1
|
Tian YF, Huang CJ, Liu CY, Yang SH, Hung CS, Lin KY, Lai CL, Chang CC. MicroRNA‑24 alleviates colorectal cancer progression via a rs28382740 single nucleotide polymorphism in the long noncoding region of X‑linked inhibitor of apoptosis protein. Oncol Lett 2024; 28:591. [PMID: 39417038 PMCID: PMC11481099 DOI: 10.3892/ol.2024.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/24/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant diseases worldwide. Recurrence is associated with the poor survival of patients with CRC. Targeted therapy and precision medicine for recurrent CRC may improve the clinical outcome. Therefore, finding biomarkers that can detect CRC early, assess its prognosis and survival, and predict its treatment response is key to improving the clinical prognosis. The aim of this study was to assess CRC recurrence by analyzing molecular differences using postoperative specimens. Whole-exome sequencing was first used to evaluate the molecular differences in CRC tissues from patients with recurrent disease, and the results were then verified with tissue array methods. The regulation of single nucleotide polymorphisms (SNPs) in long noncoding regions of interest was analyzed in the presence of target microRNAs (miRs) using luciferase assays. The results demonstrated that in patients with recurrent CRC, the G allele was mainly detected at the rs28382740 SNP in the 3'-untranslated region of the X-linked inhibitor of apoptosis (XIAP)-encoding gene. From the tissue arrays, 60% (3/5) of patients with the G allele of the rs28382740 SNP were diagnosed with CRC recurrence, whilst only 10% (1/10) of patients without the G allele had recurrent CRC (P=0.077). Furthermore, XIAP levels were high in non-CRC (50%; 2/4) and CRC (75%; 3/4) tissues of patients with recurrent disease and CRC (54.5%; 6/11) tissues of patients without recurrent disease. However, but only 9.1% (1/11) of non-CRC tissues of nonrecurrent patients had significantly high XIAP expression levels (P=0.022). Using a luciferase assay, it was demonstrated that miR-24s (miR-24-1-5p and miR-24-2-5p) targeting the rs28382740 SNP reduced XIAP levels in CRC cells with rs28382740 SNP genotype G. These results indicate that apoptosis-related proteins, such as XIAP, may be therapeutic targets or biomarkers for tumor development. The data from the present study support an inhibitory effect of miR-24s on XIAP expression. However, this inhibitory potency depends on the rs28382740 SNP genotype and may alleviate CRC progression by regulating the expression of XIAP.
Collapse
Affiliation(s)
- Yu-Feng Tian
- Department of Surgery, Chi Mei Medical Center, Tainan 710402, Taiwan, R.O.C
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114201, Taiwan, R.O.C
- Department of Medical Research, Cathay General Hospital, Taipei 106438, Taiwan, R.O.C
| | - Chih-Yi Liu
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei 221037, Taiwan, R.O.C
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan, R.O.C
| | - Shung-Haur Yang
- Department of Colorectal Surgery, National Yang-Ming Chiao Tung University Hospital, Yilan 260006, Taiwan, R.O.C
- School of Medicine, Yang-Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Chih-Sheng Hung
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242062, Taiwan, R.O.C
- Department of Internal Medicine, Division of Gastroenterology, Cathay General Hospital, Taipei 106438, Taiwan, R.O.C
| | - Kai-Yuan Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710402, Taiwan, R.O.C
| | - Ching-Long Lai
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan, R.O.C
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan, R.O.C
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan, R.O.C
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan, R.O.C
| |
Collapse
|
2
|
Krzykawski K, Kubina R, Wendlocha D, Sarna R, Mielczarek-Palacz A. Multifaceted Evaluation of Inhibitors of Anti-Apoptotic Proteins in Head and Neck Cancer: Insights from In Vitro, In Vivo, and Clinical Studies (Review). Pharmaceuticals (Basel) 2024; 17:1308. [PMID: 39458950 PMCID: PMC11510346 DOI: 10.3390/ph17101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a multifaceted assessment of inhibitors of anti-apoptotic proteins (IAPs) in the context of head and neck squamous cell carcinoma (HNSCC). The article discusses the results of in vitro, in vivo, and clinical studies, highlighting the significance of IAPs in the resistance of cancer cells to apoptosis, which is a key factor hindering effective treatment. The main apoptosis pathways, including the intrinsic and extrinsic pathways, and the role of IAPs in their regulation, are presented. The study's findings suggest that targeting IAPs with novel therapies may offer clinical benefits in the treatment of advanced HNSCC, especially in cases resistant to conventional treatment methods. These conclusions underscore the need for further research to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Krzykawski
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| | - Robert Sarna
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| |
Collapse
|
3
|
Tang C, Zhuang H, Wang W, Wang Q, Ma X, Wang B, Zhang Z, Jiang J, Xie Z, Tan W, Yang L, Liu S, Hua Y, Xiao Y, Ding B, Chen Y, Shang C. CircNUP54 promotes hepatocellular carcinoma progression via facilitating HuR cytoplasmic export and stabilizing BIRC3 mRNA. Cell Death Dis 2024; 15:191. [PMID: 38443362 PMCID: PMC10914787 DOI: 10.1038/s41419-024-06570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Circular RNAs (circRNAs) have been implicated in tumorigenesis and progression of various cancers. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, a new oncogenic circRNA, hsa_circ_0070039 (circNUP54), was identified to be significantly upregulated in HCC through circRNA sequencing. As verified in 68 HCC samples, circNUP54 overexpression was correlated with aggressive cancerous behaviors and poor outcomes. Moreover, the function experiments showed that knockdown of circNUP54 inhibited the malignant progression of HCC in vitro and in vivo, whereas overexpression of circNUP54 had the opposite role. Mechanistic investigations carried out by RNA pull-down, RNA immunoprecipitation, and immunofluorescence revealed that circNUP54 interacted with the RNA-binding protein Hu-antigen R (HuR) and promoted its cytoplasmic export. The cytoplasmic accumulation of HuR stabilized the downstream BIRC3 mRNA through its binding to the 3' UTR region. Consequently, the encoded protein of BIRC3, cellular inhibitor of apoptosis 2 (cIAP2), proceeded to activate the NF-κB signal pathway and ultimately contributed to HCC progression. In addition, depletion of BIRC3 rescued the pro-tumorigenic effect of circNUP54 on HCC cells. Overall, this study demonstrated that circNUP54 facilitates HCC progression via regulating the HuR/BIRC3/NF-κB axis, which may serve as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Wentao Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Jiahao Jiang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, 412007, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, 412007, China
| | - Lei Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Songyao Liu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Yuxin Xiao
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Baoshan Ding
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China.
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
4
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
5
|
Vugmeyster Y, Ravula A, Rouits E, Diderichsen PM, Kleijn HJ, Koenig A, Wang X, Schroeder A, Goteti K, Venkatakrishnan K. Model-Informed Selection of the Recommended Phase III Dose of the Inhibitor of Apoptosis Protein Inhibitor, Xevinapant, in Combination with Cisplatin and Concurrent Radiotherapy in Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Clin Pharmacol Ther 2024; 115:52-61. [PMID: 37777832 DOI: 10.1002/cpt.3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Xevinapant, an oral inhibitor of apoptosis protein (IAP) inhibitor, demonstrated efficacy in combination with chemoradiotherapy in a randomized phase II study (NCT02022098) in patients with locally advanced squamous cell carcinoma of the head and neck at 200 mg/day on days 1-14 of a 3-week cycle. To confirm 200 mg/day as the recommended phase III dose (RP3D), we integrated preclinical, clinical, pharmacokinetic/pharmacodynamic (PK/PD), and exposure-response modeling results. Population PK/PD modeling of IAP inhibition in peripheral blood mononuclear cells in 21 patients suggested the pharmacologically active dose range was 100-200 mg/day, with a trend for more robust inhibition at the end of the dosing interval at 200 mg/day based on an indirect response model. Additionally, the unbound average plasma concentration at 200 mg/day was similar to that associated with efficacy in preclinical xenograft models. Logistic regression exposure-response analyses of data from 62 patients in the phase II study showed exposure-related increases in probabilities of locoregional control at 18 months (primary end point), overall response, complete response, and the radiosensitization mechanism-related composite safety end point "mucositis and/or dysphagia" (P < 0.05). Exposure-response relationships were not discernible for 12 of 13 evaluated safety end points, incidence of dose reductions, and time to first dose reduction. Quantitative integration of all available data, including model-derived target inhibition profiles, positive exposure-efficacy relationships, and lack of discernible exposure-safety relationships for most safety end points, supports selection of xevinapant 200 mg/day on days 1-14 of a 3-week cycle as the RP3D, allowing for successive dose reductions to 150 and 100 mg/day to manage adverse events.
