1
|
Tateishi U, Daisaki H, Tsuchiya J, Kojima Y, Takino K, Shimada N, Yokoyama K. Image quality and quantification accuracy dependence on patient body mass in 89Zr PET/CT imaging. EJNMMI Phys 2021; 8:72. [PMID: 34718913 PMCID: PMC8557230 DOI: 10.1186/s40658-021-00420-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/14/2021] [Indexed: 11/15/2022] Open
Abstract
Background This study was conducted to clarify how patient body mass affects the image quality and quantification accuracy of images obtained using 89Zr PET/CT. 89Zr PET/CT images from time-of-flight (TOF) PET/CT and semiconductor (SC) PET/CT were obtained using three types (M, L, LL; corresponding to increasing patient body weight) of custom-made body phantoms designed similarly to the National Electrical Manufacturers Association (NEMA) IEC body phantom. The phantom data were analyzed visually and quantitatively to derive image quality metrics, namely detectability of the 10-mm-diameter hot sphere, percent contrast for the 10-mm-diameter hot sphere (QH,10 mm), percent background variability (N10mm), contrast-to-noise ratio (QH,10 mm/N10mm), and coefficient of variation of the background area (CVBG). Results Visual assessment revealed that all the 10-mm-diameter hot spheres of the three types of phantoms were identifiable on both SC and TOF PET/CT images. The N10mm and CVBG values were within the proposed reference levels, and decreased with acquisition duration for both PET/CT types. At 10-min acquisition, the QH,10 mm/N10mm of SC PET/CT was greater than the proposed reference level in all phantoms. However, the QH,10 mm/N10mm of TOF PET/CT was greater than the proposed reference level in M-type phantom alone. All the SUVBG values were within 1.00 ± 0.05 for both PET/CT types. Conclusions This study showed that the image quality and quantification accuracy depend on the patient’s body mass, suggesting that acquisition time on 89Zr PET/CT should be changed according to the patient’s body mass.
Collapse
Affiliation(s)
- Ukihide Tateishi
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiromitsu Daisaki
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Radiological Technology, Gunma Prefectural College of Health Sciences, Gunma, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Kojima
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Takino
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Shimada
- Department of Diagnostic Radiology, Cancer Institute Hospital, Tokyo, Japan
| | - Kota Yokoyama
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Sarcan ET, Silindir-Gunay M, Ozer AY, Hartman N. 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07928-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Christian PE, Williams SP, Burrell L, Castaneda P, Albiani J, Sandella N, Iagaru A, Hoffman JM, de Crespigny A, Bohorquez SS. Optimization of 89Zr PET Imaging for Improved Multisite Quantification and Lesion Detection Using an Anthropomorphic Phantom. J Nucl Med Technol 2020; 48:54-57. [PMID: 31604892 DOI: 10.2967/jnmt.119.230474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
Our objective was to harmonize multicenter 89Zr PET imaging for oncology trials and to evaluate lesion detection. Methods: Seven PET scanners were evaluated using a custom chest oncology phantom with 9 spheric lesions 7-20 mm in diameter. A 4:1 signal-to-background ratio simulated a patient dose of 92.5 MBq. Various image reconstructions were evaluated. Images were assessed for lesion detection, and recovery coefficients and background signal variance were measured. Results: Two scanners failed to provide acceptable images and data. Optimal reconstruction algorithms enabling adequate lesion detection and reliable quantification across the other 5 scanners were determined without compromising the data quality. On average, 95% of the 10-mm lesions were detected, and the 7-mm lesion was visualized by only 1 scanner. Background variance was 8.6%-16%. Conclusion: We established multicenter harmonization procedures for 89Zr PET imaging in oncology, optimizing small-lesion (≥10 mm) detectability and accurate quantification.
