1
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Zhang G, Li J, Li G, Zhang J, Yang Z, Yang L, Jiang S, Wang J. Strategies for treating the cold tumors of cholangiocarcinoma: core concepts and future directions. Clin Exp Med 2024; 24:193. [PMID: 39141161 PMCID: PMC11324771 DOI: 10.1007/s10238-024-01460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare type of digestive tract cancer originating from the epithelial cells of the liver and biliary tract. Current treatment modalities for CCA, such as chemotherapy and radiation therapy, have demonstrated limited efficacy in enhancing survival rates. Despite the revolutionary potential of immunotherapy in cancer management, its application in CCA remains restricted due to the minimal infiltration of immune cells in these tumors, rendering them cold and unresponsive to immune checkpoint inhibitors (ICIs). Cancer cells within cold tumors deploy various mechanisms for evading immune attack, thus impeding clinical management. Recently, combination immunotherapy has become increasingly essential to comprehend the mechanisms underlying cold tumors to enhance a deficient antitumor immune response. Therefore, a thorough understanding of the knowledge on the combination immunotherapy of cold CCA is imperative to leverage the benefits of immunotherapy in treating patients. Moreover, gut microbiota plays an essential role in the immunotherapeutic responses in CCA. In this review, we summarize the current concepts of immunotherapy in CCA and clarify the intricate dynamics within the tumor immune microenvironment (TIME) of CCA. We also delve into the evasion mechanisms employed by CCA tumors against the anti-tumor immune responses. The context of combination immunotherapies in igniting cold tumors of CCA and the critical function of gut microbiota in prompting immune responses have also been annotated. Furthermore, we have proposed future directions in the realm of CCA immunotherapy, aiming to improve the clinical prognosis of CCA patients.
Collapse
Affiliation(s)
- GuanBo Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JinSong Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Gang Li
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Zhi Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - Lin Yang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - ShiJie Jiang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China
| | - JiaXing Wang
- Department of Hepatobiliary Vascular Surgery, Chengdu Seventh People's Hospital, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Pan K, Wang B, Xu X, Liang J, Tang Y, Ma S, Xia B, Zhu L. Hypofractionated stereotactic radiotherapy for brain metastases in lung cancer patients: dose‒response effect and toxicity. Discov Oncol 2024; 15:318. [PMID: 39078419 PMCID: PMC11289209 DOI: 10.1007/s12672-024-01191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Lung cancer is a common cause of brain metastases, approximately 40% of patients with lung cancer will develop brain metastases at some point during their disease. Hypofractionated stereotactic radiotherapy (HSRT) has been demonstrated to be effective in controlling limited brain metastases. However, there is still no conclusive on the optimal segmentation of HSRT. The aim of our study was to explore the correlation between the HSRT dosage and its treatment effect and toxicity. METHODS A retrospective analysis was conducted on patients with non-small cell lung cancer (NSCLC) brain metastasis at Hangzhou Cancer Hospital from 1 January 2019 to 1 January 2021. The number of brain metastases did not exceed 10 in all patients and the number of fractions of HSRT was 5. The prescription dose ranges from 25 to 40 Gy. The Kaplan-Meier method was used for estimation of the localised intracranial control rate (iLC). Adverse radiation effects (AREs) were evaluated according to CTCAE 5.0. This study was approved by the Institutional Ethics Review Board of the Hangzhou Cancer Hospital (#73/HZCH-2022). RESULTS Forty eligible patients with a total of 70 brain metastases were included in this study. The 1-year iLC was 76% and 89% in the prescribed dose ≤ 30 Gy and > 30 Gy group, respectively (P < 0.05). For patients treated with HSRT combined with targeted therapy, immunotherapy and chemotherapy, the 1-year iLC was 89%, 100%, and 45%, respectively. No significant associations were observed between the number, maximum diameter, location, and type of pathology of brain metastases. The rate of all-grade AREs was 33%. Two patients who received a total dose of 40 Gy developed grade 3 headache, the rest of the AREs were grade 1-2. CONCLUSIONS Increasing the prescription dose of HSRT improves treatment effect but may also exacerbate the side effects. Systemic therapy might impact the iLC rate, and individualized treatment regimens need to be developed.
Collapse
Affiliation(s)
- Kaicheng Pan
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Bing Wang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Xiao Xu
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Jiafeng Liang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Yi Tang
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shenglin Ma
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Bing Xia
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China.
| | - Lucheng Zhu
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China.
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Ocak M, Ateş Ş, Kahveci S, Okan A, Doğanyiğit Z, Uçar S, Yılmaz S. Evaluation of the anticarcinogenic effects of Rutin on brain tissue in mice with Ehrlich ascites carcinoma by micro-computed tomography and histological methods. Asia Pac J Clin Oncol 2024. [PMID: 38526529 DOI: 10.1111/ajco.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Studies for new treatment strategies on cancer continue, and new searches continue in the diagnosis and evaluation of cancer. This study examined the possible anticarcinogenic effect of Rutin on the brain tissues of male mice with Ehrlich ascites carcinoma (EAC). MATERIAL AND METHODS We used micro-computed tomography (micro-CT) and histologically Hematoxylin&Eosin (H&E) staining methods for evaluation. RESULTS In the evaluation results, we saw a significant decrease in the brain volume of the tumor group to the control group. The difference in volume between the Rutin treatment group and the control group was not significant. In the brain tissues of the tumor group, numerous degenerated neurons characterized by pericellular/perivascular space expansion, cell swelling, or expansion were detected in the cortex and hippocampus regions. We showed a reduction in the damage rate in the Rutin treated group. CONCLUSION As a result, Rutin was found to have an anticarcinogenic effect. In addition to the classical histological evaluation, we used a newer method, micro-CT, in our study. We believe that this study has important results both in terms of its originality and adding new information to the literature.
Collapse
Affiliation(s)
- Mert Ocak
- Department of Anatomy, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Şükrü Ateş
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Selda Kahveci
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embriology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Sümeyye Uçar
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Seher Yılmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Galassi C, Klapp V, Yamazaki T, Galluzzi L. Molecular determinants of immunogenic cell death elicited by radiation therapy. Immunol Rev 2024; 321:20-32. [PMID: 37679959 PMCID: PMC11075037 DOI: 10.1111/imr.13271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Cancer cells undergoing immunogenic cell death (ICD) can initiate adaptive immune responses against dead cell-associated antigens, provided that (1) said antigens are not perfectly covered by central tolerance (antigenicity), (2) cell death occurs along with the emission of immunostimulatory cytokines and damage-associated molecular patterns (DAMPs) that actively engage immune effector mechanisms (adjuvanticity), and (3) the microenvironment of dying cells is permissive for the initiation of adaptive immunity. Finally, ICD-driven immune responses can only operate and exert cytotoxic effector functions if the microenvironment of target cancer cells enables immune cell infiltration and activity. Multiple forms of radiation, including non-ionizing (ultraviolet) and ionizing radiation, elicit bona fide ICD as they increase both the antigenicity and adjuvanticity of dying cancer cells. Here, we review the molecular determinants of ICD as elicited by radiation as we critically discuss strategies to reinforce the immunogenicity of cancer cells succumbing to clinically available radiation strategies.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
6
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Antelo G, Comas S, Casas F, Valduvieco I, Barreto T, Laplana M, Mases J, Oses G, Mollà M. Clinical outcomes and timing on the combination of focal radiation therapy and immunotherapy for the treatment of brain metastases. Front Immunol 2023; 14:1236398. [PMID: 37915576 PMCID: PMC10616465 DOI: 10.3389/fimmu.2023.1236398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Radiotherapy is one of the standard treatments for brain metastases (BM). Over the past years, the introduction of immunotherapy as routine treatment for solid tumors has forced investigators to review and evaluate how it would interact with radiation. Radiation and Immunotherapy have shown a synergic effect activating the host's immune system and enhancing treatment response. The combinatory effect on BM is currently under investigation. Methods Data published on Pubmed to determine toxicity, survival, treatment characteristics and timing on the combination of radiotherapy and immunotherapy for the treatment of BM has been reviewed. Results Mostly retrospective reviews report an improvement of intracranial progression free survival (iPFS) when combining radioimmunotherapy for BM patients. Two systematic reviews and meta-analysis and one phase II prospective trial also report a benefit on iPFS without an increase of toxicity. Among the published literature, the definition of concurrency is heterogeneous, being one month or even narrowed intervals correlated to better clinical outcomes. Toxicity due to concurrent radioimmunotherapy, specifically symptomatic radionecrosis, is also directly analyzed and reported to be low, similar to the toxicity rates secondary to stereotactic radiosurgery alone. Conclusion Radiation combined with immunotherapy has shown in predominantly retrospective reviews a synergic effect on the treatment of BM. The concurrent combination of radioimmunotherapy is a feasible therapeutic strategy and seems to improve clinical outcomes, especially iPFS, when delivered within <30 days. Larger prospective and randomized studies are needed to establish reliable outcomes, best delivery strategies and toxicity profile.
