1
|
Ji L, Chen J, He L, Zhang F, Deng Z, Lin J, Qi Z, Luo X, Giuliano AE, Cui X, Lin SL, Cui Y. Reversal of endocrine resistance via N6AMT1-NEDD4L pathway-mediated p110α degradation. Oncogene 2025; 44:530-544. [PMID: 39623076 PMCID: PMC11832415 DOI: 10.1038/s41388-024-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 02/19/2025]
Abstract
Approximately 70% of breast cancer (BC) cases are luminal-type (estrogen receptor-positive, ER+), suitable for endocrine therapy with tamoxifen as the most commonly used drug. However, about 30% of these patients develop tamoxifen resistance due to various mechanisms, primarily involving PI3K pathway activation through mutations or unknown pathways. Here, we discover, via bioinformatics analysis and clinical samples, that N6 adenine-specific DNA methyltransferase 1 (N6AMT1) is highly expressed in luminal breast cancer but downregulated in tamoxifen-resistant (TamR) BC cells. ChIP-qPCR and luciferase reporter assays showed that FOXA1 binds to the N6AMT1 promoter and enhances its transcription. In TamR models, FOXA1 and N6AMT1 are downregulated, increasing p110α protein levels (but not mRNA), phospho-AKT levels, and tamoxifen resistance. In vivo, N6AMT1 overexpression enhanced tamoxifen sensitivity, while knockdown reduced it; this sensitivity could be restored with the p110α inhibitor A66. Clinically, decreased N6AMT1 expression correlates with poor prognosis in luminal BC patients. In TamR BC organoids, combining tamoxifen with A66 further reduced growth compared to either treatment alone. Mechanistically, increased p110α levels result from inhibited degradation by E3 ubiquitin ligase NEDD4L. These findings suggest N6AMT1 as a potential luminal breast cancer biomarker and highlight the N6AMT1-p110α pathway as a therapeutic target to sensitize cells to tamoxifen.
Collapse
Affiliation(s)
- Likeng Ji
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiongyu Chen
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lifang He
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fan Zhang
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zihao Deng
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiediao Lin
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaochang Qi
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xi Luo
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Zhang S, Jin Y, Han Q, Zhao X, Xue L. FOXA3: A Novel Tumor Suppressor in Esophageal Squamous Cell Carcinoma. J Gene Med 2025; 27:e700009. [PMID: 39965898 DOI: 10.1002/jgm.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The forkhead box A (FOXA) family has been extensively studied in cancer research; however, the role of FOXA3 in malignant tumors, particularly esophageal squamous cell carcinoma (ESCC), is not well understood. This study explores the expression and function of FOXA3 in ESCC, assessing its potential as a prognostic marker and therapeutic target. METHODS This study analyzed FOXA3 expression in ESCC tissues and its correlation with patient prognosis. The effects of FOXA3 overexpression on ESCC cell proliferation, migration, and invasion were examined in ESCC cell lines in vitro. Additionally, an in vivo tumorigenesis assay was performed using subcutaneous injection to assess the impact of FOXA3 overexpression on tumor growth. Statistical analyses were conducted to determine the significance of the results. RESULTS FOXA3 expression was significantly reduced in ESCC tissues compared with it in paired adjacent normal tissues, and low FOXA3 expression was significantly associated with poor prognosis in ESCC patients. FOXA3 overexpression markedly inhibited ESCC cell proliferation, migration, and invasion. In addition, overexpression of FOXA3 repressed tumor growth in mice. CONCLUSIONS These findings indicate that FOXA3 acts as a tumor suppressor in ESCC, and its low expression is linked to poor outcomes. FOXA3 may serve as a potential diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Siang Zhang
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuxiang Jin
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyu Han
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuewei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
4
|
Goglia AG, Alshalalfa M, Khan A, Isakov DR, Hougen HY, Swami N, Kannikal J, Mcbride SM, Gomez DR, Punnen S, Nguyen PL, Iyengar P, Antonarakis ES, Mahal BA, Dee EC. Pan-cancer genomic analysis reveals FOXA1 amplification is associated with adverse outcomes in non-small cell lung, prostate, and breast cancers. J Natl Cancer Inst 2025; 117:188-197. [PMID: 39254651 PMCID: PMC11717412 DOI: 10.1093/jnci/djae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Alterations in forkhead box A1 (FOXA1), a pioneer transcription factor, are associated with poor prognosis in breast cancer and prostate cancer. We characterized FOXA1 genomic alterations and their clinical impacts in a large pan-cancer cohort from the American Association for Cancer Research Genomics, Evidence, Neoplasia, Information, Exchange database. METHODS FOXA1 alterations were characterized across more than 87 000 samples from more than 30 cancer types for primary and metastatic tumors alongside patient characteristics and clinical outcomes. FOXA1 alterations were queried in the Memorial Sloan Kettering - Metastatic Events and Tropisms (MSK-MET) cohort (a GENIE subset), allowing definition of hazard ratios (HRs) and survival estimates based on Cox proportional hazard models. RESULTS FOXA1 was altered in 1869 (2.1%) samples, with distinct patterns across different cancers: prostate cancer enriched with indel-inframe alterations, breast cancer with missense mutations, and lung cancers with copy number amplifications. Of 74 715 samples with FOXA1 copy number profiles, amplification was detected in 834 (1.1%). Amplification was most common in non-small cell lung cancer (NSCLC; 3% in primary; 6% in metastatic) and small cell lung cancer (4.1% primary; 3.5% metastatic), followed by breast cancer (2% primary; 1.6% metastatic) and prostate cancer (2.2% primary; 1.6% metastatic). Copy number amplifications were associated with decreased overall survival in NSCLC (HR = 1.45, 95% confidence interval [CI] = 1.06 to 1.99; P = .02), breast cancer (HR = 3.04, 95% CI = 1.89 to 4.89; P = 4e-6), and prostate cancer (HR = 1.94, 95% CI = 1.03 to 3.68; P = .04). Amplifications were associated with widespread metastases in NSCLC, breast cancer, and prostate cancer. CONCLUSIONS FOXA1 demonstrates distinct alteration profiles across cancer sites. Our findings suggest an association between FOXA1 amplification and enhanced metastatic potential and decreased survival, highlighting prognostic and therapeutic potential in breast cancer, prostate cancer, and NSCLC.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Anwar Khan
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Danielle R Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen Y Hougen
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Nishwant Swami
- Division of Internal Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - Jasmine Kannikal
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sean M Mcbride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanoj Punnen
- Desai and Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Pastò B, Vida R, Dri A, Foffano L, Della Rossa S, Gerratana L, Puglisi F. Beyond Hormone Receptors: liquid biopsy tools to unveil new clinical meanings and empower therapeutic decision-making in Luminal-like metastatic breast cancer. Breast 2024; 79:103859. [PMID: 39708442 DOI: 10.1016/j.breast.2024.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Immunohistochemical (IHC) tissue profiling is a standard practice in the management of metastatic breast cancer (mBC), that enables the identification of distinct biological phenotypes based on hormone receptors' expression. Luminal-like tumors primarily benefit from a first line treatment strategy combining endocrine therapy and cyclin-dependent kinase 4/6 inhibitors. However, IHC analyses necessitate invasive procedures and may encounter technical and interpretational challenges. In the current era of precision medicine, liquid biopsy holds potential to provide clinicians with additional insights into disease biology, including mechanisms underlying endocrine resistance and disease progression. Several liquid-based biomarkers are entering clinical practice and hold prognostic and predictive values in Luminal-like mBC, while many others are currently being investigated. The present work aims to summarize the current evidence regarding the clinical meanings of hormone receptors and their downstream molecular pathways, alongside their implications for therapeutic decision-making in Luminal-like mBC.
Collapse
Affiliation(s)
- Brenno Pastò
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Riccardo Vida
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Arianna Dri
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lorenzo Foffano
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Serena Della Rossa
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy.
| | - Fabio Puglisi
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| |
Collapse
|
6
|
Voutsadakis IA. Breast Cancers With Intermediate Estrogen Receptor Expression: Characteristics, Prognosis and Treatment. Clin Breast Cancer 2024:S1526-8209(24)00334-3. [PMID: 39710525 DOI: 10.1016/j.clbc.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
In the era of personalized oncology biomarkers that identify subgroups of specific cancers and help predict response to specific therapies are critical tools for prognosis determination and therapeutic decisions. The Estrogen Receptor (ER) had been one of the first biomarkers used in breast cancer and has helped advance the field of breast oncology by contributing to the success of hormonal therapies for the ER positive subgroup of the disease. Expression of the receptor in 1% or more of tumor cells in immunohistochemical sections define currently the ER positive subgroup of breast cancers, which may be treated with regimens that include hormonal inhibitors. The highest sensitivity and benefit of hormonal therapies is observed in cancers with robust ER expression (in 90% to 100% of tumor cells). However, it has become clear that the subgroup of breast cancers with low ER expression (in 1% to 10% of tumor cells) behaves similarly to ER negative breast cancers and has an inferior response to hormonal therapies. The behavior of the rest of ER positive breast cancers with an intermediate ER expression between these 2 extremes (ER expression between 10% and 90%) is less well described and their response to estrogen targeting therapies is less clear. Breast cancers with intermediate ER expression represent a small subgroup of ER positive breast cancers and the wide range of expressions suggests heterogeneity. This review will discuss this subgroup of ER positive breast cancers and examine their genomic landscape and therapeutic repercussions.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, Ontario, Canada; Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
7
|
Yuan H, Liang Y, Hu S, Chen J, You J, Jiang J, Luo M, Zeng M. The role of transcription factor FOXA1/C2/M1/O3/P1/Q1 in breast cancer. Medicine (Baltimore) 2024; 103:e37709. [PMID: 38608123 PMCID: PMC11018205 DOI: 10.1097/md.0000000000037709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer is a common malignancy with the highest mortality rate among women worldwide. Its incidence is on the rise year after year, accounting for more than one-tenth of new cancers worldwide. Increasing evidence suggests that forkhead box (FOX) transcription factors play an important role in the occurrence and development of breast cancer. However, little is known about the relationship between the expression, prognostic value, function, and immune infiltration of FOX transcription factors in tumor microenvironment. We used bioinformatics to investigate expression and function of FOX factor in breast cancer. Our results revealed the expression levels of FOXA1 and FOXM1 were significantly higher in breast cancer tissues than in normal tissues. The high expression of mRNA in FOXA1 (P < .05), FOXM1 (P < .01), and FOXP1 (P < .05) groups was related to tumor stage. Survival analysis results showed that increased FOXP1 mRNA levels were significantly associated with overall survival (OS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) in all patients with breast cancer (P < .05). Patients with the FOXA1 high-expression group had better RFS and DMFS than the low-expression group (P < .05), while patients with FOXM1 high-expression group had worse RFS, OS, and DMFS than the low-expression group (P < .05). Meanwhile, mutation analysis showed that genetic alterations in FOX transcription factors were significantly associated with shorter OS and progression-free survival (P < .05), but not with disease-free survival (P = .710) in patients with breast cancer. FOXP1, FOXA1, and FOXM1 may be used as potential biomarkers to predict the prognosis of patients with breast cancer. Functional enrichment indicated that FOX was mainly involved in cell division, cell senescence, cell cycle, and prolactin signaling pathway. In patients with breast cancer, FOXC2 expression was negatively correlated with the infiltration of B cells and positively correlated with the infiltration of neutrophils and dendritic cells. However, FOXM1 was negatively correlated with the infiltration of CD8 + T cells and macrophages and positively correlated with the infiltration of neutrophils and dendritic cells. These findings provided novel insights into the screening of prognostic biomarkers of the FOX family in breast cancer and laid a foundation for further research on the immune infiltration of the FOX transcription factor family members in tumors.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
9
|
Kumar S, Vindal V. Architecture and topologies of gene regulatory networks associated with breast cancer, adjacent normal, and normal tissues. Funct Integr Genomics 2023; 23:324. [PMID: 37878223 DOI: 10.1007/s10142-023-01251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Most cancer studies employ adjacent normal tissues to tumors (ANTs) as controls, which are not completely normal and represent a pre-cancerous state. However, the regulatory landscape of ANTs compared to tumor and non-tumor-bearing normal tissues is largely unexplored. Among cancers, breast cancer is the most commonly diagnosed cancer and a leading cause of death in women worldwide, with a lack of sufficient treatment regimens for various reasons. Hence, we aimed to gain deeper insights into normal, pre-cancerous, and cancerous regulatory systems of breast tissues towards identifying ANT and subtype-specific candidate genes. For this, we constructed and analyzed eight gene regulatory networks (GRNs), including five subtypes (viz., Basal, Her2, Luminal A, Luminal B, and Normal-Like), one ANT, and two normal tissue networks. Whereas several topological properties of these GRNs enabled us to identify tumor-related features of ANT, escape velocity centrality (EVC+) identified 24 functionally significant common genes, including well-known genes such as E2F1, FOXA1, JUN, BRCA1, GATA3, ERBB2, and ERBB3 across all six tissues including subtypes and ANT. Similarly, the EVC+ also helped us to identify tissue-specific key genes (Basal: 18, Her2: 6, Luminal A: 5, Luminal B: 5, Normal-Like: 2, and ANT: 7). Additionally, differentially correlated switching gene pairs along with functional, pathway, and disease annotations highlighted the cancer-associated role of these genes. In a nutshell, the present study revealed ANT and subtype-specific regulatory features and key candidate genes, which can be explored further using in vitro and in vivo experiments for better and effective disease management at an early stage.
