1
|
Boe M, Vicari S, Boccatonda A, Piscaglia F. The importance of ultrasound-guided biopsy: lesson from a case of liver metastasis from uveal melanoma. J Ultrasound 2024; 27:927-934. [PMID: 38864955 PMCID: PMC11496420 DOI: 10.1007/s40477-024-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Melanoma is an extremely aggressive malignant neoplasm. Uveal melanoma is the most common primary intraocular malignancy in adults, representing 3-5% of all melanomas. Liver metastases can be clinically detected in 10-20% of patients with metastatic disease from cutaneous melanoma. However, while liver is typically not the first site of disease spread in cutaneous melanoma, ocular melanoma has been showed to primarily metastasize from the eye to the liver; indeed, liver metastases are detected in approximately 87% of patients with metastatic uveal melanoma. Therefore, liver metastasis can be challenging to identify in early stages, thus being essentially asymptomatic until the disease has advanced. Here we report the case of a patient who came to our ultrasound unit reporting a large liver mass. Both contrast-enhanced abdominal computed tomography and magnetic resonance imaging did not establish a definitive diagnosis. The final diagnosis was made only through an ultrasound-guided biopsy of the mass, thus revealing a uveal melanoma metastasis. This is followed by a review of the literature on imaging follow-up of patients with melanoma.
Collapse
Affiliation(s)
- Maria Boe
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Susanna Vicari
- Internal Medicine, Bentivoglio Hospital, AUSL Bologna, Via Marconi N 35 Bentivoglio, 40010, Bologna, Italy
| | - Andrea Boccatonda
- Internal Medicine, Bentivoglio Hospital, AUSL Bologna, Via Marconi N 35 Bentivoglio, 40010, Bologna, Italy.
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. Biomark Res 2024; 12:67. [PMID: 39030653 PMCID: PMC11264923 DOI: 10.1186/s40364-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. METHODS To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing (n = 8) and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids (n = 4) using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. RESULTS Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. CONCLUSION These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Christopher D Klocke
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Amara Pang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hannah C Farley
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Abigail R Gillingham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aubrey D Dawson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Yichen Fan
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alison H Skalet
- Casey Eye Institute, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA.
- Knight Cancer Institute, OHSU, Portland, OR, USA.
| |
Collapse
|
3
|
Zheng Y, Tang Y, Yao Y, Ge T, Pan H, Cui J, Rao Y, Tao X, Jia R, Ai S, Song X, Zhuang A. Correlation Analysis of Apparent Diffusion Coefficient Histogram Parameters and Clinicopathologic Features for Prognosis Prediction in Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 38953846 PMCID: PMC11221615 DOI: 10.1167/iovs.65.8.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose To investigate the correlation between apparent diffusion coefficient (ADC) histograms and high-risk clinicopathologic features related to uveal melanoma (UM) prognosis. Methods This retrospective study included 53 patients with UM who underwent diffusion-weighted imaging (DWI) between August 2015 and March 2024. Axial DWI was performed with a single-shot spin-echo echo-planar imaging sequence. ADC histogram parameters of ADCmean, ADC50%, interquartile range (IQR), skewness, kurtosis, and entropy were obtained from DWI. The relationships between histogram parameters and high-risk clinicopathological characteristics including tumor size, preoperative retinal detachment, histological subtypes, Ki-67 index, and chromosome status, were analyzed by Spearman correlation analysis, Mann-Whitney U test, or Kruskal-Wallis test. Results A total of 53 patients (mean ± SD age, 55 ± 15 years; 22 men) were evaluated. The largest basal diameter (LBD) was correlated with kurtosis (r = 0.311, P = 0.024). Tumor prominence (TP) was correlated with entropy (r = 0.581, P < 0.001) and kurtosis (r = 0.273, P = 0.048). Additionally, significant correlations were identified between the Ki-67 index and ADCmean (r = -0.444, P = 0.005), ADC50% (r = -0.487, P = 0.002), and skewness (r = 0.394, P = 0.014). Finally, entropy was correlated with monosomy 3 (r = 0.541, P = 0.017). Conclusions The ADC histograms provided valuable insights into high-risk clinicopathologic features of UM and hold promise in the early prediction of UM prognosis.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yan Tang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Yao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tongxin Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hui Pan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
4
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
5
|
Păsărică MA, Curcă PF, Dragosloveanu CDM, Grigorescu AC, Nisipașu CI. Pathological and Molecular Diagnosis of Uveal Melanoma. Diagnostics (Basel) 2024; 14:958. [PMID: 38732371 PMCID: PMC11083017 DOI: 10.3390/diagnostics14090958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: Uveal melanoma (UM) is a common malignant intraocular tumor that presents with significant genetic differences to cutaneous melanoma and has a high genetic burden in terms of prognosis. (2) Methods: A systematic literature search of several repositories on uveal melanoma diagnosis, prognosis, molecular analysis, and treatment was conducted. (3) Results: Recent genetic understanding of oncogene-initiation mutations in GNAQ, GNA11, PLCB4, and CYSLTR2 and secondary progression drivers of BAP1 inactivation and SF3B1 and EIF1AX mutations offers an appealing explanation to the high prognostic impact of adding genetic profiling to clinical UM classification. Genetic information could help better explain peculiarities in uveal melanoma, such as the low long-term survival despite effective primary tumor treatment, the overwhelming propensity to metastasize to the liver, and possibly therapeutic behaviors. (4) Conclusions: Understanding of uveal melanoma has improved step-by-step from histopathology to clinical classification to more recent genetic understanding of oncogenic initiation and progression.
Collapse
Affiliation(s)
- Mihai Adrian Păsărică
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.P.); (C.D.M.D.)
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Paul Filip Curcă
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.P.); (C.D.M.D.)
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Clinical Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.A.P.); (C.D.M.D.)
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | | | - Cosmin Ionuț Nisipașu
- Department of Dental Medicine I, Implant-Prosthetic Therapy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
6
|
Pawlik VE, Sonntag SR, Grisanti S, Tura A, Kakkassery V, Ranjbar M. Impact of Nintedanib and Anti-Angiogenic Agents on Uveal Melanoma Cell Behavior. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38381412 PMCID: PMC10893901 DOI: 10.1167/iovs.65.2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose The purpose of this study was to investigate the direct impact of the combined angiokinase inhibitor nintedanib as well as the anti-angiogenic agents ranibizumab, bevacizumab, and aflibercept on the primary uveal melanoma (UM) cell line Mel270 and liver metastasis UM cell line OMM2.5. Methods The metabolic activity, viability, and oxidative stress levels were analyzed by the Thiazolyl Blue Tetrazolium Bromide (MTT), LIVE/DEAD, and reactive oxygen species (ROS) assays. Expression of intracellular VEGF-A165 and VEGF receptor-2 was detected by immunofluorescent staining. The secretion of VEGF-A165 into the cell culture supernatants was evaluated by VEGF-A165 ELISA. Results Nintedanib, at a concentration of 1 µg/mL, resulted in a median reduction of metabolic activity (for Mel270 of approximately 38% and for OMM2.5 of 46% compared to the untreated control) without exerting toxicity in either cell line, whereas the other 3 substances did not result in any changes (which also means that none of the 4 substances led to an increased cell death). Moreover, nintedanib (1 µg/mL) induced oxidative stress in the Mel270 by approximately 1.2 to 1.5-fold compared to the untreated control, but not the OMM2.5 cells. Conclusions Nintedanib could suppress the growth of UM cells in a concentration-dependent manner. The metastatic UM cell line OMM2.5 was not sensitive to the pro-oxidant activity of nintedanib. This study was the first to investigate nintedanib in the context of UM. We propose further investigation of this substance to elucidate its effects on this tumor entity with the hope of identifying advantageous therapeutic options for future adjuvant tumor therapies.
Collapse
Affiliation(s)
- Vera E. Pawlik
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | | | | | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | | | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. RESEARCH SQUARE 2023:rs.3.rs-3694879. [PMID: 38106024 PMCID: PMC10723549 DOI: 10.21203/rs.3.rs-3694879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. Methods To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. Results Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. Conclusion These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
|
8
|
Baqai U, Kurimchak AM, Trachtenberg IV, Purwin TJ, Haj JI, Han A, Luo K, Pachon NF, Jeon A, Chua V, Davies MA, Gutkind JS, Benovic JL, Duncan JS, Aplin AE. Kinome profiling identifies MARK3 and STK10 as potential therapeutic targets in uveal melanoma. J Biol Chem 2023; 299:105418. [PMID: 37923138 PMCID: PMC10716579 DOI: 10.1016/j.jbc.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Most uveal melanoma cases harbor activating mutations in either GNAQ or GNA11. Despite activation of the mitogen-activated protein kinase (MAPK) signaling pathway downstream of Gαq/11, there are no effective targeted kinase therapies for metastatic uveal melanoma. The human genome encodes numerous understudied kinases, also called the "dark kinome". Identifying additional kinases regulated by Gαq/11 may uncover novel therapeutic targets for uveal melanoma. In this study, we treated GNAQ-mutant uveal melanoma cell lines with a Gαq/11 inhibitor, YM-254890, and conducted a kinase signaling proteomic screen using multiplexed-kinase inhibitors followed by mass spectrometry. We observed downregulated expression and/or activity of 22 kinases. A custom siRNA screen targeting these kinases demonstrated that knockdown of microtubule affinity regulating kinase 3 (MARK3) and serine/threonine kinase 10 (STK10) significantly reduced uveal melanoma cell growth and decreased expression of cell cycle proteins. Additionally, knockdown of MARK3 but not STK10 decreased ERK1/2 phosphorylation. Analysis of RNA-sequencing and proteomic data showed that Gαq signaling regulates STK10 expression and MARK3 activity. Our findings suggest an involvement of STK10 and MARK3 in the Gαq/11 oncogenic pathway and prompt further investigation into the specific roles and targeting potential of these kinases in uveal melanoma.
