1
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
2
|
Meng Y, Chen S, Li P, Wang C, Ni X. Tumor Cell Membrane-Encapsulated MLA Solid Lipid Nanoparticles for Targeted Diagnosis and Radiosensitization Therapy of Cutaneous Squamous Cell Carcinoma. Mol Pharm 2024; 21:3218-3232. [PMID: 38885477 DOI: 10.1021/acs.molpharmaceut.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Squamous cell carcinoma (SCC) is a common nonmelanoma skin cancer. Radiotherapy plays an integral role in treating SCC due to its characteristics, such as diminished intercellular adhesion, heightened cell migration and invasion capabilities, and immune evasion. These problems lead to inaccurate tumor boundary positioning and radiotherapy tolerance in SCC treatment. Thus, accurate localization and enhanced radiotherapy sensitivity are imperative for effective SCC treatment. To address the existing limitations in SCC therapy, we developed monoglyceride solid lipid nanoparticles (MG SLNs) and enveloped them with the A431 cell membrane (A431 CM) to create A431@MG. The characterization results showed that A431@MG was spherical. Furthermore, A431@MG had specific targeting for A431 cells. In A431 tumor-bearing mice, A431@MG demonstrated prolonged accumulation within tumors, ensuring precise boundary localization of SCC. We further advanced the approach by preparing MG SLNs encapsulating 5-aminolevulinic acid methyl ester (MLA) and desferrioxamine (DFO) with an A431 CM coating to yield A431@MG-MLA/DFO. Several studies have revealed that DFO effectively reduced iron content, impeding protoporphyrin IX (PpIX) biotransformation and promoting PpIX accumulation. Simultaneously, MLA was metabolized into PpIX upon cellular entry. During radiotherapy, the heightened PpIX levels enhanced reactive oxygen species (ROS) generation, inducing DNA and mitochondrial damage and leading to cell apoptosis. In A431 tumor-bearing mice, the A431@MG-MLA/DFO group exhibited notable radiotherapy sensitization, displaying superior tumor growth inhibition. Combining A431@MG-MLA/DFO with radiotherapy significantly improved anticancer efficacy, highlighting its potential to serve as an integrated diagnostic and therapeutic strategy for SCC.
Collapse
Affiliation(s)
- Yanyan Meng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Shaoqing Chen
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Pengyin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou Key Laboratory of Medical Physics, Changzhou 213003, China
| |
Collapse
|
3
|
Yamaguchi Y, Yoshii D, Katsuragi H, Shinkai K. Effect of Laser Irradiation Modes and Photosensitizer Types on Antimicrobial Photodynamic Therapy (aPDT) for Streptococcus sobrinus in the Crown Dentin of Bovine Teeth: An Experimental In Vitro Study. Dent J (Basel) 2024; 12:59. [PMID: 38534283 DOI: 10.3390/dj12030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
This study aimed to assess the impact of different laser irradiation modes and photosensitizer types on the bactericidal efficacy of antimicrobial photodynamic therapy (aPDT). Dentin plates were prepared by sectioning the crown dentin of bovine teeth infected with Streptococcus sobrinus (n = 11). Nine aPDTs involving the combination of three 1% solutions of photosensitizers (brilliant blue, BB; acid red, AR; and methylene blue, MB) and three irradiation modes of semiconductor lasers (50 mW for 120 s, 100 mW for 60 s, and 200 mW for 30 s) were performed for each infected dentin plate, and the control consisted of the specimens not applied with aPDT. The bactericidal effects in 10 groups were evaluated using both assays of the colony count (colony-forming-unit: CFU) and adenosine triphosphate (ATP) (relative-light-unit: RLU). The data obtained were analyzed using the Kruskal-Wallis test (α = 0.05). The most aPDT groups exhibited significantly lower RLU and CFU values compared with the control (p < 0.05). The effect of irradiation modes on RLU and CFU values was significant in the aPDT group using BB (p < 0.05) but not in the aPDT group using AR or MB. The aPDT performed with AR or MB exerted a remarkable bactericidal effect.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Advance Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata 951-8580, Japan
| | - Daiki Yoshii
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata 951-8580, Japan
| | - Hiroaki Katsuragi
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Koichi Shinkai
- Advance Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata 951-8580, Japan
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamauracho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
4
|
Su L, Chen Y, Huo H, Liao N, Wu Y, Ge X, Guo Z, Chen Z, Zhang X, Song J. NIR-II Ratiometric Chemiluminescent/Fluorescent Reporters for Real-Time Monitoring and Evaluating Cancer Photodynamic Therapy Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202551. [PMID: 36089652 DOI: 10.1002/smll.202202551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The development of probes for early monitoring tumor therapy response may greatly benefit the promotion of photodynamic therapy (PDT) efficacy. Singlet oxygen (1 O2 ) generation is a typical indicator for evaluating PDT efficacy in cancer. However, most existing probes cannot quantitatively detect 1 O2 in vivo due to the high reactivity and transient state, and thus have a poor correlation with PDT response. Herein, a 1 O2 -responsive theranostic platform comprising thiophene-based small molecule (2SeFT-PEG) and photosensitizer Chlorin e6 (Ce6) micelles for real-time monitoring PDT efficacy is developed. After laser irradiation, the Ce6-produced 1 O2 could simultaneously kill cancer and trigger 2SeFT-PEG to produce increased chemiluminescence (CL) and decreased fluorescence (FL) signals variation at 1050 nm in the second near-infrared (NIR-II, 950-1700 nm) window. Significantly, the ratiometric NIR-II CL/FL imaging at 1050 nm could effectively quantify and monitor the concentration of 1 O2 and O2 consumption or recovery, so as to evaluate the therapeutic efficacy of PDT in vivo. Hence, this 1 O2 activated NIR-II CL/FL probe provides an efficient ratiometric optical imaging platform for real-time evaluating PDT effect and precisely guiding the PDT process in vivo.
Collapse
Affiliation(s)
- Lichao Su
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yiming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei, 056001, P. R. China
| | - Naishun Liao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Ying Wu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiaoguang Ge
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhongxiang Chen
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jibin Song
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
5
|
Fontana LC, Pinto JG, Vitorio GDS, Ferreira I, Pacheco-Soares C, Mamone LA, Strixino JF. Photodynamic effect of protoporphyrin IX in gliosarcoma 9l/lacZ cell line. Photodiagnosis Photodyn Ther 2021; 37:102669. [PMID: 34863947 DOI: 10.1016/j.pdpdt.2021.102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Photodynamic Therapy (PDT) is an oncologic treatment, producing reactive oxygen species (ROS) to induce the death of cancer cells. This study aimed to evaluate the action of PDT on gliosarcoma cells, using protoporphyrin IX as PS by incubation with the precursor aminolevulinic acid (ALA). An LED device was used with a light dose of 10 J/cm². The success of the therapy proved to be dependent on the concentration of ALA, and an incubation time of 4 h required for an effective response. Cell death was prevalent due to necrosis when assessed 18 h post-PDT. ALA proved to be an option to PDT in cells of the 9 L/lacZ, with the protocol tested.