Collapse
Affiliation(s)
| | | | - Lance Burrell
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Paulo Castaneda
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Palo Alto, California; and
| | | | | | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Palo Alto, California; and
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | | | | |
Collapse
|
4
|
Radioimmunotherapy. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys 2016; 3:8. [PMID: 27271304 PMCID: PMC4894854 DOI: 10.1186/s40658-016-0144-5] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/31/2015] [Indexed: 01/09/2023] Open
Abstract
With the increased interest in new PET tracers, gene-targeted therapy, immunoPET, and theranostics, other radioisotopes will be increasingly used in clinical PET scanners, in addition to 18F. Some of the most interesting radioisotopes with prospective use in the new fields are not pure short-range β+ emitters but can be associated with gamma emissions in coincidence with the annihilation radiation (prompt gamma), gamma-gamma cascades, intense Bremsstrahlung radiation, high-energy positrons that may escape out of the patient skin, and high-energy gamma rays that result in some e+/e− pair production. The high level of sophistication in data correction and excellent quantitative accuracy that has been reached for 18F in recent years can be questioned by these effects. In this work, we review the physics and the scientific literature and evaluate the effect of these additional phenomena on the PET data for each of a series of radioisotopes: 11C, 13N, 15O, 18F, 64Cu, 68Ga, 76Br, 82Rb, 86Y, 89Zr, 90Y, and 124I. In particular, we discuss the present complications arising from the prompt gammas, and we review the scientific literature on prompt gamma correction. For some of the radioisotopes considered in this work, prompt gamma correction is definitely needed to assure acceptable image quality, and several approaches have been proposed in recent years. Bremsstrahlung photons and 176Lu background were also evaluated.
Collapse
Affiliation(s)
- Maurizio Conti
- Siemens Healthcare Molecular Imaging, Knoxville, TN, USA.
| | - Lars Eriksson
- Siemens Healthcare Molecular Imaging, Knoxville, TN, USA.,Department of Physics, University of Stockholm, Stockholm, Sweden.,Karolinska Institute, Stockholm, Sweden.,Scintillation Material Research Center, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med 2015; 56:1285-91. [PMID: 26135111 DOI: 10.2967/jnumed.115.156711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/23/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED This study aimed to investigate image quality for a comprehensive set of isotopes ((18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y) on 2 clinical scanners: a PET/CT scanner and a PET/MR scanner. METHODS Image quality and spatial resolution were tested according to NU 2-2007 of the National Electrical Manufacturers Association. An image-quality phantom was used to measure contrast recovery, residual bias in a cold area, and background variability. Reconstruction methods available on the 2 scanners were compared, including point-spread-function correction for both scanners and time of flight for the PET/CT scanner. Spatial resolution was measured using point sources and filtered backprojection reconstruction. RESULTS With the exception of (90)Y, small differences were seen in the hot-sphere contrast recovery of the different isotopes. Cold-sphere contrast recovery was similar across isotopes for all reconstructions, with an improvement seen with time of flight on the PET/CT scanner. The lower-statistic (90)Y scans yielded substantially lower contrast recovery than the other isotopes. When isotopes were compared, there was no difference in measured spatial resolution except for PET/MR axial spatial resolution, which was significantly higher for (124)I and (68)Ga. CONCLUSION Overall, both scanners produced good images with (18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y.