Collapse
Affiliation(s)
- Gabriela Antelo
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology Department, Institut Catalá d'Oncologia (ICO), Badalona, Badalona, Spain
| | - Francesc Casas
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Izaskun Valduvieco
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Tanny Barreto
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - María Laplana
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Joel Mases
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Gabriela Oses
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Meritxell Mollà
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Galassi C, Klapp V, Formenti SC, Demaria S, Galluzzi L. Immunologically relevant effects of radiation therapy on the tumor microenvironment. Essays Biochem 2023; 67:979-989. [PMID: 37199227 PMCID: PMC10543618 DOI: 10.1042/ebc20220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Focal radiation therapy (RT) has been successfully employed to clinically manage multiple types of cancer for more than a century. Besides being preferentially cytotoxic for malignant cells over their nontransformed counterparts, RT elicits numerous microenvironmental alterations that appear to factor into its therapeutic efficacy. Here, we briefly discuss immunostimulatory and immunosuppressive microenvironmental changes elicited by RT and their impact on tumor recognition by the host immune system.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|
9
|
Yoo KH, Park DJ, Choi JH, Marianayagam NJ, Lim M, Meola A, Chang SD. Optimizing the synergy between stereotactic radiosurgery and immunotherapy for brain metastases. Front Oncol 2023; 13:1223599. [PMID: 37637032 PMCID: PMC10456862 DOI: 10.3389/fonc.2023.1223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Solid tumors metastasizing to the brain are a frequent occurrence with an estimated incidence of approximately 30% of all cases. The longstanding conventional standard of care comprises surgical resection and whole-brain radiotherapy (WBRT); however, this approach is associated with limited long-term survival and local control outcomes. Consequently, stereotactic radiosurgery (SRS) has emerged as a potential alternative approach. The primary aim of SRS has been to improve long-term control rates. Nevertheless, rare observations of abscopal or out-of-field effects have sparked interest in the potential to elicit antitumor immunity via the administration of high-dose radiation. The blood-brain barrier (BBB) has traditionally posed a significant challenge to the efficacy of systemic therapy in managing intracranial metastasis. However, recent insights into the immune-brain interface and the development of immunotherapeutic agents have shown promise in preclinical and early-phase clinical trials. Researchers have investigated combining immunotherapy with SRS to enhance treatment outcomes in patients with brain metastasis. The combination approach aims to optimize long-term control and overall survival (OS) outcomes by leveraging the synergistic effects of both therapies. Initial findings have been encouraging in the management of various intracranial metastases, while further studies are required to determine the optimal order of administration, radiation doses, and fractionation regimens that have the potential for the best tumor response. Currently, several clinical trials are underway to assess the safety and efficacy of administering immunotherapeutic agents concurrently or consecutively with SRS. In this review, we conduct a comprehensive analysis of the advantages and drawbacks of integrating immunotherapy into conventional SRS protocols for the treatment of intracranial metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven D. Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
10
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Nelson BE, Adashek JJ, Lin SH, Subbiah V. On target methods to induce abscopal phenomenon for Off-Target effects: From happenstance to happenings. Cancer Med 2023; 12:6451-6465. [PMID: 36411943 PMCID: PMC10067075 DOI: 10.1002/cam4.5454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although the "abscopal phenomenon" has been described several decades ago, this phenomenon lately has been obtaining momentous traction with the dawn of immune-based therapies. There has been increased cross talk among radiation oncologists, oncologists and immunologists and consequently a surge in the number of prospective clinical trials. This must be coupled with translation work from these clinical trials to aid in eventual identification of patients who may benefit. Abscopal effects may be induced by local and systemic methods, conventional radiotherapy, particle radiation, radionucleotide methods, cryoablation and brachytherapy. These approaches have all been reported to be stimulate abscopal effect. Immune induction by immune checkpoint therapy, immune adjuvants, cellular therapy including CAR and NK cell therapies may generate systemic abscopal response. With increasing recognition of this effect, there remains a lot of work to explore the modalities of inducing abscopal responses and ultimate prediction or prognostication on stratifying who may benefit. Ultimately, there is an urgent need for prospective studies and data to tease apart which one of these modalities can be applied to the appropriate candidate, to the appropriate cancer at the appropriate setting. This review seeks to elucidate readers on the different modalities of radiation, systemic therapies and other techniques rarely explored to potentiate the abscopal effect from a mere coincidence to a finite occurrence.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jacob J. Adashek
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Steven H. Lin
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Vivek Subbiah
- Department of Investigational Cancer TherapeuticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
12
|
Mahase SS, Roytman M, Roth O'Brien D, Ivanidze J, Schwartz TH, Pannullo SC, Ramakrishna R, Magge RS, Williams N, Fine HA, Chiang GCY, Knisely JPS. Concurrent immunotherapy and re-irradiation utilizing stereotactic body radiotherapy for recurrent high-grade gliomas. Cancer Rep (Hoboken) 2023:e1788. [PMID: 36750401 PMCID: PMC10363830 DOI: 10.1002/cnr2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Clinical trials evaluating immune checkpoint inhibition (ICI) in recurrent high-grade gliomas (rHGG) report 7%-20% 6-month progression-free survival (PFS), while re-irradiation demonstrates 28%-39% 6-month PFS. AIMS We evaluate outcomes of patients treated with ICI and concurrent re-irradiation utilizing stereotactic body radiotherapy/fractionated stereotactic radiosurgery (SBRT) compared to ICI monotherapy. METHODS AND RESULTS Patients ≥18-years-old with rHGG (WHO grade III and IV) receiving ICI + SBRT or ICI monotherapy between January 1, 2016 and January 1, 2019 were included. Adverse events, 6-month PFS and overall survival (OS) were assessed. Log-rank tests were used to evaluate PFS and OS. Histogram analyses of apparent diffusion coefficient maps and dynamic contrast-enhanced magnetic resonance perfusion metrics were performed. Twenty-one patients with rHGG (ICI + SBRT: 16; ICI: 5) were included. The ICI + SBRT and ICI groups received a mean 7.25 and 6.2 ICI cycles, respectively. There were five grade 1, one grade 2 and no grade 3-5 AEs in the ICI + SBRT group, and four grade 1 and no grade 2-5 AEs in the ICI group. Median PFS was 2.85 and 1 month for the ICI + SBRT and ICI groups; median OS was 7 and 6 months among ICI + SBRT and ICI groups, respectively. There were significant differences in pre and posttreatment tumor volume in the cohort (12.35 vs. 20.51; p = .03), but not between treatment groups. CONCLUSIONS In this heavily pretreated cohort, ICI with re-irradiation utilizing SBRT was well tolerated. Prospective studies are warranted to evaluate potential therapeutic benefits to re-irradiation with ICI + SBRT in rHGG.
Collapse
Affiliation(s)
- Sean S Mahase
- Department of Radiation Oncology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA.,Department of Radiation Oncology, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Michelle Roytman
- Department of Radiology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Diana Roth O'Brien
- Department of Radiation Oncology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Jana Ivanidze
- Department of Radiology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Susan C Pannullo
- Department of Neurosurgery, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Rohan Ramakrishna
- Department of Neurosurgery, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Rajiv S Magge
- Department of Neurology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Nicholas Williams
- Department of Healthcare Policy & Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, New York, USA
| | - Howard A Fine
- Department of Neurology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Gloria Chia-Yi Chiang
- Department of Radiology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, NewYork Presbyterian-Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
13
|
Liljedahl E, Konradsson E, Gustafsson E, Jonsson KF, Olofsson JK, Osther K, Ceberg C, Redebrandt HN. Combined anti-C1-INH and radiotherapy against glioblastoma. BMC Cancer 2023; 23:106. [PMID: 36717781 PMCID: PMC9887755 DOI: 10.1186/s12885-023-10583-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND A more effective immune response against glioblastoma is needed in order to achieve better tumor control. Radiotherapy can induce anti-tumor mediated immune reactions, in addition to its dose response effects. The complement system can function as a bridge between innate and adaptive immune responses. Combining radiotherapy and complement activating therapy is theoretically interesting. METHODS Radiotherapy at 8 Gy × 2 was combined with treatment against C1-inhibitor (C1-INH), a potent inhibitor of activation of the classical pathway of the complement system. Anti-C1-INH was delivered as intratumoral injections. Fully immunocompetent Fischer 344 rats with NS1 glioblastoma tumors were treated. Survival was monitored as primary outcome. Models with either intracranial or subcutaneous tumors were evaluated separately. RESULTS In the intracranial setting, irradiation could prolong survival, but there was no additional survival gain as a result of anti-C1-INH treatment. In animals with subcutaneous tumors, combined radio-immunotherapy with anti-C1-INH and irradiation at 8 Gy × 2 significantly prolonged survival compared to control animals, whereas irradiation or anti-C1-INH treatment as single therapies did not lead to significantly increased survival compared to control animals. CONCLUSIONS Anti-C1-INH treatment could improve the efficacy of irradiation delivered at sub-therapeutic doses and delay tumor growth in the subcutaneous tumor microenvironment. In the intracranial setting, the doses of anti-C1-INH were not enough to achieve any survival effect in the present setting.