Collapse
Affiliation(s)
- Swapnil Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Lundgren C, Tutzauer J, Church SE, Stål O, Ekholm M, Forsare C, Nordenskjöld B, Fernö M, Bendahl PO, Rydén L. Tamoxifen-predictive value of gene expression signatures in premenopausal breast cancer: data from the randomized SBII:2 trial. Breast Cancer Res 2023; 25:110. [PMID: 37773134 PMCID: PMC10540453 DOI: 10.1186/s13058-023-01719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Gene expression (GEX) signatures in breast cancer provide prognostic information, but little is known about their predictive value for tamoxifen treatment. We examined the tamoxifen-predictive value and prognostic effects of different GEX signatures in premenopausal women with early breast cancer. METHODS RNA from formalin-fixed paraffin-embedded tumor tissue from premenopausal women randomized between two years of tamoxifen treatment and no systemic treatment was extracted and successfully subjected to GEX profiling (n = 437, NanoString Breast Cancer 360™ panel). The median follow-up periods for a recurrence-free interval (RFi) and overall survival (OS) were 28 and 33 years, respectively. Associations between GEX signatures and tamoxifen effect were assessed in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative (ER+ /HER2-) tumors using Kaplan-Meier estimates and Cox regression. The prognostic effects of GEX signatures were studied in the entire cohort. False discovery rate adjustments (q-values) were applied to account for multiple hypothesis testing. RESULTS In patients with ER+/HER2- tumors, FOXA1 expression below the median was associated with an improved effect of tamoxifen after 10 years with regard to RFi (hazard ratio [HR]FOXA1(high) = 1.04, 95% CI = 0.61-1.76, HRFOXA1(low) = 0.30, 95% CI = 0.14-0.67, qinteraction = 0.0013), and a resembling trend was observed for AR (HRAR(high) = 1.15, 95% CI = 0.60-2.20, HRAR(low) = 0.42, 95% CI = 0.24-0.75, qinteraction = 0.87). Similar patterns were observed for OS. Tamoxifen was in the same subgroup most beneficial for RFi in patients with low ESR1 expression (HRRFi ESR1(high) = 0.76, 95% CI = 0.43-1.35, HRRFi, ESR1(low) = 0.56, 95% CI = 0.29-1.06, qinteraction = 0.37). Irrespective of molecular subtype, higher levels of ESR1, Mast cells, and PGR on a continuous scale were correlated with improved 10 years RFi (HRESR1 = 0.80, 95% CI = 0.69-0.92, q = 0.005; HRMast cells = 0.74, 95% CI = 0.65-0.85, q < 0.0001; and HRPGR = 0.78, 95% CI = 0.68-0.89, q = 0.002). For BC proliferation and Hypoxia, higher scores associated with worse outcomes (HRBCproliferation = 1.54, 95% CI = 1.33-1.79, q < 0.0001; HRHypoxia = 1.38, 95% CI = 1.20-1.58, q < 0.0001). The results were similar for OS. CONCLUSIONS Expression of FOXA1 is a promising predictive biomarker for tamoxifen effect in ER+/HER2- premenopausal breast cancer. In addition, each of the signatures BC proliferation, Hypoxia, Mast cells, and the GEX of AR, ESR1, and PGR had prognostic value, also after adjusting for established prognostic factors. Trial registration This trial was retrospectively registered in the ISRCTN database the 6th of December 2019, trial ID: https://clinicaltrials.gov/ct2/show/ISRCTN12474687 .
Collapse
Affiliation(s)
- Christine Lundgren
- Department of Oncology, Region Jönköping County, Jönköping, Sweden.
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden.
| | - Julia Tutzauer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | | | - Olle Stål
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Ekholm
- Department of Oncology, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Carina Forsare
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Bo Nordenskjöld
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mårten Fernö
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Pär-Ola Bendahl
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Building 404, 223 81, Lund, Sweden
| | - Lisa Rydén
- Division of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
11
|
Zhou M, Gan XL, Ren YX, Chen QX, Yang YZ, Weng ZJ, Zhang XF, Guan JX, Tang LY, Ren ZF. AGR2 and FOXA1 as prognostic markers in ER-positive breast cancer. BMC Cancer 2023; 23:743. [PMID: 37568077 PMCID: PMC10416444 DOI: 10.1186/s12885-023-10964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/16/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The prognostic role of either forkhead box A1 (FOXA1) or anterior gradient 2 (AGR2) in breast cancer has been found separately. Considering that there were interplays between them depending on ER status, we aimed to assess the statistical interaction between AGR2 and FOXA1 on breast cancer prognosis and examine the prognostic role of the combination of them by ER status. METHODS AGR2 and FOXA1 expression in tumor tissues were evaluated with tissue microarrays by immunohistochemistry in 915 breast cancer patients with follow up data. The expression levels of these two markers were treated as binary variables, and many different cutoff values were tried for each marker. Survival and Cox proportional hazard analyses were used to evaluate the relationship between AGR2, FOXA1 and prognosis, and the statistical interaction between them on the prognosis was assessed on multiplicative scale. RESULTS Statistical interaction between AGR2 and FOXA1 on the PFS was significant with all the cutoff points in ER-positive breast cancer patients but not ER-negative ones. Among ER-positive patients, the poor prognostic role of the high level of FOXA1 was significant only in patients with the low level of AGR2, and vice versa. When AGR2 and FOXA1 were considered together, patients with low levels of both markers had significantly longer PFS compared with all other groups. CONCLUSIONS There was a statistical interaction between AGR2 and FOXA1 on the prognosis of ER-positive breast cancer. The combination of AGR2 and FOXA1 was a more useful marker for the prognosis of ER-positive breast cancer patients.
Collapse
Affiliation(s)
- Meng Zhou
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China
| | - Xing-Li Gan
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China
| | - Yue-Xiang Ren
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Qian-Xin Chen
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China
| | | | - Zi-Jin Weng
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Xiao-Fang Zhang
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Jie-Xia Guan
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-Sen University, 74 Zhongshan 2Nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
12
|
Bi X, Zheng D, Cai J, Xu D, Chen L, Xu Z, Cao M, Li P, Shen Y, Wang H, Zheng W, Wu D, Zheng S, Li K. Pan-cancer analyses reveal multi-omic signatures and clinical implementations of the forkhead-box gene family. Cancer Med 2023; 12:17428-17444. [PMID: 37401400 PMCID: PMC10501247 DOI: 10.1002/cam4.6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Forkhead box (FOX) proteins belong to one of the largest transcription factor families and play crucial roles in the initiation and progression of cancer. Prior research has linked several FOX genes, such as FOXA1 and FOXM1, to the crucial process of carcinogenesis. However, the overall picture of FOX gene family across human cancers is far from clear. METHODS To investigate the broad molecular signatures of the FOX gene family, we conducted study on multi-omics data (including genomics, epigenomics and transcriptomics) from over 11,000 patients with 33 different types of human cancers. RESULTS Pan-cancer analysis reveals that FOX gene mutations were found in 17.4% of tumor patients with a substantial cancer type-dependent pattern. Additionally, high expression heterogeneity of FOX genes across cancer types was discovered, which can be partially attributed to the genomic or epigenomic alteration. Co-expression network analysis reveals that FOX genes may exert functions by regulating the expression of both their own and target genes. For a clinical standpoint, we provided 103 FOX gene-drug target-drug predictions and found FOX gene expression have potential survival predictive value. All of the results have been included in the FOX2Cancer database, which is freely accessible at http://hainmu-biobigdata.com/FOX2Cancer. CONCLUSION Our findings may provide a better understanding of roles FOX genes played in the development of tumors, and help to offer new avenues for uncovering tumorigenesis and unprecedented therapeutic targets.