Collapse
Affiliation(s)
| | | | | | | | | | - Andre Koenig
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | | | | | | | | |
Collapse
|
6
|
Kikuchi S, Sugama Y, Takada K, Kamihara Y, Wada A, Arihara Y, Nakamura H, Sato T. Simultaneous XIAP and cIAP1/2 inhibition by a dimeric SMAC mimetic AZD5582 induces apoptosis in multiple myeloma. J Pharmacol Sci 2024; 154:30-36. [PMID: 38081681 DOI: 10.1016/j.jphs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Overexpression of inhibitor of apoptosis (IAP) proteins is associated with poor prognosis. In multiple myeloma (MM), the IAP inhibitors (IAPi), LCL161, have been evaluated in preclinical and clinical settings but are not fully effective. Among IAPs, XIAP has the strongest anti-apoptotic function with direct binding activity to caspases and cIAP1 and cIAP2 are positive regulator of NF-κB signaling. Prior IAPi such as LCL161 has high affinity to cIAP1 and cIAP2 resulting in inferior inhibiting activity against XIAP. A novel dimeric IAPi, AZD5582 (C58H78N8O8), have high binding potency to XIAP with EC50 dose of 15 nM, enabling to simultaneous inhibit XIAP and cIAP1/2. AZD5582 monotherapy showed cell growth inhibition for all MM cell lines, MM1S, RPMI8226, U266 and KMS-5 and induced apoptosis. AZD5582 further showed anti-proliferation effect under the IL-6 additional condition and inhibited JAK-STAT signaling triggered by IL-6. AZD5582 combined with carfilzomib therapy showed a synergistic effect. Enhanced apoptosis was also observed in combination therapy. Synergistic effect was further observed with other conventional therapeutics. Simultaneous XIAP and cIAP1/2 inhibition by the dimeric IAPi AZD5582 is promising. This study provides a rationale of AZD5582 as a new treatment strategy in monotherapy and in combination therapy.
Collapse
Affiliation(s)
- Shohei Kikuchi
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Yusuke Sugama
- Department of Hematology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Kamihara
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Akinori Wada
- Department of Hematology, Toyama University Hospital, Toyama, Japan
| | - Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsutomu Sato
- Department of Hematology, Toyama University Hospital, Toyama, Japan.
| |
Collapse
|
7
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
9
|
Tao Y, Sun XS, Pointreau Y, Le Tourneau C, Sire C, Kaminsky MC, Coutte A, Alfonsi M, Calderon B, Boisselier P, Martin L, Miroir J, Ramee JF, Delord JP, Clatot F, Rolland F, Villa J, Magne N, Elicin O, Gherga E, Nguyen F, Lafond C, Bera G, Calugaru V, Geoffrois L, Chauffert B, Damstrup L, Crompton P, Ennaji A, Gollmer K, Nauwelaerts H, Bourhis J. Extended follow-up of a phase 2 trial of xevinapant plus chemoradiotherapy in high-risk locally advanced squamous cell carcinoma of the head and neck: a randomised clinical trial. Eur J Cancer 2023; 183:24-37. [PMID: 36796234 DOI: 10.1016/j.ejca.2022.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION We report long-term efficacy and overall survival (OS) results from a randomised, double-blind, phase 2 study (NCT02022098) investigating xevinapant plus standard-of-care chemoradiotherapy (CRT) vs. placebo plus CRT in 96 patients with unresected locally advanced squamous cell carcinoma of the head and neck (LA SCCHN). METHODS Patients were randomised 1:1 to xevinapant 200 mg/day (days 1-14 of a 21-day cycle for 3 cycles), or matched placebo, plus CRT (cisplatin 100 mg/m2 every 3 weeks for 3 cycles plus conventional fractionated high-dose intensity-modulated radiotherapy [70 Gy/35 F, 2 Gy/F, 5 days/week for 7 weeks]). Locoregional control, progression-free survival, and duration of response after 3 years, long-term safety, and 5-year OS were assessed. RESULTS The risk of locoregional failure was reduced by 54% for xevinapant plus CRT vs. placebo plus CRT but did not reach statistical significance (adjusted hazard ratio [HR] 0.46; 95% CI, 0.19-1.13; P = .0893). The risk of death or disease progression was reduced by 67% for xevinapant plus CRT (adjusted HR 0.33; 95% CI, 0.17-0.67; P = .0019). The risk of death was approximately halved in the xevinapant arm compared with placebo (adjusted HR 0.47; 95% CI, 0.27-0.84; P = .0101). OS was prolonged with xevinapant plus CRT vs. placebo plus CRT; median OS not reached (95% CI, 40.3-not evaluable) vs. 36.1 months (95% CI, 21.8-46.7). Incidence of late-onset grade ≥3 toxicities was similar across arms. CONCLUSIONS In this randomised phase 2 study of 96 patients, xevinapant plus CRT demonstrated superior efficacy benefits, including markedly improved 5-year survival in patients with unresected LA SCCHN.
Collapse
Affiliation(s)
- Yungan Tao
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Xu-Shan Sun
- Department of Radiation Oncology, Nord Franche-Comté de Montbéliard and CHRU de Besançon, Besançon, France
| | - Yoann Pointreau
- Oncologie-Radiothérapie, Institut Inter-Régional de Cancérologie, Centre Jean Bernard, Le Mans, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Christian Sire
- South Brittany Hospital Center, Hôpital du Scorff Radiothérapie, Lorient, France
| | - Marie-Christine Kaminsky
- Institut Cancérologie de Lorraine - Alexis Vautrin, Oncologie Médicale, Vandoeuvre-lès-Nancy, France
| | | | - Marc Alfonsi
- Institut Sainte Catherine, Radiothérapie, Avignon, France
| | | | - Pierre Boisselier
- Institut du Cancer de Montpellier, Val d'Aurelle, Oncologie-Radiothérapie, Montpellier, France
| | - Laurent Martin
- Centre de Radiothérapie Guillaume le Conquérant, Le Havre, France
| | - Jessica Miroir
- Jean Perrin Center, Radiothérapie, Clermont-Ferrand, France
| | | | - Jean-Pierre Delord
- Medical Oncology Dept, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Florian Clatot
- Henri Becquerel Centre, Service Oncologie Médicale rue d'Amiens, Rouen, France
| | - Frederic Rolland
- Institut de Cancérologie de l'Ouest, Centre René Gauducheau, Saint-Herblain, France
| | - Julie Villa
- CHU Grenoble, Radiothérapie, Pôle de Cancérologie, Grenoble, France
| | - Nicolas Magne
- Institut de Cancérologie Lucien Neuwirth, Radiothérapie, Saint-Priest-en-Jarez, France
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisabeta Gherga
- Department of Radiation Oncology, Nord Franche-Comté de Montbéliard and CHRU de Besançon, Besançon, France
| | - France Nguyen
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Cédrik Lafond
- Oncologie-Radiothérapie, Institut Inter-Régional de Cancérologie, Centre Jean Bernard, Le Mans, France
| | - Guillaume Bera
- South Brittany Hospital Center, Hôpital du Scorff Radiothérapie, Lorient, France
| | - Valentin Calugaru
- Radiotherapy Oncology Department, Institut Curie, Paris-Saclay University, Paris, France
| | - Lionnel Geoffrois
- Institut Cancérologie de Lorraine - Alexis Vautrin, Oncologie Médicale, Vandoeuvre-lès-Nancy, France
| | - Bruno Chauffert
- CHU Amiens Picardie, Oncologie-Radiothérapie, Amiens, France
| | | | | | | | | | | | - Jean Bourhis
- CHUV, Radiation Oncology Department, Bâtiment Hospitalier, Lausanne, Switzerland.
| |
Collapse
|
10
|
Ferris RL, Harrington K, Schoenfeld JD, Tahara M, Esdar C, Salmio S, Schroeder A, Bourhis J. Inhibiting the inhibitors: Development of the IAP inhibitor xevinapant for the treatment of locally advanced squamous cell carcinoma of the head and neck. Cancer Treat Rev 2023; 113:102492. [PMID: 36640618 PMCID: PMC11227656 DOI: 10.1016/j.ctrv.2022.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Standard of care for patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) is surgery followed by chemoradiotherapy (CRT) or definitive CRT. However, approximately 50 % of patients with LA SCCHN develop disease recurrence or metastasis within 2 years of completing treatment, and the outcome for these patients is poor. Despite this, the current treatment landscape for LA SCCHN has remained relatively unchanged for more than 2 decades, and novel treatment options are urgently required. One of the key causes of disease recurrence is treatment resistance, which commonly occurs due to cancer cells' ability to evade apoptosis. Evasion of apoptosis has been in part attributed to the overexpression of inhibitor of apoptosis proteins (IAPs). IAPs, including X-linked IAP (XIAP) and cellular IAP 1 and 2 (cIAP1/2), are a class of proteins that regulate apoptosis induced by intrinsic and extrinsic apoptotic pathways. IAPs have been shown to be overexpressed in SCCHN, are associated with poor clinical outcomes, and are, therefore, a rational therapeutic target. To date, several IAP inhibitors have been investigated; however, only xevinapant, a potent, oral, small-molecule IAP inhibitor, has shown clinical proof of concept when combined with CRT. Specifically, xevinapant demonstrated superior efficacy in combination with CRT vs placebo + CRT in a randomized, double-blind, phase 2 trial in patients with unresected LA SCCHN. Here, we describe the current treatment landscape in LA SCCHN and provide the rationale for targeting IAPs and the clinical data reported for xevinapant.