Collapse
Affiliation(s)
| | - Jasper Chaal
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Gabriel Tjio
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - John J Totman
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Maurizio Conti
- Siemens Healthcare Molecular Imaging, Knoxville, Tennessee; and
| | - David W Townsend
- A*STAR-NUS Clinical Imaging Research Center, Singapore Department of Diagnostic Radiology, National University Hospital, Singapore
| |
Collapse
|
7
|
Quintero NY, Restrepo G, Cohen IM. Chemotopological study of positron emitter radionuclides used in PET diagnostic imaging: physical, physico-chemical, dosimetric, quantum and nuclear properties. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1919-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Natarajan A, Habte F, Gambhir SS. Development of a novel long-lived immunoPET tracer for monitoring lymphoma therapy in a humanized transgenic mouse model. Bioconjug Chem 2012; 23:1221-9. [PMID: 22621257 DOI: 10.1021/bc300039r] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) is an attractive imaging tool to localize and quantify tracer biodistribution. ImmunoPET with an intact mAb typically requires two to four days to achieve optimized tumor-to-normal ratios. Thus, a positron emitter with a half-life of two to four days such as zirconium-89 [(89)Zr] (t1/2: 78.4 h) is ideal. We have developed an antibody-based, long-lived immunoPET tracer (89)Zr-Desferrioxamine-p-SCN (Df-Bz-NCS)-rituximab (Zr-iPET) to image tumor for longer durations in a humanized CD20-expressing transgenic mouse model. To optimize the radiolabeling efficiency of (89)Zr with Df-Bz-rituximab, multiple radiolabelings were performed. Radiochemical yield, purity, immunoreactivity, and stability assays were carried out to characterize the Zr-iPET for chemical and biological integrity. This tracer was used to image transgenic mice that express the human CD20 on their B cells (huCD20TM). Each huCD20TM mouse received a 7.4 MBq/dose. One group (n = 3) received a 2 mg/kg predose (blocking) of cold rituximab 2 h prior to (89)Zr-iPET; the other group (n = 3) had no predose (nonblocking). Small animal PET/CT was used to image mice at 1, 4, 24, 48, 72, and 120 h. Quality assurance of the (89)Zr-iPET demonstrated NCS-Bz-Df: antibody ratio (c/a: 1.5 ± 0.31), specific activity (0.44-1.64 TBq/mol), radiochemical yield (>70%), and purity (>98%). The Zr-iPET immunoreactivity was >80%. At 120 h, Zr-iPET uptake (% ID/g) as mean ± STD for blocking and nonblocking groups in spleen was 3.2 ± 0.1% and 83.3 ± 2.0% (p value <0.0013.). Liver uptake was 1.32 ± 0.05% and 0.61 ± 0.001% (p value <0.0128) for blocking and nonblocking, respectively. The small animal PET/CT image shows the spleen specific uptake of Zr-iPET in mice at 120 h after tracer injection. Compared to the liver, the spleen specific uptake of Zr-iPET is very high due to the expression of huCD20. We optimized the radiolabeling efficiency of (89)Zr with Df-Bz-rituximab. These radioimmunoconjugate lots were stable up to 5 days in serum in vitro. The present study showed that (89)Zr is well-suited for mAbs to image cancer over an extended period of time (up to 5 days).
Collapse
|
9
|
Jansen M, van Vuurden D, Vandertop W, Kaspers G. Diffuse intrinsic pontine gliomas: A systematic update on clinical trials and biology. Cancer Treat Rev 2012; 38:27-35. [DOI: 10.1016/j.ctrv.2011.06.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/17/2011] [Accepted: 06/25/2011] [Indexed: 11/28/2022]
|
10
|
Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK. Recent trends in antibody-based oncologic imaging. Cancer Lett 2011; 315:97-111. [PMID: 22104729 DOI: 10.1016/j.canlet.2011.10.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/27/2023]
Abstract
Antibodies, with their unmatched ability for selective binding to any target, are considered as potentially the most specific probes for imaging. Their clinical utility, however, has been limited chiefly due to their slow clearance from the circulation, longer retention in non-targeted tissues and the extensive optimization required for each antibody-tracer. The development of newer contrast agents, combined with improved conjugation strategies and novel engineered forms of antibodies (diabodies, minibodies, single chain variable fragments, and nanobodies), have triggered a new wave of antibody-based imaging approaches. Apart from their conventional use with nuclear imaging probes, antibodies and their modified forms are increasingly being employed with non-radioisotopic contrast agents (MRI and ultrasound) as well as newer imaging modalities, such as quantum dots, near infra red (NIR) probes, nanoshells and surface enhanced Raman spectroscopy (SERS). The review article discusses new developments in the usage of antibodies and their modified forms in conjunction with probes of various imaging modalities such as nuclear imaging, optical imaging, ultrasound, MRI, SERS and nanoshells in preclinical and clinical studies on the diagnosis, prognosis and therapeutic responses of cancer.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