Collapse
Affiliation(s)
- Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Alison M Kurimchak
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Isabella V Trachtenberg
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Timothy J Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jelan I Haj
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Han
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Kristine Luo
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nikole Fandino Pachon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Angela Jeon
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Robinson TL, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Analysis of uveal melanoma scRNA sequencing data identifies neoplastic-immune hybrid cells that exhibit metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563815. [PMID: 37961378 PMCID: PMC10634980 DOI: 10.1101/2023.10.24.563815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis. Our group has identified a disseminated tumor cell population characterized by co-expression of immune and melanoma proteins, (circulating hybrid cells (CHCs), in patients with UM. Compared to circulating tumor cells, CHCs are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. To identify mechanisms underlying enhanced hybrid cell dissemination we sought to identify hybrid cells within a primary UM single cell RNA-seq dataset. Using rigorous doublet discrimination approaches, we identified UM hybrids and evaluated their gene expression, predicted ligand-receptor status, and cell-cell communication state in relation to other melanoma and immune cells within the primary tumor. We identified several genes and pathways upregulated in hybrid cells, including those involved in enhancing cell motility and cytoskeleton rearrangement, evading immune detection, and altering cellular metabolism. In addition, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting cancer metastasis including IGF1-IGFR1, GAS6-AXL, LGALS9-P4HB, APP-CD74 and CXCL12-CXCR4. These results contribute to our understanding of tumor progression and interactions between tumor cells and immune cells in the UM microenvironment that may promote metastasis.
Collapse
|
10
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
11
|
Liu S, Li M, Sun F, Zhang J, Liu F. Enhancing the immune effect of oHSV-1 therapy through TLR3 signaling in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:901-912. [PMID: 36030435 DOI: 10.1007/s00432-022-04272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, with patients having a low overall survival rate. Oncolytic viruses (OVs) have been shown effective as monotherapy or combined with immunotherapy in the treatment of UM. Oncolytic herpes simplex type I virus (oHSV-1) was found to alter gene expression and immune function in UMs. We investigated whether a combination treatment would be more effective in treating UM and reactive immune cells. METHODS RNA sequencing analysis were used to identify the effect of oHSV-1 infection in UM cells and protein changes were validated by western blot. Cell viability assays were performed through UM cell lines (MUM2B, 92.1, and MP41) and retinal pigment epithelial cell line (ARPE-19) to identify the efficacy and safety of the combination treatment. Western blot, qRT-PCR, cell viability assay and immunocytochemistry were performed to discover the reactivation of immune cells (U937 and HMC3). RESULTS Through RNA sequencing analysis and in vitro molecular biology assays, this study tested the ability of oHSV-1 combined with the TLR3 agonist poly(I:C) to re-activate the TLR3 meditated NF-ƙB signaling pathway and further increase the anti-tumor activity of UM cells and macrophages, including the stimulation of macrophage polarization and proliferation. CONCLUSIONS These findings indicate that the treatment of UM with a combination of oHSV-1 and poly(I:C) generates immune responses and enhances anti-tumoral activity, suggesting the need for further investigations and clinical trials of this combination.
Collapse
Affiliation(s)
- Sisi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiao Minxiang 1, Dongcheng District, Beijing, 100730, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Fengqiao Sun
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Shengming Kexueyuan 1, Changping District, Beijing, 102206, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
12
|
Machiraju D, Hassel JC. Targeting the cMET pathway to enhance immunotherapeutic approaches for mUM patients. Front Oncol 2023; 12:1068029. [PMID: 36761417 PMCID: PMC9902905 DOI: 10.3389/fonc.2022.1068029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
The liver is the most preferential initial site of metastasis for uveal melanoma (mUM), and this preference is associated with rapid mortality in mUM patients. Despite the significant clinical benefits of Immune checkpoint inhibitors (ICIs) in metastatic cutaneous melanoma patients, ICIs have shown little to no benefit in mUM patients. A potential reason for this inefficiency of ICI could be partly devoted to the involvement of the liver itself, thanks to its rich source of growth factors and immunosuppressive microenvironment. Uveal melanoma cells show increased expression of a transmembrane protein called cMET, which is known as the sole receptor for the Hepatocyte growth factor (HGF). Hyperactivation of cMET by HGF contributes to mUM development, and the liver, being the major source of HGF, may partially explain the metastasis of uveal melanoma cells to the liver. In addition, cMET/HGF signaling has also been shown to mediate resistance to ICI treatment, directly and indirectly, involving tumor and immune cell populations. Therefore, targeting the cMET/HGF interaction may enhance the efficacy of immunotherapeutic regimes for mUM patients. Hence in this minireview, we will discuss the rationale for combining cMET inhibitors/antibodies with leading immune checkpoint inhibitors for treating mUM. We will also briefly highlight the challenges and opportunities in targeting cMET in mUM.
Collapse
|
13
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
14
|
Ozaki K, Higuchi S, Kimura H, Gabata T. Liver Metastases: Correlation between Imaging Features and Pathomolecular Environments. Radiographics 2022; 42:1994-2013. [PMID: 36149824 DOI: 10.1148/rg.220056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of imaging manifestations of liver metastases can be encountered, as various primary cancers preferably metastasize to the liver (organ-specific metastases), with the imaging characteristics largely depending on various primary tumor-specific factors such as histopathologic category, degree of tumor differentiation, histologic behavior, and intratumor alterations. Characteristic imaging features potentially can help provide a more precise diagnosis in some clinical settings. These settings include those of (a) primary cancers of hollow organs such as gastrointestinal organs, the lungs, and the bladder, owing to the appearance of metastases that cannot be applied to the liver, which is a parenchymal organ; (b) unknown primary tumors; (c) more than one primary tumor; (d) another emergent malignancy; and (e) transformation to a different histopathologic tumor subtype. The characteristic features include the target sign on T2-weighted MR images or during the hepatobiliary phase of hypovascular metastasis, the peripheral rim washout sign on delayed phase images, peritumor hyperintensity during the hepatobiliary phase, hypervascular metastasis, a cystic appearance with marked hyperintensity on T2-weighted images, marked hyperintensity on T1-weighted images, calcification, capsular retraction, absence of the vessel-penetrating sign, distribution of liver metastases, and rare intraductal forms of metastases. In addition to various factors associated with the primary cancer, desmoplastic reactions around the tumor-which can be observed in adenocarcinomas with peripheral and peritumor enhancement, distinct arterioportal shunts with metastases from pancreatic ductal carcinoma, and pseudocirrhosis-also can affect these findings. The authors review the characteristic imaging findings of liver metastases from various primary cancers, with a focus on the mechanisms that underlie organ-specific liver metastases. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Kumi Ozaki
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| | - Shohei Higuchi
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| | - Hirohiko Kimura
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| | - Toshifumi Gabata
- From the Departments of Radiology (K.O., H.K.) and Pathology (S.H.), Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui 910-1193, Japan; and Department of Radiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (T.G.)
| |
Collapse
|
15
|
Karg MM, John L, Refaian N, Buettner C, Rottmar T, Sommer J, Bock B, Resheq YJ, Ksander BR, Heindl LM, Mackensen A, Bosch JJ. Midkine promotes metastasis and therapeutic resistance via mTOR/RPS6 in uveal melanoma. Mol Cancer Res 2022; 20:1320-1336. [PMID: 35503453 DOI: 10.1158/1541-7786.mcr-20-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/27/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Uveal melanoma is a rare form of melanoma that originates in the eye, exerts widespread therapeutic resistance and displays an inherent propensity for hepatic metastases. Since metastatic disease is characterized by poor survival, there is an unmet clinical need to identify new therapeutic targets in uveal melanoma. Here, we show that the pleiotropic cytokine midkine is expressed in uveal melanoma. Midkine expression in primary uveal melanoma significantly correlates with poor survival and is elevated in patients that develop metastatic disease. Monosomy 3 and histopathological staging parameters are associated with midkine expression. In addition, we demonstrate that midkine promotes survival, migration across a barrier of hepatic sinusoid endothelial cells and resistance to AKT/mTOR inhibition. Furthermore, midkine is secreted and mediates mTOR activation by maintaining phosphorylation of the mTOR target RPS6 in uveal melanoma cells. Therefore, midkine is identified as a uveal melanoma cell survival factor that drives metastasis and therapeutic resistance, and could be exploited as a biomarker as well as a new therapeutic target. Implications: Midkine is identified as a survival factor that drives liver metastasis and therapeutic resistance in melanoma of the eye.