Collapse
Affiliation(s)
- Xiaoman Bi
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dehua Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Jiale Cai
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dahua Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Liyang Chen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Zhizhou Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Meng Cao
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Peihu Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Yutong Shen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Hong Wang
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Wuping Zheng
- Department of Breast Thoracic TumorThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Deng Wu
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong KongHong KongChina
| | - Shaojiang Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical CenterHainan Medical UniversityHaikouChina
| | - Kongning Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| |
Collapse
|
13
|
Kaddoura R, Alqutami F, Asbaita M, Hachim M. In Silico Analysis of Publicly Available Transcriptomic Data for the Identification of Triple-Negative Breast Cancer-Specific Biomarkers. Life (Basel) 2023; 13:life13020422. [PMID: 36836779 PMCID: PMC9965976 DOI: 10.3390/life13020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer among women and is classified into multiple subtypes. Triple-negative breast cancer (TNBC) is the most aggressive subtype, with high mortality rates and limited treatment options such as chemotherapy and radiation. Due to the heterogeneity and complexity of TNBC, there is a lack of reliable biomarkers that can be used to aid in the early diagnosis and prognosis of TNBC in a non-invasive screening method. AIM This study aims to use in silico methods to identify potential biomarkers for TNBC screening and diagnosis, as well as potential therapeutic markers. METHODS Publicly available transcriptomic data of breast cancer patients published in the NCBI's GEO database were used in this analysis. Data were analyzed with the online tool GEO2R to identify differentially expressed genes (DEGs). Genes that were differentially expressed in more than 50% of the datasets were selected for further analysis. Metascape, Kaplan-Meier plotter, cBioPortal, and the online tool TIMER were used for functional pathway analysis to identify the biological role and functional pathways associated with these genes. Breast Cancer Gene-Expression Miner v4.7 was used to validify the obtained results in a larger cohort of datasets. RESULTS A total of 34 genes were identified as differentially expressed in more than half of the datasets. The DEG GATA3 had the highest degree of regulation, and it plays a role in regulating other genes. The estrogen-dependent pathway was the most enriched pathway, involving four crucial genes, including GATA3. The gene FOXA1 was consistently down-regulated in TNBC in all datasets. CONCLUSIONS The shortlisted 34 DEGs will aid clinicians in diagnosing TNBC more accurately as well as developing targeted therapies to improve patient prognosis. In vitro and in vivo studies are further recommended to validate the results of the current study.
Collapse
|
14
|
Elacestrant demonstrates strong anti-estrogenic activity in PDX models of estrogen-receptor positive endocrine-resistant and fulvestrant-resistant breast cancer. NPJ Breast Cancer 2022; 8:125. [PMID: 36446866 PMCID: PMC9709100 DOI: 10.1038/s41523-022-00483-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The selective oestrogen receptor (ER) degrader (SERD), fulvestrant, is limited in its use for the treatment of breast cancer (BC) by its poor oral bioavailability. Comparison of the orally bioavailable investigational SERD elacestrant, versus fulvestrant, demonstrates both drugs impact tumour growth of ER+ patient-derived xenograft models harbouring several ESR1 mutations but that elacestrant is active after acquired resistance to fulvestrant. In cell line models of endocrine sensitive and resistant breast cancer both drugs impact the ER-cistrome, ER-interactome and transcription of oestrogen-regulated genes similarly, confirming the anti-oestrogenic activity of elacestrant. The addition of elacestrant to CDK4/6 inhibitors enhances the antiproliferative effect compared to monotherapy. Furthermore, elacestrant inhibits the growth of palbociclib-resistant cells. Lastly, resistance to elacestrant involves Type-I and Type-II receptor tyrosine kinases which are amenable to therapeutic targeting. Our data support the wider clinical testing of elacestrant.
Collapse
|
15
|
Kim DS, Camacho CV, Setlem R, Kim K, Malladi S, Hou TY, Nandu T, Gadad SS, Kraus WL. Functional Characterization of lncRNA152 as an Angiogenesis-Inhibiting Tumor Suppressor in Triple-Negative Breast Cancers. Mol Cancer Res 2022; 20:1623-1635. [PMID: 35997635 PMCID: PMC9633386 DOI: 10.1158/1541-7786.mcr-22-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs have been implicated in many of the hallmarks of cancer. Herein, we found that the expression of lncRNA152 (lnc152; a.k.a. DRAIC), which we annotated previously, is highly upregulated in luminal breast cancer (LBC) and downregulated in triple-negative breast cancer (TNBC). Knockdown of lnc152 promotes cell migration and invasion in LBC cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In mice, lnc152 inhibited the growth of TNBC cell xenografts, as well as metastasis of TNBC cells in an intracardiac injection model. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes controlling angiogenesis. Using pull down assays followed by LC/MS-MS, we identified RBM47, a known tumor suppressor in breast cancer, as a lnc152-interacting protein. The effects of lnc152 in TNBC cells are mediated, in part, by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC. IMPLICATIONS This study identifies lncRNA152 as an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC by upregulating the expression of the tumor suppressor RBM47. As such, lncRNA152 may serve as a biomarker to track aggressiveness of breast cancer, as well as therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kangsan Kim
- Department of Pathology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tim Y. Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shrikanth S. Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX 79905, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Wang K, Guan C, Yu J, Chen X, Shang X, Mei S, Feng X, Zheng L. Systematic Pan-Cancer Analysis and Experimental Verification Identify FOXA1 as an Immunological and Prognostic Biomarker in Epithelial Ovarian Cancer. DISEASE MARKERS 2022; 2022:9328972. [PMID: 36393971 PMCID: PMC9646314 DOI: 10.1155/2022/9328972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/17/2022] [Indexed: 09/08/2024]
Abstract
Background Epithelial ovarian cancer (EOC) has the lowest survival rate among female reproductive cancers present with symptoms of aggressive malignancies, poor prognosis, drug resistance and postoperative recurrence. The majority of patients with EOC are diagnosed at an advanced stage due to the therapeutic challenges including lack of early diagnosis and effective therapeutic targets for EOC. Methods Pan-cancer analyses were performed to explore the features of forkhead-box (FOX) A1 (FOXA1) using data from TCGA and GTEx databases. R package "clusterprofiler" was used to perform the enrichment analysis of FOXA1 in EOC. Data downloaded from Drug Sensitivity in Cancer (GDSC) database were used to evaluate the association between FOXA1 and antitumor drug sensitivity. In experimental verification, FOXA1 expression was detected using qRT-PCR and western blot assays. Western blot, immunofluorescence staining, and Transwell assays were used to assess the influence of FOXA1 silencing on epithelial-mesenchymal transition (EMT) of EOC cells. Results We found that FOXA1 was highly expressed in EOC and predicted poorer survival of EOC patients. We observed that FOXA1 expression was positively correlated EMT-related pathways. Through experimental verification, we found the underlying function of FOXA1 to promote EMT in ovarian cancers. The results from western blot, immunofluorescence staining, and Transwell assays showed that FOXA1 silencing impeded the progression of EMT and invasiveness of the cancer cells. Furthermore, CCK-8 and invasion assays suggested that siRNA-FOXA1 attenuated the ability of cancer cells to metastasize and proliferate. Dual-luciferase reporter assays confirmed the binding activity of FOXA1 to the promoter of connective tissue growth factor (CTGF). In addition, we found that FOXA1 was closely correlated immunosuppressive microenvironment of EOC. High FOXA1 expression may contribute to the resistance of many anticancer drugs. Conclusions Our results predict and validate the function of FOXA1 in promoting EMT and the progression of disease in EOC. Targeting FOXA1 may improve the sensitivity of EOC treatment.
Collapse
Affiliation(s)
- Kai Wang
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Chenan Guan
- Department of Kidney Internal Medicine, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Junhui Yu
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Xing Chen
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Xianwen Shang
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Shuangshuang Mei
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Xingjun Feng
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
| | - Lingzhi Zheng
- Department of Obstetrics and Gynecology, Taizhou Hospital Zhejiang Province, Wenzhou Medical University, Linhai, 317000 Zhejiang, China
- Department of Obstetrics and Gynecology, Shaoxing University, Shaoxing, 312000 Zhejiang, China
| |
Collapse
|
17
|
FOXA1 in Breast Cancer: A Luminal Marker with Promising Prognostic and Predictive Impact. Cancers (Basel) 2022; 14:cancers14194699. [PMID: 36230619 PMCID: PMC9564251 DOI: 10.3390/cancers14194699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The present review focuses on the function of the forkhead protein FOXA1 in breast cancer (BC) in relation to steroid hormone receptors. We explored the currently available analytic approaches for FOXA1 assessment both at gene and protein levels, comparing the differences between the available techniques used for its diagnostic assessment. In addition, we elaborated on data regarding the prognostic and predictive role of this marker in BC based on several studies that evaluated its expression in relation to the outcome and/or response to therapy. FOXA1, similar to the androgen receptor (AR), may have a dual role in BC according to hormonal status. In luminal cancers, its expression contributes to a better prognosis, while in triple-negative breast cancers (TNBC), it implies an adverse outcome. Consequently, we observed that FOXA1-positive expression in a neoadjuvant setting may predict a lack of response in luminal BC as opposed to TNBC, in which FOXA1 allegedly increases its chemosensitivity. In conclusion, considering its accessible and convenient identification by immunohistochemistry, its important impact on prognosis, and its suitability to identify patients with different responses to chemotherapy, we propose that FOXA1 could be tested in routine diagnostics as an additional prognostic and predictive marker in BC.
Collapse
|
18
|
Adamczyk-Gruszka O, Horecka-Lewitowicz A, Gruszka J, Wawszczak-Kasza M, Strzelecka A, Lewitowicz P. Endometrial Cancer in Aspect of Forkhead Box Protein Contribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10403. [PMID: 36012038 PMCID: PMC9408638 DOI: 10.3390/ijerph191610403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: The present study aimed to investigate the influence of forkhead box (FOX) on endometrial cancer (EC) progression. For a better understanding, the driving mechanisms are vital to identifying correlations between genes and their regulators. (2) Methods: The study enrolled one hundred and three white female patients with confirmed EC. For the analysis, we used next-generation sequencing with the Hot Spot Cancer Panel provided by Illumina Inc., San Diego, CA, USA, and an immunohistochemical analysis of FOXA1, FOXP1, and estrogen receptors. (3) Results: FOXA1 silencing led to a worse outcome based on the correlation with FOXA1 (test log-rank p = 0.04220 and HR 2.66, p = 0.033). Moreover, FOX proteins were closely correlated with TP53 and KRAS mutation. (4) Conclusions: Our study confirmed previous reports about FOX box protein in the regulation of tumor growth. A remarkable observation about the unclear crosstalk with crucial genes, as TP53 and KRAS need deeper investigation.