Collapse
Affiliation(s)
- Robert L Ferris
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | - Makoto Tahara
- National Cancer Center Hospital East, Kashiwa, Chiba Prefecture, Japan.
| | | | | | | | - Jean Bourhis
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
11
|
Russell LG, Davis LAK, Hunter JE, Perkins ND, Kenneth NS. Increased migration and motility in XIAP-null cells mediated by the C-RAF protein kinase. Sci Rep 2022; 12:7943. [PMID: 35562367 PMCID: PMC9106734 DOI: 10.1038/s41598-022-11438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
The product encoded by the X-linked inhibitor of apoptosis (XIAP) gene is a multi-functional protein which not only controls caspase-dependent cell death, but also participates in inflammatory signalling, copper homeostasis, response to hypoxia and control of cell migration. Deregulation of XIAP, either by elevated expression or inherited genetic deletion, is associated with several human disease states. Reconciling XIAP-dependent signalling pathways with its role in disease progression is essential to understand how XIAP promotes the progression of human pathologies. In this study we have created a panel of genetically modified XIAP-null cell lines using TALENs and CRISPR/Cas9 to investigate the functional outcome of XIAP deletion. Surprisingly, in our genetically modified cells XIAP deletion had no effect on programmed cell death, but instead the primary phenotype we observed was a profound increase in cell migration rates. Furthermore, we found that XIAP-dependent suppression of cell migration was dependent on XIAPdependent control of C-RAF levels, a protein kinase which controls cell signalling pathways that regulate the cytoskeleton. These results suggest that XIAP is not necessary for control of the apoptotic signalling cascade, however it does have a critical role in controlling cell migration and motility that cannot be compensated for in XIAP-knockout cells.
Collapse
Affiliation(s)
- Lauren G Russell
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lydia A K Davis
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jill E Hunter
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Niall S Kenneth
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
12
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Chen RZ, Yang F, Zhang M, Sun ZG, Zhang N. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Front Oncol 2021; 11:671548. [PMID: 34026649 PMCID: PMC8138054 DOI: 10.3389/fonc.2021.671548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Seeking an efficient and safe approach to eliminate tumors is a common goal of medical fields. Over these years, traditional Chinese medicine has attracted growing attention in cancer treatment due to its long history. Pristimerin is a naturally occurring quinone methide triterpenoid used in traditional Chinese medicine to treat various cancers. Recent studies have identified alterations in cellular events and molecular signaling targets of cancer cells under pristimerin treatment. Pristimerin induces cell cycle arrest, apoptosis, and autophagy to exhibit anti-proliferation effects against tumors. Pristimerin also inhibits the invasion, migration, and metastasis of tumor cells via affecting cell adhesion, cytoskeleton, epithelial-mesenchymal transition, cancer stem cells, and angiogenesis. Molecular factors and pathways are associated with the anti-cancer activities of pristimerin. Furthermore, pristimerin reverses multidrug resistance of cancer cells and exerts synergizing effects with other chemotherapeutic drugs. This review aims to discuss the anti-cancer potentials of pristimerin, emphasizing multi-targeted biological and molecular regulations in cancers. Further investigations and clinical trials are warranted to understand the advantages and disadvantages of pristimerin treatment much better.
Collapse
Affiliation(s)
- Run-Ze Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Zhang Z, Du G, Gong G, Sheng Y, Lu X, Cai W, Wang F, Zhao G. A novel ferrocene-palladium metal complex: synthesis, single crystal structure, in vitro cytotoxicity study and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
An Y, Jeon J, Sun L, Derakhshan A, Chen J, Carlson S, Cheng H, Silvin C, Yang X, Van Waes C, Chen Z. Death agonist antibody against TRAILR2/DR5/TNFRSF10B enhances birinapant anti-tumor activity in HPV-positive head and neck squamous cell carcinomas. Sci Rep 2021; 11:6392. [PMID: 33737574 PMCID: PMC7973748 DOI: 10.1038/s41598-021-85589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) induced by human papillomavirus (HPV) have increased recently in the US. However, the distinct alterations of molecules involved in the death pathways and drug effects targeting inhibitor of apoptosis proteins (IAPs) have not been extensively characterized in HPV(+) HNSCC cells. In this study, we observed the distinct genomic and expression alterations of nine genes involved in cell death in 55% HNSCC tissues, which were associated with HPV status, tumor staging, and anatomic locations. Expression of four genes was statistically correlated with copy number variation. A panel of HPV(+) HNSCC lines showed abundant TRAILR2 and IAP1 protein expression, but were not sensitive to IAP inhibitor birinapant alone, while combinatory treatment with TNFα or especially TRAIL enhanced this drug sensitivity. The death agonistic TRAILR2 antibody alone showed no cell inhibitory effects, whereas its combination with birinapant and/or TRAIL protein demonstrated additive or synergistic effects. We observed predominantly late apoptosis mode of cell death after combinatorial treatments, and pan-caspase (ZVAD) and caspase-8 (ZIETD) inhibitors attenuated treatment-induced cell death. Our genomic and expression data-driven study provides a framework for identifying relevant combinatorial therapies targeting death pathways in HPV(+) HNSCC and other squamous cancer types.
Collapse
Affiliation(s)
- Yi An
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Jun Jeon
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA ,grid.94365.3d0000 0001 2297 5165NIH Medical Research Scholars Program, Bethesda, MD USA
| | - Lillian Sun
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Adeeb Derakhshan
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Jianhong Chen
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Sophie Carlson
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Hui Cheng
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Christopher Silvin
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Xinping Yang
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Carter Van Waes
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| | - Zhong Chen
- grid.94365.3d0000 0001 2297 5165Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, 7N240, Bethesda, MD 201892 USA
| |
Collapse
|
16
|
Obeng E. Apoptosis (programmed cell death) and its signals - A review. BRAZ J BIOL 2021; 81:1133-1143. [PMID: 33111928 DOI: 10.1590/1519-6984.228437] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Apoptosis is a sequential order of cell death occurring regularly to ensure a homeostatic balance between the rate of cell formation and cell death. However, a misplaced of this balancing function can contribute to an abnormal cell growth / proliferation or autoimmune disorders etc. Apoptosis is therefore said to be crucial from the point of development of an embryo throughout the growth of an organism contributing to the renewal of tissues and also the getting rid of inflammatory cells. This review seeks to elaborate on the recent overview of the mechanism involved in apoptosis, some element and signal contributing to its function and inhibition together with how their malfunction contribute to a number of cancer related cases.