Collapse
Affiliation(s)
| | - Lukas John
- University Hospital Erlangen, Erlangen, Germany
| | - Nasrin Refaian
- Department of Ophthalmology, University Hospital Cologne, Cologne and Center for Integrated Oncology (CIO) Cologne-Bonn, Cologne, Germany
| | - Christian Buettner
- University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | | | | | | | | | - Andreas Mackensen
- Dept. of Internal Medicine 5, Hematology/Oncology, Erlangen, Germany
| | | |
Collapse
|
16
|
Baqai U, Purwin TJ, Bechtel N, Chua V, Han A, Hartsough EJ, Kuznetsoff JN, Harbour JW, Aplin AE. Multi-omics profiling shows BAP1 loss is associated with upregulated cell adhesion molecules in uveal melanoma. Mol Cancer Res 2022; 20:1260-1271. [DOI: 10.1158/1541-7786.mcr-21-0657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is mutated in cancer, including uveal melanoma (UM). Loss-of-function BAP1 mutations are associated with UM metastasis and poor prognosis, but the mechanisms underlying these effects remain unclear. Upregulation of cell-cell adhesion proteins is involved with collective migration and metastatic seeding of cancer cells. Here, we show that BAP1 loss in UM patient samples is associated with upregulated gene expression of multiple cell adhesion molecules (CAMs), including E-cadherin (CDH1), cell adhesion molecule 1 (CADM1), and syndecan-2 (SDC2). Similar findings were observed in UM cell lines and scRNA seq data from UM patient samples. BAP1 re-expression in UM cells reduced E-cadherin and CADM1 levels. Functionally, knockdown of E-cadherin decreased spheroid cluster formation and knockdown of CADM1 decreased growth of BAP1 mutant UM cells. Together, our findings demonstrate that BAP1 regulates the expression of CAMs which may regulate metastatic traits. Implications: BAP1 mutations and increased metastasis may be due to upregulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Usman Baqai
- Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Nelisa Bechtel
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Vivian Chua
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Anna Han
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Edward J. Hartsough
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E. Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Fan Z, Duan J, Luo P, Shao L, Chen Q, Tan X, Zhang L, Xu X. SLC25A38 as a novel biomarker for metastasis and clinical outcome in uveal melanoma. Cell Death Dis 2022; 13:330. [PMID: 35411037 PMCID: PMC9001737 DOI: 10.1038/s41419-022-04718-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 01/03/2023]
Abstract
Risk of metastasis is increased by the presence of chromosome 3 monosomy in uveal melanoma (UM). This study aimed to identify more accurate biomarker for risk of metastasis in UM. A total of 80 patients with UM from TCGA were assigned to two groups based on the metastatic status, and bioinformatic analyses were performed to search for critical genes for risk of metastasis. SLC25A38, located on chromosome 3, was the dominant downregulated gene in metastatic UM patients. Low expression of SLC25A38 was an independent predictive and prognostic factor in UM. The predictive potential of SLC25A38 expression was superior to that of pervious reported biomarkers in both TCGA cohort and GSE22138 cohort. Subsequently, its role in promoting metastasis was explored in vitro and in vivo. Knock-out of SLC25A38 could enhance the migration ability of UM cells, and promote distant metastasis in mice models. Through the inhibition of CBP/HIF-mediated pathway followed by the suppression of pro-angiogenic factors, SLC25A38 was situated upstream of metastasis-related pathways, especially angiogenesis. Low expression of SLC25A38 promotes angiogenesis and metastasis, and identifies increased metastatic risk and worse survival in UM patients. This finding may further improve the accuracy of prognostic prediction for UM.
Collapse
Affiliation(s)
- Zhongyi Fan
- Department of Oncology and Bio-therapeutic Center, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Shenzhen, 518112, China.,Department of Oncology, The First Medical Center, General Hospital of PLA, Beijing, 100853, China
| | - Jingjing Duan
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pu Luo
- Department of Oncology and Bio-therapeutic Center, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Shenzhen, 518112, China
| | - Ling Shao
- Department of Oncology and Bio-therapeutic Center, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Shenzhen, 518112, China
| | - Qiong Chen
- Department of Oncology and Bio-therapeutic Center, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Shenzhen, 518112, China
| | - Xiaohua Tan
- Department of Oncology and Bio-therapeutic Center, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Shenzhen, 518112, China.
| | - Lei Zhang
- Department of Ophthalmology, Xuanwu Hospital Attached to the Capital Medical University, Beijing, 100053, China.
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
18
|
Ambrosini G, Rai AJ, Carvajal RD, Schwartz GK. Uveal melanoma exosomes induce a pro-metastatic microenvironment through macrophage migration inhibitory factor (MIF). Mol Cancer Res 2022; 20:661-669. [PMID: 34992145 DOI: 10.1158/1541-7786.mcr-21-0526] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Uveal melanoma (UM) is a rare melanoma subtype different from cutaneous melanoma, with high incidence of liver metastasis and poor prognosis. Cancer cell derived extracellular vesicles (EVs) have been shown to induce pro-inflammatory and pro-metastatic signaling in the tumor microenvironment and at distant sites. The characterization of UM exosome cargo and its role in metastatic spread is essential to identify targets and intervene in the early stages of metastatic development. Our study characterizes the proteomic content of UM exosomes and identified the presence of markers with metastatic properties. We demonstrated that UM exosomes induce activation of cell signaling pathways and the release of cytokines and growth factors from hepatocytes. These exosome-stimulated liver cells could in turn induce migration of UM cells, confirming that the exosomes have a functional role in the crosstalk between these two cell types. We found that the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) was a major player in these mechanisms and its blockade inhibited cell migration in co-culture with exosome-stimulated hepatocytes and prevented the development of metastases in vivo. Targeting MIF in the early stages of metastasis may represent a novel adjuvant drug therapy to prevent metastatic spread in uveal melanoma. Implications: This study provides the first in vivo evidence that MIF inhibition may serve as a novel adjuvant drug therapy to prevent metastasis in uveal melanoma.
Collapse
Affiliation(s)
| | - Alex J Rai
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center
| | | | | |
Collapse
|
19
|
Yang H, Tan S, Qiao J, Xu Y, Gui Z, Meng Y, Dong B, Peng G, Ibhagui OY, Qian W, Lu J, Li Z, Wang G, Lai J, Yang L, Grossniklaus HE, Yang JJ. Non-invasive detection and complementary diagnosis of liver metastases via chemokine receptor 4 imaging. Cancer Gene Ther 2022; 29:1827-1839. [PMID: 35145271 PMCID: PMC9363530 DOI: 10.1038/s41417-022-00433-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Noninvasive detection of early-stage liver metastases from different primary cancers is a pressing unmet medical need. The lack of both molecular biomarkers and the sensitive imaging methodology makes the detection challenging. In this study, we observed the elevated expression of chemokine receptor 4 (CXCR4) in uveal melanoma (UM) patient liver tissues, and high CXCR4 expression in liver metastases of UM murine models, regardless of the expression levels in the primary tumors. Based on these findings, we identified CXCR4 as an imaging biomarker and exploited a CXCR4-targeted MRI contrast agent ProCA32.CXCR4 for molecular MRI imaging. ProCA32.CXCR4 has strong CXCR4 binding affinity, high metal selectivity, and r1 and r2 relaxivities, which enables the sensitive detection of liver micrometastases. The MRI imaging capacity for detecting liver metastases was demonstrated in three UM models and one ovarian cancer model. The imaging results were validated by histological and immunohistochemical analysis. ProCA32.CXCR4 has strong potential clinical application for non-invasive diagnosis of liver metastases.
Collapse
Affiliation(s)
- Hua Yang
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory University, Atlanta, GA 30322 USA
| | - Shanshan Tan
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Jingjuan Qiao
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Yiting Xu
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Zongxiang Gui
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Yuguang Meng
- grid.189967.80000 0001 0941 6502Yerkes National Primate Research Center, Atlanta, GA 30329 USA
| | - Bin Dong
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Guangda Peng
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Oluwatosin Y. Ibhagui
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Weiping Qian
- grid.189967.80000 0001 0941 6502Department of Surgery, Emory University, Atlanta, GA 30322 USA
| | - Jimmy Lu
- grid.504342.4Codex BioSolutions Inc, Gaithersburg, MD USA
| | - Zezhong Li
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory University, Atlanta, GA 30322 USA
| | - Guimin Wang
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory University, Atlanta, GA 30322 USA ,Affiliated Eye Hospital of Shandong Traditional Chinese Medicine University, Jinan, China
| | - Jinping Lai
- grid.414896.6Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825 USA
| | - Lily Yang
- grid.189967.80000 0001 0941 6502Department of Surgery, Emory University, Atlanta, GA 30322 USA
| | - Hans E. Grossniklaus
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory University, Atlanta, GA 30322 USA
| | - Jenny J. Yang
- grid.256304.60000 0004 1936 7400Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
20
|
Ye Y, Shi Q, Yang T, Xie F, Zhang X, Xu B, Fang J, Chen J, Zhang Y, Li J. In Vivo Visualized Tracking of Tumor-Derived Extracellular Vesicles Using CRISPR-Cas9 System. Technol Cancer Res Treat 2022; 21:15330338221085370. [PMID: 35315725 PMCID: PMC8943546 DOI: 10.1177/15330338221085370] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: Tumor extracellular vesicles (EVs) and their relevance
to various processes of tumor growth have been vigorously investigated over the
past decade. However, obtaining direct evidence of spontaneous EV transfer
in vivo remains challenging. In our previous study, a
single-guide RNA (sgRNA): Cas9 ribonucleoprotein complex, which can efficiently
delete target genes, was delivered into recipient cells using an engineered EV.
Aim: Applying this newly discovered exosomal bio-cargo to track
the uptake and distribution of tumor EVs. Methods: Tumor cells of
interest were engineered to express and release the sgRNA:Cas9 complex, and a
reporter cell/system containing STOP-fluorescent protein (FP) elements was also
generated. EV-delivered Cas9 proteins from donor cells were programmed by a pair
of sgRNAs to completely delete a blockade sequence and, in turn, recuperated the
expression of FP in recipient reporter cells. Thus, fluorescently illuminated
cells indicate the uptake of EVs. To improve the efficiency and sensitivity of
this tracking system in vivo, we optimized the sgRNA design,
which could more efficiently trigger the expression of reporter proteins.
Results: We demonstrated the EV-mediated crosstalk between
tumor cells, and between tumor cells and normal cells in vitro.
In vivo, we showed that intravenously administered EVs can
be taken up by the liver. Moreover, we showed that EVs derived from melanoma
xenografts in vivo preferentially target the brain and liver.
This distribution resembles the manifestation of organotrophic metastasis of
melanoma. Conclusion: This study provides an alternative tool to
study the distribution and uptake of tumor EVs.