Collapse
Affiliation(s)
- Emma Liljedahl
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Elise Konradsson
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma Gustafsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Karolina Förnvik Jonsson
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Jill K. Olofsson
- grid.5254.60000 0001 0674 042XDepartment for Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Osther
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden
| | - Crister Ceberg
- grid.4514.40000 0001 0930 2361Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrietta Nittby Redebrandt
- grid.4514.40000 0001 0930 2361The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC D10, 221 84 Lund, Sweden ,grid.411843.b0000 0004 0623 9987Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Barcellos-Hoff MH. The radiobiology of TGFβ. Semin Cancer Biol 2022; 86:857-867. [PMID: 35122974 DOI: 10.1016/j.semcancer.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor β (TGFβ). TGFβ is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFβ unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFβ responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFβ activation, how TGFβ regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFβ exploit fundamental radiobiology that may be the missing link to deploying TGFβ inhibitors for optimal patient benefit from cancer treatment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Lehrer EJ, Kowalchuk RO, Ruiz-Garcia H, Merrell KW, Brown PD, Palmer JD, Burri SH, Sheehan JP, Quninoes-Hinojosa A, Trifiletti DM. Preoperative stereotactic radiosurgery in the management of brain metastases and gliomas. Front Surg 2022; 9:972727. [PMID: 36353610 PMCID: PMC9637863 DOI: 10.3389/fsurg.2022.972727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
Stereotactic radiosurgery (SRS) is the delivery of a high dose ionizing radiation in a highly conformal manner, which allows for significant sparing of nearby healthy tissues. It is typically delivered in 1-5 sessions and has demonstrated safety and efficacy across multiple intracranial neoplasms and functional disorders. In the setting of brain metastases, postoperative and definitive SRS has demonstrated favorable rates of tumor control and improved cognitive preservation compared to conventional whole brain radiation therapy. However, the risk of local failure and treatment-related complications (e.g. radiation necrosis) markedly increases with larger postoperative treatment volumes. Additionally, the risk of leptomeningeal disease is significantly higher in patients treated with postoperative SRS. In the setting of high grade glioma, preclinical reports have suggested that preoperative SRS may enhance anti-tumor immunity as compared to postoperative radiotherapy. In addition to potentially permitting smaller target volumes, tissue analysis may permit characterization of DNA repair pathways and tumor microenvironment changes in response to SRS, which may be used to further tailor therapy and identify novel therapeutic targets. Building on the work from preoperative SRS for brain metastases and preclinical work for high grade gliomas, further exploration of this treatment paradigm in the latter is warranted. Presently, there are prospective early phase clinical trials underway investigating the role of preoperative SRS in the management of high grade gliomas. In the forthcoming sections, we review the biologic rationale for preoperative SRS, as well as pertinent preclinical and clinical data, including ongoing and planned prospective clinical trials.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roman O. Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Kenneth W. Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stuart H. Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, NC, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | | | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States,Correspondence: Daniel M. Trifiletti
| |
Collapse
|
16
|
Matsui JK, Perlow HK, Raj RK, Nalin AP, Lehrer EJ, Kotecha R, Trifiletti DM, McClelland S, Kendra K, Williams N, Owen DH, Presley CJ, Thomas EM, Beyer SJ, Blakaj DM, Ahluwalia MS, Raval RR, Palmer JD. Treatment of Brain Metastases: The Synergy of Radiotherapy and Immune Checkpoint Inhibitors. Biomedicines 2022; 10:2211. [PMID: 36140312 PMCID: PMC9496359 DOI: 10.3390/biomedicines10092211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastases are a devastating sequela of common primary cancers (e.g., lung, breast, and skin) and have limited effective therapeutic options. Previously, systemic chemotherapy failed to demonstrate significant benefit in patients with brain metastases, but in recent decades, targeted therapies and more recently immune checkpoint inhibitors (ICIs) have yielded promising results in preclinical and clinical studies. Furthermore, there is significant interest in harnessing the immunomodulatory effects of radiotherapy (RT) to synergize with ICIs. Herein, we discuss studies evaluating the impact of RT dose and fractionation on the immune response, early studies supporting the synergistic interaction between RT and ICIs, and ongoing clinical trials assessing the benefit of combination therapy in patients with brain metastases.
Collapse
Affiliation(s)
| | - Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Rohit K. Raj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Ansel P. Nalin
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | | | - Shearwood McClelland
- Departments of Radiation Oncology and Neurological Surgery, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kari Kendra
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nicole Williams
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dwight H. Owen
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Carolyn J. Presley
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Evan M. Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sasha J. Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Dukagjin M. Blakaj
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Ascierto PA, Warner AB, Blank C, Caracò C, Demaria S, Gershenwald JE, Khushalani NI, Long GV, Luke JJ, Mehnert JM, Robert C, Rutkowski P, Tawbi HA, Osman I, Puzanov I. The "Great Debate" at Melanoma Bridge 2021, December 2nd-4th, 2021. J Transl Med 2022; 20:200. [PMID: 35538491 PMCID: PMC9087170 DOI: 10.1186/s12967-022-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
The Great Debate session at the 2021 Melanoma Bridge virtual congress (December 2-4) featured counterpoint views from experts on seven important issues in melanoma. The debates considered the use of adoptive cell therapy versus use of bispecific antibodies, mitogen-activated protein kinase (MAPK) inhibitors versus immunotherapy in the adjuvant setting, whether the use of corticosteroids for the management of side effects have an impact on outcomes, the choice of programmed death (PD)-1 combination therapy with cytotoxic T-lymphocyte-associated antigen (CTLA)-4 or lymphocyte-activation gene (LAG)-3, whether radiation is needed for brain metastases, when lymphadenectomy should be integrated into the treatment plan and then the last debate, telemedicine versus face-to-face. As with previous Bridge congresses, the debates were assigned by meeting Chairs and positions taken by experts during the debates may not have necessarily reflected their respective personal view. Audiences voted both before and after each debate.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | | | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Sandra Demaria
- Department of Radiation Oncology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Royal North Shore Hospital, Sydney, Australia
| | - Jason J Luke
- University of Pittsburgh Medical Center, UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Janice M Mehnert
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Caroline Robert
- Institut de Cancérologie Gustave Roussy Et Université Paris-Saclay, Villejuif, France
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Hussein A Tawbi
- Melanoma Medical Oncology, Investigational Cancer Therapeutics, Division of Cancer Medicine, MD Anderson Brain Metastasis Clinic, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Iman Osman
- New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
18
|
Onate AJ, Clark PA, Morris ZS. Using Radiation Therapy to Prime and Propagate an Anti-tumor Immune Response Against Brain Tumors. Neuromolecular Med 2022; 24:3-7. [PMID: 34081276 PMCID: PMC8639822 DOI: 10.1007/s12017-021-08668-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/21/2021] [Indexed: 12/21/2022]
Abstract
Immunotherapies have demonstrated efficacy and survival benefits in some patients suffering from brain tumors; however, most do not respond and new approaches to enhance anti-tumor immunotherapeutic responses in the brain are needed. Radiotherapy remains a commonly used cancer treatment modality and can augment immunotherapeutic responses through multiple mechanisms. Recent preclinical studies may provide insight on how to optimally combine radiation and immunotherapies to maximize treatment efficacy. Unique aspects of the brain tumor microenvironment may play a critical role in limiting the successful application of immunotherapies in this location. Emerging studies suggest that such limits may be redressed through combination of immunotherapies with radiation therapy. In these settings, the latter may play a critical role in immunomodulating both tumor cells and the radiated brain tumor microenvironment. This review analyzes recent developments in combining radiation and immunotherapies to prime and better propagate anti-tumor immune response against brain tumors.
Collapse
Affiliation(s)
- Alejandro J Onate
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Paul A Clark
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
19
|
Lehrer EJ, Ruiz-Garcia H, Nehlsen AD, Sindhu KK, Estrada RS, Borst GR, Sheehan JP, Quinones-Hinojosa A, Trifiletti DM. Preoperative Stereotactic Radiosurgery for Glioblastoma. BIOLOGY 2022; 11:194. [PMID: 35205059 PMCID: PMC8869151 DOI: 10.3390/biology11020194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma is a devastating primary brain tumor with a median overall survival of approximately 15 months despite the use of optimal modern therapy. While GBM has been studied for decades, modern therapies have allowed for a reduction in treatment-related toxicities, while the prognosis has largely been unchanged. Adjuvant stereotactic radiosurgery (SRS) was previously studied in GBM; however, the results were disappointing. SRS is a highly conformal radiation technique that permits the delivery of high doses of ionizing radiation in 1-5 sessions while largely sparing surrounding healthy tissues. Furthermore, studies have shown that the delivery of ablative doses of ionizing radiation within the central nervous system is associated with enhanced anti-tumor immunity. While SRS is commonly used in the definitive and adjuvant settings for other CNS malignancies, its role in the preoperative setting has become a topic of great interest due to the potential for reduced treatment volumes due to the treatment of an intact tumor, and a lower risk of nodular leptomeningeal disease and radiation necrosis. While early reports of SRS in the adjuvant setting for glioblastoma were disappointing, its role in the preoperative setting and its impact on the anti-tumor adaptive immune response is largely unknown. In this review, we provide an overview of GBM, discuss the potential role of preoperative SRS, and discuss the possible immunogenic effects of this therapy.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (A.D.N.); (K.K.S.)
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (R.S.E.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Anthony D. Nehlsen
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (A.D.N.); (K.K.S.)
| | - Kunal K. Sindhu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (E.J.L.); (A.D.N.); (K.K.S.)
| | - Rachel Sarabia Estrada
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (R.S.E.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Gerben R. Borst
- The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK;
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22908, USA;
| | | | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (R.S.E.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
20
|
Nava S, Lisini D, Frigerio S, Bersano A. Dendritic Cells and Cancer Immunotherapy: The Adjuvant Effect. Int J Mol Sci 2021; 22:ijms222212339. [PMID: 34830221 PMCID: PMC8620771 DOI: 10.3390/ijms222212339] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine’s ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.