Collapse
Affiliation(s)
- E Obeng
- Zhejiang Sci-Tech University, College of Life Sciences and Medicine, Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
17
|
Shim MK, Moon Y, Yang S, Kim J, Cho H, Lim S, Yoon HY, Seong JK, Kim K. Cancer-specific drug-drug nanoparticles of pro-apoptotic and cathepsin B-cleavable peptide-conjugated doxorubicin for drug-resistant cancer therapy. Biomaterials 2020; 261:120347. [DOI: 10.1016/j.biomaterials.2020.120347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/19/2023]
|
18
|
Demeter A, Romero-Mulero MC, Csabai L, Ölbei M, Sudhakar P, Haerty W, Korcsmáros T. ULK1 and ULK2 are less redundant than previously thought: computational analysis uncovers distinct regulation and functions of these autophagy induction proteins. Sci Rep 2020; 10:10940. [PMID: 32616830 PMCID: PMC7331686 DOI: 10.1038/s41598-020-67780-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/15/2020] [Indexed: 01/17/2023] Open
Abstract
Macroautophagy, the degradation of cytoplasmic content by lysosomal fusion, is an evolutionary conserved process promoting homeostasis and intracellular defence. Macroautophagy is initiated primarily by a complex containing ULK1 or ULK2 (two paralogs of the yeast Atg1 protein). To understand the differences between ULK1 and ULK2, we compared the human ULK1 and ULK2 proteins and their regulation. Despite the similarity in their enzymatic domain, we found that ULK1 and ULK2 have major differences in their autophagy-related interactors and their post-translational and transcriptional regulators. We identified 18 ULK1-specific and 7 ULK2-specific protein motifs serving as different interaction interfaces. We found that interactors of ULK1 and ULK2 all have different tissue-specific expressions partially contributing to diverse and ULK-specific interaction networks in various tissues. We identified three ULK1-specific and one ULK2-specific transcription factor binding sites, and eight sites shared by the regulatory region of both genes. Importantly, we found that both their post-translational and transcriptional regulators are involved in distinct biological processes-suggesting separate functions for ULK1 and ULK2. Unravelling differences between ULK1 and ULK2 could lead to a better understanding of how ULK-type specific dysregulation affects autophagy and other cellular processes that have been implicated in diseases such as inflammatory bowel disease and cancer.
Collapse
Affiliation(s)
- Amanda Demeter
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mari Carmen Romero-Mulero
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Faculty of Biology, University of Seville, 41012, Seville, Spain
| | - Luca Csabai
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Eötvös Loránd University, Budapest, 1117, Hungary
| | - Márton Ölbei
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Tamás Korcsmáros
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK.
| |
Collapse
|
19
|
Kamal R, Kumar R, Kumar V, Bhardwaj JK, Saraf P, Kumar A, Pandit K, Kaur S, Chetti P, Beura S. Diacetoxy iodobenzene mediated regioselective synthesis and characterization of novel [1,2,4]triazolo[4,3-a]pyrimidines: apoptosis inducer, antiproliferative activities and molecular docking studies. J Biomol Struct Dyn 2020; 39:4398-4414. [PMID: 32552396 DOI: 10.1080/07391102.2020.1777900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prompt and regioselective synthesis of eleven novel [1,2,4]triazolo[4,3-a]pyrimidines 2a-2k, via intramolecular oxidative-cyclization of 2-(2-arylidenehydrazinyl)-4-methyl-6-phenylpyrimidine derivatives 1a-1k has been demonstrated here using diacetoxy iodobenzene (DIB) as inexpensive and ecofriendly hypervalent iodine(III) reagent in CH2Cl2 at room temperature. Regiochemistry of final product has been established by developing single crystal and studied X-ray crystallographic data for two derivatives 2c and 2h without any ambiguity. These prominent [1,2,4]triazolo[4,3-a]pyrimidines were evaluated for human osteosarcoma bone cancer (MG-63) and breast cancer (MCF-7) cell lines using MTT assay to find potent antiproliferative agent and also on testicular germ cells to find potent apoptotic inducing activities. All compounds show significant cytotoxicity, particularly 3-(2,4-dichlorophenyl)-5-methyl-7-phenyl-[1,2,4]triazolo[4,3-a]pyrimidine (2g) was found significant apoptotic inducing molecule, as well as the most potent cytotoxic agent against bone cancer (MG-63) and breast cancer (MCF-7) cell lines with GI50 value 148.96 µM and 114.3 µM respectively. Molecular docking studies has been carried out to see the molecular interactions of synthesized compounds with the protein thymidylate synthase (PBD ID: 2G8D).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ravinder Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | | | - Priyanka Saraf
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhakar Chetti
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| | - Satyajit Beura
- Department of Chemistry, National Institute of Technology (NIT), Kurukshetra, Haryana, India
| |
Collapse
|
20
|
Immunity to X-linked inhibitor of apoptosis protein (XIAP) in malignant melanoma and check-point blockade. Cancer Immunol Immunother 2019; 68:1331-1340. [PMID: 31317218 DOI: 10.1007/s00262-019-02370-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Expression of inhibitors of apoptosis protein (IAP) family members is associated with poor prognosis in cancer patients. Immunity to ML-IAP (livin) and survivin has been well studied in patients with a variety of tumors. XIAP, the most potent inhibitor of apoptosis, is widely expressed in melanoma. To better define its potential role as an immunogenic target, cellular and humoral responses to XIAP were investigated in patients with advanced melanoma. An overlapping peptide library covering the full length of the XIAP protein was used to screen T cell responses of peripheral blood mononuclear cells (PBMC) from stage-IV melanoma patients treated with or without anti-CTLA4 (ipilimumab). The screen identified an array of peptides that predominantly induced CD4+ T cell responses. XIAP epitope-specific CD4+ T cells revealed proliferative responses to melanoma cells that express XIAP. Humoral responses to XIAP were also explored. Cellular and humoral responses to XIAP were associated with beneficial clinical outcomes after ipilimumab-based treatment, supporting XIAP as a potential therapeutic target.
Collapse
|
21
|
Micewicz ED, Nguyen C, Micewicz A, Waring AJ, McBride WH, Ruchala P. Position of lipidation influences anticancer activity of Smac analogs. Bioorg Med Chem Lett 2019; 29:1628-1635. [PMID: 31047753 PMCID: PMC6625762 DOI: 10.1016/j.bmcl.2019.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized. The resulting mini library of Smacs lipidated in positions 2, 3 and C-terminus was screened extensively in vitro against a total number of 50 diverse cancer cell lines revealing that both the position of lipidation as well as the type of lipid, influence their anti-cancer activity and cancer type specificity. Moreover, when used in combination therapy with inhibitor of menin-MLL1 protein interactions, position 2 modified analog SM2 showed strong synergistic anti-cancer properties. The most promising lipid-conjugated analogs SM2 and SM6, showed favorable pharmacokinetics and in vivo activity while administered subcutaneously in the preclinical mouse model. Collectively, our findings suggest that lipid modification of Smacs may be a viable approach in the development of anti-cancer therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alina Micewicz
- David Geffen School of Medicine at UCLA, Volunteering Program, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
22
|
Jeong Y, Lim JW, Kim H. Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients 2019; 11:nu11040762. [PMID: 30939781 PMCID: PMC6521322 DOI: 10.3390/nu11040762] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
Generation of excess quantities of reactive oxygen species (ROS) caused by mitochondrial dysfunction facilitates rapid growth of pancreatic cancer cells. Elevated ROS levels in cancer cells cause an anti-apoptotic effect by activating survival signaling pathways, such as NF-κB and its target gene expression. Lycopene, a carotenoid found in tomatoes and a potent antioxidant, displays a protective effect against pancreatic cancer. The present study was designed to determine if lycopene induces apoptosis of pancreatic cancer PANC-1 cells by decreasing intracellular and mitochondrial ROS levels, and consequently suppressing NF-κB activation and expression of NF-κB target genes including cIAP1, cIAP2, and survivin. The results show that the lycopene decreased intracellular and mitochondrial ROS levels, mitochondrial function (determined by the mitochondrial membrane potential and oxygen consumption rate), NF-κB activity, and expression of NF-κB-dependent survival genes in PANC-1 cells. Lycopene reduced cell viability with increases in active caspase-3 and the Bax to Bcl-2 ratio in PANC-1 cells. These findings suggest that supplementation of lycopene could potentially reduce the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Yoonseon Jeong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
23
|
Bahar E, Kim JY, Yoon H. Chemotherapy Resistance Explained through Endoplasmic Reticulum Stress-Dependent Signaling. Cancers (Basel) 2019; 11:cancers11030338. [PMID: 30857233 PMCID: PMC6468910 DOI: 10.3390/cancers11030338] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Cancers cells have the ability to develop chemotherapy resistance, which is a persistent problem during cancer treatment. Chemotherapy resistance develops through different molecular mechanisms, which lead to modification of the cancer cells signals needed for cellular proliferation or for stimulating an immune response. The endoplasmic reticulum (ER) is an important organelle involved in protein quality control, by promoting the correct folding of protein and ER-mediated degradation of unfolded or misfolded protein, namely, ER-associated degradation. Disturbances of the normal ER functions causes an accumulation of unfolded or misfolded proteins in the ER lumen, resulting in a condition called “ER stress (ERS).” ERS triggers the unfolded protein response (UPR)—also called the ERS response (ERSR)—to restore homeostasis or activate cell death. Although the ERSR is one emerging potential target for chemotherapeutics to treat cancer, it is also critical for chemotherapeutics resistance, as well. However, the detailed molecular mechanism of the relationship between the ERSR and tumor survival or drug resistance remains to be fully understood. In this review, we aim to describe the most vital molecular mechanism of the relationship between the ERSR and chemotherapy resistance. Moreover, the review also discusses the molecular mechanism of ER stress-mediated apoptosis on cancer treatments.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Ji-Ye Kim
- Department of Pathology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Department of Pathology, Ilsan Paik Hospital, Inje University, Goyang 10381, Gyeonggi-do, Korea.