Collapse
Affiliation(s)
- Letícia Corrêa Fontana
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Juliana Guerra Pinto
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Gabrielle Dos Santos Vitorio
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Isabelle Ferreira
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Cristina Pacheco-Soares
- Laboratory of Cellular Dynamics - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo
| | - Leandro Ariel Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo.
| |
Collapse
|
6
|
Liu Z, Wu H, Li J, Wang L, Akkaya EU. Naphthalene Endoperoxide Heterodimer Designed for Sustained Singlet Oxygen Release. ACS OMEGA 2021; 6:26799-26804. [PMID: 34661034 PMCID: PMC8515818 DOI: 10.1021/acsomega.1c04518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Naphthalene endoperoxides undergo thermal cycloreversion reactions to produce singlet oxygen and their parent naphthalene compounds. The rate of the reaction is dependent on the structural features, such as steric and electronic modulators. We believe that achieving a sustained release rate of singlet oxygen is important in potential biological applications. This can be achieved by tethering of two endoperoxides with different singlet oxygen release rates in a single molecular construct. Here, we report the synthesis of such a dimeric endoperoxide. Our data shows that with the biexponential reaction kinetics of singlet oxygen generation from a heterodimeric endoperoxide, it is possible to hold singlet oxygen release rates within a selected range for a longer period of time.
Collapse
|
7
|
Systematic Review and Meta-Analysis of In Vitro Anti-Human Cancer Experiments Investigating the Use of 5-Aminolevulinic Acid (5-ALA) for Photodynamic Therapy. Pharmaceuticals (Basel) 2021; 14:ph14030229. [PMID: 33800109 PMCID: PMC8000125 DOI: 10.3390/ph14030229] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.
Collapse
|
8
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Chen G, Zhao Y, Xu Y, Zhu C, Liu T, Wang K. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int J Pharm 2020; 589:119763. [PMID: 32898629 DOI: 10.1016/j.ijpharm.2020.119763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Phototherapy exerts its anticancer effects by converting laser radiation energy into hyperthermia or reactive singlet oxygen (1O2). In this study, we developed chitosan nanoparticles (CS NPs) encapsulating both photothermal (IR780) and photodynamic (5-Aminolevulinic acid (5-ALA)) reagents for photothermally enhanced photodynamic therapy by noninvasive oral administration. The 5-ALA&IR780@CS NPs were stable in acidic conditions similar to the gastric environment, which greatly improved drug oral absorption and local accumulation in subcutaneous mouse colon tumors (CT-26 cells) following oral gavage. Mechanistic studies revealed that the co-delivery system can lead to photothermally enhanced photodynamic effects against cancer cells by increasing oxidative stress, including the elevation of ROS, superoxide and 1O2 production. Additionally, significant therapeutic efficacy for cancer treatment were observed in vivo after oral administration of 5-ALA&IR780@CS NPs, without causing any overt adverse effects. Our work highlights the great potential of photothermally enhanced photodynamic therapy by CS NPs for colon cancer management via oral route.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yuehua Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chenfei Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong 226001, China; Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Kamanli AF, Çetinel G. Comparison of pulse and super pulse radiation modes’ singlet oxygen production effect in antimicrobial photodynamic therapy (AmPDT). Photodiagnosis Photodyn Ther 2020; 30:101706. [DOI: 10.1016/j.pdpdt.2020.101706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/08/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
11
|
Pfitzner M, Preuß A, Röder B. A new level of in vivo singlet molecular oxygen luminescence measurements. Photodiagnosis Photodyn Ther 2019; 29:101613. [PMID: 31812543 DOI: 10.1016/j.pdpdt.2019.101613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Singlet oxygen is known to be the main mediator of the photodynamic effect. The kinetics of its generation and deactivation allows for insights in the microenvironment and efficacy of the photodynamic effect. Therefore, it is highly desirable to perform direct and time resolved measurements of singlet molecular oxygen (1O2) as well as data analysis during the therapy. METHODS In this work, tumors grown on the CAM of chicken embryos as well as blood vessels were scanned after injection of the photosensitizer Foslip®, yielding time resolved singlet molecular oxygen luminescence. Using a custom-made trifurcated fiber, it is possible to simultaneously detect time resolved NIR luminescence as well as spectrally resolved UV/VIS fluorescence. RESULTS After photosensitizer application the singlet oxygen luminescence kinetics for tumors grown on the CAM of chicken embryos as well as for mixed venous and arterialized blood were recorded. Data was analyzed by traditional fitting as well as a novel and robust approach, reducing the time resolved data to a a meaningful minimum. Both approaches show the differences between blood of different oxygen saturation as well as tumor tissue. CONCLUSIONS This work shows for the first time the possibility of deducing the oxygen content during photodynamic therapy by measuring singlet oxygen kinetics in tissue. If more oxygen is consumed - due to chemical quenching during PDT - than is subsequently diffused, oxygen depletion occurs, resulting in inefficiency of the photodynamic effect. These results represent a major step towards live monitoring of therapy success and thus towards the possibility of direct control of PDT efficiency in real time.
Collapse
Affiliation(s)
- Michael Pfitzner
- Department of Physics, Humboldt - Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt - Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Beate Röder
- Department of Physics, Humboldt - Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.
| |
Collapse
|
12
|
Ong YH, Dimofte A, Kim MM, Finlay JC, Sheng T, Singhal S, Cengel KA, Yodh AG, Busch TM, Zhu TC. Reactive Oxygen Species Explicit Dosimetry for Photofrin-mediated Pleural Photodynamic Therapy. Photochem Photobiol 2019; 96:340-348. [PMID: 31729774 DOI: 10.1111/php.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023]
Abstract
Explicit dosimetry of treatment light fluence and implicit dosimetry of photosensitizer photobleaching are commonly used methods to guide dose delivery during clinical PDT. Tissue oxygen, however, is not routinely monitored intraoperatively even though it is one of the three major components of treatment. Quantitative information about in vivo tissue oxygenation during PDT is desirable, because it enables reactive oxygen species explicit dosimetry (ROSED) for prediction of treatment outcome based on PDT-induced changes in tumor oxygen level. Here, we demonstrate ROSED in a clinical setting, Photofrin-mediated pleural photodynamic therapy, by utilizing tumor blood flow information measured by diffuse correlation spectroscopy (DCS). A DCS contact probe was sutured to the pleural cavity wall after surgical resection of pleural mesothelioma tumor to monitor tissue blood flow (blood flow index) during intraoperative PDT treatment. Isotropic detectors were used to measure treatment light fluence and photosensitizer concentration. Blood-flow-derived tumor oxygen concentration, estimated by applying a preclinically determined conversion factor of 1.5 × 109 μMs cm-2 to the blood flow index, was used in the ROSED model to calculate the total reacted reactive oxygen species [ROS]rx. Seven patients and 12 different pleural sites were assessed and large inter- and intrapatient heterogeneities in [ROS]rx were observed although an identical light dose of 60 J cm-2 was prescribed to all patients.