Collapse
|
21
|
Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, Seneviratne DS, Palmer JD, Trifiletti DM. Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma. Int J Mol Sci 2021; 22:9673. [PMID: 34575840 PMCID: PMC8465220 DOI: 10.3390/ijms22189673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Radiotherapy (RT) is one of the cornerstones in the current treatment paradigm for glioblastoma (GBM). However, little has changed in the management of GBM since the establishment of the current protocol in 2005, and the prognosis remains grim. Radioresistance is one of the hallmarks for treatment failure, and different therapeutic strategies are aimed at overcoming it. Among these strategies, nanomedicine has advantages over conventional tumor therapeutics, including improvements in drug delivery and enhanced antitumor properties. Radiosensitizing strategies using nanoparticles (NP) are actively under study and hold promise to improve the treatment response. We aim to describe the basis of nanomedicine for GBM treatment, current evidence in radiosensitization efforts using nanoparticles, and novel strategies, such as preoperative radiation, that could be synergized with nanoradiosensitizers.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | | | - Timothy D. Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
| | - Danushka S. Seneviratne
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University, Columbus, OH 43210, USA;
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (H.R.-G.); (T.D.M.); (D.S.S.)
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
22
|
Lin YJ, Wei KC, Chen PY, Lim M, Hwang TL. Roles of Neutrophils in Glioma and Brain Metastases. Front Immunol 2021; 12:701383. [PMID: 34484197 PMCID: PMC8411705 DOI: 10.3389/fimmu.2021.701383] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils, which are the most abundant circulating leukocytes in humans, are the first line of defense against bacterial and fungal infections. Recent studies have reported the role and importance of neutrophils in cancers. Glioma and brain metastases are the most common malignant tumors of the brain. The tumor microenvironment (TME) in the brain is complex and unique owing to the brain-blood barrier or brain-tumor barrier, which may prevent drug penetration and decrease the efficacy of immunotherapy. However, there are limited studies on the correlation between brain cancer and neutrophils. This review discusses the origin and functions of neutrophils. Additionally, the current knowledge on the correlation between neutrophil-to-lymphocyte ratio and prognosis of glioma and brain metastases has been summarized. Furthermore, the implications of tumor-associated neutrophil (TAN) phenotypes and the functions of TANs have been discussed. Finally, the potential effects of various treatments on TANs and the ability of neutrophils to function as a nanocarrier of drugs to the brain TME have been summarized. However, further studies are needed to elucidate the complex interactions between neutrophils, other immune cells, and brain tumor cells.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
23
|
Clark PA, Sriramaneni RN, Bates AM, Jin WJ, Jagodinsky JC, Hernandez R, Le T, Jeffery JJ, Marsh IR, Grudzinski JJ, Aluicio-Sarduy E, Barnhart TE, Anderson BR, Chakravarty I, Arthur IS, Kim K, Engle JW, Bednarz BP, Weichert JP, Morris ZS. Low-Dose Radiation Potentiates the Propagation of Anti-Tumor Immunity against Melanoma Tumor in the Brain after In Situ Vaccination at a Tumor outside the Brain. Radiat Res 2021; 195:522-540. [PMID: 33826741 DOI: 10.1667/rade-20-00237.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/11/2021] [Indexed: 01/02/2023]
Abstract
Brain metastases develop in over 60% of advanced melanoma patients and negatively impact quality of life and prognosis. In a murine melanoma model, we previously showed that an in situ vaccination (ISV) regimen, combining radiation treatment and intratumoral (IT) injection of immunocytokine (IC: anti-GD2 antibody fused to IL2), along with the immune checkpoint inhibitor anti-CTLA-4, robustly eliminates peripheral flank tumors but only has modest effects on co-occurring intracranial tumors. In this study, we investigated the ability of low-dose radiation to the brain to potentiate anti-tumor immunity against a brain tumor when combined with ISV + anti-CTLA-4. B78 (GD2+, immunologically "cold") melanoma tumor cells were implanted into the flank and the right striatum of the brain in C57BL/6 mice. Flank tumors (50-150 mm3) were treated following a previously optimized ISV regimen [radiation (12 Gy × 1, treatment day 1), IT-IC (50 µg daily, treatment days 6-10), and anti-CTLA-4 (100 µg, treatment days 3, 6, 9)]. Mice that additionally received whole-brain radiation treatment (WBRT, 4 Gy × 1) on day 15 demonstrated significantly increased survival compared to animals that received ISV + anti-CTLA-4 alone, WBRT alone or no treatment (control) (P < 0.001, log-rank test). Timing of WBRT was critical, as WBRT administration on day 1 did not significantly enhance survival compared to ISV + anti-CTLA-4, suggesting that the effect of WBRT on survival might be mediated through immune modulation and not just direct tumor cell cytotoxicity. Modest increases in T cells (CD8+ and CD4+) and monocytes/macrophages (F4/80+) but no changes in FOXP3+ regulatory T cells (Tregs), were observed in brain melanoma tumors with addition of WBRT (on day 15) to ISV + anti-CTLA-4. Cytokine multiplex immunoassay revealed distinct changes in both intracranial melanoma and contralateral normal brain with addition of WBRT (day 15) to ISV + anti-CTLA-4, with notable significant changes in pro-inflammatory (e.g., IFNγ, TNFα and LIX/CXCL5) and suppressive (e.g., IL10, IL13) cytokines as well as chemokines (e.g., IP-10/CXCL10 and MIG/CXCL9). We tested the ability of the alkylphosphocholine analog, NM600, to deliver immunomodulatory radiation to melanoma brain tumors as a targeted radionuclide therapy (TRT). Yttrium-86 (86Y) chelated to NM600 was delivered intravenously by tail vein to mice harboring flank and brain melanoma tumors, and PET imaging demonstrated specific accumulation up to 72 h at each tumor site (∼12:1 brain tumor/brain and ∼8:1 flank tumor/muscle). When NM600 was chelated to therapeutic β-particle-emitting 90Y and administered on treatment day 13, T-cell infiltration and cytokine profiles were altered in melanoma brain tumor, like that observed for WBRT. Overall, our results demonstrate that addition of low-dose radiation, timed appropriately with ISV administration to tumors outside the brain, significantly increases survival in animals co-harboring melanoma brain tumors. This observation has potentially important translational implications as a treatment strategy for increasing the response of tumors in the brain to systemically administered immunotherapies.