- Department of Pathology, National Cancer Center, Goyang 10408, Gyeonggi-do, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
24
|
Xu H, Tang Z, Zuo Y, Xiong F, Chen K, Jiang H, Luo C, Zhang H. Molecular dynamics simulation revealed the intrinsic conformational change of cellular inhibitor of apoptosis protein-1. J Biomol Struct Dyn 2019; 38:975-984. [PMID: 30843765 DOI: 10.1080/07391102.2019.1591303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptosis, and protein targets for the development of anti-cancer drugs. Cellular inhibitor of apoptosis protein-1 (cIAP1) is an important member of IAPs. Peptides or small-molecular antagonists can induce the dimerization, auto-ubiquitination, and proteasomal degradation of the cellular inhibitor of apoptosis protein-1 (cIAP1). While in the absence of antagonists, several mutations of the cIAP1 protein also lead to its dimerization and auto-ubiquitination. Even though the crystal structure of cIAP1 protein has been determined, the intrinsic mechanism of its dimerization remains unexplored. Accumulating evidence indicated that intrinsic conformational change existed during the binding of antagonists with cIAP1 protein, or introduction of mutations. To reveal this intrinsic conformational change, molecular dynamics simulations at microsecond scale were applied for the wild-type and mutant-type cIAP1 proteins. Compared to the crystal structure, significant conformational change was observed during the simulations, which could explain the importance of previously identified key mutations. To validate these findings revealed by our simulations, a new mutation D303A was constructed and the following native polyacrylamide gel electrophoresis (native-PAGE) assay observed a proportion of spontaneous dimerization, in comparison with the wild-type control. Taken together, these computational and experimental results revealed the intrinsic conformational change of cIAP1, which could not only explain previously identified key mutations, but also be exploited for further design and development of anti-tumor compounds that target the cIAP1 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heng Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Yu Zuo
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Fengmin Xiong
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Ma D, Liu Q, Zhang M, Feng J, Li X, Zhou Y, Wang X. iTRAQ-based quantitative proteomics analysis of the spleen reveals innate immunity and cell death pathways associated with heat stress in broilers (Gallus gallus). J Proteomics 2019; 196:11-21. [DOI: 10.1016/j.jprot.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
|
26
|
Tan J, Zhao M, Wang J, Li Z, Liang L, Zhang L, Yuan Q, Tan W. Regulation of Protein Activity and Cellular Functions Mediated by Molecularly Evolved Nucleic Acids. Angew Chem Int Ed Engl 2019; 58:1621-1625. [PMID: 30556364 PMCID: PMC6442720 DOI: 10.1002/anie.201809010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Indexed: 01/05/2023]
Abstract
Regulation of protein activity is essential for revealing the molecular mechanisms of biological processes. DNA and RNA achieve many uniquely efficient functions, such as genetic expression and regulation. The chemical capability to synthesize artificial nucleotides can expand the chemical space of nucleic acid libraries and further increase the functional diversity of nucleic acids. Herein, a versatile method has been developed for modular expansion of the chemical space of nucleic acid libraries, thus enabling the generation of aptamers able to regulate protein activity. Specifically, an aptamer that targets integrin alpha3 was identified and this aptamer can inhibit cell adhesion and migration. Overall, this chemical-design-assisted in vitro selection approach enables the generation of functional nucleic acids for elucidating the molecular basis of biological activities and uncovering a novel basis for the rational design of new protein-inhibitor pharmaceuticals.
Collapse
Affiliation(s)
- Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China,
| | - Mengmeng Zhao
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ling Liang
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China
| | - Liqin Zhang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China,
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082 China, Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
27
|
Cong H, Xu L, Wu Y, Qu Z, Bian T, Zhang W, Xing C, Zhuang C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J Med Chem 2019; 62:5750-5772. [DOI: 10.1021/acs.jmedchem.8b01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hui Cong
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yougen Wu
- College of Tropical Agriculture and Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Tengfei Bian
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
28
|
Tan J, Zhao M, Wang J, Li Z, Liang L, Zhang L, Yuan Q, Tan W. Regulation of Protein Activity and Cellular Functions Mediated by Molecularly Evolved Nucleic Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL) Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Mengmeng Zhao
- Molecular Science and Biomedicine Laboratory (MBL) Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Ling Liang
- Molecular Science and Biomedicine Laboratory (MBL) Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Liqin Zhang
- Department of Chemistry and Department of Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute and McKnight Brain Institute University of Florida Gainesville FL 32611-7200 USA
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL) Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 China
- Department of Chemistry and Department of Physiology and Functional Genomics Center for Research at the Bio/Nano Interface Health Cancer Center UF Genetics Institute and McKnight Brain Institute University of Florida Gainesville FL 32611-7200 USA
- Institute of Molecular Medicine (IMM) Renji Hospital Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
29
|
Nikkhoo A, Rostami N, Hojjat-Farsangi M, Azizi G, Yousefi B, Ghalamfarsa G, Jadidi-Niaragh F. Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. J Cell Biochem 2018; 120:9300-9314. [PMID: 30506843 DOI: 10.1002/jcb.28205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most prevalent cancer in women. Despite improvements in treatment, the rate of breast cancer-related deaths is still high, and this issue needs further, accurate investigations. Although several treatment options are available, none of them are efficient for complete remission, particularly in advanced stages of the disease. It is known that cancerous cells have dysregulated apoptosis-related pathways, by which they can remain alive for a long time, expand freely, and escape from apoptosis-inducing drugs or antitumor immune responses. Therefore, modulation of apoptosis resistance in cancer cells may be an efficient strategy to overcome current problems faced in the development of immunotherapeutic approaches for the treatment of breast cancer. The inhibitors of apoptosis protein (IAPs) are important targets for cancer therapy because it has been shown that these molecules are overexpressed and highly active in various cancer cells and suppress apoptosis process in malignant cells by blockage of caspase proteins. There is evidence of Smac mimetics efficacy as a single agent; however, recent studies have indicated the efficacy of current anticancer immunotherapeutic approaches when combined with Smac mimetics, which are potent inhibitors of IAPs and synthesized mimicking Smac/Diablo molecules. In this review, we are going to discuss the efficacy of treatment of breast cancer by Smac mimetics alone or in combination with other therapeutics.