Collapse
Affiliation(s)
- Yi Hong Ong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Andreaa Dimofte
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Jarod C Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Tianqi Sheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Timothy C Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Nakano Y, Kitagawa T, Osada Y, Tanaka T, Nishizawa S, Yamamoto J. 5-Aminolevulinic Acid Suppresses Prostaglandin E2 Production by Murine Macrophages and Enhances Macrophage Cytotoxicity Against Glioma. World Neurosurg 2019; 127:e669-e676. [DOI: 10.1016/j.wneu.2019.03.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/25/2022]
|
14
|
Yamada K, Murayama Y, Kamada Y, Arita T, Kosuga T, Konishi H, Morimura R, Shiozaki A, Kuriu Y, Ikoma H, Kubota T, Nakanishi M, Fujiwara H, Okamoto K, Otsuji E. Radiosensitizing effect of 5-aminolevulinic acid in colorectal cancer in vitro and in vivo. Oncol Lett 2019; 17:5132-5138. [PMID: 31186727 PMCID: PMC6507316 DOI: 10.3892/ol.2019.10198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
The radiosensitizing effect of 5-aminolevulinic acid (5-ALA) has been demonstrated in glioma and melanoma in a number of studies. Enhancing the radiosensitivity of colorectal cancer may improve survival rates and lessen adverse effects. The present study assessed the radiosensitizing effect of 5-ALA in colorectal cancer using the human colon cancer cell line HT29 in vitro and in vivo. In vitro, cells were pretreated with 5-ALA and exposed to ionizing radiation. Cells pretreated with or without 5-ALA were compared using a colony formation assay. In vivo, HT29 cells were implanted into mice subcutaneously and subsequently exposed to ionizing radiation. 5-ALA was administrated by intraperitoneal injection. Subcutaneous tumors treated with or without 5-ALA were compared. Single-dose and multi-dose irradiations were applied both in vitro and in vivo. Cells exposed to multi-dose irradiation and pretreated with 5-ALA in vitro had a significantly lower surviving fraction compared with cells without 5-ALA pretreatment. Following multi-dose irradiation in vivo, the volume of the subcutaneous tumors treated with 5-ALA was significantly lower compared with that of tumors without treatment. These results suggest that radiotherapy with 5-ALA may enhance the therapeutic effect in colon cancer.
Collapse
Affiliation(s)
- Kazuto Yamada
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yosuke Kamada
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masayoshi Nakanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
15
|
Chen H, Qiu Y, Ding D, Lin H, Sun W, Wang GD, Huang W, Zhang W, Lee D, Liu G, Xie J, Chen X. Gadolinium-Encapsulated Graphene Carbon Nanotheranostics for Imaging-Guided Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802748. [PMID: 30035840 PMCID: PMC6435436 DOI: 10.1002/adma.201802748] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Indexed: 05/18/2023]
Abstract
Photosensitizers (PS) are an essential component of photodynamic therapy (PDT). Conventional PSs are often porphyrin derivatives, which are associated with high hydrophobicity, low quantum yield in aqueous solutions, and suboptimal tumor-to-normal-tissue (T/N) selectivity. There have been extensive efforts to load PSs into nanoparticle carriers to improve pharmacokinetics. The approach, however, is often limited by PS self-quenching, pre-mature release, and nanoparticle accumulation in the reticuloendothelial system organs. Herein, a novel, nanoparticle-based PS made of gadolinium-encapsulated graphene carbon nanoparticles (Gd@GCNs), which feature a high 1 O2 quantum yield, is reported. Meanwhile, Gd@GCNs afford strong fluorescence and high T1 relaxivity (16.0 × 10-3 m-1 s-1 , 7 T), making them an intrinsically dual-modal imaging probe. Having a size of approximately 5 nm, Gd@GCNs can accumulate in tumors through the enhanced permeability and retention effect. The unbound Gd@GCNs cause little toxicity because Gd is safely encapsulated within an inert carbon shell and because the particles are efficiently excreted from the host through renal clearance. Studies with rodent tumor models demonstrate the potential of the Gd@GCNs to mediate image-guided PDT for cancer treatment. Overall, the present study shows that Gd@GCNs possess unique physical, pharmaceutical, and toxicological properties and are an all-in-one nanotheranostic tool with substantial clinical translation potential.
Collapse
Affiliation(s)
- Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China,
| | - Yuwei Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dandan Ding
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Geoffrey D. Wang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Weicheng Huang
- Condensed Matter Science and Technology Institute, Department of Physics, Harbin Institute of Technology, Harbin, China
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Daye Lee
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China,
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA,
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA,
| |
Collapse
|
16
|
Looft A, Pfitzner M, Preuß A, Röder B. In vivo singlet molecular oxygen measurements: Sensitive to changes in oxygen saturation during PDT. Photodiagnosis Photodyn Ther 2018; 23:325-330. [PMID: 30026074 DOI: 10.1016/j.pdpdt.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/13/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Direct singlet molecular oxygen detection is known to be a valuable tool for understanding photodynamic action. It could become useful for optimizing illumination schedules in photodynamic therapy. The method of time resolved singlet molecular oxygen luminescence detection can give insights into generation of singlet oxygen and its interaction with the environment and therefore possibly allows monitoring the treatments efficacy. Due to high requirements for sensitivity as well as time resolution it has not yet been used in situ. The latest improvements in the detection system make in vivo time resolved singlet molecular oxygen luminescence detection possible. METHODS In this work, blood vessels in the chicken embryo CAM-model were scanned after injection of the photosensitizer Foslip®, yielding time resolved singlet molecular oxygen luminescence. A custom-made trifurcated fiber in combination with a dye laser, a photomultiplier tube and a fiber spectrometer was utilized for simultaneous excitation, singlet molecular oxygen luminescence and photosensitizer fluorescence detection. RESULTS Singlet oxygen luminescence kinetics for mixed venous and arterialized blood in chicken embryos using the CAM-model were recorded. The data analysis resulted in two distinct and distinguishable photosensitizer triplet lifetimes corresponding to the high and low oxygen partial pressures in the oxygen-rich arterialized blood and oxygen-poor mixed venous blood. CONCLUSIONS The sensitivity of direct singlet molecular oxygen luminescence detection to different oxygen partial pressures could be shown in vivo. Therefore, this study is a first step towards optimizing the illumination conditions of photodynamic treatment in situ by real time monitoring of the oxygen partial pressure within the target tissue.
Collapse
Affiliation(s)
- Andreas Looft
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Michael Pfitzner
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Beate Röder
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.