Collapse
Affiliation(s)
- Paul A Clark
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Raghava N Sriramaneni
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amber M Bates
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Won Jong Jin
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Justin C Jagodinsky
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Justin J Jeffery
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ian R Marsh
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Joseph J Grudzinski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bryce R Anderson
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ishan Chakravarty
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ian S Arthur
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bryan P Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jamey P Weichert
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Zachary S Morris
- Department of a Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
24
|
Carlson PM, Mohan M, Patel RB, Birstler J, Nettenstrom L, Sheerar D, Fox K, Rodriguez M, Hoefges A, Hernandez R, Zahm C, Kim K, McNeel DG, Weichert J, Morris ZS, Sondel PM. Optimizing Flow Cytometric Analysis of Immune Cells in Samples Requiring Cryopreservation from Tumor-Bearing Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:720-734. [PMID: 34261667 DOI: 10.4049/jimmunol.2000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Most shared resource flow cytometry facilities do not permit analysis of radioactive samples. We are investigating low-dose molecular targeted radionuclide therapy (MTRT) as an immunomodulator in combination with in situ tumor vaccines and need to analyze radioactive samples from MTRT-treated mice using flow cytometry. Further, the sudden shutdown of core facilities in response to the COVID-19 pandemic has created an unprecedented work stoppage. In these and other research settings, a robust and reliable means of cryopreservation of immune samples is required. We evaluated different fixation and cryopreservation protocols of disaggregated tumor cells with the aim of identifying a protocol for subsequent flow cytometry of the thawed sample, which most accurately reflects the flow cytometric analysis of the tumor immune microenvironment of a freshly disaggregated and analyzed sample. Cohorts of C57BL/6 mice bearing B78 melanoma tumors were evaluated using dual lymphoid and myeloid immunophenotyping panels involving fixation and cryopreservation at three distinct points during the workflow. Results demonstrate that freezing samples after all staining and fixation are completed most accurately matches the results from noncryopreserved equivalent samples. We observed that cryopreservation of living, unfixed cells introduces a nonuniform alteration to PD1 expression. We confirm the utility of our cryopreservation protocol by comparing tumors treated with in situ tumor vaccines, analyzing both fresh and cryopreserved tumor samples with similar results. Last, we use this cryopreservation protocol with radioactive specimens to demonstrate potentially beneficial effector cell changes to the tumor immune microenvironment following administration of a novel MTRT in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Peter M Carlson
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Biology Graduate Program, Bock Laboratories, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, Health Sciences Learning Center, University of Wisconsin-Madison, Madison, WI
| | - Manasi Mohan
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, Wisconsin Alumni Research Foundation, Madison, WI
| | - Lauren Nettenstrom
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Dagna Sheerar
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Kathryn Fox
- Flow Cytometry Laboratory, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Matthew Rodriguez
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Anna Hoefges
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Reinier Hernandez
- Department of Radiology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Chris Zahm
- Department of Medicine, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, Wisconsin Alumni Research Foundation, Madison, WI
| | - Douglas G McNeel
- Department of Medicine, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jamey Weichert
- Department of Radiology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI.,Department of Medical Physics, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; and
| | - Zachary S Morris
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Paul M Sondel
- Department of Human Oncology, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; .,Department of Pediatrics, Wisconsin Institutes for Medical Research, Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
25
|
Ma Y, Yang Z, Huntoon K, Jiang W, Kim BYS. Advanced Immunotherapy Approaches for Glioblastoma. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yifan Ma
- Department of Biomedical Engineering The Ohio State University Columbus OH 43210 USA
| | - Zhaogang Yang
- Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas TX 75235 USA
| | - Kristin Huntoon
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Wen Jiang
- Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas TX 75235 USA
- Department of Bioengineering University of Texas Southwestern Medical Center Dallas TX 75390 USA
| | - Betty Y. S. Kim
- Department of Neurosurgery The University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| |
Collapse
|
26
|
De Martino M, Padilla O, Daviaud C, Wu CC, Gartrell RD, Vanpouille-Box C. Exploiting Radiation Therapy to Restore Immune Reactivity of Glioblastoma. Front Oncol 2021; 11:671044. [PMID: 34094969 PMCID: PMC8173136 DOI: 10.3389/fonc.2021.671044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is among the most aggressive of brain tumors and confers a dismal prognosis despite advances in surgical technique, radiation delivery methods, chemotherapy, and tumor-treating fields. While immunotherapy (IT) has improved the care of several adult cancers with previously dismal prognoses, monotherapy with IT in GBM has shown minimal response in first recurrence. Recent discoveries in lymphatics and evaluation of blood brain barrier offer insight to improve the use of ITs and determine the best combinations of therapies, including radiation. We highlight important features of the tumor immune microenvironment in GBM and potential for combining radiation and immunotherapy to improve prognosis in this devastating disease.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Robyn D Gartrell
- Department of Pediatrics, Pediatric Hematology/Oncology/SCT, Columbia University Irving Medical Center, New York, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, New York, NY, United States
| |
Collapse
|
27
|
Altorki NK, McGraw TE, Borczuk AC, Saxena A, Port JL, Stiles BM, Lee BE, Sanfilippo NJ, Scheff RJ, Pua BB, Gruden JF, Christos PJ, Spinelli C, Gakuria J, Uppal M, Binder B, Elemento O, Ballman KV, Formenti SC. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol 2021; 22:824-835. [PMID: 34015311 DOI: 10.1016/s1470-2045(21)00149-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous phase 2 trials of neoadjuvant anti-PD-1 or anti-PD-L1 monotherapy in patients with early-stage non-small-cell lung cancer have reported major pathological response rates in the range of 15-45%. Evidence suggests that stereotactic body radiotherapy might be a potent immunomodulator in advanced non-small-cell lung cancer (NSCLC). In this trial, we aimed to evaluate the use of stereotactic body radiotherapy in patients with early-stage NSCLC as an immunomodulator to enhance the anti-tumour immune response associated with the anti-PD-L1 antibody durvalumab. METHODS We did a single-centre, open-label, randomised, controlled, phase 2 trial, comparing neoadjuvant durvalumab alone with neoadjuvant durvalumab plus stereotactic radiotherapy in patients with early-stage NSCLC, at NewYork-Presbyterian and Weill Cornell Medical Center (New York, NY, USA). We enrolled patients with potentially resectable early-stage NSCLC (clinical stages I-IIIA as per the 7th edition of the American Joint Committee on Cancer) who were aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0 or 1. Eligible patients were randomly assigned (1:1) to either neoadjuvant durvalumab monotherapy or neoadjuvant durvalumab plus stereotactic body radiotherapy (8 Gy × 3 fractions), using permuted blocks with varied sizes and no stratification for clinical or molecular variables. Patients, treating physicians, and all study personnel were unmasked to treatment assignment after all patients were randomly assigned. All patients received two cycles of durvalumab 3 weeks apart at a dose of 1·12 g by intravenous infusion over 60 min. Those in the durvalumab plus radiotherapy group also received three consecutive daily fractions of 8 Gy stereotactic body radiotherapy delivered to the primary tumour immediately before the first cycle of durvalumab. Patients without systemic disease progression proceeded to surgical resection. The primary endpoint was major pathological response in the primary tumour. All analyses were done on an intention-to-treat basis. This trial is registered with ClinicalTrial.gov, NCT02904954, and is ongoing but closed to accrual. FINDINGS Between Jan 25, 2017, and Sept 15, 2020, 96 patients were screened and 60 were enrolled and randomly assigned to either the durvalumab monotherapy group (n=30) or the durvalumab plus radiotherapy group (n=30). 26 (87%) of 30 patients in each group had their tumours surgically resected. Major pathological response was observed in two (6·7% [95% CI 0·8-22·1]) of 30 patients in the durvalumab monotherapy group and 16 (53·3% [34·3-71·7]) of 30 patients in the durvalumab plus radiotherapy group. The difference in the major pathological response rates between both groups was significant (crude odds ratio 16·0 [95% CI 3·2-79·6]; p<0·0001). In the 16 patients in the dual therapy group with a major pathological response, eight (50%) had a complete pathological response. The second cycle of durvalumab was withheld in three (10%) of 30 patients in the dual therapy group due to immune-related adverse events (grade 3 hepatitis, grade 2 pancreatitis, and grade 3 fatigue and thrombocytopaenia). Grade 3-4 adverse events occurred in five (17%) of 30 patients in the durvalumab monotherapy group and six (20%) of 30 patients in the durvalumab plus radiotherapy group. The most frequent grade 3-4 events were hyponatraemia (three [10%] patients in the durvalumab monotherapy group) and hyperlipasaemia (three [10%] patients in the durvalumab plus radiotherapy group). Two patients in each group had serious adverse events (pulmonary embolism [n=1] and stroke [n=1] in the durvalumab monotherapy group, and pancreatitis [n=1] and fatigue [n=1] in the durvalumab plus radiotherapy group). No treatment-related deaths or deaths within 30 days of surgery were reported. INTERPRETATION Neoadjuvant durvalumab combined with stereotactic body radiotherapy is well tolerated, safe, and associated with a high major pathological response rate. This neoadjuvant strategy should be validated in a larger trial. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA.
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Ashish Saxena
- Division of Hematology Oncology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Benjamin E Lee
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas J Sanfilippo
- Department of Radiation Oncology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Ronald J Scheff
- Division of Hematology Oncology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Bradley B Pua
- Department of Radiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - James F Gruden
- Department of Radiology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Paul J Christos
- Department of Population Health Sciences, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Cathy Spinelli
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Joyce Gakuria
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Manik Uppal
- Department of Physiology and Biophysics, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Bhavneet Binder
- Department of Physiology and Biophysics, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Olivier Elemento
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Karla V Ballman
- Department of Population Health Sciences, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
28
|
Marciscano AE, Haimovitz-Friedman A, Lee P, Tran PT, Tomé WA, Guha C, (Spring) Kong FM, Sahgal A, El Naqa I, Rimner A, Marks LB, Formenti SC, DeWeese TL. Immunomodulatory Effects of Stereotactic Body Radiation Therapy: Preclinical Insights and Clinical Opportunities. Int J Radiat Oncol Biol Phys 2021; 110:35-52. [DOI: 10.1016/j.ijrobp.2019.02.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
|
29
|
Neuroinflammatory changes of the normal brain tissue in cured mice following combined radiation and anti-PD-1 blockade therapy for glioma. Sci Rep 2021; 11:5057. [PMID: 33658642 PMCID: PMC7930115 DOI: 10.1038/s41598-021-84600-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The efficacy of combining radiation therapy with immune checkpoint inhibitor blockade to treat brain tumors is currently the subject of multiple investigations and holds significant therapeutic promise. However, the long-term effects of this combination therapy on the normal brain tissue are unknown. Here, we examined mice that were intracranially implanted with murine glioma cell line and became long-term survivors after treatment with a combination of 10 Gy cranial irradiation (RT) and anti-PD-1 checkpoint blockade (aPD-1). Post-mortem analysis of the cerebral hemisphere contralateral to tumor implantation showed complete abolishment of hippocampal neurogenesis, but neural stem cells were well preserved in subventricular zone. In addition, we observed a drastic reduction in the number of mature oligodendrocytes in the subcortical white matter. Importantly, this observation was evident specifically in the combined (RT + aPD-1) treatment group but not in the single treatment arm of either RT alone or aPD-1 alone. Elimination of microglia with a small molecule inhibitor of colony stimulated factor-1 receptor (PLX5622) prevented the loss of mature oligodendrocytes. These results identify for the first time a unique pattern of normal tissue changes in the brain secondary to combination treatment with radiotherapy and immunotherapy. The results also suggest a role for microglia as key mediators of the adverse treatment effect.