Collapse
Affiliation(s)
- Afshin Nikkhoo
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Rostami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Chen Z, Chen J, Liu H, Dong W, Huang X, Yang D, Hou J, Zhang X. The SMAC Mimetic APG-1387 Sensitizes Immune-Mediated Cell Apoptosis in Hepatocellular Carcinoma. Front Pharmacol 2018; 9:1298. [PMID: 30459627 PMCID: PMC6232623 DOI: 10.3389/fphar.2018.01298] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
The inhibitor of apoptosis protein (IAP) genes are frequently overexpressed in malignancies. Second mitochondria-derived activator of caspase (SMAC) mimetics, which target IAPs, have potential to trigger cancer cell death and sensitize tumor cells to cytotoxic therapy. The aim of this study was to investigate the anti-tumor potential of a novel bivalent SMAC mimetic, APG-1387, in hepatocellular carcinoma (HCC). The mRNA and protein expressions of IAPs, including cellular IAPs (cIAP1 and cIAP2) and X chromosome-linked IAP (XIAP), were increased in HCC tumors compared with normal liver tissue. APG-1387 treatment alone significantly reduced the protein levels of IAPs, but had only a modest effect on the viability and apoptosis of HCC cells in vitro. However, APG-1387 in combination with tumor necrosis factor-alpha (TNF-α) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) significantly reduced cell viability and proliferation, and induced apoptosis in HepG2 cells, as well as in HCCLM3 cells that harbors cancer stem cell-like properties. These synergistic killing effects were caspase-dependent and partially dependent on RIPK1 kinase activity. Furthermore, APG-1387 also promoted the killing effect of Natural Killer cells on HCC cells in vitro and the combination therapy significantly inhibited tumor growth by inducing cell apoptosis in xenograft mice model. In conclusion, our study clarified that APG-1387 could sensitize HCC cells to cytokines or immune cells mediated cell killing and implied that potential of SMAC mimetic based combination immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Zide Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiehua Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dajun Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Ascentage Pharma Group Corporation Limited, Suzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Suzuki T, Sakumoto R, Hayashi KG, Ogiso T, Kunii H, Shirozu T, Kim SW, Bai H, Kawahara M, Kimura K, Takahashi M. Involvement of interferon-tau in the induction of apoptotic, pyroptotic, and autophagic cell death-related signaling pathways in the bovine uterine endometrium during early pregnancy. J Reprod Dev 2018; 64:495-502. [PMID: 30298824 PMCID: PMC6305853 DOI: 10.1262/jrd.2018-063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferon-tau (IFNT), a type I interferon (IFN), is known as pregnancy recognition signaling molecule secreted from the ruminant conceptus during the preimplantation period. Type I IFNs,
such as IFN-alpha and IFN-beta, are known to activate cell-death pathways as well as induce apoptosis. In cows, induction of apoptosis with DNA fragmentation is induced by IFNT in cultured
bovine endometrial epithelial cells. However, the status of cell-death pathways in the bovine endometrium during the preimplantation period still remains unclear. In the present study, we
investigated the different cell-death pathways, including apoptosis, pyroptosis, and autophagy, in uterine tissue obtained from pregnant cows and in vitro cultured
endometrial epithelial cells with IFNT stimulation. The expression of CASP7, 8, and FADD (apoptosis-related genes) was significantly higher
in pregnant day 18 uterine tissue in comparison to non-pregnant day 18 tissue. The expression of CASP4, 11, and NLRP3 (pyroptosis-related
genes) was significantly higher in the pregnant uterus in comparison to non-pregnant uterus. In contrast, autophagy-related genes were not affected by pregnancy. We also investigated the
effect of IFNT on the expression of cell-death pathway-related genes, as well as DNA fragmentation in cultured endometrial epithelial cells. Similar to its effects in pregnant uterine
tissue, IFNT affected the increase of apoptosis-related (CASP8) and pyroptosis-related genes (CASP11), but did not affect autophagy-related gene expression.
IFNT also increased γH2AX-positive cells, which is a marker of DNA fragmentation. These results suggest that apoptosis- and pyroptosis-related genes are induced by IFNT in the pregnant
bovine endometrial epithelial cells.
Collapse
Affiliation(s)
- Toshiyuki Suzuki
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Ryosuke Sakumoto
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Ken-Go Hayashi
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Takatoshi Ogiso
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroki Kunii
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Takahiro Shirozu
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Sung-Woo Kim
- Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon 55717, Korea
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Koji Kimura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Masashi Takahashi
- Laboratory of Animal Genetics and Reproduction, Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan.,Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido 060-0815, Japan
| |
Collapse
|
32
|
Abhishek K, Das S, Kumar A, Kumar A, Kumar V, Saini S, Mandal A, Verma S, Kumar M, Das P. Leishmania donovani induced Unfolded Protein Response delays host cell apoptosis in PERK dependent manner. PLoS Negl Trop Dis 2018; 12:e0006646. [PMID: 30036391 PMCID: PMC6081962 DOI: 10.1371/journal.pntd.0006646] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/02/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Background Endoplasmic reticulum (ER) stress generated unfolded stress response (UPR) is a basic survival mechanism which protects cell under unfavourable conditions. Leishmania parasite modulates host macrophages in various ways to ensure its survival. Modulation of PI3K-Akt pathway in delayed apoptotic induction of host; enables parasite to stabilize the infection for further propagation. Methodology Infected RAW macrophages were exposed to campothecin or thagsigargin and phosphorylation status of PERK, Akt, BAD and Cyt-C was determined through western blotting using phospho specific antibody. Expression at transcriptional level for cIAP1 &2, ATF4, CHOP, ATF3, HO-1 and sXBP1 was determined using real time PCR. For inhibition studies, RAW macrophages were pre-treated with PERK inhibitor GSK2606414 before infection. Findings Our studies in RAW macrophages showed that induction of host UPR against L.donovani infection activates Akt mediated pathway which delays apoptotic induction of the host. Moreover, Leishmania infection results in phosphorylation and activation of host PERK enzyme and increased transcription of genes of inhibitor of apoptosis gene family (cIAP) mRNA. In our inhibition studies, we found that inhibition of infection induced PERK phosphorylation under apoptotic inducers reduces the Akt phosphorylation and fails to activate further downstream molecules involved in protection against apoptosis. Also, inhibition of PERK phosphorylation under oxidative exposure leads to increased Nitric Oxide production. Simultaneously, decreased transcription of cIAP mRNA upon PERK phosphorylation fates the host cell towards apoptosis hence decreased infection rate. Conclusion Overall the findings from the study suggests that Leishmania modulated host UPR and PERK phosphorylation delays apoptotic induction in host macrophage, hence supports parasite invasion at early stages of infection. Visceral Leishmaniasis or Kala-azar is one of the severe tropical neglected parasitic diseases caused by Leishmania donovani in Indian subcontinent. Modulation of host in terms of delayed apoptotic induction is one of the aspects which favours disease establishment; however the mechanism is not clearly understood yet. In the present study, we tried to explore the connection between L.donovani infection induced UPR in host with delayed onset of apoptosis. We found that L.donovani infection phosphorylates the PERK and Akt molecule in host along with delayed apoptosis. Simultaneously, the levels of cellular IAP (cIAP1 & 2) genes were also up-regulated in infected macrophages. To assess the involvement of PERK in delayed apoptosis of host, we inhibited the phosphorylation of PERK under the exposure to apoptotic inducers. We found that PERK inhibition decreased the Akt phosphorylation and fails to activate other associated downstream molecules involved in delayed apoptosis of host. Also, a significant reduction in cIAP levels was observed. Under oxidative exposure, inhibition of PERK phosphorylation debilitates infected RAW cell’s ability to maintain redox homeostasis leading to higher nitric oxide production. Altogether, L.donovani infection modulates host apoptosis in a PERK dependent manner and favours infection.
Collapse
Affiliation(s)
- Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna Bihar, India
| | - Ashish Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Vinod Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Savita Saini
- National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Manjay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
- * E-mail:
| |
Collapse
|
33
|
Design of Potent pan-IAP and Lys-Covalent XIAP Selective Inhibitors Using a Thermodynamics Driven Approach. J Med Chem 2018; 61:6350-6363. [PMID: 29940121 DOI: 10.1021/acs.jmedchem.8b00810] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently we reported that rapid determination of enthalpy of binding can be achieved for a large number of congeneric agents or in combinatorial libraries fairly efficiently. We show that using a thermodynamic Craig plot can be very useful in dissecting the enthalpy and entropy contribution of different substituents on a common scaffold, in order to design potent, selective, or pan-active compounds. In our implementation, the approach identified a critical Lys residue in the BIR3 domain of XIAP. We report for the first time that it is possible to target such residue covalently to attain potent and selective agents. Preliminary cellular studies in various models of leukemia, multiple myeloma, and pancreatic cancers suggest that the derived agents possess a potentially intriguing pattern of activity, especially for cell lines that are resistant to the pan-IAP antagonist and clinical candidate LCL161.
Collapse
|
34
|
Abstract
PURPOSE Evading apoptosis is one of the major hallmarks of cancer cells. Inhibitors of apoptosis (IAPs) proteins are considered as a most important gene families involved in apoptosis. BRUCE protein, a member of IAPs, is able to quench apoptosis as well as playing role in cell division. Our aim in this study was to analyze BRUCE protein expression in gastric carcinoma (GC) and its correlation with the clinicopathological features. METHODS Using immunohistochemistry, 52 GC specimens were studied for BRUCE protein expression. A validated scoring method was applied. RESULTS BRUCE protein expression was detected in majority of tumor tissues (98.07 %). A significant correlation between gender and BRUCE expression (p = 0.024) was detected. Indeed, females showed higher level of BRUCE expression than male patients. CONCLUSION Since specific expression of BRUCE protein was revealed in majority of GC tissues, BRUCE protein may be a useful therapeutic target for cancer therapy. Furthermore, based on the native role of BRUCE protein in inhibition of apoptosis, using this protein in targeted therapy of tumor cells may help to inhibit tumor cells growth and survival leading to rapid elimination of tumor mass.