| |
Collapse
|
17
|
Photodithazine photodynamic effect on viability of 9L/lacZ gliosarcoma cell line. Lasers Med Sci 2017; 32:1245-1252. [DOI: 10.1007/s10103-017-2227-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
|
18
|
Ueta K, Yamamoto J, Tanaka T, Nakano Y, Kitagawa T, Nishizawa S. 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells. Int J Mol Med 2016; 39:387-398. [DOI: 10.3892/ijmm.2016.2841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/06/2016] [Indexed: 11/06/2022] Open
|
19
|
Yamamoto J, Kakeda S, Yoneda T, Ogura SI, Shimajiri S, Tanaka T, Korogi Y, Nishizawa S. Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas. Oncol Lett 2016; 13:1269-1275. [PMID: 28454245 DOI: 10.3892/ol.2016.5539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) with a gadolinium-based contrast agent is the gold standard for high-grade gliomas (HGGs). The compound 5-aminolevulinic acid (5-ALA) undergoes a high rate of cellular uptake, particularly in cancer cells. In addition, fluorescence-guided resection with 5-ALA is widely used for imaging HGGs. 5-ALA is water soluble, while protoporphyrin IX (PpIX) is water insoluble. It was speculated whether converting from 5-ALA to PpIX may relatively increase intracellular water content, and consequently, might enhance the T2 signal intensity in HGG. The aim of the present study was to assess whether 5-ALA-induced PpIX enhances the T2 signal intensity in patients with HGGs. A total of 4 patients who were candidates for HGG surgical treatment were prospectively analyzed with preoperative MRI. Patients received oral doses of 5-ALA (20 mg/kg) 3 h prior to anesthesia. At 2.5 h post-5-ALA administration, T2-weighted images (T2WIs) were obtained from all patients. Subsequently, tumors were evaluated via fluorescence using a modified operating microscope. Fluorescent tumor tissues were obtained to analyze the accumulation of 5-ALA-induced PpIX within the tumors, which was confirmed quantitatively by high-performance liquid chromatography (HPLC) analysis. The MRI T2 signal intensity within the tumors was evaluated prior to and following 5-ALA administration. Three glioblastoma multiformes (GBMs) and 1 anaplastic oligodendroglioma (AO) were included in the analysis. Intraoperatively, all GBMs exhibited strong fluorescence of 5-ALA-induced PpIX, whilst no fluorescence was observed in the AO sample. HPLC analysis indicated a higher accumulation of 5-ALA-induced PpIX in the GBM samples compared with the AO sample. In total, 48 regions of interest were identified within the tumors from T2-WIs. In the GBM group, the relative T2 signal intensity value within the tumors following 5-ALA administration was significantly increased compared with the T2 signal intensity value prior to 5-ALA administration (1.537±0.021 and 1.577±0.023, respectively; P=0.0055). No significant differences were observed in the AO group. These results suggest that the 5-ALA-induced PpIX enhanced the T2 signal intensity in HGG. Therefore, 5-ALA may be a potentially useful MRI contrast reagent for HGG.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Shun-Ichiro Ogura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shohei Shimajiri
- Department of Surgical Pathology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | | | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
20
|
Li B, Lin L, Lin H, Wilson BC. Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. JOURNAL OF BIOPHOTONICS 2016; 9:1314-1325. [PMID: 27136270 DOI: 10.1002/jbio.201600055] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 05/03/2023]
Abstract
Photodynamic therapy (PDT) uses photosensitizers and visible light in combination with molecular oxygen to produce reactive oxygen species (ROS) that kill malignant cells by apoptosis and/or necrosis, shut down the tumor microvasculature and stimulate the host immune system. The excited singlet state of oxygen (1 O2 ) is recognized to be the main cytotoxic ROS generated during PDT for the majority of photosensitizers used clinically and for many investigational new agents, so that maximizing its production within tumor cells and tissues can improve the therapeutic response, and several emerging and novel approaches for this are summarized. Quantitative techniques for 1 O2 production measurement during photosensitization are also of immense importance of value for both preclinical research and future clinical practice. In this review, emerging strategies for enhanced photosensitized 1 O2 generation are introduced, while recent advances in direct detection and imaging of 1 O2 luminescence are summarized. In addition, the correlation between cumulative 1 O2 luminescence and PDT efficiency will be highlighted. Meanwhile, the validation of 1 O2 luminescence dosimetry for PDT application is also considered. This review concludes with a discussion on future demands of 1 O2 luminescence detection for PDT dosimetry, with particular emphasis on clinical translation. Eye-catching color image for graphical abstract.
Collapse
Affiliation(s)
- Buhong Li
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Lisheng Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiyun Lin
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Brian C Wilson
- Department of Medical Biophysics, University of Toronto/University Health Network, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
21
|
Klimenko VV, Knyazev NA, Moiseenko FV, Rusanov AA, Bogdanov AA, Dubina MV. Pulse mode of laser photodynamic treatment induced cell apoptosis. Photodiagnosis Photodyn Ther 2016; 13:101-107. [DOI: 10.1016/j.pdpdt.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 11/16/2022]
|
22
|
Grossman CE, Carter SL, Czupryna J, Wang L, Putt ME, Busch TM. Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. Int J Mol Sci 2016; 17:ijms17010101. [PMID: 26784170 PMCID: PMC4730343 DOI: 10.3390/ijms17010101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023] Open
Abstract
Photodynamic therapy (PDT) of the thoracic cavity can be performed in conjunction with surgery to treat cancers of the lung and its pleura. However, illumination of the cavity results in tissue exposure to a broad range of fluence rates. In a murine model of intrathoracic PDT, we studied the efficacy of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH; Photochlor®)-mediated PDT in reducing the burden of non-small cell lung cancer for treatments performed at different incident fluence rates (75 versus 150 mW/cm). To better understand a role for growth factor signaling in disease progression after intrathoracic PDT, the expression and activation of epidermal growth factor receptor (EGFR) was evaluated in areas of post-treatment proliferation. The low fluence rate of 75 mW/cm produced the largest reductions in tumor burden. Bioluminescent imaging and histological staining for cell proliferation (anti-Ki-67) identified areas of disease progression at both fluence rates after PDT. However, increased EGFR activation in proliferative areas was detected only after treatment at the higher fluence rate of 150 mW/cm. These data suggest that fluence rate may affect the activation of survival factors, such as EGFR, and weaker activation at lower fluence rate could contribute to a smaller tumor burden after PDT at 75 mW/cm.
Collapse
Affiliation(s)
- Craig E Grossman
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Shirron L Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Julie Czupryna
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Le Wang
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mary E Putt
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Gold nanoparticle-enhanced photodynamic therapy: effects of surface charge and mitochondrial targeting. Ther Deliv 2015; 6:307-21. [DOI: 10.4155/tde.14.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: The authors aimed to further improve the efficiency and selectivity of gold nanoparticle (Au NP)-assisted photodynamic therapy by modulating the surface charge of Au NPs and delivering Au NPs particularly to mitochondria of breast cancer cells. Methods: Solid gold nanospheres (˜50 nm) with negative and positive surface charge were synthesized respectively, and mitochondria-targeting Au NPs were prepared by conjugating with triphenylphosphonium molecules. Conclusion: Positively charged Au NPs were preferably taken up by breast cancer cells. Combination of positive surface charge with mitochondria-targeting domain onto Au NPs allowed their accumulation in the mitochondria of breast cancer cells to significantly elevate reactive oxygen species formation in 5-aminolevulinic-acid-enabled photodynamic therapy and improve selective destruction of breast cancer cells.
Collapse
|
24
|
Sun X, Xu H, Shen J, Guo S, Shi S, Dan J, Tian F, Tian Y, Tian Y. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy. ULTRASONICS SONOCHEMISTRY 2015; 22:7-14. [PMID: 25023826 DOI: 10.1016/j.ultsonch.2014.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/21/2014] [Accepted: 06/22/2014] [Indexed: 06/03/2023]
Abstract
Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT.