Collapse
Affiliation(s)
- Olga Adamczyk-Gruszka
- Department of Gynaecology and Obstetrics, Collegium Medicum, Jan Kochanowski University, 25-369 Kielce, Poland
- Department of Obstetrics and Gynaecology, Province Hospital, 25-369 Kielce, Poland
| | | | - Jakub Gruszka
- 2nd Department of Obstetrics and Gynaecology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Wawszczak-Kasza
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Institute of Medical Sciences, Jan Kochanowski University, 25-369 Kielce, Poland
| | | | - Piotr Lewitowicz
- Department of Clinical and Experimental Pathology, Institute of Medical Sciences, Jan Kochanowski University, 25-369 Kielce, Poland
| |
Collapse
|
19
|
Abstract
Most prostate cancers initially respond to androgen deprivation therapy (ADT). With the long-term application of ADT, localized prostate cancer will progress to castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and neuroendocrine prostate cancer (NEPC), and the transcriptional network shifted. Forkhead box protein A1 (FOXA1) may play a key role in this process through multiple mechanisms. To better understand the role of FOXA1 in prostate cancer, we review the interplay among FOXA1-targeted genes, modulators of FOXA1, and FOXA1 with a particular emphasis on androgen receptor (AR) function. Furthermore, we discuss the distinct role of FOXA1 mutations in prostate cancer and clinical significance of FOXA1. We summarize possible regulation pathways of FOXA1 in different stages of prostate cancer. We focus on links between FOXA1 and AR, which may play different roles in various types of prostate cancer. Finally, we discuss FOXA1 mutation and its clinical significance in prostate cancer. FOXA1 regulates the development of prostate cancer through various pathways, and it could be a biomarker for mCRPC and NEPC. Future efforts need to focus on mechanisms underlying mutation of FOXA1 in advanced prostate cancer. We believe that FOXA1 would be a prognostic marker and therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hui-Yu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou 215009, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tian-Ren Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tao Yan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
20
|
Lenz J, Konecna P, Tichy F, Machacova D, Fiala L, Hurnik P, Kyllar M. Unique expression patterns of the embryonal stem cell marker SOX2 and hormone receptors suggest the existence of a subpopulation of epithelial stem/progenitor cells in porcine and bovine endometrium. Vet Med Sci 2022; 8:1489-1501. [PMID: 35561288 PMCID: PMC9297784 DOI: 10.1002/vms3.802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND There are currently insufficient data on the population of endometrial epithelial stem/progenitor cells in farm animals. OBJECTIVES With the aim of identifying a potential population of epithelial stem/progenitor cells in the porcine and bovine endometrium, this study immunohistochemically examined the expression patterns of the oestrogen and progesterone receptors, as well as that of the embryonal stem cell marker SOX2. METHODS A total of 24 endometrial tissue samples obtained from cycling pigs (n = 12) and cows (n = 12) were included in our study. Each endometrium was divided into basal, middle and luminal portions. The percentage of marker-positive cells and the intensity of the immunoreaction in each portion of the endometrium were determined. RESULTS Inverse expression patterns of SOX2 and progesterone receptors were found in both animal species throughout the oestrous cycle. Strong diffuse SOX2 expression was detected in the basal portions of the glands, while a significant decrease in positivity and a weak immunoreaction were found in the luminal two thirds of the glandular epithelium. Strong progesterone receptor expression was observed in at least 90% of glandular cells in the middle and luminal portions, whereas weak staining and significant decrease in positivity were detected in the basal portions of the glands. One oestrogen receptor expression pattern resembled that of progesterone receptors. CONCLUSION The inverse expression patterns of SOX2 and hormone (especially progesterone) receptors suggest that endometrial epithelial stem/progenitor cells represent a subset of cells that reside in the basal portions of the endometrial glands in both the bovine and porcine endometrium.
Collapse
Affiliation(s)
- Jiri Lenz
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic.,Department of Pathology, Znojmo Hospital, Znojmo, Czech Republic.,Cytohisto s.r.o., Břeclav, Czech Republic
| | - Petra Konecna
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Dominika Machacova
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ludek Fiala
- Cytohisto s.r.o., Břeclav, Czech Republic.,Department of Sexology, Psychiatric Clinic, Faculty of Medicine, Charles University Pilsen, Pilsen, Czech Republic.,Institute of Sexology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | | - Michal Kyllar
- Department of Pathobiology, Institute of Morphology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
21
|
Seachrist DD, Anstine LJ, Keri RA. FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Cancers (Basel) 2021; 13:cancers13205205. [PMID: 34680352 PMCID: PMC8533709 DOI: 10.3390/cancers13205205] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
The pioneering function of FOXA1 establishes estrogen-responsive transcriptomes in luminal breast cancer. Dysregulated FOXA1 chromatin occupancy through focal amplification, mutation, or cofactor recruitment modulates estrogen receptor (ER) transcriptional programs and drives endocrine-resistant disease. However, ER is not the sole nuclear receptor (NR) expressed in breast cancers, nor is it the only NR for which FOXA1 serves as a licensing factor. Receptors for androgens, glucocorticoids, and progesterone are also found in the majority of breast cancers, and their functions are also impacted by FOXA1. These NRs interface with ER transcriptional programs and, depending on their activation level, can reprogram FOXA1-ER cistromes. Thus, NR interplay contributes to endocrine therapy response and resistance and may provide a vulnerability for future therapeutic benefit in patients. Herein, we review what is known regarding FOXA1 regulation of NR function in breast cancer in the context of cell identity, endocrine resistance, and NR crosstalk in breast cancer progression and treatment.
Collapse
Affiliation(s)
- Darcie D. Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Lindsey J. Anstine
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth A. Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
- Department of Cancer Biology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
22
|
Gondo N, Sakai Y, Zhang Z, Hato Y, Kuzushima K, Phimsen S, Kawashima Y, Kuroda M, Suzuki M, Okada S, Iwata H, Toyama T, Rezano A, Kuwahara K. Increased chemosensitivity via BRCA2-independent DNA damage in DSS1- and PCID2-depleted breast carcinomas. J Transl Med 2021; 101:1048-1059. [PMID: 34031538 DOI: 10.1038/s41374-021-00613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/09/2022] Open
Abstract
Breast cancer, the most common malignancy among women, is closely associated with mutations in the tumor suppressor gene BRCA. DSS1, a component of the TRanscription-EXport-2 (TREX-2) complex involved in transcription and mRNA nuclear export, stabilizes BRCA2 expression. DSS1 is also related to poor prognosis in patients with breast cancer owing to the induction of chemoresistance. Recently, BRCA2 was shown to be associated with the TREX-2 component PCID2, which prevents DNA:RNA hybrid R-loop formation and transcription-coupled DNA damage. This study aimed to elucidate the involvement of these TREX-2 components and BRCA2 in the chemosensitivity of breast carcinomas. Our results showed that compared with that in normal breast tissues, DSS1 expression was upregulated in human breast carcinoma, whereas PCID2 expression was comparable between normal and malignant tissues. We then compared patient survival time among groups divided by high or low expressions of DSS1, BRCA2, and PCID2. Increased DSS1 expression was significantly correlated with poor prognosis in recurrence-free survival time, whereas no differences were detected in the high and low BRCA2 and PCID2 expression groups. We performed in vitro analyses, including propidium iodide nuclear staining, single-cell gel electrophoresis, and clonogenic survival assays, using breast carcinoma cell lines. The results confirmed that DSS1 depletion significantly increased chemosensitivity, whereas overexpression conferred chemoresistance to breast cancer cell lines; however, BRCA2 expression did not affect chemosensitivity. Similar to DSS1, PCID2 expression was also inversely correlated with chemosensitivity. These results strongly suggest that DSS1 and PCID2 depletion is closely associated with increased chemosensitivity via BRCA2-independent DNA damage. Together with the finding that DSS1 is not highly expressed in normal breast tissues, these results demonstrate that DSS1 depletion confers a druggable trait and may contribute to the development of novel chemotherapeutic strategies to treat DSS1-depleted breast carcinomas independent of BRCA2 mutations.
Collapse
Affiliation(s)
- Naomi Gondo
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhiro Sakai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Zhenhuan Zhang
- Radiation Oncology Department, University of Florida, Gainesville, FL, USA
| | - Yukari Hato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kiyotaka Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suchada Phimsen
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Yoshiaki Kawashima
- Department of Pathology, Fujita Health University Hospital, Toyoake, Japan
| | - Makoto Kuroda
- Department of Pathology, Fujita Health University Okazaki Medical Center, Okazaki, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Andri Rezano
- Division of Cell Biology, Faculty of Medicine, Department of Biomedical Sciences, Universitas Padjadjaran, West Java, Indonesia.
| | - Kazuhiko Kuwahara
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
23
|
Oh C, Kim HR, Oh S, Ko JY, Kim Y, Kang K, Yang Y, Kim J, Park JH, Roe JS, Yoo KH. Epigenetic Upregulation of MAGE-A Isoforms Promotes Breast Cancer Cell Aggressiveness. Cancers (Basel) 2021; 13:cancers13133176. [PMID: 34202157 PMCID: PMC8268034 DOI: 10.3390/cancers13133176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Breast cancer is a heterogeneous disease that has complex causes and mechanisms of development. Currently, patient treatment options depend on the breast cancer molecular subtype, which is classified based on the presence or absence of hormone receptors and HER2. However, this classification system has limitations in terms of predicting responsiveness to anticancer drugs and patient outcomes. In this study, we present a new approach to classifying molecular breast cancer subtypes: it is based on changes in histone modifications in the promoter region of the MAGEA12 locus, which we found related closely to MAGEA12 expression and MAGEA12-associated malignancy of breast cancer cells. Abstract After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.
Collapse
Affiliation(s)
- Chaeun Oh
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (C.O.); (S.O.)
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (C.O.); (S.O.)
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Je Yeong Ko
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Yesol Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea;
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Jongmin Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (J.Y.K.); (Y.K.); (Y.Y.); (J.K.); (J.H.P.)
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Correspondence: (J.-S.R.); (K.H.Y.); Tel.: +82-2-2123-2700 (J.-S.R.); +82-2-2077-7836 (K.H.Y.)
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; (C.O.); (S.O.)
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (J.-S.R.); (K.H.Y.); Tel.: +82-2-2123-2700 (J.-S.R.); +82-2-2077-7836 (K.H.Y.)
| |
Collapse
|
24
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
25
|
Cai J, Chen S, Yi M, Tan Y, Peng Q, Ban Y, Yang J, Li X, Zeng Z, Xiong W, McCarthy JB, Li G, Li X, Xiang B. ΔNp63α is a super enhancer-enriched master factor controlling the basal-to-luminal differentiation transcriptional program and gene regulatory networks in nasopharyngeal carcinoma. Carcinogenesis 2021; 41:1282-1293. [PMID: 31826234 DOI: 10.1093/carcin/bgz203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) originates via malignant transformation of the pseudostratified nasopharyngeal epithelium, composed of basal and luminal cells. Super enhancers (SEs) are large clusters of cis-elements involved in the regulation of gene expression through epigenetic regulatory mechanisms. In this study, we demonstrated that basal cell-specific proteins are highly expressed, whereas luminal cell proteins are downregulated in NPC, implying a perturbation of basal-to-luminal differentiation during NPC development. We characterized NPC cell models according to different molecular signatures associated with their differentiation status and found that distinct SE landscapes are tightly associated with basal or luminal-like molecular signatures in NPC cells. Furthermore, the transcription of ΔNP63α, a prominent isoform of TP63, was found to be driven by SEs in NPC cells. Data from chromatin immunoprecipitation (ChIP)-sequencing showed that ΔNP63α largely occupied regions of SEs associated with basal cell-specific genes. Silencing of ΔNP63α led to a loss of H3K27ac occupancy at basal-type SEs and triggered a basal-to-luminal gene expression signature switch, suggesting that ΔNP63α is a master factor contributing to the perturbation of luminal differentiation. Integrative transcriptomics analysis also revealed that ΔNP63α acts as a core factor involved in the dysregulation of gene expression in NPC. Furthermore, ΔNP63α enhanced EGF-stimulated NF-κB activation in NPC cells by activating SE-mediated EGFR transcription. Finally, depletion of ΔNP63α in NPC cells induced robust growth inhibition of NPC cells in vitro and in vivo. Our data revealed that ΔNP63α-dependent SE reprogramming contributes to the blockade of luminal differentiation and uncontrolled proliferation in NPC.