Collapse
|
30
|
Baker S, Logie N, Paulson K, Duimering A, Murtha A. Radiotherapy for Brain Tumors: Current Practice and Future Directions. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666181129105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radiotherapy is an important component of the treatment for primary and metastatic
brain tumors. Due to the close proximity of critical structures and normal brain parenchyma, Central
Nervous System (CNS) radiotherapy is associated with adverse effects such as neurocognitive
deficits, which must be weighed against the benefit of improved tumor control. Advanced radiotherapy
technology may help to mitigate toxicity risks, although there is a paucity of high-level
evidence to support its use. Recent advances have been made in the treatment for gliomas, meningiomas,
benign tumors, and metastases, although outcomes remain poor for many high grade
tumors. This review highlights recent developments in CNS radiotherapy, discusses common
treatment toxicities, critically reviews advanced radiotherapy technologies, and highlights promising
treatment strategies to improve clinical outcomes in the future.
Collapse
Affiliation(s)
- Sarah Baker
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Natalie Logie
- University of Florida Proton Therapy Institute, Jacksonville, FL, United States
| | - Kim Paulson
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Adele Duimering
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Albert Murtha
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
31
|
Brandmaier A, Formenti SC. The Impact of Radiation Therapy on Innate and Adaptive Tumor Immunity. Semin Radiat Oncol 2020; 30:139-144. [DOI: 10.1016/j.semradonc.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Role of Neutrophils and Myeloid-Derived Suppressor Cells in Glioma Progression and Treatment Resistance. Int J Mol Sci 2020; 21:ijms21061954. [PMID: 32182988 PMCID: PMC7139844 DOI: 10.3390/ijms21061954] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Recent efforts in brain tumor research have been directed towards the modulation of the immune system for therapeutic interventions. Several human cancers, including gliomas, are infiltrated with immune cell types-including neutrophils and myeloid-derived suppressor cells-that contribute to tumor progression, invasiveness, and treatment resistance. The role of tumor-associated neutrophils and myeloid-derived suppressor cells in cancer biology remains elusive, as these cells can exert a multitude of pro-tumor and antitumor effects. In this review, we provide the current understanding and novel insights on the role of neutrophils and myeloid-derived suppressor cells in glioma progression and treatment resistance, as well as the mechanisms of pleiotropic behaviors in these cells during disease progression, with an emphasis on possible strategies to reprogram these cells towards their antitumor actions.
Collapse
|
33
|
Corrao G, Marvaso G, Ferrara R, Lo Russo G, Gugliandolo SG, Piperno G, Spaggiari L, De Marinis F, Orecchia R, Garassino MC, Jereczek-Fossa BA. Stereotatic radiotherapy in metastatic non-small cell lung cancer: Combining immunotherapy and radiotherapy with a focus on liver metastases. Lung Cancer 2020; 142:70-79. [PMID: 32120227 DOI: 10.1016/j.lungcan.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 01/19/2023]
Abstract
Presence of liver metastases correlates with worse survival and response to any treatments. This may be due to the microenvironment of liver which leads tumor to escape from Immune System. Stereotactic Body Radiation Therapy may help to sensitize Immune System and to improve the immunotherapy effect. Interest is being directed toward combining Immune-Checkpoint Inhibitors with radiotherapy to improve response to immunotherapy. However, the mechanisms by which radiation induces anti-tumor T-cells remain unclear. Preclinical studies founded radiotherapy enhances antitumor immune responses, increasing tumor antigen release, and inducing T-cell infiltration. Radiotherapy is under investigation for its ability to enhance responses to immunotherapy. Nevertheless, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is unknown. The aim of this review is to explore the role of Stereotactic Body Radiation Therapy in metastatic non-small cell lung cancer, focusing on patients with liver metastases, and the possible immunological implications combining immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Giulia Marvaso
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Simone Giovanni Gugliandolo
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Gaia Piperno
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy; Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Direction, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
34
|
Convection-enhanced delivery of temozolomide and whole cell tumor immunizations in GL261 and KR158 experimental mouse gliomas. BMC Cancer 2020; 20:7. [PMID: 31900109 PMCID: PMC6942363 DOI: 10.1186/s12885-019-6502-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Background Glioblastomas (GBM) are therapy-resistant tumors with a profoundly immunosuppressive tumor microenvironment. Chemotherapy has shown limited efficacy against GBM. Systemic delivery of chemotherapeutic drugs is hampered by the difficulty of achieving intratumoral levels as systemic toxicity is a dose-limiting factor. Although some of its effects might be mediated by immune reactivity, systemic chemotherapy can also inhibit induced or spontaneous antitumor immune reactivity. Convection-enhanced delivery of temozolomide (CED-TMZ) can tentatively increase intratumoral drug concentration while reducing systemic side effects. The objective of this study was to evaluate the therapeutic effect of intratumorally delivered temozolomide in combination with immunotherapy and whether such therapy can generate a cellular antitumor immune response. Methods Single bolus intratumoral injection and 3-day mini-osmotic pumps (Alzet®) were used to deliver intratumoral TMZ in C57BL6 mice bearing orthotopic gliomas. Immunotherapy consisted of subcutaneous injections of irradiated GL261 or KR158 glioma cells. Tumor size and intratumoral immune cell populations were analyzed by immunohistochemistry. Results Combined CED-TMZ and immunotherapy had a synergistic antitumor effect in the GL261 model, compared to CED-TMZ or immunotherapy as monotherapies. In the KR158 model, immunization cured a small proportion of the mice whereas addition of CED-TMZ did not have a synergistic effect. However, CED-TMZ as monotherapy prolonged the median survival. Moreover, TMZ bolus injection in the GL261 model induced neurotoxicity and lower cure rate than its equivalent dose delivered by CED. In addition, we found that T-cells were the predominant cells responsible for the TMZ antitumor effect in the GL261 model. Finally, CED-TMZ combined with immunotherapy significantly reduced tumor volume and increased the intratumoral influx of T-cells in both models. Conclusions We show that immunotherapy synergized with CED-TMZ in the GL261 model and cured animals in the KR158 model. Single bolus administration of TMZ was effective with a narrower therapeutic window than CED-TMZ. Combined CED-TMZ and immunotherapy led to an increase in the intratumoral influx of T-cells. These results form part of the basis for the translation of the therapy to patients with GBM but the dosing and timing of delivery will have to be explored in depth both experimentally and clinically.
Collapse
|
35
|
Efficient identification of novel anti-glioma lead compounds by machine learning models. Eur J Med Chem 2019; 189:111981. [PMID: 31978780 DOI: 10.1016/j.ejmech.2019.111981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/18/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most devastating and widespread primary central nervous system tumor. Pharmacological treatment of this malignance is limited by the selective permeability of the blood-brain barrier (BBB) and relies on a single drug, temozolomide (TMZ), thus making the discovery of new compounds challenging and urgent. Therefore, aiming to discover new anti-glioma drugs, we developed robust machine learning models for predicting anti-glioma activity and BBB penetration ability of new compounds. Using these models, we prioritized 41 compounds from our in-house library of compounds, for further in vitro testing against three glioma cell lines and astrocytes. Subsequently, the most potent and selective compounds were resynthesized and tested in vivo using an orthotopic glioma model. This approach revealed two lead candidates, 4m and 4n, which efficiently decreased malignant glioma development in mice, probably by inhibiting thioredoxin reductase activity, as shown by our enzymological assays. Moreover, these two compounds did not promote body weight reduction, death of animals, or altered hematological and toxicological markers, making then good candidates for lead optimization as anti-glioma drug candidates.