Collapse
Affiliation(s)
- Xin Sun
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, China; Department of Pathophysiology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin 150081, China
| | - Haobo Xu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, China
| | - Jing Shen
- Department of Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, China
| | - Sa Shi
- Department of Pathophysiology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin 150081, China
| | - Juhua Dan
- Department of Pathophysiology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin 150081, China
| | - Fang Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, China
| | - Yanfeng Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, China; Department of Pathophysiology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin 150081, China.
| |
Collapse
|
25
|
Liu YC, Tu SY, Lin HY. Evaluation of the Practicality of Melanin as a Photodynamic-Inactivation Photosensitizer by Its Nanonization. J PHOTOPOLYM SCI TEC 2015. [DOI: 10.2494/photopolymer.28.739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi-Cheng Liu
- Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University
- Institute of Atomic and Molecular Sciences, Academia Sinica
| | - Shih-Yu Tu
- Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University
| | - Hoang-Yan Lin
- Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University
| |
Collapse
|
26
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
KITAGAWA TAKEHIRO, YAMAMOTO JUNKOH, TANAKA TOHRU, NAKANO YOSHITERU, AKIBA DAISUKE, UETA KUNIHIRO, NISHIZAWA SHIGERU. 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: Quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro. Oncol Rep 2014; 33:583-90. [DOI: 10.3892/or.2014.3618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/17/2014] [Indexed: 11/06/2022] Open
|
28
|
Yamamoto J, Ogura SI, Shimajiri S, Nakano Y, Akiba D, Kitagawa T, Ueta K, Tanaka T, Nishizawa S. 5-aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Mol Med Rep 2014; 11:1813-9. [PMID: 25420581 DOI: 10.3892/mmr.2014.2991] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Ionizing irradiation is a well‑established therapeutic modality for malignant gliomas. Due to its high cellular uptake, 5‑aminolevulinic acid (ALA) is used for fluorescence‑guided resection of malignant gliomas. We have previously shown that 5‑ALA sensitizes glioma cells to irradiation in vitro. The aim of the present study was to assess whether 5‑ALA acts as a radiosensitizer in experimental glioma in vivo. Rats were subcutaneously injected with 9L gliosarcoma cells and administered 5‑ALA. The accumulation of 5‑ALA‑induced protoporphyrin IX was confirmed by high‑performance liquid chromatography (HPLC) analysis. Subcutaneous (s.c.) tumors were subsequently irradiated with 2 Gy/day for five consecutive days. In the experimental glioma model, high‑performance liquid chromatography analysis revealed a high level of accumulation of 5‑ALA‑induced protoporphyrin IX in s.c. tumors 3 h after 5‑ALA administration. Multi‑dose ionizing irradiation induced greater inhibition of tumor growth in rats that were administered 5‑ALA than in the non‑5‑ALA‑treated animals. Immunohistochemical analysis of the s.c. tumors revealed that numerous ionized calcium‑binding adapter molecule 1 (Iba1)‑positive macrophages gathered at the surface of and within the s.c. tumors following multi‑dose ionizing irradiation in combination with 5‑ALA administration. By contrast, the s.c. tumors in the control group scarcely showed aggregation of Iba1‑positive macrophages. These results suggested that multi‑dose ionizing irradiation with 5‑ALA induced not only a direct cytotoxic effect but also enhanced the host antitumor immune response and thus caused high inhibition of tumor growth in experimental glioma.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Shun-Ichiro Ogura
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 226‑8501, Japan
| | - Shohei Shimajiri
- Department of Surgical Pathology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yoshiteru Nakano
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Daisuke Akiba
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Takehiro Kitagawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Kunihiro Ueta
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Tohru Tanaka
- SBI Pharmaceuticals Co., Ltd., Minato‑ku, Tokyo 106‑6020, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
29
|
Chibazakura T, Toriyabe Y, Fujii H, Takahashi K, Kawakami M, Kuwamura H, Haga H, Ogura SI, Abe F, Nakajima M, Yoshikawa H, Tanaka T. 5-Aminolevulinic acid enhances cell death under thermal stress in certain cancer cell lines. Biosci Biotechnol Biochem 2014; 79:422-31. [PMID: 25346276 DOI: 10.1080/09168451.2014.975186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
5-aminolevulinic acid (5-ALA) is contained in all organisms and a starting substrate for heme biosynthesis. Since administration of 5-ALA specifically leads cancer cells to accumulate protoporphyrin IX (PpIX), a potent photosensitizer, we tested if 5-ALA also serves as a thermosensitizer. 5-ALA enhanced heat-induced cell death of cancer cell lines such as HepG2, Caco-2, and Kato III, but not other cancer cell lines including U2-OS and normal cell lines including WI-38. Those 5-ALA-sensitive cancer cells, but neither U2-OS nor WI-38, accumulated intracellular PpIX and exhibited an increased reactive oxygen species (ROS) generation under thermal stress with 5-ALA treatment. In addition, blocking the PpIX-exporting transporter ABCG2 in U2-OS and WI-38 cells enhanced their cell death under thermal stress with 5-ALA. Finally, a ROS scavenger compromised the cell death enhancement by 5-ALA. These suggest that 5-ALA can sensitize certain cancer cells, but not normal cells, to thermal stress via accumulation of PpIX and increase of ROS generation.
Collapse
Affiliation(s)
- Taku Chibazakura
- a Department of Bioscience , Tokyo University of Agriculture , Tokyo , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mallidi S, Anbil S, Lee S, Manstein D, Elrington S, Kositratna G, Schoenfeld D, Pogue B, Davis SJ, Hasan T. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:028001. [PMID: 24503639 PMCID: PMC3915169 DOI: 10.1117/1.jbo.19.2.028001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 05/19/2023]
Abstract
The need for patient-specific photodynamic therapy (PDT) in dermatologic and oncologic applications has triggered several studies that explore the utility of surrogate parameters as predictive reporters of treatment outcome. Although photosensitizer (PS) fluorescence, a widely used parameter, can be viewed as emission from several fluorescent states of the PS (e.g., minimally aggregated and monomeric), we suggest that singlet oxygen luminescence (SOL) indicates only the active PS component responsible for the PDT. Here, the ability of discrete PS fluorescence-based metrics (absolute and percent PS photobleaching and PS re-accumulation post-PDT) to predict the clinical phototoxic response (erythema) resulting from 5-aminolevulinic acid PDT was compared with discrete SOL (DSOL)-based metrics (DSOL counts pre-PDT and change in DSOL counts pre/post-PDT) in healthy human skin. Receiver operating characteristic curve (ROC) analyses demonstrated that absolute fluorescence photobleaching metric (AFPM) exhibited the highest area under the curve (AUC) of all tested parameters, including DSOL based metrics. The combination of dose-metrics did not yield better AUC than AFPM alone. Although sophisticated real-time SOL measurements may improve the clinical utility of SOL-based dosimetry, discrete PS fluorescence-based metrics are easy to implement, and our results suggest that AFPM may sufficiently predict the PDT outcomes and identify treatment nonresponders with high specificity in clinical contexts.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Sriram Anbil
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Seonkyung Lee
- Physical Sciences Inc., Andover, Massachusetts 01810
| | - Dieter Manstein
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - Stefan Elrington
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Garuna Kositratna