Collapse
Affiliation(s)
- Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China
| | - Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Tongzipo Road, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Angus SP, Stuhlmiller TJ, Mehta G, Bevill SM, Goulet DR, Olivares-Quintero JF, East MP, Tanioka M, Zawistowski JS, Singh D, Sciaky N, Chen X, He X, Rashid NU, Chollet-Hinton L, Fan C, Soloway MG, Spears PA, Jefferys S, Parker JS, Gallagher KK, Forero-Torres A, Krop IE, Thompson AM, Murthy R, Gatza ML, Perou CM, Earp HS, Carey LA, Johnson GL. FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036. NPJ Breast Cancer 2021; 7:51. [PMID: 33980863 PMCID: PMC8115531 DOI: 10.1038/s41523-021-00258-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy.
Collapse
Affiliation(s)
- Steven P Angus
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Gaurav Mehta
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Samantha M Bevill
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
- Massachusetts General Hospital, Cambridge, MA, USA
| | - Daniel R Goulet
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
- Koch Institute, Massachusetts Institute of Technology, Boston, MA, USA
| | | | - Michael P East
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Maki Tanioka
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Hyogo Cancer Center, Akashi, Japan
| | | | - Darshan Singh
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Noah Sciaky
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Xin Chen
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Xiaping He
- Department of Genetics, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Naim U Rashid
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Lynn Chollet-Hinton
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Cheng Fan
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Matthew G Soloway
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A Spears
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Stuart Jefferys
- Department of Genetics, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Joel S Parker
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kristalyn K Gallagher
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Surgery, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Andres Forero-Torres
- University of Alabama-Birmingham School of Medicine, Birmingham, AL, USA
- Seattle Genetics, Inc., Seattle, WA, USA
| | - Ian E Krop
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alastair M Thompson
- Department of Breast Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Baylor College of Medicine, Houston, TX, USA
| | - Rashmi Murthy
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Charles M Perou
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, UNC Chapel Hill, Chapel Hill, NC, USA
| | - H Shelton Earp
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Lisa A Carey
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Gary L Johnson
- Department of Pharmacology, UNC Chapel Hill, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Kumar U, Ardasheva A, Mahmud Z, Coombes RC, Yagüe E. FOXA1 is a determinant of drug resistance in breast cancer cells. Breast Cancer Res Treat 2021; 186:317-326. [PMID: 33417085 PMCID: PMC7990828 DOI: 10.1007/s10549-020-06068-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Breast cancer is one of the most commonly diagnosed cancers in women. Five subtypes of breast cancer differ in their genetic expression profiles and carry different prognostic values, with no treatments available for some types, such as triple-negative, due to the absence of genetic signatures that could otherwise be targeted by molecular therapies. Although endocrine treatments are largely successful for estrogen receptor (ER)-positive cancers, a significant proportion of patients with metastatic tumors fail to respond and acquire resistance to therapy. FOXA1 overexpression mediates endocrine therapy resistance in ER-positive breast cancer, although the regulation of chemotherapy response by FOXA1 has not been addressed previously. FOXA1, together with EP300 and RUNX1, regulates the expression of E-cadherin, and is expressed in luminal, but absent in triple-negative and basal-like breast cancers. We have previously determined that EP300 regulates drug resistance and tumor initiation capabilities in breast cancer cells. METHODS Here we describe the generation of breast cancer cell models in which FOXA1 expression has been modulated either by expression of hairpins targeting FOXA1 mRNA or overexpression plasmids. RESULTS Upon FOXA1 knockdown in luminal MCF-7 and T47D cells, we found an increase in doxorubicin and paclitaxel sensitivity as well as a decrease in anchorage independence. Conversely, upregulation of FOXA1 in basal-like MDA-MB-231 cells led to an increase in drug resistance and anchorage independence. CONCLUSION Together, these data suggest that FOXA1 plays a role in making tumors more aggressive.
Collapse
Affiliation(s)
- Uttom Kumar
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Anastasia Ardasheva
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Zimam Mahmud
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - R Charles Coombes
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ernesto Yagüe
- Division of Cancer, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
28
|
Elian FA, Are U, Ghosh S, Nuin P, Footz T, McMullen TPW, Brindley DN, Walter MA. FOXQ1 is Differentially Expressed Across Breast Cancer Subtypes with Low Expression Associated with Poor Overall Survival. BREAST CANCER-TARGETS AND THERAPY 2021; 13:171-188. [PMID: 33688250 PMCID: PMC7935334 DOI: 10.2147/bctt.s282860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Purpose Forkhead box Q1 (FOXQ1) has been shown to contribute to the development and progression of cancers, including ovarian and breast cancer (BC). However, research exploring FOXQ1 expression, copy number variation (CNV), and prognostic value across different BC subtypes is limited. Our purpose was to evaluate FOXQ1 mRNA expression, CNV, and prognostic value across BC subtypes. Materials and Methods We determined FOXQ1 expression and CNV in BC patient tumors using RT-qPCR and qPCR, respectively. We also analyzed FOXQ1 expression and CNV in BC cell lines in the CCLE database using K-means clustering. The prognostic value of FOXQ1 expression in the TCGA-BRCA database was assessed using univariate and multivariate Cox's regression analysis as well as using the online tools OncoLnc, GEPIA, and UALCAN. Results Our analyses reveal that FOXQ1 mRNA is differentially expressed between different subtypes of BC and is significantly decreased in luminal BC and HER2 patients when compared to normal breast tissue samples. Furthermore, analysis of BC cell lines showed that FOXQ1 mRNA expression was independent of CNV. Moreover, patients with low FOXQ1 mRNA expression had significantly poorer overall survival compared to those with high FOXQ1 mRNA expression. Finally, low FOXQ1 expression had a critical impact on the prognostic values of BC patients and was an independent predictor of overall survival when it was adjusted for BC subtypes and to two other FOX genes, FOXF2 and FOXM1. Conclusion Our study reveals for the first time that FOXQ1 is differentially expressed across BC subtypes and that low expression of FOXQ1 is indicative of poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Fahed A Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ubah Are
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Paulo Nuin
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David N Brindley
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Cruz RGB, Madden SF, Richards CE, Vellanki SH, Jahns H, Hudson L, Fay J, O’Farrell N, Sheehan K, Jirström K, Brennan K, Hopkins AM. Human Epidermal Growth Factor Receptor-3 Expression Is Regulated at Transcriptional Level in Breast Cancer Settings by Junctional Adhesion Molecule-A via a Pathway Involving Beta-Catenin and FOXA1. Cancers (Basel) 2021; 13:cancers13040871. [PMID: 33669586 PMCID: PMC7922773 DOI: 10.3390/cancers13040871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Signaling from the human epidermal growth factor receptor (HER) family of proteins increases in many cancers, including breast. HER2-high breast cancers are successfully treated with anti-HER2 therapies, but these drugs are limited by the fact that patients frequently develop resistance to them. One common mechanism by which resistance develops is when tumors acquire high levels of a family member called HER3. We had previously shown that a protein called JAM-A regulates the level of HER2 in breast cancer cells, and is associated with the development of resistance to HER2-targeted therapies. In this study we show for the first time that JAM-A levels also regulate those of HER3. Using breast cancer cell and tissue models and culminating in patient tissue material, we provide evidence that JAM-A regulates HER3 expression via a pathway involving the transcription factors β-catenin and FOXA1. We suggest that JAM-A merits future investigation as a novel drug target for its potential to reduce HER3 tumorigenic signaling and to offset the development of resistance to HER2-targeted therapies. Abstract The success of breast cancer therapies targeting the human epidermal growth factor receptor-2 (HER2) is limited by the development of drug resistance by mechanisms including upregulation of HER3. Having reported that HER2 expression and resistance to HER2-targeted therapies can be regulated by Junctional Adhesion Molecule-A (JAM-A), this study investigated if JAM-A regulates HER3 expression. Expressional alteration of JAM-A in breast cancer cells was used to test expressional effects on HER3 and its effectors, alongside associated functional behaviors, in vitro and semi-in vivo. HER3 transcription factors were identified and tested for regulation by JAM-A. Finally a patient tissue microarray was used to interrogate connections between putative pathway components connecting JAM-A and HER3. This study reveals for the first time that HER3 and its effectors are regulated at gene/protein expression level by JAM-A in breast cancer cell lines; with functional consequences in in vitro and semi-in vivo models. In bioinformatic, cellular and patient tissue models, this was associated with regulation of the HER3 transcription factor FOXA1 by JAM-A via a pathway involving β-catenin. Our data suggest a novel model whereby JAM-A expression regulates β-catenin localization, in turn regulating FOXA1 expression, which could drive HER3 gene transcription. JAM-A merits investigation as a novel target to prevent upregulation of HER3 during the development of resistance to HER2-targeted therapies, or to reduce HER3-dependent tumorigenic signaling.
Collapse
Affiliation(s)
- Rodrigo G. B. Cruz
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (R.G.B.C.); (C.E.R.); (S.H.V.); (L.H.); (K.B.)
| | - Stephen F. Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland;
| | - Cathy E. Richards
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (R.G.B.C.); (C.E.R.); (S.H.V.); (L.H.); (K.B.)
| | - Sri HariKrishna Vellanki
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (R.G.B.C.); (C.E.R.); (S.H.V.); (L.H.); (K.B.)
| | - Hanne Jahns
- Pathobiology Section, UCD School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland;
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (R.G.B.C.); (C.E.R.); (S.H.V.); (L.H.); (K.B.)
| | - Joanna Fay
- Department of Pathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (J.F.); (N.O.); (K.S.)
| | - Naoimh O’Farrell
- Department of Pathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (J.F.); (N.O.); (K.S.)
| | - Katherine Sheehan
- Department of Pathology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (J.F.); (N.O.); (K.S.)
| | - Karin Jirström
- Department of Clinical Sciences Lund, Division of Oncology and Therapeutic Pathology, Lund University, SE 221 85 Lund, Sweden;
| | - Kieran Brennan
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (R.G.B.C.); (C.E.R.); (S.H.V.); (L.H.); (K.B.)
| | - Ann M. Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; (R.G.B.C.); (C.E.R.); (S.H.V.); (L.H.); (K.B.)