Collapse
Affiliation(s)
| | - Qian Shi
- Nanjing University, Nanjing, Jiangsu, China
| | - Ting Yang
- Nanjing University, Nanjing, Jiangsu, China
| | - Fei Xie
- Nanjing University, Nanjing, Jiangsu, China
| | | | - Bin Xu
- Nanjing University, Nanjing, Jiangsu, China
| | | | - Jiangning Chen
- Nanjing University, Nanjing, Jiangsu, China
- Jiangning Chen, Nanjing Drum Tower Hospital
Centre of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences
Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical
Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and
Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of
Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing
University, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yujing Zhang
- Nanjing University, Nanjing, Jiangsu, China
- Yujing Zhang, Nanjing Drum Tower Hospital
Centre of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences
Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical
Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and
Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of
Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing
University, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Jing Li
- Nanjing University, Nanjing, Jiangsu, China
- Jing Li, Nanjing Drum Tower Hospital Centre
of Molecular Diagnostic and Therapy, Chinese Academy of Medical Sciences
Research Unit of Extracellular RNA, State Key Laboratory of Pharmaceutical
Biotechnology, Jiangsu Engineering Research Centre for MicroRNA Biology and
Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Institute of
Artificial Intelligence Biomedicine, School of Life Sciences, Nanjing
University, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
21
|
Dewaele S, Delhaye L, De Paepe B, de Bony EJ, De Wilde J, Vanderheyden K, Anckaert J, Yigit N, Nuytens J, Vanden Eynde E, Smet J, Verschoore M, Nemati F, Decaudin D, Rodrigues M, Zhao P, Jochemsen A, Leucci E, Vandesompele J, Van Dorpe J, Marine JC, Van Coster R, Eyckerman S, Mestdagh P. The long non-coding RNA SAMMSON is essential for uveal melanoma cell survival. Oncogene 2022; 41:15-25. [PMID: 34508176 PMCID: PMC8724009 DOI: 10.1038/s41388-021-02006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/02/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) can exhibit cell-type and cancer-type specific expression profiles, making them highly attractive as therapeutic targets. Pan-cancer RNA sequencing data revealed broad expression of the SAMMSON lncRNA in uveal melanoma (UM), the most common primary intraocular malignancy in adults. Currently, there are no effective treatments for UM patients with metastatic disease, resulting in a median survival time of 6-12 months. We aimed to investigate the therapeutic potential of SAMMSON inhibition in UM. Antisense oligonucleotide (ASO)-mediated SAMMSON inhibition impaired the growth and viability of a genetically diverse panel of uveal melanoma cell lines. These effects were accompanied by an induction of apoptosis and were recapitulated in two uveal melanoma patient derived xenograft (PDX) models through subcutaneous ASO delivery. SAMMSON pulldown revealed several candidate interaction partners, including various proteins involved in mitochondrial translation. Consequently, inhibition of SAMMSON impaired global, mitochondrial and cytosolic protein translation levels and mitochondrial function in uveal melanoma cells. The present study demonstrates that SAMMSON expression is essential for uveal melanoma cell survival. ASO-mediated silencing of SAMMSON may provide an effective treatment strategy to treat primary and metastatic uveal melanoma patients.
Collapse
Affiliation(s)
- Shanna Dewaele
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Eric James de Bony
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jilke De Wilde
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of pathology, Ghent University Hospital, Ghent, Belgium
| | - Katrien Vanderheyden
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nurten Yigit
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eveline Vanden Eynde
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Joél Smet
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Maxime Verschoore
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Fariba Nemati
- Institut Curie, Laboratory of Preclinical Investigation, Translational Research Department, PSL Research University, Paris, France
| | - Didier Decaudin
- Institut Curie, Laboratory of Preclinical Investigation, Translational Research Department, PSL Research University, Paris, France
- Institut Curie, Department of Medical Oncology, PSL Research University, Paris, France
| | - Manuel Rodrigues
- Institut Curie, Department of Medical Oncology, PSL Research University, Paris, France
- Inserm U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Equipe labellisée par la Ligue Nationale Contre le Cancer, Institut Curie, PSL Research University, Paris, 75005, France
| | - Peihua Zhao
- Center for Medical Biotechnology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aart Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- TRACE, LKI Leuven Cancer Institute, Leuven, Belgium
| | - Jo Vandesompele
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of pathology, Ghent University Hospital, Ghent, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sven Eyckerman
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Pals J, Mensink HW, Brosens E, Verdijk RM, Naus NC, Paridaens DA, Kilic E, Ramdas WD. The Effect of Intraocular Pressure-Lowering Medication on Metastatic Uveal Melanomas. Cancers (Basel) 2021; 13:cancers13225657. [PMID: 34830810 PMCID: PMC8616129 DOI: 10.3390/cancers13225657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary The most lethal tumor in the eye is metastatic uveal melanomas, while the most common cause of irreversible blindness is glaucoma. Glaucoma is treated by prescribing intraocular pressure-lowering drugs. Theoretically, these drugs may affect the risk of metastasis of intraocular tumors (uveal melanomas). Using data of a long-running and ongoing study on uveal melanomas, we found that eye drops that lower the intraocular pressure by stimulating outflow of fluid (aqueous humor) may increase the risk of metastasis, and subsequent mortality. Therefore, in patients at risk or suspect for uveal melanoma, we recommend choosing ophthalmic drugs with a working mechanism that is not based on the increase of outflow of aqueous humor from the eye. Abstract Background: There has been speculation that IOP-lowering medication, which increases aqueous humor outflow, increases the risk of metastatic uveal melanoma (UM). This hypothesis has not been studied previously but is relevant for UM patients who use IOP-lowering medication. The aim of the current study is to assess the association between the use of intraocular pressure (IOP)-lowering medication and the risk of metastatic UM, and mortality. Methods: A retrospective cohort study, in which patients from the Rotterdam Ocular Melanoma Study were included from 1986 onwards. Medical records were evaluated for use of IOP-lowering medication at baseline (i.e., before diagnosis). For each IOP-lowering medication, we divided patients into two groups for comparison (e.g., patients with alpha2-agonist use and patients without alpha2-agonist use). All patients underwent regular ophthalmic examinations and routine screening for metastasis. Survival analyses were initiated to compare groups in each IOP-lowering medication group. In addition, secondary analyses were performed to examine the association between IOP and the development of metastatic UM, and mortality. Results: A total of 707 patients were included of whom 13 patients used prostaglandin or pilocarpine at baseline. For alpha2-agonist, beta-blocker, carbonic anhydrase inhibitor, and oral IOP-lowering medication these were 4, 14, 11, and 12 patients, respectively. The risk of metastatic UM (choroid and ciliary body melanoma) among the prostaglandin/pilocarpine users was significantly higher than controls (HR [95% CI]: 4.840 [1.452–16.133]). Mortality did not differ significantly among the IOP-lowering medications groups, except for the prostaglandin or pilocarpine group (HR [95% CI]: 7.528 [1.836–30.867]). If we combined all IOP-lowering medication that increase aqueous humor outflow, the risk (HR [95% CI]) of metastatic UM and mortality was 6.344 (1.615–24.918) and 9.743 (2.475–38.353), respectively. There was an association between IOP and mortality, but not for the onset of metastatic UM. Conclusion: The use of topical prostaglandin or pilocarpine may increase the risk of metastatic UM and mortality compared to patients without prostaglandin or pilocarpine use. Therefore, use of IOP-lowering medication which increases aqueous humor outflow, should be avoided in patients with (presumed) UM.
Collapse
Affiliation(s)
- Jan Pals
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
| | | | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands;
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands;
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
| | - Dion A. Paridaens
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands;
| | - Emine Kilic
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
| | - Wishal D. Ramdas
- Department of Ophthalmology, Erasmus University Medical Center, 3015 CA Rotterdam, The Netherlands; (J.P.); (N.C.N.); (D.A.P.); (E.K.)
- Correspondence: ; Tel.: +31-10-7033691; Fax: +31-10-7035105
| |
Collapse
|
23
|
Potential of miRNA-Based Nanotherapeutics for Uveal Melanoma. Cancers (Basel) 2021; 13:cancers13205192. [PMID: 34680340 PMCID: PMC8534265 DOI: 10.3390/cancers13205192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Human uveal melanoma (UM) is the most common primary intraocular tumor with high metastatic risk in adults. Currently, no effective treatment is available for metastatic UM; therefore, new therapeutic approaches are needed to improve overall survival. Given the increased understanding of microRNAs (miRNAs) and their roles in UM tumorigenesis and metastasis, miRNA-based therapy may offer the hope of improving therapeutic outcomes. This review summarizes the actions of select miRNAs examined in preclinical studies using miRNAs as therapeutic targets in UM. The focus of this review is the application of established nanotechnology-assisted delivery systems to overcome the limitations of therapeutic miRNAs. A blend of therapeutic miRNAs and nanodelivery systems may facilitate the translation of miRNA therapies to clinical settings. Abstract Uveal melanoma (UM) is the most common adult intraocular cancer, and metastatic UM remains deadly and incurable. UM is a complex disease associated with the deregulation of numerous genes and redundant intracellular signaling pathways. As understanding of epigenetic dysregulation in the oncogenesis of UM has increased, the abnormal expression of microRNAs (miRNAs) has been found to be an epigenetic mechanism underlying UM tumorigenesis. A growing number of miRNAs are being found to be associated with aberrant signaling pathways in UM, and some have been investigated and functionally characterized in preclinical settings. This review summarizes the miRNAs with promising therapeutic potential for UM treatment, paying special attention to the therapeutic miRNAs (miRNA mimics or inhibitors) used to restore dysregulated miRNAs to their normal levels. However, several physical and physiological limitations associated with therapeutic miRNAs have prevented their translation to cancer therapeutics. With the advent of nanotechnology delivery systems, the development of effective targeted therapies for patients with UM has received great attention. Therefore, this review provides an overview of the use of nanotechnology drug delivery systems, particularly nanocarriers that can be loaded with therapeutic miRNAs for effective delivery into target cells. The development of miRNA-based therapeutics with nanotechnology-based delivery systems may overcome the barriers of therapeutic miRNAs, thereby enabling their translation to therapeutics, enabling more effective targeting of UM cells and consequently improving therapeutic outcomes.