Collapse
|
35
|
Gowda Saralamma VV, Lee HJ, Raha S, Lee WS, Kim EH, Lee SJ, Heo JD, Won C, Kang CK, Kim GS. Inhibition of IAP's and activation of p53 leads to caspase-dependent apoptosis in gastric cancer cells treated with Scutellarein. Oncotarget 2017; 9:5993-6006. [PMID: 29464049 PMCID: PMC5814189 DOI: 10.18632/oncotarget.23202] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. South Korea is in first place with 9,180 death alone attributed to gastric cancer in 2013. Plenty of literature suggests the evasion of apoptosis is implicated in neurodegeneration, autoimmune diseases, and tumors development due to dysregulation in the apoptotic mechanism. Reduced apoptosis or its resistance in cancer cells plays a significant role in carcinogenesis. It’s imperative to understand apoptosis, which provides the basis for novel targeted therapies that can induce cancer cell death or sensitize them to cytotoxic agents by regulating key factors like IAPs, MDM2, p53, caspases and much more. Studies have demonstrated that Scutellarein have the ability to inhibit several cancer cells by inducing apoptosis with both: Scutellarein monomers as well as scutellarein containing flavonoids. MTT results revealed that scutellarein inhibited cell viability in both dose and time dependent manner. Flow cytometry and western blot analysis showed that scutellarein induces apoptosis in both AGS and SNU-484 human gastric cancer cells and G2/M phase cell cycle arrest in SNU-484 cells. This study demonstrated that the Scutellarein on AGS and SNU-484 cells significantly inhibits cell proliferation and induces apoptotic cell death via down regulating MDM2 and activated the tumor suppresser protein p53, subsequently down regulating the IAP family proteins (cIAP1, cIAP2, and XIAP) leading to caspase-dependent apoptosis in AGS and SNU-484 cells.
Collapse
Affiliation(s)
- Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Suchismita Raha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Biological Resource Research Center, Korea Institute of Toxicology, Jinju, Gyeongsangnam 666-844, Republic of Korea
| | - Chungkil Won
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chang Keun Kang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju, Republic Korea
| |
Collapse
|
36
|
Chen C, Wu J, Zhu P, Xu C, Yao L. Investigating isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins for ovarian cancer treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2697-2707. [PMID: 28979099 PMCID: PMC5602439 DOI: 10.2147/dddt.s137608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective To discover novel isoquinoline derivatives for inhibition of inhibitor of apoptosis proteins (IAP) for the treatment of ovarian cancer. Methods We first synthesized 533 isoquinoline derivatives, and screened them using CCK-8 to measure their antiproliferative activity. These compounds were further tested by Hoechst staining and flow cytometric analysis to assess proapoptotic activity. The in vivo antitumor efficacy and safety of the screened compounds were evaluated on the xenograft mouse model. Ki-67 staining and TUNEL assay were used to evaluate proliferation and apoptosis in the resected tumors, respectively. Western blot and polymerase chain reaction (PCR) were conducted to evaluate the levels of proliferating cell nuclear antigen (PCNA), caspase-3, PARP, and IAP in resected tumors. Results Compound B01002 and C26001 displayed antiproliferative and proapoptotic activity on SKOV3 ovarian cancer with an IC50 of 7.65 and 11.68 µg/mL, respectively. Both compounds inhibited tumor growth in a xenografted mouse model with good safety profiles, and tumor growth inhibition (TGI) of B01002 and C26001 was 99.53% and 84.23%, respectively. Resected tumors showed that both compounds inhibited tumor cell proliferation and induced apoptosis in vivo. Caspase-3 and PARP were activated, whereas IAP proteins were downregulated at the protein level. Conclusion Compound B01002 and C26001 could inhibit ovarian tumor growth and promote tumor apoptosis, partly by downregulating the IAPs, and, thus, might be promising candidates for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chen Chen
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Jie Wu
- Department of Chemistry, Fudan University, Shanghai
| | - Pengfei Zhu
- Department of Obstetrics and Gynecology, Shangyu City Hospital, Shangyu, Zhejiang Province, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Liangqing Yao
- Obstetrics and Gynecology Hospital and Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
37
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
38
|
Papademetrio DL, Lompardía SL, Simunovich T, Costantino S, Mihalez CY, Cavaliere V, Álvarez É. Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Target Oncol 2017; 11:183-95. [PMID: 26373299 DOI: 10.1007/s11523-015-0388-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a survival rate of 4-6 months from diagnosis. PDAC is the fourth leading cause of cancer-related death in the Western world, with a mortality rate of 10 cases per 100,000 population. Chemotherapy constitutes only a palliative strategy, with limited effects on life expectancy. AIMS To investigate the biological response of PDAC to mitogen-activated protein kinase (MAPK) and NF-kappaB (NF-kB) inhibitors and the role of autophagy in the modulation of these signaling pathways in order to address the challenge of developing improved medical protocols for patients with PDAC. METHODS Two ATCC cell lines, MIAPaCa-2 and PANC-1, were used as PDAC models. Cells were exposed to inhibitors of MAPK or NF-kB survival pathways alone or after autophagy inhibition. Several aspects were analyzed, as follows: cell proliferation, by [(3)H]TdR incorporation; cell death, by TUNEL assay, regulation of autophagy by LC3-II expression level and modulation of pro-and anti-apoptotic proteins by Western blot. RESULTS We demonstrated that the inhibition of the MAPK and NF-kB survival pathways with U0126 and caffeic acid phenethyl ester (CAPE), respectively, produced strong inhibition of pancreatic tumor cell growth without inducing apoptotic death. Interestingly, U0126 and CAPE induced apoptosis after autophagy inhibition in a caspase-dependent manner in MIA PaCa-2 cells and in a caspase-independent manner in PANC-1 cells. CONCLUSIONS Here we present evidence that allows us to consider a combined therapy regimen comprising an autophagy inhibitor and a MAPK or NF-kB pathway inhibitor as a possible treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Daniela Laura Papademetrio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| | - Silvina Laura Lompardía
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Tania Simunovich
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Susana Costantino
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Yamila Mihalez
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Cavaliere
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Élida Álvarez
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° piso, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- IDEHU, CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
39
|
A novel small-molecule IAP antagonist, AZD5582, draws Mcl-1 down-regulation for induction of apoptosis through targeting of cIAP1 and XIAP in human pancreatic cancer. Oncotarget 2016; 6:26895-908. [PMID: 26314849 PMCID: PMC4694961 DOI: 10.18632/oncotarget.4822] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/24/2015] [Indexed: 12/24/2022] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) plays an important role in controlling cancer cell survival. IAPs have therefore attracted considerable attention as potential targets in anticancer therapy. In this study, we investigated the anti-tumor effect of AZD5582, a novel small-molecule IAP inhibitor, in human pancreatic cancer cells. Treating human pancreatic cancer cells with AZD5582 differentially induced apoptosis, dependent on the expression of p-Akt and p-XIAP. Moreover, the knockdown of endogenous Akt or XIAP via RNA interference in pancreatic cancer cells, which are resistant to AZD5582, resulted in increased sensitivity to AZD5582, whereas ectopically expressing Akt or XIAP led to resistance to AZD5582. Additionally, AZD5582 targeted cIAP1 to induce TNF-α-induced apoptosis. More importantly, AZD5582 induced a decrease of Mcl-1 protein, a member of the Bcl-2 family, but not that of Bcl-2 and Bcl-xL. Interestingly, ectopically expressing XIAP and cIAP1 inhibited the AZD5582-induced decrease of Mcl-1 protein, which suggests that AZD5582 elicits Mcl-1 decrease for apoptosis induction by targeting of XIAP and cIAP1. Taken together, these results indicate that sensitivity to AZD5582 is determined by p-Akt-inducible XIAP phosphorylation and by targeting cIAP1. Furthermore, Mcl-1 in pancreatic cancer may act as a potent marker to analyze the therapeutic effects of AZD5582.
Collapse
|
40
|
Salehi S, Jafarian AH, Forghanifard MM. Expression analysis of BRUCE protein in esophageal squamous cell carcinoma. Ann Diagn Pathol 2016; 24:47-51. [PMID: 27649954 DOI: 10.1016/j.anndiagpath.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Apoptosis is a form of cell death in response to diverse stressful physiological or pathological stimuli. One of the most important gene families involved in apoptosis is inhibitors of apoptosis. As a member of inhibitors of apoptosis, BRUCE can suppress apoptosis and promote cell division. Because esophageal squamous cell carcinoma (ESCC) cells, as well as other cancer cells, are immortal, our aim in this study was to analyze BRUCE protein expression in ESCC and evaluate its correlation with tumoral clinicopathologic features. Fifty ESCC specimens were examined for BRUCE protein expression using immunohistochemistry. A defined scoring method was applied. BRUCE protein was detected in 82% of tumors. Tumor progression stage and invasion depth correlated significantly with BRUCE protein expression (P=.019 and .005, respectively). Furthermore, association of BRUCE expression with tumor location was near significant (P=.058). The correlation of BRUCE overexpression in ESCC and disease aggressiveness may confirm the importance of BRUCE in ESCC progression and invasiveness. Therefore, BRUCE protein may be a molecular marker for aggressive ESCC and, thus, a potential therapeutic target to inhibit tumor cell progression and invasion.