- Correspondence: ; Tel.: +353-1-809-3858
| |
Collapse
|
30
|
Yang H, Chen R, Li D, Wang Z. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data. Bioinformatics 2021; 37:2231-2237. [PMID: 33599254 DOI: 10.1093/bioinformatics/btab109] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION The discovery of cancer subtyping can help explore cancer pathogenesis, determine clinical actionability in treatment, and improve patients' survival rates. However, due to the diversity and complexity of multi-omics data, it is still challenging to develop integrated clustering algorithms for tumor molecular subtyping. RESULTS We propose Subtype-GAN, a deep adversarial learning approach based on the multiple-input multiple-output neural network to model the complex omics data accurately. With the latent variables extracted from the neural network, Subtype-GAN uses consensus clustering and the Gaussian Mixture model to identify tumor samples' molecular subtypes. Compared with other state-of-the-art subtyping approaches, Subtype-GAN achieved outstanding performance on the benchmark data sets consisting of ∼4,000 TCGA tumors from 10 types of cancer. We found that on the comparison data set, the clustering scheme of Subtype-GAN is not always similar to that of the deep learning method AE but is identical to that of NEMO, MCCA, VAE, and other excellent approaches. Finally, we applied Subtype-GAN to the BRCA data set and automatically obtained the number of subtypes and the subtype labels of 1031 BRCA tumors. Through the detailed analysis, we found that the identified subtypes are clinically meaningful and show distinct patterns in the feature space, demonstrating the practicality of Subtype-GAN. AVAILABILITY The source codes, the clustering results of Subtype-GAN across the benchmark data sets are available at https://github.com/haiyang1986/Subtype-GAN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hai Yang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rui Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dongdong Li
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhe Wang
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
31
|
Parida S, Siddharth S, Sharma D. Role of Omentin in Obesity Paradox in Lung Cancer. Cancers (Basel) 2021; 13:cancers13020275. [PMID: 33450975 PMCID: PMC7828433 DOI: 10.3390/cancers13020275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Unlike other cancers, lung cancer risk is inversely associated with body mass index (BMI) with limited mechanistic understanding. Overweight and obese patients have been consistently found to respond better to therapy and show better survival. The adipose tissue—in addition to storing energy—secretes multiple unique cytokines or adipokines. Our in silico analysis reveals that a novel adipokine, omentin, is significantly and consistently downregulated in lung cancers compared to healthy lung tissue. Omentin was also found to be negatively correlated with important oncogenic transcription factors like ELK4, FOXA1 and FOXC1. Our study warrants further mechanistic studies on the role of omentin in lung cancers. Abstract Lung cancer remains the second-most-common cancer worldwide and is associated with the highest number of cancer-related mortality. While tobacco smoking is the most important risk factor for lung cancer, many other lifestyles and occupational factors significantly contribute. Obesity is a growing global health concern and contributes to ~30% cancer-related mortality, but unlike other lifestyle diseases, lung cancer is negatively associated with obesity. We meta-analyzed multiple case-control studies confirming increased survival and better outcomes in overweight and obese lung cancer patients. Tumor heterogeneity analysis showed significant enrichment of adipocytes and preadipocytes in normal lungs compared to lung cancers. Interestingly, one of the understudied adipokine, omentin, was significantly and consistently lower in lung neoplasms compared to normal lungs. Omentin has been examined in relation to osteoarthritis, inflammatory bowel disease, cardiovascular diseases, diabetes, chronic liver disease, psoriasis and some other cancers. Aberrant expression of omentin has been reported in solid tumors; however, little is known about its role in lung cancer. We found omentin to be consistently downregulated in lung cancers, and it exhibited a negative correlation with important transcription factors FOXA1, EN1, FOXC1 and ELK4. We, therefore, suggest that omentin may serve as a prognostic factor in lung cancer and explain the “obesity paradox” in lung cancer.
Collapse
|
32
|
Wang M, Allen GI. Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data. JOURNAL OF MACHINE LEARNING RESEARCH : JMLR 2021; 22:55. [PMID: 34744522 PMCID: PMC8570363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In mixed multi-view data, multiple sets of diverse features are measured on the same set of samples. By integrating all available data sources, we seek to discover common group structure among the samples that may be hidden in individualistic cluster analyses of a single data view. While several techniques for such integrative clustering have been explored, we propose and develop a convex formalization that enjoys strong empirical performance and inherits the mathematical properties of increasingly popular convex clustering methods. Specifically, our Integrative Generalized Convex Clustering Optimization (iGecco) method employs different convex distances, losses, or divergences for each of the different data views with a joint convex fusion penalty that leads to common groups. Additionally, integrating mixed multi-view data is often challenging when each data source is high-dimensional. To perform feature selection in such scenarios, we develop an adaptive shifted group-lasso penalty that selects features by shrinking them towards their loss-specific centers. Our so-called iGecco+ approach selects features from each data view that are best for determining the groups, often leading to improved integrative clustering. To solve our problem, we develop a new type of generalized multi-block ADMM algorithm using sub-problem approximations that more efficiently fits our model for big data sets. Through a series of numerical experiments and real data examples on text mining and genomics, we show that iGecco+ achieves superior empirical performance for high-dimensional mixed multi-view data.
Collapse
Affiliation(s)
- Minjie Wang
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Genevera I Allen
- Departments of Electrical and Computer Engineering, Statistics, and Computer Science, Rice University, Houston, TX 77005, USA; Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Estrogen Receptor on the move: Cistromic plasticity and its implications in breast cancer. Mol Aspects Med 2020; 78:100939. [PMID: 33358533 DOI: 10.1016/j.mam.2020.100939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome. Multiple cellular signaling cascades are known to impinge on ERα genomic function, changing its cistrome to retarget the receptor to other regions of the genome and reprogram its impact on breast cell biology. This review describes the current state-of-the-art on which factors manipulate the ERα cistrome and how this alters the response to both endogenous and exogenous hormonal stimuli, ultimately impacting BCa cell progression and response to commonly used therapeutic interventions. Novel insights in ERα cistrome dynamics may pave the way for better patient diagnostics and the development of novel therapeutic interventions, ultimately improving cancer care and patient outcome.
Collapse
|
34
|
Jia R, Li Z, Liang W, Ji Y, Weng Y, Liang Y, Ning P. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J Surg Oncol 2020; 18:268. [PMID: 33066779 PMCID: PMC7568373 DOI: 10.1186/s12957-020-02042-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1114 differentially expressed genes in luminal A breast cancer and 1042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7, KIF18A, STIL, and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.
Collapse
Affiliation(s)
- Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
35
|
Moradi MT, Fallahi H, Rahimi Z. The clinical significance of circulating DSCAM-AS1 in patients with ER-positive breast cancer and construction of its competitive endogenous RNA network. Mol Biol Rep 2020; 47:7685-7697. [DOI: 10.1007/s11033-020-05841-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
|
36
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
|
37
|
Al-Bedairy I, Shamsa M, Salim SA, Mahdi M, Dawood K, Al Faisal AH. FOXA1 expression in Iraqi women with ER+ breast cancer. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2020. [DOI: 10.47419/bjbabs.v2i02.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Breast cancer (BC) is a heterogeneous disease that can be classified into many subtypes according to histopathological and molecular characteristics. Forkhead box protein A1 (FOXA1) is a transcriptional pioneer factor that opens chromatin allowing estrogen receptor (α-ER) access to its genomic targets. FOXA1 expression is related to luminal BC with a good prognosis.
Objectives: The present study is sought to determine the FOXA1 expression in Iraqi women with ER+ BC.
Methods: Forty-eight fresh malignant breast tissues were analyzed by immunohistochemistry assay to choose ER+ samples, and then by RT-qPCR to evaluate FOXA1 gene expression.
Results: The ER-positive samples were (72.91%) of the total samples, and the molecular subtype of luminal A was the most common with a percentage of 56.25%. It was also noted that the high expression of the FOXA1 gene is highly significant (p<0.05) in Iraqi women with BC when compared with healthy controls.
Conclusions: Highly significant FOXA1 expression was found in Iraqi women with BC makes it eligible to be a good predictor or a biomarker for BC.
Collapse
|
38
|
FOXA1 Expression in Nasopharyngeal Carcinoma: Association with Clinicopathological Characteristics and EMT Markers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4234632. [PMID: 32685483 PMCID: PMC7330629 DOI: 10.1155/2020/4234632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
The forkhead box (FOXA) family of transcription factors regulates gene expression and chromatin structure during tumorigenesis and embryonic development. Until now, the relationship between FOXA1 and the nasopharyngeal carcinoma (NPC) has not yet been reported. Therefore, our purpose is to analyze the expression of FOXA1 in 56 NPC patients compared to 10 normal nasopharyngeal mucosae and to correlate the expression with the clinicopathological features. Besides, we investigated the association between FOXA1 and LMP1 gene expression, as well as the EMT markers namely the E-cadherin and Twist1. Among 56 NPC tissues, 34 (60.7%) cases were positive for FOXA1. Furthermore, we noticed that FOXA1 expression correlated with TNM (p = 0.037), and age at diagnosis (p = 0.05). Moreover, positive expression of FOXA1 is likely to be associated with prolonged disease-free survival and overall survival rates. On the other hand, we observed a positive association between the expression of E-cadherin and FOXA1 (p = 0.0051) whereas Twist1 correlated negatively with FOXA1 (p = 0.004). Furthermore, knowing that LMP1 plays a key role in the pathogenesis of NPC, we explored the association of FOXA1 with the LMP1 gene expression in both NPC cell lines and tissues. We found that, in the C666-1 which displays low levels of LMP1, the expression of FOXA1 is high, and inversely in the C15 cell line that expresses a high level of LMP1, the level of FOXA1 is low. Besides, in accordance to our results, we found that in NPC tissues there is a negative association between LMP1 and FOXA1. In conclusion, our results suggest that the overexpression of FOXA1 is associated with a nonaggressive behavior and favorable prognosis in NPC patients. FOXA1 could contribute in the EMT process through key factors as E-cadherin, Twist1, and LMP1.
Collapse
|
39
|
Horimoto Y, Sasahara N, Sasaki R, Hlaing MT, Sakaguchi A, Saeki H, Arakawa A, Himuro T, Saito M. High FOXA1 protein expression might predict late recurrence in patients with estrogen-positive and HER2-negative breast cancer. Breast Cancer Res Treat 2020; 183:41-48. [PMID: 32572714 DOI: 10.1007/s10549-020-05751-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multi-gene expression assays have been developed with the aim of predicting late recurrence in patients with estrogen receptor (ER)-positive breast cancer. However, establishment of alternative markers based on immunohistochemistry is also important for achieving practical use. Based on our previous study, forkhead box A1 (FOXA1) protein was tested as a potentially useful predictive marker for late recurrence. METHODS 117 patients with ER-positive HER2-negative invasive breast cancer who developed distant metastasis following curative surgery were retrospectively investigated. We also evaluated responsiveness to endocrine therapy according to FOXA1 expression. Furthermore, publicly available mRNA microarray data were analyzed to examine patterns of metastasis according to FOXA1 mRNA expression, employing the Kaplan-Meier plotter. RESULTS High expression of FOXA1 was an independent factor predicting long disease-free survival (DFS), along with small tumor size (p = 0.010 and 0.016, respectively). Discrimination of DFS was improved by combining these two factors, i.e., patients with FOXA1-high small tumors had the longest DFS while those with FOXA1-low large tumors had the shortest DFS. Moreover, we revealed that risk of distant metastasis started to increase after the completion of adjuvant endocrine therapy in patients with FOXA1-high tumors. CONCLUSION Among patients who developed distant metastasis, those with FOXA1-high tumors had significantly longer DFS. We believe our data to raise the possibility of FOXA1 being a useful predictive marker for late recurrence and to provide new insights into the biology of FOXA1-high breast cancers.