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - David Schoenfeld
- Massachusetts General Hospital, Biostatistics Department, Boston, Massachusetts 02114
| | - Brian Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | | | - Tayyaba Hasan
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Address all correspondence to: Tayyaba Hasan, E-mail:
| |
Collapse
|
31
|
Liu J, Ogawa M, Sakai T, Takashima M, Okazaki S, Magata Y. Differentiation of tumor sensitivity to photodynamic therapy and early evaluation of treatment effect by nuclear medicine techniques. Ann Nucl Med 2013; 27:669-75. [PMID: 23666558 DOI: 10.1007/s12149-013-0734-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 05/01/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Our final goal is to develop an appropriate method using nuclear medicine technique for monitoring the effect and prediction of Photodynamic Therapy (PDT) on tumors. The aim of this study is to evaluate the effect of PDT on tumor cells in vitro using (18)F-FDG and (99m)Tc-MIBI as tracers. METHODS Five tumor cell lines (A431, DU145, H1650, LS180, SHIN3) with varied characteristics were irradiated after incubating for 24 h with several doses of Photofrin (PF). Singlet oxygen was monitored by the near-IR emission detection system during irradiation and generated (1)O2 was calculated. PDT effects were rapidly evaluated by nuclear medicine techniques (uptake of (18)F-FDG and (99m)Tc-MIBI) and traditional methods for cell viability (MTT and trypan blue assays) at 3 h after PDT. Intracellular PF concentration was measured by absorption spectrometer and cell protein content was measured by the Lowry method. (18)F-FDG uptake, (99m)Tc-MIBI uptake, singlet oxygen, and intracellular PF concentration were standardized by protein content. Decrease % of (18)F-FDG and (99m)Tc-MIBI, MTT, and trypan blue was normalized to the control group. RESULTS Decrease % of (18)F-FDG was exponentially related to decrease % of MTT (R (2) = 0.650, P < 0.01) while decrease % of (99m)Tc-MIBI was linearly related to that of MTT (R (2) = 0.719, P < 0.01). The decrease % of MTT was more sensitive than that of trypan blue. However, neither (1)O2 nor PF uptake was correlated with sensitivity to PDT. In addition, (18)F-FDG uptake before PDT was linearly related to decrease % of MTT (R (2) = 0.800, P < 0.05). CONCLUSIONS Our findings in in vitro studies suggest that (99m)Tc-MIBI is better than (18)F-FDG for early evaluation of PDT effect, but (18)F-FDG uptake may be used to predict PDT sensitivity before therapy.
Collapse
Affiliation(s)
- Jie Liu
- Department of Molecular Imaging, Medical Photonics Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Chui C, Aoki A, Takeuchi Y, Sasaki Y, Hiratsuka K, Abiko Y, Izumi Y. Antimicrobial effect of photodynamic therapy using high-power blue light-emitting diode and red-dye agent on Porphyromonas gingivalis. J Periodontal Res 2013; 48:696-705. [PMID: 23441868 DOI: 10.1111/jre.12055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Antimicrobial photodynamic therapy (a-PDT) using a combination of red-colored laser/light-emitting diode (LED) and blue dye has been employed for periodontal therapy and the antimicrobial effect seems promising. Blue light, which has favorable wavelength properties, would be more effective as a light source for a-PDT because blue light itself possesses an antimicrobial effect. This study aimed to investigate the effect of a-PDT using a novel combination of high-power blue LED and red-dye agent on Porphyromonas gingivalis in vitro. MATERIAL AND METHODS Porphyromonas gingivalis ATCC 33277 suspension was irradiated with blue LED (BL) (425-470 nm) or red LED (RL) (625-635 nm) at 30-90 J/cm(2) , or was mixed with erythrosine (ER), phloxine B (PB) or rose bengal (RB) with or without BL irradiation (30 J/cm(2) ). RL (30 J/cm(2) ) in combination with toluidine blue was employed as positive control. All the suspensions of P. gingivalis were serially diluted, plated and incubated anaerobically, and the numbers of colony-forming units (CFUs) were counted on day 7. RESULTS BL irradiation at 60 and 90 J/cm(2) demonstrated a significant reduction in the numbers of CFUs. ER, PB and RB solutions at 160 μg/mL showed almost no or only a minimal reduction in the numbers of CFUs. BL at 30 J/cm(2) combined with ER, PB or RB at 160 μg/mL resulted in a log reduction of 0.9, 1.0 and 7.1, respectively, in the numbers of CFUs; 30 J/cm(2) BL with RB at 1.6, 16 and 160 μg/mL demonstrated a log reduction of 6.3, 8.0 and 5.5, respectively; and a log reduction of 5.2 was obtained after 30 J/cm(2) RL with 16 μg/mL TB. CONCLUSION Within the limits of this study, BL was found to have an antimicrobial/growth-inhibiting effect on P. gingivalis, and a-PDT using a combination of BL and RB shows promise as a new technical modality for bacterial elimination in periodontal therapy.
Collapse
Affiliation(s)
- C Chui
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Gemmell NR, McCarthy A, Liu B, Tanner MG, Dorenbos SD, Zwiller V, Patterson MS, Buller GS, Wilson BC, Hadfield RH. Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. OPTICS EXPRESS 2013; 21:5005-13. [PMID: 23482033 DOI: 10.1364/oe.21.005005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Direct monitoring of singlet oxygen (¹O₂) luminescence is a particularly challenging infrared photodetection problem. ¹O₂, an excited state of the oxygen molecule, is a crucial intermediate in many biological processes. We employ a low noise superconducting nanowire single-photon detector to record ¹O₂ luminescence at 1270 nm wavelength from a model photosensitizer (Rose Bengal) in solution. Narrow band spectral filtering and chemical quenching is used to verify the ¹O₂ signal, and lifetime evolution with the addition of protein is studied. Furthermore, we demonstrate the detection of ¹O₂ luminescence through a single optical fiber, a marked advance for dose monitoring in clinical treatments such as photodynamic therapy.
Collapse
Affiliation(s)
- Nathan R Gemmell
- Scottish Universities Physics Alliance and School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Spyratou E, Makropoulou M, Mourelatou E, Demetzos C. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy. Cancer Lett 2012; 327:111-22. [DOI: 10.1016/j.canlet.2011.12.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/21/2011] [Accepted: 12/24/2011] [Indexed: 12/20/2022]
|
35
|
Tsutsumi M, Miki Y, Akimoto J, Haraoka J, Aizawa K, Hirano K, Beppu M. Photodynamic therapy with talaporfin sodium induces dose-dependent apoptotic cell death in human glioma cell lines. Photodiagnosis Photodyn Ther 2012; 10:103-10. [PMID: 23769275 DOI: 10.1016/j.pdpdt.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/05/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the kinetics of cell death in human glioma cell lines induced by photodynamic therapy (PDT) with the second-generation photosensitizer talaporfin sodium (TS) and a 664-nm diode laser. MATERIALS AND METHODS Three human glioma cell lines (T98G, A172, U251) were studied. After incubation of the cell lines with various concentrations of TS for 4 h, PDT using diode laser irradiation at 33 mW/cm² and 10 J/cm² was performed. Cell viability and changes in cell morphology were examined by the Cell Counting Kit-8 assay and phase-contrast microscopy, respectively. In addition, to evaluate the pathology of cell death, changes in cell viability after treatment with a caspase activation inhibitor and an autophagy inhibitor were also examined. RESULTS In all 3 human glioma cell lines, TS induced dose-dependent cell death. However, the 50% lethal dose of TS varied among these cell lines. The main morphological feature of cell death was shrinkage of the cell body, and the number of cells with this morphological change increased in a time-dependent manner, resulting in cell death. In addition, a dose-dependent improvement in cell viability by the caspase inhibitor Z-VAD-fmk was observed. CONCLUSION PDT with TS induces dose-dependent apoptosis in human glioma cell lines. However, the sensitivity to PDT varied among the cell lines, indicating a possible difference in the intracellular content of TS, or a difference in the susceptibility to the intracellular oxidative stress caused by PDT.