Collapse
|
24
|
Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021; 10:cells10061450. [PMID: 34207884 PMCID: PMC8230324 DOI: 10.3390/cells10061450] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive and difficult to treat type of skin cancer, with a survival rate of less than 10%. Metastatic melanoma has conventionally been considered very difficult to treat; however, recent progress in understanding the cellular and molecular mechanisms involved in the tumorigenesis, metastasis and immune escape have led to the introduction of new therapies. These include targeted molecular therapy and novel immune-based approaches such as immune checkpoint blockade (ICB), tumor-infiltrating lymphocytes (TILs), and genetically engineered T-lymphocytes such as chimeric antigen receptor (CAR) T cells. Among these, CAR T cell therapy has recently made promising strides towards the treatment of advanced hematological and solid cancers. Although CAR T cell therapy might offer new hope for melanoma patients, it is not without its shortcomings, which include off-target toxicity, and the emergence of resistance to therapy (e.g., due to antigen loss), leading to eventual relapse. The present review will not only describe the basic steps of melanoma metastasis, but also discuss how CAR T cells could treat metastatic melanoma. We will outline specific strategies including combination approaches that could be used to overcome some limitations of CAR T cell therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa;
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
- Correspondence: ; Tel.: +98-21-64053268; Fax: +98-21-66419536
| |
Collapse
|
25
|
Zurcher KS, Houghton OM, Shen JF, Seetharam M, Roarke MC, Yang M. Nuclear Medicine and Molecular Imaging in Nodal Staging and Surveillance of Ocular Melanoma: Case Reports and Review of the Literature. J Nucl Med Technol 2021; 49:275-280. [PMID: 33820860 DOI: 10.2967/jnmt.120.260539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Ocular melanoma (OM) is a rare noncutaneous malignancy and consists of 2 different subtypes based on the anatomic location in the eye: uveal melanoma and conjunctival melanoma. Like cutaneous melanoma, OM benefits from nuclear medicine and molecular imaging in nodal staging and clinical management. Through the illustration of 2 distinctive cases, we aim to demonstrate the complementary roles of standard lymphoscintigraphy, advanced SPECT/CT, 18F-FDG PET/CT, and 18F-FDG PET/MRI in accurate nodal staging and surveillance of OM. We also review the epidemiology, existing staging guidelines, and management of uveal melanoma and conjunctival melanoma.
Collapse
Affiliation(s)
| | | | - Joanne F Shen
- Department of Ophthalmology, Mayo Clinic, Scottsdale, Arizona; and
| | - Mahesh Seetharam
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, Arizona
| | | | - Ming Yang
- Department of Radiology, Mayo Clinic, Scottsdale, Arizona;
| |
Collapse
|
26
|
Lin Z, Süsskind D. Exploring the role of BAFF as biomarker in the detection of uveal melanoma metastases. J Cancer Res Clin Oncol 2021; 147:1389-1405. [PMID: 33665679 DOI: 10.1007/s00432-021-03555-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE While B-cell activating factor (BAFF) was identified to promote the invasion in other malignancies, its role in the progression of uveal melanoma (UM) still remains unexplored. Here, we analysed the serum level of BAFF in UM patients with regard to its significance as biomarker for the metastases. METHODS In this retrospective study, serum BAFF levels in 173 UM patients (36 with metastases and 137 without), and 23 healthy controls were measured with a multiplexed sandwich ELISA system and then correlated with clinicopathological characteristics such as primary tumor size, tumor location, histological cell type, sex, cancer stage, cytogenetic alterations of chromosome 3, and the metastatic burden. Immunohistochemical staining of 50 UM tissue specimens was also performed to evaluate the expression of BAFF and its receptors BAFF-R and TACI. RESULTS The metastatic patients were identified to have significantly higher serum BAFF levels (mean ± SD, 1520.8 ± 1182.1 pg/ml) than those without metastases (950.4 ± 494.6 pg/ml) and controls (810.3 ± 140.5 pg/ml). While no distinctions were detected with regard to tumor location, histological cell type, gender, and monosomy 3, the patients in cancer stages II, III, and IV displayed higher serum BAFF levels than those in stage I. The serum BAFF level was significantly correlated with the metastatic burden. The serum BAFF level of 1120 pg/ml was identified to have the best performance for distinguishing the metastatic patients from non-metastatic patients. In the kinetic study, we noticed that 20.8% of the analysed patients already demonstrated elevated serum BAFF concentrations before the clinical diagnosis of metastases. Positive BAFF staining was detected in the cytoplasm of single tumor cells (in 13 specimens), macrophages (in 12 specimens), and tumor-infiltrating lymphocytes (TILs) (in 13 specimens). The expressions of BAFF-R and TACI were also observed in 17 and 36 of the 50 tested UM specimens, respectively. CONCLUSIONS Our study first suggests that BAFF might be a promising serum marker for the detection of UM metastases.
Collapse
Affiliation(s)
- Zenan Lin
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany.
| | - Daniela Süsskind
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076, Tübingen, Germany
| |
Collapse
|
27
|
Zhang Q, Lin ZN, Chen J, Zheng WX. A multi-omics study on cutaneous and uveal melanoma. Int J Ophthalmol 2021; 14:32-41. [PMID: 33469481 DOI: 10.18240/ijo.2021.01.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To present the multi-omics landscape of cutaneous melanoma (CM) and uveal melanoma (UM) from The Cancer Genome Atlas (TCGA). METHODS The differentially expressed genes (DEGs) between CM and UM were found and integrated into a gene ontology enrichment analysis. Besides, the differentially expressed miRNAs were also identified. We also compared the methylation level of CM with UM and identified the differentially methylated regions to integrate with the DEGs to display the relationship between the gene expression and DNA methylation. The differentially expressed transcription factors (TFs) were identified. RESULTS Though CM had more mutational burden than UM, they shared several similarities such as the same rankings in diverse variant types. Except GNAQ and GNA11, the other top 18 mutated genes of the combined group were mostly detected in CM instead of UM. On the transcriptomic level, 4610 DEGs were found and integrated into a gene ontology enrichment analysis. We also identified 485 differentially expressed miRNAs. The methylation analysis showed that UM had a significantly higher methylation level than CM. The integration of differentially methylated regions and DEGs demonstrated that most DEGs were downregulated in UM and the hypo- and hypermethylation presented no obvious difference within these DEGs. Finally, 116 hypermethylated TFs and 114 hypomethylated TFs were identified as differentially expressed TFs in CM when compared with UM. CONCLUSION This multi-omics study on comparing CM with UM confirms that they differ in all analyzed levels. Of notice, the results also offer new insights with implications for elucidating certain unclear problems such as the distinct role of epithelial mesenchymal transition in two melanomas, the different metastatic routes of CM and UM and the liver tropism of metastatic UM.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen 72076, Germany
| | - Ze-Nan Lin
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen 72076, Germany
| | - Jie Chen
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wen-Xu Zheng
- Department of Ophthalmology, the Second Hospital Affiliated to Jilin University, Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
28
|
Yang C, Wang Y, Hardy P. Emerging roles of microRNAs and their implications in uveal melanoma. Cell Mol Life Sci 2021; 78:545-559. [PMID: 32783068 PMCID: PMC11072399 DOI: 10.1007/s00018-020-03612-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults with an extremely high mortality rate. Genetic and epigenetic dysregulation contribute to the development of UM. Recent discoveries have revealed dysregulation of the expression levels of microRNAs (miRNAs) as one of the epigenetic mechanisms underlying UM tumorigenesis. Based on their roles, miRNAs are characterized as either oncogenic or tumor suppressive. This review focuses on the roles of miRNAs in UM tumorigenesis, diagnosis, and prognosis, as well as their therapeutic potentials. Particularly, the actions of collective miRNAs are summarized with respect to their involvement in major, aberrant signaling pathways that are implicated in the development and progression of UM. Elucidation of the underlying functional mechanisms and biological aspects of miRNA dysregulation in UM is invaluable in the development of miRNA-based therapeutics, which may be used in combination with conventional treatments to improve therapeutic outcomes. In addition, the expression levels of some miRNAs are correlated with UM initiation and progression and, therefore, may be used as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada.
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
29
|
Qi Y, Yao R, Zhang W, Cui Q, Zhang F. Knockdown of Long Non-Coding RNA LOC100132707 Inhibits the Migration of Uveal Melanoma Cells via Silencing JAK2. Onco Targets Ther 2020; 13:12955-12964. [PMID: 33364785 PMCID: PMC7751724 DOI: 10.2147/ott.s266596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background/Objective Although lots of long non-coding RNAs (lncRNAs) have been demonstrated to be involved in carcinogenesis, the functions of numerous of lncRNAs remain unknown. Bioinformatics online database showed that lncRNA LOC100132707 was highly expressed in metastatic melanoma tissues, and its expression predicted a lower overall survival rate in melanoma patients. However, LOC100132707 function in uveal melanoma (UM) progression still remains unclear. In the present study, we aimed to elucidate the role and molecular mechanisms underlying LOC100132707 in UM. Methods RT-PCR was used to detect the levels of LOC100132707 in UM cells. Cell migration, invasion and tumorigenesis were tested by using the transwell chamber assay and in vivo assay. Results LOC100132707 expression in metastatic UM cell line MM28 was significantly higher than that of the non-metastatic UM cell lines, MP38, MP46 and MP65, as well as the expressions of LOC100132707-related genes, including XRN1, PARP14, JAK2, DDX60, BUB1 and SAMD9L. LOC100132707 downregulation significantly repressed cell migration and invasion abilities, whereas overexpressing JAK2 rescued these effects. Consistently, upregulation of LOC100132707 induced significant increases in cell migration and invasion abilities via upregulating JAK2. In addition, silencing of LOC100132707 significantly repressed the in vivo tumor formation ability in UM cells. Conclusion This study reveals that silence of LOC100132707 represses the migration of UM via downregulating JAK2. The LOC100132707/JAK2 axis might serve as a potent target for the prevention and treatment of UM metastasis.
