-hydroxy-3'-aroxypropyl)-3-aryl-1H-pyrazole-5-carbohydrazide derivatives 2 could inhibit the growth of A549 cells in dosage- and time-dependent manners. Typically, compound 2a and 2d induced A549 cells to autophagy but did not cause apoptosis and necrosis in the cells, and 2d had the most autophagy inducing effect in H460 cells. More importantly, 2a and 2d did not inhibit the growth of HUVEC cells.
Collapse
Affiliation(s)
- Chuan-Dong Fan
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|
6
|
Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS. Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 2008; 35:995-1001. [PMID: 18430063 DOI: 10.1111/j.1440-1681.2008.04935.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aucubin, an iridoid glycoside isolated from the leaves of Aucuba japonica, inhibits human non-small cell lung cancer A549 cells by blocking cell cycle progression in the G(0)/G(1) phase and inducing apoptosis. An ELISA showed that the G(0)/G(1) phase arrest is due to p53-mediated induction of p21. Enhancement of Fas and its two ligands, membrane-bound and soluble Fas ligand, may be responsible for the apoptotic effect induced by aucubin. The present study shows, for the first time, that the induction of p53 and activity of the Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of aucubin in A549 cells.
Collapse
Affiliation(s)
- Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospita, Kaohsiung, Taiwan, China
| | | | | | | | | |
Collapse
|
7
|
Xia Y, Dong ZW, Zhao BX, Ge X, Meng N, Shin DS, Miao JY. Synthesis and structure–activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg Med Chem 2007; 15:6893-9. [PMID: 17804244 DOI: 10.1016/j.bmc.2007.08.021] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 08/09/2007] [Indexed: 12/19/2022]
Abstract
A series of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives were synthesized, and the effects of all the compounds on A549 cell growth were investigated. The results showed that all the nine compounds had inhibitory effects on the growth of A549 cells and induced the cell apoptosis. The study on structure-activity relationships and prediction of lipophilicities of compounds showed that compounds with logP values in the range of 3.12-4.94 had more inhibitory effects on the growth of A549 cells.
Collapse
Affiliation(s)
- Yong Xia
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS. Antiproliferative activity of paeoniflorin is through cell cycle arrest and the Fas/Fas ligand-mediated apoptotic pathway in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol 2007; 35:141-7. [PMID: 17941899 DOI: 10.1111/j.1440-1681.2007.04795.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Paeoniflorin (PF), isolated from the paeony root, is reported to have immunoregulatory, neuromuscular blocking, anticonvulsant, antihyperglycaemic and antihypotensive effects. 2. The present study investigated the antiproliferative activity of PF. The results showed that PF inhibited the proliferation of A549 by blocking cell cycle progression in the G(0)/G(1) phase and inducing apoptosis. 3. An ELISA showed that G(0)/G(1) phase arrest may be due to p53-independent induction of p21/wild-type p53-activated fragment 1 (WAF1). Increased protein expression of Fas/apoptosis-1 (APO-1) and its two ligands, membrane-bound Fas ligand and soluble Fas ligand, may be responsible for the PF-induced apoptosis. 4. This is the first study to show that the induction of p21/WAF1 and the activity of the Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of PF in A549 cells.
Collapse
Affiliation(s)
- Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Chen CY, Hsu YL, Chen YY, Hung JY, Huang MS, Kuo PL. Isokotomolide A, a new butanolide extracted from the leaves of Cinnamomum kotoense, arrests cell cycle progression and induces apoptosis through the induction of p53/p21 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Eur J Pharmacol 2007; 574:94-102. [PMID: 17707793 DOI: 10.1016/j.ejphar.2007.07.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/07/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
This study is the first to investigate isokotomolide A (IKA), a butanolide compound isolated from the leaves of Cinnamomum kotoense Kanehira & Sasaki (Lauraceaee), which exhibits an anti-proliferative activity in human non-small cell lung cancer A549 cells. The results show that IKA inhibits the proliferation of A549 by blocking cell cycle progression in the G0/G1 phase and inducing apoptosis. Blockade of cell cycle was associated with increased p21/WAF1 levels and reduced amounts of cyclin D1, cyclin E, Cdk2, Cdk4, and Cdk6 in a p53-mediated manner. IKA treatment also increased p53 phosphorylation (Ser15) and decreased the interaction of p53-MDM2. IKA treatment triggered the mitochondrial apoptotic pathway, indicated by changing Bax/Bcl-2 ratios, cytochrome c release and caspase-9 activation. In addition, pre-treatment of cells with caspase-9 inhibitor inhibited IKA-induced apoptosis, indicating that caspase-9 activation was involved in A549 cells' apoptosis induced by IKA. Our study reports here for the first time that the induction of p53/p21 and the initiation of the mitochondrial apoptotic system may participate in the anti-proliferative activity of IKA in human non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Basic Medical Science Education Center, Fooyin University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Hsu YL, Cho CY, Kuo PL, Huang YT, Lin CC. Plumbagin (5-Hydroxy-2-methyl-1,4-naphthoquinone) Induces Apoptosis and Cell Cycle Arrest in A549 Cells through p53 Accumulation via c-Jun NH2-Terminal Kinase-Mediated Phosphorylation at Serine 15 in Vitro and in Vivo. J Pharmacol Exp Ther 2006; 318:484-94. [PMID: 16632641 DOI: 10.1124/jpet.105.098863] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study first investigates the anticancer effect of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) in human nonsmall cell lung cancer cells, A549. Plumbagin has exhibited effective cell growth inhibition by inducing cancer cells to undergo G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased levels of p21 and reduced amounts of cyclinB1, Cdc2, and Cdc25C. Plumbagin treatment also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. Blockade of p53 activity by dominant-negative p53 transfection partially decreased plumbagin-induced apoptosis and G2/M arrest, suggesting it might be operated by p53-dependent and independent pathway. Plumbagin treatment triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in mitochondrial membrane potential loss, cytochrome c release, and caspase-9 activation. We also found that c-Jun NH2-terminal kinase (JNK) is a critical mediator in plumbagin-induced cell growth inhibition. Activation of JNK by plumbagin phosphorylated p53 at serine 15, resulting in increased stability of p53 by decreasing p53 and MDM2 interaction. SP600125 (anthra [1,9-cd]pyrazol-6(2H)-one-1,9-pyrazoloanthrone), a specific inhibitor of JNK, significantly decreased apoptosis by inhibiting the phosphorylation of p53 (serine 15) and subsequently increased the interaction of p53 and MDM2. SP6000125 also inhibited the phosphorylation of Bcl-2 (Ser70) induced by plumbagin. Further investigation revealed that plumbagin's inhibition of cell growth effect was also evident in a nude mice model. Taken together, these results suggest a critical role for JNK and p53 in plumbagin-induced G2/M arrest and apoptosis of human nonsmall cell lung cancer cells.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | | | | |
Collapse
|