11
|
Walther M, Gebhardt P, Grosse-Gehling P, Würbach L, Irmler I, Preusche S, Khalid M, Opfermann T, Kamradt T, Steinbach J, Saluz HP. Implementation of 89Zr production and in vivo imaging of B-cells in mice with 89Zr-labeled anti-B-cell antibodies by small animal PET/CT. Appl Radiat Isot 2011; 69:852-7. [DOI: 10.1016/j.apradiso.2011.02.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 11/30/2022]
|
12
|
van Dongen GA, Vosjan MJ. Immuno-Positron Emission Tomography: Shedding Light on Clinical Antibody Therapy. Cancer Biother Radiopharm 2010; 25:375-85. [DOI: 10.1089/cbr.2010.0812] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guus A.M.S. van Dongen
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Department of Nuclear Medicine and PET Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Maria J.W.D. Vosjan
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc 2010; 5:739-43. [DOI: 10.1038/nprot.2010.13] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abstract
Antibodies have attained a central role as targeted therapeutics, with several significant drugs on the market and many more in clinical development for oncological applications. Expansion of the role of antibodies in cancer imaging has been accelerated by a number of factors, including the recognition that antibodies can provide a powerful class of molecular imaging probes for interrogating cell surfaces in vivo. Identification of relevant cell surface biomarkers as imaging targets, coupled with advances in antibody technology, facilitate the generation of antibodies optimized for noninvasive imaging. Developments in imaging instrumentation and radionuclide availability have paved the way for broader evaluation and implementation of radioimmunoscintigraphy and immunoPET. Antibody imaging can provide a sensitive, noninvasive means for molecular characterization of cell surface phenotype in vivo, which can in turn guide diagnosis, prognosis, therapy selection, and monitoring of treatment in cancer.
Collapse
|
15
|
Quantitative PET imaging of Met-expressing human cancer xenografts with 89Zr-labelled monoclonal antibody DN30. Eur J Nucl Med Mol Imaging 2008; 35:1857-67. [PMID: 18491091 DOI: 10.1007/s00259-008-0774-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Targeting the c-Met receptor with monoclonal antibodies (MAbs) is an appealing approach for cancer diagnosis and treatment because this receptor plays a prominent role in tumour invasion and metastasis. Positron emission tomography (PET) might be a powerful tool for guidance of therapy with anti-Met MAbs like the recently described MAb DN30 because it allows accurate quantitative imaging of tumour targeting (immuno-PET). We considered the potential of PET with either (89)Zr-labelled (residualising radionuclide) or (124)I-labelled (non-residualising radionuclide) DN30 for imaging of Met-expressing tumours. MATERIALS AND METHODS The biodistribution of co-injected (89)Zr-DN30 and iodine-labelled DN30 was compared in nude mice bearing either the human gastric cancer line GLT-16 (high Met expression) or the head-and-neck cancer line FaDu (low Met expression). PET images were acquired in both xenograft models up to 4 days post-injection (p.i.) and used for quantification of tumour uptake. RESULTS Biodistribution studies in GTL-16-tumour-bearing mice revealed that (89)Zr-DN30 achieved much higher tumour uptake levels than iodine-labelled DN30 (e.g. 19.6%ID/g vs 5.3%ID/g, 5 days p.i.), while blood levels were similar, indicating internalisation of DN30. Therefore, (89)Zr-DN30 was selected for PET imaging of GLT-16-bearing mice. Tumours as small as 11 mg were readily visualised with immuno-PET. A distinctive lower (89)Zr uptake was observed in FaDu compared to GTL-16 xenografts (e.g. 7.8%ID/g vs 18.1%ID/g, 3 days p.i.). Nevertheless, FaDu xenografts were also clearly visualised with (89)Zr-DN30 immuno-PET. An excellent correlation was found between PET-image-derived (89)Zr tumour uptake and ex-vivo-assessed (89)Zr tumour uptake (R(2)=0.98). CONCLUSIONS The long-lived positron emitter (89)Zr seems attractive for PET-guided development of therapeutic anti-c-Met MAbs.