Collapse
Affiliation(s)
- Ying Qi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Renjie Yao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Wenjing Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Qingqing Cui
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, The Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
30
|
LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network. Cancers (Basel) 2020; 12:cancers12123867. [PMID: 33371395 PMCID: PMC7767460 DOI: 10.3390/cancers12123867] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Uveal melanoma (UM) is the most frequent primary tumor of the eye in adults. Although molecular alterations on protein-coding genes have been associated with the development of UM, the role of non-coding RNAs and their competitive endogenous networks remain poorly investigated. Starting from a computational analysis on UM expression dataset deposited in The Cancer Genome Atlas, we identified the long non-coding RNA LINC00518 as a potential oncogene. We then experimentally evaluated LINC00518 and its supposed RNA signaling in human biopsies and in vitro functional assays. The results obtained suggest that LINC00518, under potential transcriptional control by MITF, regulates an RNA–RNA network promoting cancer-related processes (i.e., cell proliferation and migration). These findings open the way to the characterization of the unknown RNA signaling associated with UM and pave the way to the exploitation of a potential target for RNA-based therapeutics. Abstract Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults; little is known about the contribution of non-coding RNAs (ncRNAs) to UM pathogenesis. Competitive endogenous RNA (ceRNA) networks based on RNA–RNA interactions regulate physiological and pathological processes. Through a combined approach of in silico and experimental biology, we investigated the expression of a set of long non-coding RNAs (lncRNAs) in patient biopsies, identifying LINC00518 as a potential oncogene in UM. The detection of LINC00518 dysregulation associated with several in vitro functional assays allowed us to investigate its ceRNA regulatory network and shed light on its potential involvement in cancer-related processes, such as epithelial to mesenchymal transition (EMT) and CoCl2-induced hypoxia-like response. In vitro transient silencing of LINC00518 impaired cell proliferation and migration, and affected mRNA expression of LINGO2, NFIA, OTUD7B, SEC22C, and VAMP3. A “miRNA sponge” and “miRNA protector” model have been hypothesized for LINC00518-induced regulation of mRNAs. In vitro inhibition of MITF suggested its role as a potential activator of LINC00518 expression. Comprehensively, LINC00518 may be considered a new oncogene in UM and a potential target for RNA-based therapeutic approaches.
Collapse
|
31
|
Role of Natural Killer Cells in Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12123694. [PMID: 33317028 PMCID: PMC7764114 DOI: 10.3390/cancers12123694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Metastatic Uveal Melanoma (MUM) is a lethal malignancy with no durable treatment available to date. A vast majority of patients with MUM present with liver metastasis. The liver harbors metastatic disease with an apparent lack of a cytotoxic T cell response. It is becoming evident that MUM is not an immunologically silent malignancy and the investigation of non-T cell anti-tumor immunity is warranted. In this review, we highlight the relevance of Natural Killer (NK) cells in the biology and treatment of MUM. Potent anti-NK cell immunosuppression employed by uveal melanoma alludes to its vulnerability to NK cell cytotoxicity. On the contrary, micro-metastasis in the liver survive for several years within close vicinity of a plethora of circulating and liver-resident NK cells. This review provides unique perspectives into the potential role of NK cells in control or progression of uveal melanoma. Abstract Uveal melanoma has a high mortality rate following metastasis to the liver. Despite advances in systemic immune therapy, treatment of metastatic uveal melanoma (MUM) has failed to achieve long term durable responses. Barriers to success with immune therapy include the immune regulatory nature of uveal melanoma as well as the immune tolerant environment of the liver. To adequately harness the anti-tumor potential of the immune system, non-T cell-based approaches need to be explored. Natural Killer (NK) cells possess potent ability to target tumor cells via innate and adaptive responses. In this review, we discuss evidence that highlights the role of NK cell surveillance and targeting of uveal melanoma. We also discuss the repertoire of intra-hepatic NK cells. The human liver has a vast and diverse lymphoid population and NK cells comprise 50% of the hepatic lymphocytes. Hepatic NK cells share a common niche with uveal melanoma micro-metastasis within the liver sinusoids. It is, therefore, crucial to understand and investigate the role of intra-hepatic NK cells in the control or progression of MUM.
Collapse
|
32
|
Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int J Oncol 2020; 57:1262-1279. [PMID: 33173970 PMCID: PMC7646582 DOI: 10.3892/ijo.2020.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is the most common type of intraocular cancer with a low mean annual incidence of 5‑10 cases per million. Tumours are located in the choroid (90%), ciliary body (6%) or iris (4%) and of 85% are primary tumours. As in cutaneous melanoma, tumours arise in melanocytes; however, the characteristics of uveal melanoma differ, accounting for 3‑5% of melanocytic cancers. Among the numerous risk factors are age, sex, genetic and phenotypic predisposition, the work environment and dermatological conditions. Management is usually multidisciplinary, including several specialists such as ophthalmologists, oncologists and maxillofacial surgeons, who participate in the diagnosis, treatment and complex follow‑up of these patients, without excluding the management of the immense emotional burden. Clinically, uveal melanoma generates symptoms that depend as much on the affected ocular globe site as on the tumour size. The anatomopathological study of uveal melanoma has recently benefited from developments in molecular biology. In effect, disease classification or staging according to molecular profile is proving useful for the assessment of this type of tumour. Further, the improved knowledge of tumour biology is giving rise to a more targeted approach to diagnosis, prognosis and treatment development; for example, epigenetics driven by microRNAs as a target for disease control. In the present study, the main epidemiological, clinical, physiopathological and molecular features of this disease are reviewed, and the associations among all these factors are discussed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
- Internal and Oncology Service (CIBER-EHD), University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Miguel A. Teus
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ophthalmology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
33
|
Defective FasL expression is associated with increased resistance to melanoma liver metastases and enhanced natural killer cell activity. Melanoma Res 2020; 29:401-412. [PMID: 30932943 DOI: 10.1097/cmr.0000000000000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective was to determine if the absence of FasL signaling would affect melanoma liver metastases by influencing the antimelanoma properties of liver natural killer (NK) cells. Melanoma liver metastases were induced in wild-type C57BL/6 mice and the gld/gld mutant C57BL/6 mouse strain that expresses a defective form of FasL (CD95L) that fails to engage and signal via the Fas receptor (CD95). Liver metastases were produced by intrasplenic injection of B16LS9 melanoma cells. Liver NK cell activity directed against murine B16LS9 melanoma cells was determined in a 24 h in-vitro cytotoxicity assay. Liver NK cells, NK T cells, and the NK cell surface activation marker, NKG2D, were measured by flow cytometry. Mice expressing defective FasL displayed reduced, rather than enhanced, melanoma liver metastases that coincided with increased liver NK cell-mediated tumor cell cytotoxicity. Enhanced cytotoxicity was not mediated by perforin, tumor necrosis factor-α, or tumor necrosis-associated apoptosis-inducing ligand but was closely associated with elevated interferon-γ in the tumor-bearing liver. FasL-defective gld/gld mice also displayed reduced numbers of liver NK T cells, which have been previously implicated in suppression on liver NK cell activity. The absence of functional FasL in the liver correlates with a heightened, not diminished, resistance to melanoma liver metastases. The resistance to liver metastases coincides with a significant, albeit transient, increase in liver NK cytotoxicity and elevated levels of interferon-γ in the liver.
Collapse
|
34
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
35
|
Chen Z, Lv Y, Cao D, Li X, Li Y. Microfibril-Associated Protein 2 (MFAP2) Potentiates Invasion and Migration of Melanoma by EMT and Wnt/β-Catenin Pathway. Med Sci Monit 2020; 26:e923808. [PMID: 32464633 PMCID: PMC7278334 DOI: 10.12659/msm.923808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Growing evidence indicates an association between microfibril-associated protein 2 (MFAP2) and a number of physiological and pathological mechanisms. The potential role of MFAP2 in cancer requires further elucidation. The present study investigated the biological behavior of MFAP2 in melanoma patients. Material/Methods MFAP2 inhibition was established in the B16 melanoma cell line through the use of RNA interference and was assessed by quantitative real-time PCR (qRT-PCR) and Western blot analysis. Wound-healing analysis, transwell assay, and in vivo imaging were performed to investigate the roles of MFAP2 reducing cell mobility, migration, and invasion abilities in vitro and in vivo. Results We found substantially higher MFAP2 expression in B16 melanoma cells. The knockdown of MFAP2 inhibited B16 melanoma cells migration and invasion. Western blot analysis was used to assess changes in biomarkers of EMT, indicating the function of MFAP2 in EMT. We found that downregulation of MFAP2 altered the expression of Wnt/β-catenin-linked protein. Conclusions Our results suggest that MFAP2 has potential as a molecular target to treat melanoma and suppress metastasis of melanoma cells.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yang Lv
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Dongsheng Cao
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Xiaocan Li
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yuanyi Li
- Department of Plastic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
36
|
Bustamante P, Piquet L, Landreville S, Burnier JV. Uveal melanoma pathobiology: Metastasis to the liver. Semin Cancer Biol 2020; 71:65-85. [PMID: 32450140 DOI: 10.1016/j.semcancer.2020.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Collapse
Affiliation(s)
- Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada
| | - Léo Piquet
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada; Gerald Bronfman Department Of Oncology, McGill University, Montréal, Canada.
| |
Collapse
|
37
|
Li YZ, Huang Y, Deng XY, Tu CS. Identification of an immune-related signature for the prognosis of uveal melanoma. Int J Ophthalmol 2020; 13:458-465. [PMID: 32309184 DOI: 10.18240/ijo.2020.03.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022] Open
Abstract
AIM To construct an immune-related prognostic signature (IPS) that can distinguish and predict prognosis in uveal melanoma (UM). METHODS The transcriptomic data and clinicopathological information of 80 UM patients were extracted from the TCGA database. These patients were randomly assigned to a training and a testing set. RESULTS Lasso Cox analysis was performed for the prognostic immune-related genes to develop an IPS for UM in the training set. The signature was validated in both the testing set and entire cohort. We confirmed the prognostic value of our IPS in distinct subgroups and found its association with the T stage and basal diameter of the tumor. Tumor Immune Estimation Resource database analysis revealed that the IPS was negatively correlated with the infiltration of neutrophils and dendritic cells, but positively correlated with the infiltration level of CD8+ T cells. In addition, we demonstrated that immune checkpoints containing PD-1, CTLA-4, IDO, and TIGIT were moderately associated with the IPS. CONCLUSION This is the first study to develop and validate an immune-related signature with the ability of predicting prognosis for UM patients. Further studies are needed to validate its prediction accuracy.