Collapse
|
36
|
Huang W, Fan Y, Cheng X, Liang H, Pan H, Xiao T, Chen M, Guan J. A preliminary Study on the Effect of Head and Neck Chemoradiotherapy on Systematic Immunity. Dose Response 2019; 17:1559325819884186. [PMID: 31695581 PMCID: PMC6820191 DOI: 10.1177/1559325819884186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Background This study was designed initially to explore the effect of chemoradiotherapy on patients diagnosed with head and neck cancer (HNC) with respect to the alteration of systematic immunity. Methods We did a retrospective study enrolling patients received concurrent chemoradiotherapy (CCRT), with or without induction chemotherapy (IC). Blood tests were performed before IC, before and after CCRT. Flow cytometric analysis and turbidimetric inhibition immunoassay were used for detection. Results A total number of 58 patients were included from April 1, 2018, to March 31, 2019. Levels of immunoglobulins (Ig), including IgA, IgG, and IgM, declined after 2 to 3 cycles of IC and CCRT, respectively. Serum level of total hemolytic complement (CH50) increased (P < .001) after IC, but kept stably post-CCRT. Natural killer (NK) cells decreased (P < .01) after IC and enhanced (P < .001) post-CCRT. The number of CD3+CD4+ T cells got increased (P < .01) after IC and decreased (P < .001) post-CCRT. Consistently, both IC and CCRT induced the increase in CD3+CD8+ T cells significantly (P < .001 vs P < .01). Conclusion Both radiotherapy (RT) and chemotherapy (CT) induced dual effect of immune response. Concurrent chemoradiotherapy created an active immune response based on the effect induced by IC, suggesting that RT exerted a potential function on mobilizing immune system.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Fan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoya Cheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huazhen Liang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Chen
- Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Vapiwala N, Thomas CR, Grover S, Yap ML, Mitin T, Shulman LN, Gospodarowicz MK, Longo J, Petereit DG, Ennis RD, Hayman JA, Rodin D, Buchsbaum JC, Vikram B, Abdel-Wahab M, Epstein AH, Okunieff P, Goldwein J, Kupelian P, Weidhaas JB, Tucker MA, Boice JD, Fuller CD, Thompson RF, Trister AD, Formenti SC, Barcellos-Hoff MH, Jones J, Dharmarajan KV, Zietman AL, Coleman CN. Enhancing Career Paths for Tomorrow's Radiation Oncologists. Int J Radiat Oncol Biol Phys 2019; 105:52-63. [PMID: 31128144 PMCID: PMC7084166 DOI: 10.1016/j.ijrobp.2019.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Neha Vapiwala
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Surbhi Grover
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; University of Botswana, Gaborone, Botswana
| | - Mei Ling Yap
- Collaboration for Cancer Outcomes Research and Evaluation, Ingham Institute, University of New South Wales, Sydney, Australia; Liverpool and Macarthur Cancer Therapy Centre, Western Sydney University, Campbelltown, Australia; School of Public Health, University of Sydney, Camperdown, Australia
| | - Timur Mitin
- Department of Radiation Medicine Director, Program in Global Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Lawrence N Shulman
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary K Gospodarowicz
- Department of Radiation Oncology, University of Toronto, Cancer Clinical Research Unit, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - John Longo
- Department of Radiation Oncology Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Daniel G Petereit
- Department of Radiation Oncology, Rapid City Regional Cancer Care Institute, Rapid City, South Dakota
| | - Ronald D Ennis
- Clinical Network for Radiation Oncology, Rutgers and Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - James A Hayman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Danielle Rodin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey C Buchsbaum
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhadrasain Vikram
- Clinical Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - May Abdel-Wahab
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Alan H Epstein
- Uniformed Service University of the Health Sciences, Bethesda, Maryland
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, Florida
| | - Joel Goldwein
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Elekta AB, Stockholm, Sweden
| | - Patrick Kupelian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; Varian Medical Systems, Palo Alto, California
| | - Joanne B Weidhaas
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California; MiraDx, Los Angeles, California
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, Maryland; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Clifton David Fuller
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reid F Thompson
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - Andrew D Trister
- Department of Radiation Medicine, Oregon Health and Science University, Portland, Oregon
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, New York
| | | | - Joshua Jones
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kavita V Dharmarajan
- Department of Radiation Oncology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Anthony L Zietman
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - C Norman Coleman
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Ding AS, Routkevitch D, Jackson C, Lim M. Targeting Myeloid Cells in Combination Treatments for Glioma and Other Tumors. Front Immunol 2019; 10:1715. [PMID: 31396227 PMCID: PMC6664066 DOI: 10.3389/fimmu.2019.01715] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells constitute a significant part of the immune system in the context of cancer, exhibiting both immunostimulatory effects, through their role as antigen presenting cells, and immunosuppressive effects, through their polarization to myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages. While they are rarely sufficient to generate potent anti-tumor effects on their own, myeloid cells have the ability to interact with a variety of immune populations to aid in mounting an appropriate anti-tumor immune response. Therefore, myeloid therapies have gained momentum as a potential adjunct to current therapies such as immune checkpoint inhibitors (ICIs), dendritic cell vaccines, oncolytic viruses, and traditional chemoradiation to enhance therapeutic response. In this review, we outline critical pathways involved in the recruitment of the myeloid population to the tumor microenvironment and in their polarization to immunostimulatory or immunosuppressive phenotypes. We also emphasize existing strategies of modulating myeloid recruitment and polarization to improve anti-tumor immune responses. We then summarize current preclinical and clinical studies that highlight treatment outcomes of combining myeloid targeted therapies with other immune-based and traditional therapies. Despite promising results from reports of limited clinical trials thus far, there remain challenges in optimally harnessing the myeloid compartment as an adjunct to enhancing anti-tumor immune responses. Further large Phase II and ultimately Phase III clinical trials are needed to elucidate the treatment benefit of combination therapies in the fight against cancer.
Collapse
Affiliation(s)
| | | | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Ko EC, Formenti SC. Radiation therapy to enhance tumor immunotherapy: a novel application for an established modality. Int J Radiat Biol 2019; 95:936-939. [DOI: 10.1080/09553002.2019.1623429] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Eric C. Ko
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
Gonçalves RM, Agnes JP, Delgobo M, de Souza PO, Thomé MP, Heimfarth L, Lenz G, Moreira JCF, Zanotto-Filho A. Late autophagy inhibitor chloroquine improves efficacy of the histone deacetylase inhibitor SAHA and temozolomide in gliomas. Biochem Pharmacol 2019; 163:440-450. [PMID: 30878553 DOI: 10.1016/j.bcp.2019.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 01/20/2023]
Abstract
Glioblastoma multiforme is the most aggressive type of primary brain tumor associated with few therapeutic opportunities and poor prognosis. In this study, we evaluated the efficacy of combining temozolomide (TMZ) with suberoylanilide hydroxamic acid (SAHA) - a specific histone deacetylases inhibitor - in glioma models in vitro and in vivo. In glioma cell lines, combined TMZ/SAHA promoted more cytotoxicity, G2/M arrest and apoptosis than either drugs alone. G2/M arrest was detected as soon as 24 h post drug exposure and preceded apoptosis, which occurred from 72 h treatment. TMZ and SAHA, alone or combined, also stimulated autophagy as evaluated by means of acridine orange staining and immunodetection of LC3I-II conversion and p62/SQSTM1 degradation. Time-course of autophagy accompanied G2/M arrest and preceded apoptosis, and blockage of late steps of autophagy with chloroquine (CQ) augmented SAHA/TMZ toxicity leading to apoptosis. In orthotopic gliomas in vivo, combined SAHA/TMZ showed better antitumor efficacy than either drugs alone, and adding CQ to the regimen improved antiglioma effects of SAHA and TMZ monotherapies without further benefit on combined SAHA/TMZ. In summary, the herein presented data suggest that autophagy acts as a protective response that impairs efficacy of SAHA and TMZ. Inhibiting autophagy termination with CQ may offer means to improve antitumor effects of SAHA and TMZ in gliomas and possibly other cancers.
Collapse
Affiliation(s)
- Rosângela Mayer Gonçalves
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jonathan Paulo Agnes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marina Delgobo
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Marcos P Thomé
- Departamento de Biofísica and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guido Lenz
- Departamento de Biofísica and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Alfeu Zanotto-Filho
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
41
|
Abstract
High-grade glioma is the most common primary brain tumor, with glioblastoma multiforme (GBM) accounting for 52% of all brain tumors. The current standard of care (SOC) of GBM involves surgery followed by adjuvant fractionated radiotherapy and chemotherapy. However, little progress has been made in extending overall survival, progression-free survival, and quality of life. Attempts to characterize and customize treatment of GBM have led to mitigating the deleterious effects of radiotherapy using hypofractionated radiotherapy, as well as various immunotherapies as a promising strategy for the incurable disease. A combination of radiotherapy and immunotherapy may prove to be even more effective than either alone, and preclinical evidence suggests that hypofractionated radiotherapy can actually prime the immune system to make immunotherapy more effective. This review addresses the complications of the current radiotherapy regimen, various methods of immunotherapy, and preclinical and clinical data from combined radioimmunotherapy trials.
Collapse
|
42
|
Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2019; 9:3062. [PMID: 30740109 PMCID: PMC6357938 DOI: 10.3389/fimmu.2018.03062] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas carry a dismal prognosis. Conventional treatment using chemo- and radiotherapy has limited efficacy with adverse events. Therapy with genetically engineered T-cells, such as chimeric antigen receptor (CAR) T-cells, may represent a promising approach to improve patient outcomes owing to their potential ability to attack highly infiltrative tumors in a tumor-specific manner and possible persistence of the adaptive immune response. However, the unique anatomical features of the brain and susceptibility of this organ to irreversible tissue damage have made immunotherapy especially challenging in the setting of glioma. With safety concerns in mind, multiple teams have initiated clinical trials using CAR T-cells in glioma patients. The valuable lessons learnt from those trials highlight critical areas for further improvement: tackling the issues of the antigen presentation and T-cell homing in the brain, immunosuppression in the glioma microenvironment, antigen heterogeneity and off-tumor toxicity, and the adaptation of existing clinical therapies to reflect the intricacies of immune response in the brain. This review summarizes the up-to-date clinical outcomes of CAR T-cell clinical trials in glioma patients and examines the most pressing hurdles limiting the efficacy of these therapies. Furthermore, this review uses these hurdles as a framework upon which to evaluate cutting-edge pre-clinical strategies aiming to overcome those barriers.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kira M Downey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bindu Hegde
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Neil D Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States.,Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
43
|
Dar TB, Henson RM, Shiao SL. Targeting Innate Immunity to Enhance the Efficacy of Radiation Therapy. Front Immunol 2019; 9:3077. [PMID: 30692991 PMCID: PMC6339921 DOI: 10.3389/fimmu.2018.03077] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Radiation continues to play a major role in the treatment of almost every cancer type. Traditional radiation studies focused on its ability to damage DNA, but recent evidence has demonstrated that a key mechanism driving the efficacy of radiation in vivo is the immune response triggered in irradiated tissue. Innate immune cells including macrophages, dendritic cells, and natural killer cells are key mediators of the radiation-induced immune response. They regulate the sensing of radiation-mediated damage and subsequent radiation-induced inflammation. Given the importance of innate immune cells as determinants of the post-radiation anti-tumor immune response, much research has been devoted to identify ways to both enhance the innate immune response and prevent their ability to suppress ongoing immune responses. In this review, we will discuss how the innate immune system shapes anti-tumor immunity following radiation and highlight key strategies directed at the innate immune response to enhance the efficacy of radiation.