Collapse
|
16
|
Radioimmunotherapy. Clin Nucl Med 2008. [DOI: 10.1007/978-3-540-28026-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Immuno-Positron Emission Tomography. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Sharkey RM, Karacay H, McBride WJ, Rossi EA, Chang CH, Goldenberg DM. Bispecific antibody pretargeting of radionuclides for immuno single-photon emission computed tomography and immuno positron emission tomography molecular imaging: an update. Clin Cancer Res 2007; 13:5577s-5585s. [PMID: 17875792 DOI: 10.1158/1078-0432.ccr-07-1087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular imaging is intended to localize disease based on distinct molecular/functional characteristics. Much of today's interest in molecular imaging is attributed to the increased acceptance and role of 18F-flurodeoxyglucose (18F-FDG) imaging in a variety of tumors. The clinical acceptance of 18F-FDG has stimulated research for other positron emission tomography (PET) agents with improved specificity to aid in tumor detection and assessment. In this regard, a number of highly specific antibodies have been described for different cancers. Although scintigraphic imaging with antibodies in the past was helpful in patient management, most antibody-based imaging products have not been able to compete successfully with the sensitivity afforded by 18F-FDG-PET, especially when used in combination with computed tomography. Recently, however, significant advances have been made in reengineering antibodies to improve their targeting properties. Herein, we describe progress being made in using a bispecific antibody pretargeting method for immuno-single-photon emission computed tomography and immunoPET applications, as contrasted to directly radiolabeled antibodies. This approach not only significantly enhances tumor/nontumor ratios but also provides high signal intensity in the tumor, making it possible to visualize micrometastases of colonic cancer as small as 0.1 to 0.2 mm in diameter using an anti-carcinoembryonic antigen bispecific antibody, whereas FDG failed to localize these lesions in a nude mouse model. Early detection of micrometastatic non-Hodgkin's lymphoma is also possible using an anti-CD20-based bispecific antibody pretargeting procedure. Thus, this bispecific antibody pretargeting procedure may contribute to tumor detection and could also contribute to the detection of other diseases having distinct antigen targets and suitably specific antibodies.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, New Jersey, USA.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Quaia E, Krug LM, Pandit-Taskar N, Nagel A, Reuter VE, Humm J, Divgi C. The value of gamma camera and computed tomography data set coregistration to assess Lewis Y antigen targeting in small cell lung cancer by (111)Indium-labeled humanized monoclonal antibody 3S193. Eur J Radiol 2007; 67:292-299. [PMID: 17714905 DOI: 10.1016/j.ejrad.2007.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/09/2007] [Accepted: 07/16/2007] [Indexed: 11/20/2022]
Abstract
AIM To assess the value of data set coregistration of gamma camera and computed tomography (CT) in the assessment of targeting of humanized monoclonal antibody 3S193 labeled with indium-111 ((111)In-hu3S193) to small cell lung cancer (SCLC). METHODS AND MATERIALS Ten patients (6 male and 4 female; mean age+/-S.D., 60+/-4 years), from an overall population of 20 patients with SCLCs expressing Lewis Y antigen at immunohistochemical analysis, completed a four weekly injections of (111)In-hu3S193 and underwent gamma camera imaging. All had had, as part of their baseline evaluation, Fluorine18 fluoro-2-deoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Two readers in consensus retrospectively coregistered the gamma camera images with the CT component of the FDG PET/CT by automatic or manual alignment. The resulting image sets were visually examined and SCLC lesions targeting at coregistered gamma camera and CT was correlated side-by-side with the (18)F-FDG uptake. RESULTS A total number of 31 lesions from SCLC with a thoracic (n=13) or extrathoracic location (n=18) were all positive on FDG PET/CT. Coregistration of the gamma camera to the CT demonstrated targeting of antibody to all lesions >2 cm (n=20) and in a few lesions < or =2 cm (n=2), with no visualization of most lesions < or = 2 cm (n=9). No (111)In-hu3S193 uptake in normal tissues was observed. CONCLUSION Coregistration of antibody gamma camera imaging to FDG PET/CT is feasible and allows valuable assessment of (111)In-hu3S193 antibody targeting to SCLC lesions >2cm, while lesions < or =2 cm reveal a limited targeting.