Collapse
Affiliation(s)
- Ying-Zi Li
- Eye Hospital, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, China
| | - Ying Huang
- Eye Hospital, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, China
| | - Xiang-Yang Deng
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chang-Sen Tu
- Eye Hospital, Wenzhou Medical University, Wenzhou 32500, Zhejiang Province, China
| |
Collapse
|
38
|
Piperno-Neumann S, Larkin J, Carvajal RD, Luke JJ, Schwartz GK, Hodi FS, Sablin MP, Shoushtari AN, Szpakowski S, Chowdhury NR, Brannon AR, Ramkumar T, de Koning L, Derti A, Emery C, Yerramilli-Rao P, Kapiteijn E. Genomic Profiling of Metastatic Uveal Melanoma and Clinical Results of a Phase I Study of the Protein Kinase C Inhibitor AEB071. Mol Cancer Ther 2020; 19:1031-1039. [PMID: 32029634 DOI: 10.1158/1535-7163.mct-19-0098] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/24/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022]
Abstract
Up to 50% of patients with uveal melanoma (UM) develop metastatic disease, for which there is no effective systemic treatment. This study aimed to evaluate the safety and efficacy of the orally available protein kinase C inhibitor, AEB071, in patients with metastatic UM, and to perform genomic profiling of metastatic tumor samples, with the aim to propose combination therapies. Patients with metastatic UM (n = 153) were treated with AEB071 in a phase I, single-arm study. Patients received total daily doses of AEB071 ranging from 450 to 1,400 mg. First-cycle dose-limiting toxicities were observed in 13 patients (13%). These were most commonly gastrointestinal system toxicities and were dose related, occurring at doses ≥700 mg/day. Preliminary clinical activity was observed, with 3% of patients achieving a partial response and 50% with stable disease (median duration 15 weeks). High-depth, targeted next-generation DNA sequencing was performed on 89 metastatic tumor biopsy samples. Mutations previously identified in UM were observed, including mutations in GNAQ, GNA11, BAP1, SF3B1, PLCB4, and amplification of chromosome arm 8q. GNAQ/GNA11 mutations were observed at a similar frequency (93%) as previously reported, confirming a therapeutic window for inhibition of the downstream effector PKC in metastatic UM.In conclusion, the protein kinase C inhibitor AEB071 was well tolerated, and modest clinical activity was observed in metastatic UM. The genomic findings were consistent with previous reports in primary UM. Together, our data allow envisaging combination therapies of protein kinase C inhibitors with other compounds in metastatic UM.
Collapse
Affiliation(s)
| | - James Larkin
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Jason J Luke
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | - A Rose Brannon
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | - Adnan Derti
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Caroline Emery
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Ellen Kapiteijn
- Leiden University Medical Centre, Department of Medical Oncology, Leiden, the Netherlands
| |
Collapse
|
39
|
Wessely A, Steeb T, Erdmann M, Heinzerling L, Vera J, Schlaak M, Berking C, Heppt MV. The Role of Immune Checkpoint Blockade in Uveal Melanoma. Int J Mol Sci 2020; 21:ijms21030879. [PMID: 32013269 PMCID: PMC7037664 DOI: 10.3390/ijms21030879] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
Uveal melanoma (UM) represents the most common intraocular malignancy in adults and accounts for about 5% of all melanomas. Primary disease can be effectively controlled by several local therapy options, but UM has a high potential for metastatic spread, especially to the liver. Despite its clinical and genetic heterogeneity, therapy of metastatic UM has largely been adopted from cutaneous melanoma (CM) with discouraging results until now. The introduction of antibodies targeting CTLA-4 and PD-1 for immune checkpoint blockade (ICB) has revolutionized the field of cancer therapy and has achieved pioneering results in metastatic CM. Thus, expectations were high that patients with metastatic UM would also benefit from these new therapy options. This review provides a comprehensive and up-to-date overview on the role of ICB in UM. We give a summary of UM biology, its clinical features, and how it differs from CM. The results of several studies that have been investigating ICB in metastatic UM are presented. We discuss possible reasons for the lack of efficacy of ICB in UM compared to CM, highlight the pitfalls of ICB in this cancer entity, and explain why other immune-modulating therapies could still be an option for future UM therapies.
Collapse
Affiliation(s)
- Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Theresa Steeb
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Michael Erdmann
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Lucie Heinzerling
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Max Schlaak
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Frauenlobstr. 9-11, 80337 Munich, Germany;
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich Alexander University, Ulmenweg 18, 91054 Erlangen, Germany; (A.W.); (T.S.); (M.E.); (L.H.); (J.V.); (C.B.)
- Correspondence: ; Tel.: +49-9131-85-35747
| |
Collapse
|
40
|
Wakamatsu K, Fukushima S, Minagawa A, Omodaka T, Hida T, Hatta N, Takata M, Uhara H, Okuyama R, Ihn H. Significance of 5- S-Cysteinyldopa as a Marker for Melanoma. Int J Mol Sci 2020; 21:E432. [PMID: 31936623 PMCID: PMC7013534 DOI: 10.3390/ijms21020432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most lethal and malignant cancers and its incidence is increasing worldwide, and Japan is not an exception. Although there are numerous therapeutic options for melanoma, the prognosis is still poor once it has metastasized. The main concern after removal of a primary melanoma is whether it has metastasized, and early detection of metastatic melanoma would be effective in improving the prognosis of patients. Thus, it is very important to identify reliable methods to detect metastases as early as possible. Although many prognostic biomarkers (mainly for metastases) of melanoma have been reported, there are very few effective for an early diagnosis. Serum and urinary biomarkers for melanoma diagnosis have especially received great interest because of the relative ease of sample collection and handling. Several serum and urinary biomarkers appear to have significant potential both as prognostic indicators and as targets for future therapeutic methods, but still there are no efficient serum and urinary biomarkers for early detection, accurate diagnosis and prognosis, efficient monitoring of the disease and reliable prediction of survival and recurrence. Levels of 5-S-cysteinyldopa (5SCD) in the serum or urine as biomarkers of melanoma have been found to be significantly elevated earlier and to reflect melanoma progression better than physical examinations, laboratory tests and imaging techniques, such as scintigraphy and echography. With recent developments in the treatment of melanoma, studies reporting combinations of 5SCD levels and new applications for the treatment of melanoma are gradually increasing. This review summarizes the usefulness of 5SCD, the most widely used and well-known melanoma marker in the serum and urine, compares 5SCD and other useful markers, and finally its application to other fields.
Collapse
Affiliation(s)
- Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (S.F.); (H.I.)
| | - Akane Minagawa
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.M.); (T.O.); (R.O.)
| | - Toshikazu Omodaka
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.M.); (T.O.); (R.O.)
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan; (T.H.); (H.U.)
| | - Naohito Hatta
- Department of Dermatology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama, Toyama 930-8550, Japan;
| | - Minoru Takata
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikada-cho, Kita-Ku, Okayama 700-8558, Japan;
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan; (T.H.); (H.U.)
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (A.M.); (T.O.); (R.O.)
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (S.F.); (H.I.)
| |
Collapse
|
41
|
Jackett LA, Scolyer RA. A Review of Key Biological and Molecular Events Underpinning Transformation of Melanocytes to Primary and Metastatic Melanoma. Cancers (Basel) 2019; 11:cancers11122041. [PMID: 31861163 PMCID: PMC6966527 DOI: 10.3390/cancers11122041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a major public health concern that is responsible for significant morbidity and mortality, particularly in countries such as New Zealand and Australia where it is the commonest cause of cancer death in young adults. Until recently, there were no effective drug therapies for patients with advanced melanoma however significant advances in our understanding of the biological and molecular basis of melanoma in recent decades have led to the development of revolutionary treatments, including targeted molecular therapy and immunotherapy. This review summarizes our current understanding of the key events in the pathway of melanomagenesis and discusses the role of genomic analysis as a potential tool for improved diagnostic evaluation, prognostication and treatment strategies. Ultimately, it is hoped that a continued deeper understanding of the mechanisms of melanomagenesis will lead to the development of even more effective treatments that continue to provide better outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Louise A. Jackett
- Melanoma Institute Australia, 2065 Sydney, Australia;
- Sydney Medical School, The University of Sydney, 2050 Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, 2050 Sydney, Australia
- Department of Anatomical Pathology, Austin Hospital, 3084 Melbourne, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, 2065 Sydney, Australia;
- Sydney Medical School, The University of Sydney, 2050 Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, 2050 Sydney, Australia
- Correspondence: ; Tel.: +61-299117200; Fax: +61-299549290
| |
Collapse
|
42
|
van Ipenburg JA, de Waard NE, Naus NC, Jager MJ, Paridaens D, Verdijk RM. Chemokine Receptor Expression Pattern Correlates to Progression of Conjunctival Melanocytic Lesions. Invest Ophthalmol Vis Sci 2019; 60:2950-2957. [PMID: 31305861 DOI: 10.1167/iovs.19-27162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Chemokines play a role in the progression and metastatic spread of both cutaneous and uveal melanomas. The aim of this study was to examine the prognostic value of expression of chemokine receptors CCR7, CXCR4, and CCR10 in conjunctival melanocytic lesions. Methods In total, 44 conjunctival nevi, 21 cases of primary acquired melanosis (PAM) with atypia and 35 conjunctival melanomas, were included. After immunohistochemical staining for CCR7, CXCR4, and CCR10 the immunoreactive score (IRS) was determined. The findings were correlated for association with melanoma and development of metastasis. For mechanistic evaluation, we used a mouse melanoma metastasis model using two human conjunctival melanoma cell lines, CM2005.1 and CRMM1. Results All tested chemokines showed a significantly higher expression in conjunctival melanoma than conjunctival nevi. There was a statistically significant difference between the IRS in nevi and PAM with atypia for nuclear IRS in CCR10 (P = 0.03) and both nuclear and cytoplasmic IRS in CXCR4 (P < 0.01 and P = 0.03, respectively); this was also true evaluating the groups PAM with atypia and melanoma all together (P < 0.01). Furthermore, a trend for lower IRS was seen in cases of melanoma without metastasis, with a suggestive pattern of a higher IRS in cases that did develop metastases, supported for CXCR4 using the mouse melanoma metastasis model. Conclusions Expression of specific chemokines changes during the progression and metastatic spread of conjunctival melanocytic lesions. Differential chemokine profiles may hold prognostic value for patients with conjunctival melanomas and might be considered as a therapeutic target.