Collapse
Affiliation(s)
- Tahir B Dar
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Regina M Henson
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
44
|
Mao S, Zhang J, Guo Y, Zhang Z, Wu Y, Zhang W, Wang L, Geng J, Yan Y, Yao X. Hyperprogression after anti-programmed cell death ligand-1 therapy in a patient with recurrent metastatic urothelial bladder carcinoma following first-line cisplatin-based chemotherapy: a case report. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:291-300. [PMID: 30666091 PMCID: PMC6333318 DOI: 10.2147/dddt.s181122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Immune checkpoint blockade targeting programmed cell death ligand-1 (PD-L1)/programmed death-1 (PD-1) signaling was approved recently for locally advanced and metastatic urothelial bladder carcinoma (UBC). Some patients experience a very rapid tumor progression, rather than clinical benefit, from anti-PD-L1/PD-1 therapy. Case presentation A 58-year-old male diagnosed with non-muscle-invasive bladder cancer 3 years ago received transurethral resection of bladder tumor (TURBT) and intravesical chemotherapy. TURBT was repeated a year later for recurrent and progressive UBC. Following further disease progression, he received a radical cystectomy (RC), pathologically staged as T2bN2M0, and adjuvant cisplatin-containing combination chemotherapy. When his disease progressed to metastatic UBC, he was started on anti-PD-L1 monotherapy and experienced ultrarapid disease progression within 2 months; imaging scans ruled out pseudoprogression. We observed a fourfold increase in tumor growth rate, defined as the ratio of post- to pretreatment rates. Next-generation sequencing of formalin-fixed paraffin-embedded RC tissues showed MDM2 amplification without MDM4 amplification, EGFR aberrations, or DNMT3A alterations. Immunohistochemistry showed grade 2+ PD-L1 labeling intensity of the RC tissues, with 15%–25% and 5%–10% PD-LI immunopositive tumor cells and tumor-infiltrating immune cells, respectively. Conclusion Even in cases with PD-L1-positive tumors, MDM2 gene amplification may result in failure of anti-PD-L1 immunotherapy and rapid tumor growth. Therefore, genomic profiling may identify patients at risk for hyperprogression before immunotherapy.
Collapse
Affiliation(s)
- Shiyu Mao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Ziwei Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Yuan Wu
- Department of Urology, Shanghai Tenth People's Hospital, Anhui Medical University, Hefei 230032, PR China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Anhui Medical University, Hefei 230032, PR China
| | - Longsheng Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, PR China, ;
| |
Collapse
|
45
|
Wang SJ, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. Cancers (Basel) 2018; 10:cancers10120515. [PMID: 30558196 PMCID: PMC6315809 DOI: 10.3390/cancers10120515] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent development in radiation biology has revealed potent immunogenic properties of radiotherapy in cancer treatments. However, antitumor immune effects of radiotherapy are limited by the concomitant induction of radiation-dependent immunosuppressive effects. In the growing era of immunotherapy, combining radiotherapy with immunomodulating agents has demonstrated enhancement of radiation-induced antitumor immune activation that correlated with improved treatment outcomes. Yet, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is largely unknown. Future prospective testing to fine-tune this promising combination of radiotherapy and immunotherapy is warranted.
Collapse
Affiliation(s)
- Shang-Jui Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| | - Bruce Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|
46
|
Irradiation to Improve the Response to Immunotherapeutic Agents in Glioblastomas. Adv Radiat Oncol 2018; 4:268-282. [PMID: 31011672 PMCID: PMC6460102 DOI: 10.1016/j.adro.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose Glioblastoma (GBM) remains an incurable disease despite extensive treatment with surgical resection, irradiation, and temozolomide. In line with many other forms of aggressive cancers, GBM is currently under consideration as a target for immunotherapy. However, GBM tends to be nonimmunogenic and exhibits a microenvironment with few or no effector T cells, a relatively low nonsynonymous somatic mutational load, and a low predicted neoantigen burden. GBM also exploits a multitude of immunosuppressive strategies. Methods and Materials A number of immunotherapeutic approaches have been tested with disappointing results. A rationale exists to combine immunotherapy and radiation therapy, which can induce an immunogenic form of cell death with T-cell activation and tumor infiltration. Results Various immunotherapy agents, including immune checkpoint modulators, transforming growth factor beta receptor inhibitors, and indoleamine-2,3-dioxygenase inhibitors, have been evaluated with irradiation in preclinical GBM models, with promising results, and are being further tested in clinical trials. Conclusions This review aims to present the basic rationale behind this emerging complementary therapeutic approach in GBM, appraise the current preclinical and clinical data, and discuss the future challenges in improving the antitumor immune response.
Collapse
|
47
|
Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2018; 280:220-230. [PMID: 29027232 DOI: 10.1111/imr.12568] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Sophia Bornstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
48
|
Yuan C, Wang Q. Comparative analysis of the effect of different radiotherapy regimes on lymphocyte and its subpopulations in breast cancer patients. Clin Transl Oncol 2018. [PMID: 29536332 DOI: 10.1007/s12094-018-1851-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this study was to determine whether different radiotherapy (RT) fractionation schemes induce disparate effects on lymphocyte and its subsets in breast cancer patients. METHODS 60 female patients diagnosed with breast cancer were recruited in this study after receiving modified radical mastectomy and were randomly divided into two groups. One group received irradiation at a standard dose of 50 Gy in 25 fractions and the other at a dose of 40.3 Gy in 13 fractions. Both total lymphocyte count and its composition were recorded at three timepoints: right before the radiation treatment (T0), immediately after the last fraction of radiotherapy (T1) and 6 months after irradiation therapy ended (T2). RESULTS Both groups experienced temporal lymphopenia after finishing local radiation (T1) (13F T0 vs. T1 1570.6 ± 243.9 vs. 940.6 ± 141.8, **p < 0.01; 25F T0 vs. T1 1620.5 ± 280.2 vs. 948.5 ± 274.6, **p < 0.01), while the lymphocyte count recovered at follow-up time (T2), and the cell count in the hypofractionation group (13F) was higher than the standard fraction group (25F) (13F vs. 25F 1725.6 ± 225.6 vs. 1657.5 ± 242.4, *p < 0.05). With respect to the composition of lymphocyte, we found T cell, B cell, and NK cell reacted differently to different radiotherapy protocols. CONCLUSIONS Different RT protocols impose different impacts on immunity, leading us to further explore the optimal radiotherapy regimes to synergy with immunotherapy.
Collapse
Affiliation(s)
- C Yuan
- Cancer Research Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Q Wang
- Cancer Research Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
49
|
Mann J, Ramakrishna R, Magge R, Wernicke AG. Advances in Radiotherapy for Glioblastoma. Front Neurol 2018; 8:748. [PMID: 29379468 PMCID: PMC5775505 DOI: 10.3389/fneur.2017.00748] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/27/2017] [Indexed: 11/13/2022] Open
Abstract
External beam radiotherapy (RT) has long played a crucial role in the treatment of glioblastoma. Over the past several decades, significant advances in RT treatment and image-guidance technology have led to enormous improvements in the ability to optimize definitive and salvage treatments. This review highlights several of the latest developments and controversies related to RT, including the treatment of elderly patients, who continue to be a fragile and vulnerable population; potential salvage options for recurrent disease including reirradiation with chemotherapy; the latest imaging techniques allowing for more accurate and precise delineation of treatment volumes to maximize the therapeutic ratio of conformal RT; the ongoing preclinical and clinical data regarding the combination of immunotherapy with RT; and the increasing evidence of cancer stem-cell niches in the subventricular zone which may provide a potential target for local therapies. Finally, continued development on many fronts have allowed for modestly improved outcomes while at the same time limiting toxicity.
Collapse
Affiliation(s)
- Justin Mann
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - A Gabriella Wernicke
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
50
|
Ye JC, Formenti SC. Integration of radiation and immunotherapy in breast cancer - Treatment implications. Breast 2018; 38:66-74. [PMID: 29253718 DOI: 10.1016/j.breast.2017.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 01/18/2023] Open
Abstract
Radiation therapy (RT) has been successfully used in the treatment of breast cancer (BC) for over a century. While historically thought to be immunosuppressive, new data have shown that RT can work together with the immune system to eliminate cancer. It can cause immunogenic cell death and facilitate tumor neoantigen presentation and cross-priming of tumor-specific T-lymphocytes, turning irradiated tumor into an in-situ vaccine. Unfortunately, due to various immune escape mechanism put in place by the tumor, RT alone rarely results in a systemic response of metastatic disease sites (known as the abscopal effect). Immunotherapy, a series of agents designed to stimulate the immune system in order to generate tumor-specific immune response, is showing promise in treatment of various cancers, including BC, and can be an ideal complement to RT in stimulating a systemic immune response to reject the tumor cells. This review discusses the mechanisms in which RT can trigger an immune response for tumor rejection, and provide emerging preclinical and clinical data of combination immunoradiotherapy, and its potential in treating BC.
Collapse
Affiliation(s)
- Jason C Ye
- USC Keck School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|