Collapse
MESH Headings
- Adult
- Aged
- Breast Neoplasms/chemistry
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Disease-Free Survival
- Estrogens
- Female
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 3-alpha/biosynthesis
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/physiology
- Humans
- Kaplan-Meier Estimate
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/chemistry
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptor, ErbB-2/analysis
- Receptors, Estrogen/analysis
- Recurrence
- Time Factors
Collapse
Affiliation(s)
- Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriko Sasahara
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ritsuko Sasaki
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - May Thinzar Hlaing
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Asumi Sakaguchi
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takanori Himuro
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
40
|
Thanan R, Kaewlert W, Sakonsinsiri C, Chaiprasert T, Armartmuntree N, Muengsaen D, Techasen A, Klanrit P, Lert-itthiporn W, Pinlaor S, Pairojkul C. Opposing Roles of FoxA1 and FoxA3 in Intrahepatic Cholangiocarcinoma Progression. Int J Mol Sci 2020; 21:ijms21051796. [PMID: 32151057 PMCID: PMC7084256 DOI: 10.3390/ijms21051796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA), a malignancy of biliary epithelium, is related to liver stem cell deregulation. FoxAs are a group of transcription factors that play critical roles in liver stem cell differentiation. In this study, the expression levels of FoxAs (i.e., FoxA1, FoxA2 and FoxA3) were detected in intrahepatic CCA tissues and the functions of FoxAs were studied in CCA cell lines. FoxA1 and FoxA2 were mainly localized in the nuclei of normal bile duct (NBD) cells and some of the cancer cells. Low expression of FoxA1 in CCA tissues (72%) was significantly correlated with poor prognosis. FoxA3 expression of CCA cells was localized in the nucleus and cytoplasm, whereas it was slightly detected in NBDs. High expression of FoxA3 in cancer tissues (61%) was significantly related to high metastasis status. These findings suggest the opposing roles of FoxA1 and FoxA3 in CCA. Moreover, the FoxA1-over-expressing CCA cell line exhibited a significant reduction in proliferative and invasive activities compared to control cells. Knockdown of FoxA3 in CCA cells resulted in a significant decrease in proliferative and invasive activities compared with control cells. Taken together, in CCA, FoxA1 is down-regulated and has tumor suppressive roles, whereas FoxA3 is up-regulated and has oncogenic roles.
Collapse
Affiliation(s)
- Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
- Correspondence: ; Tel.: +66-43-348-386
| | - Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
| | - Timpika Chaiprasert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
| | - Napat Armartmuntree
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
| | - Duangkamon Muengsaen
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
| | - Worachart Lert-itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.K.); (C.S.); (T.C.); (N.A.); (D.M.); (P.K.); (W.L.-i.)
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (S.P.)
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
41
|
Kubouchi K, Shimada K, Yokoe T, Tsutsumi Y. Avoidance and Period-Shortening of Neoadjuvant Chemotherapy Against Triple-Negative Breast Cancer in Stages I and II: Importance of Ki-67 Labeling Index and the Recognition of Apocrine-Type Lesions. Technol Cancer Res Treat 2020; 19:1533033820943246. [PMID: 32677589 PMCID: PMC7370551 DOI: 10.1177/1533033820943246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer encompasses heterogeneous subtypes. Neoadjuvant chemotherapy is ineffective against some triple-negative breast cancers, while others show a favorable prognosis despite chemoresistance. METHODS A total of 51 cases with stages I and II triple-negative breast cancer were analyzed; 34 triple-negative breast cancers treated with neoadjuvant chemotherapy were divided into "good responders" (n = 22), showing therapeutic effect G2b or G3 in surgical specimens, and "poor responders" with therapeutic effect G0, G1a, G1b, and G2a (n = 12). Neoadjuvant chemotherapy was spared in 17 cases (non-neoadjuvant chemotherapy group). Apocrine-type triple-negative breast cancer was defined as triple-negative breast cancer immunoreactive for both androgen receptor and forkhead-box protein A1. Triple-negative breast cancer other than apocrine-type (n = 16) and special types (myoepithelial, medullary, adenoid cystic, and spindle cell carcinomas, n = 6) was categorized as basal-like subtype (n = 29). Prognosis was evaluated in each category. RESULTS Neoadjuvant chemotherapy provoked significant effects against basal-like triple-negative breast cancer with high Ki-67 labeling (≧50%), and tumor-infiltrating lymphocytes predicted high chemosensitivity. Neoadjuvant chemotherapy was avoidable in triple-negative breast cancer of apocrine- and special types showing low (<50%) Ki-67 labeling. Ten (59%) lesions in the non-neoadjuvant chemotherapy group belonged to the apocrine-type. When clinical complete remission shown by contrast-enhanced magnetic resonance imaging was reached in the course of neoadjuvant chemotherapy against basal-like triple-negative breast cancer, the neoadjuvant chemotherapy period was shortened in 14 (64%) of 22 good responders. Disease-free and overall survival rates were excellent in all groups. CONCLUSIONS The following 2 hypothetical proposals should be proven by large-scale clinical trials. Immunohistochemical recognition of apocrine-type triple-negative breast cancer with low Ki-67 labeling is important for avoiding ineffective/unnecessary neoadjuvant chemotherapy. By employing appropriate clinical imaging, period-shortening is achievable in basal-like triple-negative breast cancer with high Ki-67 labeling.
Collapse
Affiliation(s)
| | - Kyosuke Shimada
- Department of Breast Surgery, Kawasaki Municipal Ida Hospital, Kawasaki, Kanagawa, Japan
| | - Takamichi Yokoe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Breast Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yutaka Tsutsumi
- Diagnostic Pathology Clinic, Pathos Tsutsumi, Nagoya, Aichi, Japan
| |
Collapse
|
42
|
Androgen receptor and FOXA1 coexpression define a "luminal-AR" subtype of feline mammary carcinomas, spontaneous models of breast cancer. BMC Cancer 2019; 19:1267. [PMID: 31888566 PMCID: PMC6937649 DOI: 10.1186/s12885-019-6483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Invasive mammary carcinomas that spontaneously develop in female cats are associated with high mortality, and resemble the most aggressive human breast cancers, especially triple-negative breast cancer (TNBC). Transcriptome studies showed that TNBCs are a heterogeneous group that includes a potentially hormone-dependent subtype named luminal-AR. Some authors proposed an immunohistochemical definition of the luminal-AR subtype, which is not only positive for Androgen Receptor (AR), but also either positive for the transcription factor Forkhead box A1 (FOXA1), or negative for basal markers. The objectives of this study were to describe AR and FOXA1 expressions in feline mammary carcinomas (FMCs), their prognostic value, and if their coexpression could define a “luminal-AR” subtype of triple-negative mammary carcinomas in cats. Methods In a previously described retrospective cohort of 180 female cats with FMCs, with a 2-year follow-up post-mastectomy, we assessed AR, FOXA1, ER, PR, Ki-67, HER2, and CK14 expressions by automated immunohistochemistry. Results Of the 180 FMCs, 57 (32%) were luminal; i.e., ER and/or PR positive, and 123 (68%) were triple-negative (ER–, PR– and HER2–) FMCs. AR overexpression (found in 33 cases/180, 18%) and FOXA1 index ≥1% (64/180, 36%) were associated with a longer disease-free interval, overall survival, and cancer-specific survival in cats with FMC. Analysis of AR, FOXA1 and CK14 coexpression in triple-negative FMCs showed that AR+ triple-negative FMCs were heterogeneous: there existed an AR+ FOXA1+ CK14– subgroup (n = 7) associated with a better cancer-specific survival by multivariate survival analysis (HR = 0.26, 95% CI: 0.07–0.89, p = 0.03) compared to AR+ FOXA1–CK14+ triple-negative FMCs (n = 46) (HR = 1.00), independently of the pathologic tumor size and pathologic nodal stage. The non-basal-like subtype of triple-negative FMCs that coexpresses AR and FOXA1 (the AR+ FOXA1+ CK14– subgroup) could represent the equivalent of the luminal-AR subgroup of human triple-negative breast cancer. Conclusions We identified an AR+ FOXA1+ CK14– subgroup of triple-negative FMCs that might correspond to the luminal-AR subgroup of human triple-negative breast cancers. Cats with FMC may be interesting spontaneous animal models to investigate new strategies targeting the androgen receptor, especially in the aggressive subtype of AR+ basal-like triple-negative mammary carcinomas with loss of FOXA1 expression (the AR+ FOXA1–CK14+ subgroup).
Collapse
|
43
|
Cheng TYD, Yao S, Omilian AR, Khoury T, Buas MF, Payne-Ondracek R, Sribenja S, Bshara W, Hong CC, Bandera EV, Davis W, Higgins MJ, Ambrosone CB. FOXA1 Protein Expression in ER + and ER - Breast Cancer in Relation to Parity and Breastfeeding in Black and White Women. Cancer Epidemiol Biomarkers Prev 2019; 29:379-385. [PMID: 31871111 DOI: 10.1158/1055-9965.epi-19-0787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Forkhead box protein A1 (FOXA1) promotes luminal differentiation, and hypermethylation of the gene can be a mechanism of developing estrogen receptor-negative (ER-) breast cancer. We examined FOXA1 in breast tumor and adjacent normal tissue in relation to reproductive factors, particularly higher parity and no breastfeeding, that are associated with ER- tumors. METHODS We performed IHC for FOXA1 in breast tumors (n = 1,329) and adjacent normal tissues (n = 298) in the Women's Circle of Health Study (949 Blacks and 380 Whites). Protein expression levels were summarized by histology (H) scores. Generalized linear models were used to assess FOXA1 protein expression in relation to reproductive factors by ER status. RESULTS ER-positive (ER+) versus ER- tumors had higher FOXA1 protein expression (P < 0.001). FOXA1 expression was higher in tumor versus paired adjacent normal tissue in women with ER+ or non-triple-negative cancer (both P < 0.001), but not in those with ER- or triple-negative cancer. Higher number of births (1, 2, and 3+) was associated with lower FOXA1 protein expression in ER+ tumors [differences in H score, or β = -8.5; 95% confidence interval (CI), -15.1 to -2.0], particularly among parous women who never breastfed (β = -10.4; 95% CI, -19.7 to -1.0), but not among those who breastfed (β = -7.5; 95% CI, -16.9 to 1.8). The associations for ER- tumors were similar, although they were not statistically significant. CONCLUSIONS In this tumor-based study, higher parity was associated with lower FOXA1 expression in ER+ tumors, and breastfeeding may ameliorate the influence. IMPACT These findings contribute to our understanding of FOXA1 methylation and breast cancer etiology.