Collapse
Affiliation(s)
- Emilio Quaia
- Department of Radiology, Cattinara Hospital, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy.
| | - Lee M Krug
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Neeta Pandit-Taskar
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Andrew Nagel
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John Humm
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Divgi
- Division of Nuclear Medicine and Clinical Molecular Imaging, Hospital of the University of Pennsylvania, 3400 Spruce Street, Room Donner 116, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Abstract
This article reviews the development of radioimmunoconjugates as a new class of cancer therapeutics. Numerous conjugates involving different antigen targets, antibody forms, radionuclides and methods of radiochemistry have been studied in the half-century since radioactive antibodies were first used in model systems to selectively target radiation to tumors. Whereas directly conjugated antibodies, fragments and subfragments have shown promise preclinically, the same approaches have not gained success in patients except in radiosensitive hematological neoplasms, or in settings involving minimal or locoregional disease. The separation of tumor targeting from the delivery of the therapeutic radionuclide in a multistep process called pretargeting has the potential to overcome many of the limitations of conventional, or one-step, radioimmunotherapy, with initial preclinical and clinical data showing increased sensitivity, specificity and higher radiation doses delivered. Our particular focus in pretargeting is the use of bispecific, trimeric (three Fab's) constructs made by a new antibody engineering method termed 'dock-and-lock.
Collapse
Affiliation(s)
- D M Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, NJ 07109, USA.
| | | |
Collapse
|
22
|
Ehman RL, Hendee WR, Welch MJ, Dunnick NR, Bresolin LB, Arenson RL, Baum S, Hricak H, Thrall JH. Blueprint for imaging in biomedical research. Radiology 2007; 244:12-27. [PMID: 17507725 DOI: 10.1148/radiol.2441070058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Goldenberg DM, Chatal JF, Barbet J, Boerman O, Sharkey RM. Cancer Imaging and Therapy with Bispecific Antibody Pretargeting. UPDATE ON CANCER THERAPEUTICS 2007; 2:19-31. [PMID: 18311322 PMCID: PMC2034280 DOI: 10.1016/j.uct.2007.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article reviews recent preclinical and clinical advances in the use of pretargeting methods for the radioimmunodetection and radioimmunotherapy of cancer. Whereas directly-labeled antibodies, fragments, and subfragments (minibodies and other constructs) have shown promise in both imaging and therapy applications over the past 25 years, their clinical adoption has not fulfilled the original expectations due to either poor image resolution and contrast in scanning or insufficient radiation doses delivered selectively to tumors for therapy. Pretargeting involves the separation of the localization of tumor with an anticancer antibody from the subsequent delivery of the imaging or therapeutic radionuclide. This has shown improvements in both imaging and therapy by overcoming the limitations of conventional, or 1-step, radioimmunodetection or radioimmunotherapy. We focus herein on the use of bispecific antibodies followed by radiolabeled peptide haptens as a new modality of selective delivery of radionuclides for the imaging and therapy of cancer. Our particular emphasis in pretargeting is the use of bispecific trimeric (3 Fab's) recombinant constructs made by a modular method of antibody and protein engineering of fusion molecules called Dock and Lock (DNL).
Collapse
Affiliation(s)
- David M Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, NJ, USA
| | | | | | | | | |
Collapse
|