Collapse
|
36
|
Bactericidal action of photogenerated singlet oxygen from photosensitizers used in plaque disclosing agents. PLoS One 2012; 7:e37871. [PMID: 22629466 PMCID: PMC3358276 DOI: 10.1371/journal.pone.0037871] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/25/2012] [Indexed: 11/24/2022] Open
Abstract
Background Photodynamic therapy (PDT) has been suggested as an efficient clinical approach for the treatment of dental plaque in the field of dental care. In PDT, once the photosensitizer is irradiated with light of a specific wavelength, it transfers the excitation energy to molecular oxygen, which gives rise to singlet oxygen. Methodology/Principal Findings Since plaque disclosing agents usually contain photosensitizers such as rose bengal, erythrosine, and phloxine, they could be used for PTD upon photoactivation. The aim of the present study is to compare the ability of these three photosensitizers to produce singlet oxygen in relation to their bactericidal activity. The generation rates of singlet oxygen determined by applying an electron spin resonance technique were in the order phloxine > erythrosine ≒ rose bengal. On the other hand, rose bengal showed the highest bactericidal activity against Streptococcus mutans, a major causative pathogen of caries, followed by erythrosine and phloxine, both of which showed activity similar to each other. One of the reasons for the discrepancy between the singlet oxygen generating ability and bactericidal activity was the incorporation efficiency of the photosensitizers into the bacterial cells. The incorporation rate of rose bengal was the highest among the three photosensitizers examined in the present study, likely leading to the highest bactericidal activity. Meanwhile, the addition of L-histidine, a singlet oxygen quencher, cancelled the bactericidal activity of any of the three photoactivated photosensitizers, proving that singlet oxygen was responsible for the bactericidal action. Conclusions It is strongly suggested that rose bengal is a suitable photosensitizer for the plaque disclosing agents as compared to the other two photosensitizers, phloxine and erythrosine, when used for PDT.
Collapse
|
37
|
Nakamura K, Ishiyama K, Ikai H, Kanno T, Sasaki K, Niwano Y, Kohno M. Reevaluation of analytical methods for photogenerated singlet oxygen. J Clin Biochem Nutr 2011; 49:87-95. [PMID: 21980223 PMCID: PMC3171684 DOI: 10.3164/jcbn.10-125] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study is to compare different analytical methods for singlet oxygen and to discuss an appropriate way to evaluate the yield of singlet oxygen photogenerated from photosensitizers. Singlet oxygen photogenerated from rose bengal was evaluated by electron spin resonance analysis using sterically hindered amines, spectrophotometric analysis of 1,3-diphenylisobenzofuran oxidation, and analysis of fluorescent probe (Singlet Oxygen Sensor Green®). All of the analytical methods could evaluate the relative yield of singlet oxygen. The sensitivity of the analytical methods was 1,3-diphenylisobenzofuran < electron spin resonance < Singlet Oxygen Sensor Green®. However, Singlet Oxygen Sensor Green® could be used only when the concentration of rose bengal was very low (<1 µM). In addition, since the absorption spectra of 1,3-diphenylisobenzofuran is considerably changed by irradiation of 405 nm laser, photosensitizers which are excited by light with a wavelength of around 400 nm such as hematoporphyrin cannot be used in the 1,3-diphenylisobenzofuran oxidation method. On the other hand, electron spin resonance analysis using a sterically hindered amine, especially 2,2,6,6-tetramethyl-4-piperidinol and 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, had proper sensitivity and wide detectable range for the yield of photogenerated singlet oxygen. Therefore, in photodynamic therapy, it is suggested that the relative yield of singlet oxygen generated by various photosensitizers can be evaluated properly by electron spin resonance analysis.
Collapse
Affiliation(s)
- Keisuke Nakamura
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Biophysical parameters influencing secondary oxidants activation in human serum exposed to singlet oxygen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:224-31. [DOI: 10.1016/j.jphotobiol.2010.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 11/20/2022]
|
39
|
Yang L, Wei Y, Xing D, Chen Q. Increasing the efficiency of photodynamic therapy by improved light delivery and oxygen supply using an anticoagulant in a solid tumor model. Lasers Surg Med 2011; 42:671-9. [PMID: 20740620 DOI: 10.1002/lsm.20951] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The main factors in photodynamic therapy (PDT) are: photosensitizer retention, photon absorption, and oxygen supply. Each factor has its unique set of problems that poses limitation to the treatment. Both light delivery and oxygen supply are significant bottlenecks in PDT. Vascular closure during PDT reduces oxygen supply to the targeted tissue. On the other hand, with the changes in blood perfusion, the tissue optical properties change, and result in variation in irradiation light transmission. For these reasons, it becomes very important to avoid blood coagulation and vascular closure during PDT. STUDY DESIGN/MATERIALS AND METHODS The efficiency of PDT combined with the anticoagulant heparin was studied in a BALB/c mouse model with subcutaneous EMT6 mammary carcinomas. Mice were randomized into three groups: control, PDT-only, and PDT with heparin. The photosensitizer Photofrin was used in our experiments. Light transmission, blood perfusion, and local production of reactive oxygen species (ROS) were monitored during the treatment. The corresponding histological examinations were performed to determine the thrombosis immediately after irradiation and to evaluate tumor necrosis 48 hours after the treatment. RESULTS The results clearly demonstrated that PDT combined with pre-administered heparin can significantly reduce thrombosis during light irradiation. The blood perfusion, oxygen supply, and light delivery are all improved. Improved tumor responses in the combined therapy, as shown with the histological examination and tumor growth assay, are clearly demonstrated and related to an increased local ROS production. CONCLUSION Transitory anticoagulation treatment significantly enhances the antitumor effect of PDT. It is mainly due to the improvement of the light delivery and oxygen supply in tumor, and ultimately the amount of ROS produced during PDT.