Collapse
Affiliation(s)
- Ting-Yuan David Cheng
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida. .,Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Rochelle Payne-Ondracek
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sirinapa Sribenja
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Wiam Bshara
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, New Jersey
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
44
|
Wu H, Wang Q, Zhong H, Li L, Zhang Q, Huang Q, Yu Z. Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next‑generation sequencing. Oncol Rep 2019; 43:240-250. [PMID: 31746410 PMCID: PMC6908931 DOI: 10.3892/or.2019.7401] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) in exosomes play crucial roles in the onset, progression and metastasis of cancer by regulating the stability of target mRNAs or by inhibiting translation. In the present study, differentially expressed miRNAs were identified in exosomes of 27 breast cancer patients and 3 healthy controls using RNA sequencing. The differentially expressed microRNAs were selected by bioinformatic analysis. Subjects were followed up for 2 years and exosomal miRNA profiles were compared between patients with and without recurrence of breast cancer. A total of 30 complementary DNA libraries were constructed and sequenced and 1,835 miRNAs were detected. There were no significant differences in the expression of miRNAs between the basal-like, human epidermal growth factor receptor-2+, luminal A, luminal B and healthy control (HC) groups. A total of 54 differentially expressed miRNAs were identified in triple-negative breast cancer (TNBC) patients vs. HCs, including 20 upregulated and 34 downregulated miRNAs. The results of the reverse transcription-quantitative PCR were consistent with this. Receiver operating characteristic curve analyses indicated that miR-150-5p [area under the curve (AUC)=0.705, upregulated], miR-576-3p (AUC=0.691, upregulated), miR-4665-5p (AUC=0.681, upregulated) were able to distinguish breast cancer patients with recurrence from those without recurrence. In conclusion, the present results indicated differences in miRNA expression profiles between patients with TNBC and healthy controls. Certain exosomal miRNAs were indicated to have promising predictive value as biomarkers for distinguishing breast cancer with recurrence from non-recurrence, which may be utilized for preventive strategies.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qiuming Wang
- Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Hua Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Liang Li
- Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qunji Zhang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
45
|
Milan M, Balestrieri C, Alfarano G, Polletti S, Prosperini E, Spaggiari P, Zerbi A, Diaferia GR, Natoli G. FOXA2 controls the cis-regulatory networks of pancreatic cancer cells in a differentiation grade-specific manner. EMBO J 2019; 38:e102161. [PMID: 31531882 PMCID: PMC6792020 DOI: 10.15252/embj.2019102161] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023] Open
Abstract
Differentiation of normal and tumor cells is controlled by regulatory networks enforced by lineage-determining transcription factors (TFs). Among them, TFs such as FOXA1/2 bind naïve chromatin and induce its accessibility, thus establishing new gene regulatory networks. Pancreatic ductal adenocarcinoma (PDAC) is characterized by the coexistence of well- and poorly differentiated cells at all stages of disease. How the transcriptional networks determining such massive cellular heterogeneity are established remains to be determined. We found that FOXA2, a TF controlling pancreas specification, broadly contributed to the cis-regulatory networks of PDACs. Despite being expressed in both well- and poorly differentiated PDAC cells, FOXA2 displayed extensively different genomic distributions and controlled distinct gene expression programs. Grade-specific functions of FOXA2 depended on its partnership with TFs whose expression varied depending on the differentiation grade. These data suggest that FOXA2 contributes to the regulatory networks of heterogeneous PDAC cells via interactions with alternative partner TFs.
Collapse
Affiliation(s)
- Marta Milan
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanoItaly
| | - Chiara Balestrieri
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Gabriele Alfarano
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Sara Polletti
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Elena Prosperini
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | | | - Alessandro Zerbi
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Giuseppe R Diaferia
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanoItaly
| | - Gioacchino Natoli
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| |
Collapse
|
46
|
Babyshkina N, Vtorushin S, Dronova T, Patalyak S, Slonimskaya E, Kzhyshkowska J, Cherdyntseva N, Choynzonov E. Impact of estrogen receptor α on the tamoxifen response and prognosis in luminal-A-like and luminal-B-like breast cancer. Clin Exp Med 2019; 19:547-556. [PMID: 31562548 DOI: 10.1007/s10238-019-00583-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/24/2019] [Indexed: 01/08/2023]
Abstract
The luminal-A-like and luminal-B-like breast cancer groups have distinct biological features that lead to differences in the treatment response and clinical outcome. The aim of this study was to examine the value of the distribution pattern of ERα expression, ESR1 SNPs as well as ESR1 mRNA expression in predicting tamoxifen response and survival in patients with luminal-A-like and luminal-B-like breast cancer. A total of 135 patients with both subtypes were stratified into two groups depending on the tamoxifen response: tamoxifen-resistant patients (TR) and tamoxifen-sensitive patients (TS). ESR1 mRNA expression was measured by real-time quantitative reverse transcription-PCR. Three polymorphisms of ESR1 (rs2077647, rs2228480 and rs1801132) were genotyped using a TaqMan assay. The distribution pattern of ERα expression was analyzed immunohistochemically using the visual assessment of staining. The primary endpoint was progression-free survival (PFS). There was a significant decrease in ESR1 mRNA expression level in the TR group when compared to the TS group among patients with luminal-B-like subtype (P = 0.038). ESR1 2014AA mutant genotype of rs2228480 was more prevalent in the TR patients with luminal-B-like subtype than the TS group (P = 0.045). In the luminal-A-like group, tamoxifen-resistant tumors were more frequently heterogeneous for ERα expression than tamoxifen-sensitive tumors (P = 0.016). Multivariate analysis showed a strong association of lymph node status and the distribution pattern of ERα expression with tamoxifen responsiveness in this cohort of patients. In addition, a luminal-A-like patients with the heterogeneous ERα expression had a significantly shorter PFS time than those with the homogeneous ERα (P = 0.013). These results indicate that the heterogeneous expression of ERα is an accurate predictor of tamoxifen response and survival in luminal-A-like breast cancer patients. ESR1 rs2228480 may act as a marker with a high prognostic potential in luminal-B-like tumors.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk, Russian Federation, 634050.
- Department of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation, 634050.
| | - Sergey Vtorushin
- Department of Pathological Anatomy and Cytology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation, 634050
- Department of General Oncology, Siberian State Medical University, Tomsk, Russian Federation, 634050
| | - Tatyana Dronova
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk, Russian Federation, 634050
- Department of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation, 634050
| | - Stanislav Patalyak
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation, 634050
| | - Elena Slonimskaya
- Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation, 634050
- Department of General Oncology, Siberian State Medical University, Tomsk, Russian Federation, 634050
| | - Julia Kzhyshkowska
- Department of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation, 634050
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim University of Heidelberg, 68167, Mannheim, Germany
| | - Nadejda Cherdyntseva
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk, Russian Federation, 634050
- Department of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russian Federation, 634050
- Department of General Oncology, Siberian State Medical University, Tomsk, Russian Federation, 634050
| | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation, 634050
| |
Collapse
|
47
|
Bhatia S, Monkman J, Blick T, Duijf PH, Nagaraj SH, Thompson EW. Multi-Omics Characterization of the Spontaneous Mesenchymal-Epithelial Transition in the PMC42 Breast Cancer Cell Lines. J Clin Med 2019; 8:E1253. [PMID: 31430931 PMCID: PMC6723942 DOI: 10.3390/jcm8081253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial-mesenchymal plasticity (EMP), encompassing epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET), are considered critical events for cancer metastasis. We investigated chromosomal heterogeneity and chromosomal instability (CIN) profiles of two sister PMC42 breast cancer (BC) cell lines to assess the relationship between their karyotypes and EMP phenotypic plasticity. Karyotyping by GTG banding and exome sequencing were aligned with SWATH quantitative proteomics and existing RNA-sequencing data from the two PMC42 cell lines; the mesenchymal, parental PMC42-ET cell line and the spontaneously epithelially shifted PMC42-LA daughter cell line. These morphologically distinct PMC42 cell lines were also compared with five other BC cell lines (MDA-MB-231, SUM-159, T47D, MCF-7 and MDA-MB-468) for their expression of EMP and cell surface markers, and stemness and metabolic profiles. The findings suggest that the epithelially shifted cell line has a significantly altered ploidy of chromosomes 3 and 13, which is reflected in their transcriptomic and proteomic expression profiles. Loss of the TGFβR2 gene from chromosome 3 in the epithelial daughter cell line inhibits its EMT induction by TGF-β stimulus. Thus, integrative 'omics' characterization established that the PMC42 system is a relevant MET model and provides insights into the regulation of phenotypic plasticity in breast cancer.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - James Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Pascal Hg Duijf
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| |
Collapse
|
48
|
Wang X, Yin Y, Du R. SOX9 dependent FOXA1 expression promotes tumorigenesis in lung carcinoma. Biochem Biophys Res Commun 2019; 516:236-244. [DOI: 10.1016/j.bbrc.2019.05.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
|
49
|
Nakshatri H, Kumar B, Burney HN, Cox ML, Jacobsen M, Sandusky GE, D'Souza-Schorey C, Storniolo AMV. Genetic Ancestry-dependent Differences in Breast Cancer-induced Field Defects in the Tumor-adjacent Normal Breast. Clin Cancer Res 2019; 25:2848-2859. [PMID: 30718355 PMCID: PMC11216537 DOI: 10.1158/1078-0432.ccr-18-3427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic ancestry influences evolutionary pathways of cancers. However, whether ancestry influences cancer-induced field defects is unknown. The goal of this study was to utilize ancestry-mapped true normal breast tissues as controls to identify cancer-induced field defects in normal tissue adjacent to breast tumors (NATs) in women of African American (AA) and European (EA) ancestry. EXPERIMENTAL DESIGN A tissue microarray comprising breast tissues of ancestry-mapped 100 age-matched healthy women from the Komen Tissue Bank (KTB) at Indiana University (Indianapolis, IN) and tumor-NAT pairs from 100 women (300 samples total) was analyzed for the levels of ZEB1, an oncogenic transcription factor that is central to cell fate, mature luminal cell-enriched estrogen receptor alpha (ERα), GATA3, FOXA1, and for immune cell composition. RESULTS ZEB1+ cells, which were localized surrounding the ductal structures of the normal breast, were enriched in the KTB-normal of AA compared with KTB-normal of EA women. In contrast, in EA women, both NATs and tumors compared with KTB-normal contained higher levels of ZEB1+ cells. FOXA1 levels were lower in NATs compared with KTB-normal in AA but not in EA women. We also noted variations in the levels of GATA3, CD8+ T cells, PD1+ immune cells, and PDL1+ cell but not CD68+ macrophages in NATs of AA and EA women. ERα levels did not change in any of our analyses, pointing to the specificity of ancestry-dependent variations. CONCLUSIONS Genetic ancestry-mapped tissues from healthy individuals are required for proper assessment and development of cancer-induced field defects as early cancer detection markers. This finding is significant in light of recent discoveries of influence of genetic ancestry on both normal biology and tumor evolution.
Collapse
Affiliation(s)
- Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N Burney
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mary L Cox
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Anna Maria V Storniolo
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
50
|
BenAyed-Guerfali D, Dabbèche-Bouricha E, Ayadi W, Trifa F, Charfi S, Khabir A, Sellami-Boudawara T, Mokdad-Gargouri R. Association of FOXA1 and EMT markers (Twist1 and E-cadherin) in breast cancer. Mol Biol Rep 2019; 46:3247-3255. [DOI: 10.1007/s11033-019-04784-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
|