Collapse
Affiliation(s)
| | - Nadine E de Waard
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicole C Naus
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Rotterdam Eye Hospital, Rotterdam, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Singh MK, Singh L, Chosdol K, Pushker N, Meel R, Bakhshi S, Sen S, Kashyap S. Clinicopathological relevance of NFκB1/p50 nuclear immunoreactivity and its relationship with the inflammatory environment of uveal melanoma. Exp Mol Pathol 2019; 111:104313. [DOI: 10.1016/j.yexmp.2019.104313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
|
44
|
Yue H, Meng FX, Qian J, Xu BB, Li G, Wu JH. Calpastatin participates in the regulation of cell migration in BAP1-deficient uveal melanoma cells. Int J Ophthalmol 2019; 12:1680-1687. [PMID: 31741854 DOI: 10.18240/ijo.2019.11.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
AIM To detect how BRCA-associated protein 1 (BAP1) regulates cell migration in uveal melanoma (UM) cells. METHODS Wound healing and transwell assays were performed to detect UM cell migration abilities. Protein chip, immunoprecipitations and surface plasmon resonance analyses were applied to identify BAP1 protein partners. Western blot and calpain activity assays were used to test the expression and function of calpastatin (CAST). RESULTS CAST protein was confirmed as a new BAP1 protein partner, and loss of BAP1 reduced the expression and function of CAST in UM cells. The overexpression of CAST rescued the cell migration phenotype caused by BAP1 loss. CONCLUSION BAP1 interacts with CAST in UM cells, and CAST and its subsequent calpain pathway may mediate BAP1-related cell migration regulation.
Collapse
Affiliation(s)
- Han Yue
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
| | - Feng-Xi Meng
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
| | - Jiang Qian
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
| | - Bin-Bin Xu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China
| | - Gang Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China.,Experimental Research Center, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| | - Ji-Hong Wu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200433, China.,Experimental Research Center, Eye & ENT Hospital of Fudan University, Shanghai 200031, China
| |
Collapse
|
45
|
Basile MS, Mazzon E, Fagone P, Longo A, Russo A, Fallico M, Bonfiglio V, Nicoletti F, Avitabile T, Reibaldi M. Immunobiology of Uveal Melanoma: State of the Art and Therapeutic Targets. Front Oncol 2019; 9:1145. [PMID: 31750244 PMCID: PMC6848265 DOI: 10.3389/fonc.2019.01145] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Uveal Melanoma (UM) represents the most common primary intraocular malignant tumor in adults. Although it originates from melanocytes as cutaneous melanoma, it shows significant clinical and biological differences with the latter, including high resistance to immune therapy. Indeed, UM can evade immune surveillance via multiple mechanisms, such as the expression of inhibitory checkpoints (e.g., PD-L1, CD47, CD200) and the production of IDO-1 and soluble FasL, among others. More in-depth understanding of these mechanisms will suggest potential targets for the design of novel and more effective management strategies for UM patients.
Collapse
Affiliation(s)
- Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, Catania, Italy
| | - Matteo Fallico
- Department of Ophthalmology, University of Catania, Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Michele Reibaldi
- Department of Ophthalmology, University of Catania, Catania, Italy
| |
Collapse
|
46
|
See TR, Stålhammar G, Phillips S, Grossniklaus HE. BAP1 Immunoreactivity Correlates with Gene Expression Class in Uveal Melanoma. Ocul Oncol Pathol 2019; 6:129-137. [PMID: 32258021 DOI: 10.1159/000502550] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background Uveal melanoma (UM) is the most common intraocular tumour in adults. Currently there are different tests available to determine the risk of UM for metastasis, among which include BRCA1-associated protein-1 (BAP1) immunohistochemistry (IHC) and gene expression profiling (GEP). BAP1 is a deubiquitylating enzyme (DUB) that has tumour suppressor activity, the loss of which therefore is associated with higher risk for tumour growth and metastasis. Objectives To compare and correlate the prognostic significance of BAP1-IHC staining patterns and GEP in the prediction of UM's risk for metastasis. Methods This is a retrospective chart review with prospective follow-up of patients with primary UM who underwent enucleation from the year 2008 to 2018. Clinical history, histopathologic findings, GEP classification, BAP1-IHC of the formalin-fixed paraffin-embedded tissues, and follow-up data for metastasis were collected and statistically analysed. Results A total of 30 enucleated eyes with UM were included in the study. All class 1a tumours had high nuclear BAP1 expression and all class 2 had low nuclear BAP1 expression. Fifty percent of the class 1b tumours had low nuclear BAP1 expression. Among the tumours with low nuclear BAP1 expression, 68% developed metastasis, while 9% developed metastasis among high nuclear expression. Fifty-five percent developed metastasis in tumours with high cytoplasmic expression and 42% for low cytoplasmic expression. Predictive values for metastasis (positive predictive value, negative predictive value) are as follows: (1) nuclear BAP1-IHC (68%, 91%), (2) cytoplasmic BAP1-IHC (55%, 58%), and (3) GEP (73%, 80%). Nuclear BAP1-IHC and GEP had the same accuracy rate of 77% and cytoplasmic BAP1-IHC had an accuracy of 57%. Conclusion Low nuclear BAP1-IHC strongly correlates with GEP class 2 and was equally accurate in the prediction of metastasis.
Collapse
Affiliation(s)
- Thonnie Rose See
- Department of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gustav Stålhammar
- Department of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, Georgia, USA.,Oncology and Pathology Service, St. Erik Eye Hospital, Stockholm, Sweden.,Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Phillips
- Department of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hans E Grossniklaus
- Department of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Vivet-Noguer R, Tarin M, Roman-Roman S, Alsafadi S. Emerging Therapeutic Opportunities Based on Current Knowledge of Uveal Melanoma Biology. Cancers (Basel) 2019; 11:E1019. [PMID: 31330784 PMCID: PMC6678734 DOI: 10.3390/cancers11071019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Uveal Melanoma (UM) is a rare and malignant intraocular tumor with dismal prognosis. Despite the efficient control of the primary tumor by radiation or surgery, up to 50% of patients subsequently develop metastasis, mainly in the liver. Once the tumor has spread from the eye, the treatment is challenging and the median survival is only nine months. UM represents an intriguing model of oncogenesis that is characterized by a relatively homogeneous histopathological architecture and a low burden of genetic alterations, in contrast to other melanomas. UM is driven by recurrent activating mutations in Gαq pathway, which are associated with a second mutation in BRCA1 associated protein 1 (BAP1), splicing factor 3b subunit 1 (SF3B1), or eukaryotic translation initiation factor 1A X-linked (EIF1AX), occurring in an almost mutually exclusive manner. The monosomy of chromosome 3 is also a recurrent feature that is associated with high metastatic risk. These events driving UM oncogenesis have been thoroughly investigated over the last decade. However, no efficient related therapeutic strategies are yet available and the metastatic disease remains mostly incurable. Here, we review current knowledge regarding the molecular biology and the genetics of uveal melanoma and highlight the related therapeutic applications and perspectives.
Collapse
Affiliation(s)
- Raquel Vivet-Noguer
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Malcy Tarin
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Sergio Roman-Roman
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, 75248 Paris, France.
| |
Collapse
|
48
|
van der Kooij MK, Speetjens FM, van der Burg SH, Kapiteijn E. Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers (Basel) 2019; 11:E845. [PMID: 31248118 PMCID: PMC6627906 DOI: 10.3390/cancers11060845] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Here, we critically evaluated the knowledge on cutaneous melanoma (CM) and uveal melanoma (UM). Both cancer types derive from melanocytes that share the same embryonic origin and display the same cellular function. Despite their common origin, both CM and UM display extreme differences in their genetic alterations and biological behavior. We discuss the differences in genetic alterations, metastatic routes, tumor biology, and tumor-host interactions in the context of their clinical responses to targeted- and immunotherapy.
Collapse
Affiliation(s)
- Monique K van der Kooij
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Frank M Speetjens
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
49
|
Effective Immunotherapy in Bone Marrow Metastatic Melanoma Presenting with Disseminated Intravascular Coagulopathy. Case Reports Immunol 2018; 2018:4520294. [PMID: 29796327 PMCID: PMC5896417 DOI: 10.1155/2018/4520294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/26/2022] Open
Abstract
Malignant melanoma is responsible for the majority of skin cancer deaths and is increasing in prevalence. Bone marrow (BM) involvement by melanoma is rare in the absence of widespread visceral disease. Here, we report the case of a 30-year-old female who presented to the hospital with back pain, low-grade fever, and easy bruising. She was found to be bicytopenic and in disseminated intravascular coagulopathy (DIC). Surprisingly, BM biopsy showed extensive involvement by metastatic malignant melanoma in the absence of visceral or brain metastasis. The unique presentation of this case and the challenge of management of a potentially treatable cancer in a critically ill patient are discussed, alongside a review of published cases of metastatic melanoma in the BM and an exploration of currently available treatment options. The excellent response of our patient to combined immune checkpoint inhibitors has yet to be paralleled in the available literature.
Collapse
|
50
|
Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis 2018; 35:379-391. [PMID: 29722002 DOI: 10.1007/s10585-018-9893-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.
Collapse
|