Collapse
Affiliation(s)
- Liyong Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | | | |
Collapse
|
40
|
Wei Y, Song J, Chen Q. In vivo detection of chemiluminescence to monitor photodynamic threshold dose for tumor treatment. Photochem Photobiol Sci 2011; 10:1066-71. [DOI: 10.1039/c0pp00346h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Wang KKH, Finlay JC, Busch TM, Hahn SM, Zhu TC. Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling. JOURNAL OF BIOPHOTONICS 2010; 3:304-18. [PMID: 20222102 PMCID: PMC3071971 DOI: 10.1002/jbio.200900101] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Singlet oxygen ((1)O(2)) is the major cytotoxic agent responsible for cell killing for type-II photodynamic therapy (PDT). An empirical four-parameter macroscopic model is proposed to calculate the "apparent reacted (1)O(2) concentration", [(1)O(2)](rx), as a clinical PDT dosimetry quantity. This model incorporates light diffusion equation and a set of PDT kinetics equations, which can be applied in any clinical treatment geometry. We demonstrate that by introducing a fitting quantity "apparent singlet oxygen threshold concentration" [(1)O(2)](rx, sd), it is feasible to determine the model parameters by fitting the computed [(1)O(2)](rx) to the Photofrin-mediated PDT-induced necrotic distance using interstitially-measured Photofrin concentration and optical properties within each mouse. After determining the model parameters and the [(1)O(2)](rx, sd), we expect to use this model as an explicit dosimetry to assess PDT treatment outcome for a specific photosensitizer in an in vivo environment. The results also provide evidence that the [(1)O(2)](rx), because it takes into account the oxygen consumption (or light fluence rate) effect, can be a better predictor of PDT outcome than the PDT dose defined as the energy absorbed by the photosensitizer, which is proportional to the product of photosensitizer concentration and light fluence.
Collapse
Affiliation(s)
- Ken Kang-Hsin Wang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jarod C. Finlay
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
42
|
Wei Y, Xing D, Luo S, Yang L, Chen Q. Quantitative measurement of reactive oxygen species in vivo by utilizing a novel method: chemiluminescence with an internal fluorescence as reference. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:027006. [PMID: 20459280 DOI: 10.1117/1.3368688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Reactive oxygen species (ROS) produced by photodynamic therapy (PDT) is recorded in vivo using a chemiluminescence (CL)-based gated optical system. A novel approach is developed to utilize the fluorescence (FL) of the CL probe as an internal fluorescence to calibrate the observed CL on pharmacokinetics of the probe in situ. The results show that during an in vivo PDT session, the intensity of CL decreases significantly and the decaying of CL is governed by fast and slow time components. By comparing the temporal profile of FL to that of the corresponding CL, it is found that the slow component is mainly attributed to the probe pharmacokinetics, whereas the fast component is likely due to rapid oxygen consumption as a result of PDT treatment. With carefully selected criteria, it is possible to minimize the effect of probe pharmacokinetics. This significantly improves the monitoring method for practical applications.
Collapse
Affiliation(s)
- Yanchun Wei
- South China Normal University, College of Biophotonics, MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangzhou, 510631 China
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Lee S, Vu DH, Hinds MF, Davis SJ, Liang A, Hasan T. Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064035. [PMID: 19123681 PMCID: PMC2994193 DOI: 10.1117/1.3042265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that involves optical excitation of photosensitizers that promote oxygen molecules to the metastable O(2)(a(1)Delta) state (singlet oxygen). This species is believed to be responsible for the destruction of cancerous cells during PDT. We describe a fiber optic-coupled, pulsed diode laser-based diagnostic for singlet oxygen. We use both temporal and spectral filtering to enhance the detection of the weak O(2)(a-->X) emission near 1.27 microm. We present data that demonstrate real-time singlet oxygen production in tumor-laden rats with chlorin e6 and 5-aminolevulinic acid-induced protoporphyrin photosensitizers. We also observe a positive correlation between post-PDT treatment regression of the tumors and the relative amount of singlet oxygen measured. These results are promising for the development of the sensor as a real-time dosimeter for PDT.
Collapse
Affiliation(s)
- Seonkyung Lee
- Physical Sciences Inc., 20 New England Business Center, Andover, Massachusetts 01810-1077, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Laubach HJ, Chang SK, Lee S, Rizvi I, Zurakowski D, Davis SJ, Taylor CR, Hasan T. In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:050504. [PMID: 19021376 PMCID: PMC2994192 DOI: 10.1117/1.2981813] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, including oncology, dermatology, and ophthalmology. Singlet oxygen is believed to play a key role in the efficacy of PDT, and on-line monitoring of singlet oxygen during PDT could provide a methodology to establish and customize the treatment dose clinically. This work is the first report of monitoring singlet oxygen luminescence in vivo in human subjects during PDT, demonstrating the correlation of singlet oxygen levels during PDT with the post-PDT photobiological response.
Collapse
Affiliation(s)
- Hans-Joachim Laubach
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Sung K. Chang
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Seonkyung Lee
- Physical Sciences Incorporated, Applied Sciences Division, Andover, Massachusetts 01810
| | - Imran Rizvi
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114 and Dartmouth College, Department of Engineering Sciences, Hanover, New Hampshire 03755
| | - David Zurakowski
- Children’s Hospital, Department of Surgery, Boston, Massachusetts 02115
| | - Steven J. Davis
- Physical Sciences Incorporated, Applied Sciences Division, Andover, Massachusetts 01810
| | - Charles R. Taylor
- Massachusetts General Hospital, Department of Dermatology, Boston, Massachusetts 02114
| | - Tayyaba Hasan
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Tel: 617 726 6996;
| |
Collapse
|
46
|
Khdair A, Gerard B, Handa H, Mao G, Shekhar MPV, Panyam J. Surfactant−Polymer Nanoparticles Enhance the Effectiveness of Anticancer Photodynamic Therapy. Mol Pharm 2008; 5:795-807. [DOI: 10.1021/mp800026t] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ayman Khdair
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, and Department of Pathology,
| | - Brigitte Gerard
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, and Department of Pathology,
| | - Hitesh Handa
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, and Department of Pathology,
| | - Guangzhao Mao
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, and Department of Pathology,
| | - Malathy P. V. Shekhar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, and Department of Pathology,
| | - Jayanth Panyam
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, Breast Cancer Program, Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, Michigan 48201, Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, and Department of Pathology,
| |
Collapse
|
47
|
|
48
|
Abstract
Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components -- light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.
Collapse
Affiliation(s)
- Brian C Wilson
- Division of Biophysics and Bioimaging, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
49
|
Wei Y, Xing D, Luo S, Xu W, Chen Q. Monitoring singlet oxygen in situ with delayed chemiluminescence to deduce the effect of photodynamic therapy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:024023. [PMID: 18465986 DOI: 10.1117/1.2904961] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Singlet oxygen ((1)O(2)) is an important factor mediating cell killing in photodynamic therapy (PDT). We previously reported that chemiluminescence (CL) can be used to detect (1)O(2) production in PDT and linked the signal to the PDT-induced cytotoxicity in vitro. We develop a new CL detection apparatus to achieve in vivo measurements. The system utilizes a time-delayed CL signal to overcome the interference from scattered excitation light, thus greatly improving the accuracy of the detection. The system is tested on healthy skin of BALB/ca mouse for its feasibility and reliability. The CL measurement is made during a synchronized gating period of the irradiation light. After each PDT treatment and in situ CL measurement, the skin response is scored over a period of 2 weeks. A remarkable relationship is observed between the score and the CL, regardless of the PDT treatment protocol. Although there are many issues yet to be addressed, our results clearly demonstrate the feasibility of CL measurement during PDT and its potential for in vivo PDT dosimetry. This requires further investigations.
Collapse
Affiliation(s)
- Yanchun Wei
- South China Normal University, Ministry of Education Key Laboratory of Laser Life Science, Guangzhou 510631 China
| | | | | | | | | |
Collapse
|
50
|
|