Collapse
Affiliation(s)
- Somayeh Salehi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Research Center, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
41
|
Zhu M, Zhou X, Du Y, Huang Z, Zhu J, Xu J, Cheng G, Shu Y, Liu P, Zhu W, Wang T. miR-20a induces cisplatin resistance of a human gastric cancer cell line via targeting CYLD. Mol Med Rep 2016; 14:1742-50. [PMID: 27357419 DOI: 10.3892/mmr.2016.5413] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/01/2016] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) has been demonstrated to contribute to drug resistance of cancer cells, and sustained nuclear factor (NF)κB activation is also pivotal in tumor resistance to chemotherapy. In the present study, an essential role for miRNA (miR)-20a was identified in the regulation of gastric cancer (GC) chemoresistance. The expression level of miR‑20a was assayed by reverse transcription‑quantitative polymerase chain reaction. Additionally, 3-(4,5-dimethylthiazol-2‑yl)-2,5-diphenyltetrazolium bromide was used to detect the drug‑resistance phenotype changes of cancer cells associated with upregulation or downregulation of miR‑20a. Protein expression levelss were measured by western blotting and immunohistochemistry. Flow cytometry was used to detect cisplatin‑induced apoptosis. It was found that miR‑20a was markedly upregulated in GC plasma and tissue samples. Additionally, miR‑20a was upregulated in GC plasma and tissues from patients with cisplatin (DDP) resistance, and in the DPP‑resistant gastric cancer cell line (SGC7901/DDP). The expression of miR‑20a was inversely correlated with the expression of cylindromatosis (CYLD). Subsequently, the assessment of luciferase activity verified that CYLD was a direct target gene of miR‑20a. Treatment with miR‑20a inhibitor increased the protein expression of CYLD, downregulated the expression levels of p65, livin and survivin, and led to a higher proportion of apoptotic cells in the SGC7901/DDP cells. By contrast, ectopic expression of miR‑20a significantly repressed the expression of CYLD, upregulated the expression levels of p65, livin and survivin, and resulted in a decrease in the apoptosis induced by DDP in the SGC7901 cells. Taken together, the results of the present study suggested that miR‑20a directly repressed the expression of CYLD, leading to activation of the NFκB pathway and the downstream targets, livin and survivin, which potentially induced GC chemoresistance. Altering miR‑20a expression may be a potential therapeutic strategy for the treatment of chemoresistance in GC in the future.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yiping Du
- Department of Oncology, The First People's Hospital of Kunshan Affiliated With Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Zebo Huang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Gongming Cheng
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ping Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
42
|
Smac127 Has Proapoptotic and Anti-Inflammatory Effects on Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Mediators Inflamm 2016; 2016:6905678. [PMID: 26989333 PMCID: PMC4773553 DOI: 10.1155/2016/6905678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial inflammation and hyperplasia. Fibroblast-like synoviocytes (FLSs) are apoptosis-resistant and contribute to the pathogenesis of RA by producing cytokines and proteolytic enzymes, which degrade the extracellular matrix. We evaluated the proapoptotic and anti-inflammatory activity of the small molecule Smac127 on RA-FLSs cultured in synovial fluid (SF), in order to reproduce the physiopathological environmental characteristic of RA joints. In this context, Smac127 induces apoptosis by inhibiting apoptosis proteins (IAPs). This inhibition activates caspase 3 and restores the apoptotic pathway. In addition, Smac127 induces a significant inhibition of the secretion of IL-15 and IL-6, stimulation of pannus formation, and damage of bone and cartilage in RA. Also the secretion of the anti-inflammatory cytokine IL-10 is dramatically increased in the presence of Smac127. The cartilage destruction in RA patients is partly mediated by metalloproteinases; here we show that the MMP-1 production by fibroblasts cultured in SF is significantly antagonized by Smac127. Conversely, this molecule has no significant effects on RANKL and OPG production. Our observations demonstrate that Smac127 has beneficial regulatory effects on inflammatory state of RA-FLSs and suggest a potential use of Smac127 for the control of inflammation and disease progression in RA.
Collapse
|
43
|
Poli G, Brancorsini S, Cochetti G, Barillaro F, Egidi MG, Mearini E. Expression of inflammasome-related genes in bladder cancer and their association with cytokeratin 20 messenger RNA. Urol Oncol 2015; 33:505.e1-7. [DOI: 10.1016/j.urolonc.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 01/21/2023]
|
44
|
Micewicz ED, Ratikan JA, Waring AJ, Whitelegge JP, McBride WH, Ruchala P. Lipid-conjugated Smac analogues. Bioorg Med Chem Lett 2015; 25:4419-27. [PMID: 26384289 PMCID: PMC4592835 DOI: 10.1016/j.bmcl.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Josephine A Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - Julian P Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
45
|
De Iuliis F, Salerno G, Giuffrida A, Milana B, Taglieri L, Rubinacci G, Giantulli S, Terella F, Silvestri I, Scarpa S. Breast cancer cells respond differently to docetaxel depending on their phenotype and on survivin upregulation. Tumour Biol 2015; 37:2603-11. [PMID: 26392111 DOI: 10.1007/s13277-015-4075-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022] Open
Abstract
Breast cancer is characterized by molecular heterogeneity, and four major breast cancer subtypes have been identified, each characterized by significant differences in survival, prognosis, and response to therapy. We have studied the effects of docetaxel treatment on apoptosis and survivin expression in four breast cancer cell lines: MCF7 (luminal A: estrogen receptor-positive and progesterone receptor-positive, ErbB2-negative), BT474 (luminal B: estrogen receptor/progesterone receptor/ErbB2-positive), SKBR3 (HER2-like: estrogen receptor/progesterone receptor-negative, ErbB2-positive), and MDA-MB231 (basal-like: estrogen receptor/progesterone receptor/ErbB2-negative). We demonstrated that docetaxel-induced apoptosis and survivin upregulation (MCF7 p = 0.002, BT474 p = 0.001, SKBR3 p = 0.001) in luminal A/B and HER2-like cells, while it induced mainly necrosis and a lower rate of survivin upregulation (MDA-MB231 p = 0.035) in basal-like cells. Wortmannin, a p-Akt inhibitor, was able to revert surviving upregulation and, at the same time, induced an increase of docetaxel-dependent apoptosis, suggesting that reduced levels of survivin can sensitize tumor cells to apoptosis. These data show that the analyzed breast cancer cell lines respond differently to docetaxel, depending on their receptor expression profile and molecular phenotype. Yet, these data confirm that one of the pathways involved in taxane-related chemoresistance is the upregulation of survivin. Further studies on the molecular mechanisms of chemoresistance and on the different modalities of apoptosis induced by chemotherapeutic agents are requested to better understand how cancer cells evade cell death, in order to design new kind of anticancer agents and survivin could represent a future target for this kind of research.
Collapse
Affiliation(s)
- Francesca De Iuliis
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Gerardo Salerno
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Anna Giuffrida
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Bernardina Milana
- Molecular Medicine Department, Sapienza University of Rome, 00161, Rome, Italy
| | - Ludovica Taglieri
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanna Rubinacci
- Molecular Medicine Department, Sapienza University of Rome, 00161, Rome, Italy
| | - Sabrina Giantulli
- Molecular Medicine Department, Sapienza University of Rome, 00161, Rome, Italy
| | - Federica Terella
- Molecular Medicine Department, Sapienza University of Rome, 00161, Rome, Italy
| | - Ida Silvestri
- Molecular Medicine Department, Sapienza University of Rome, 00161, Rome, Italy
| | - Susanna Scarpa
- Experimental Medicine Department, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
46
|
miR-20a enhances cisplatin resistance of human gastric cancer cell line by targeting NFKBIB. Tumour Biol 2015; 37:1261-9. [PMID: 26286834 DOI: 10.1007/s13277-015-3921-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/11/2015] [Indexed: 12/11/2022] Open
Abstract
Drug resistance of cancer cells can be regulated by the dysregulated miRNAs, and sustained NFκB activation also plays an important role in tumor resistance to chemotherapy. Here, we sought to investigate whether there was a correlation between miR-20a and the NFκB pathway to clarify the effects that miR-20a exerted on gastric cancer (GC) chemoresistance. We found that miR-20a was significantly upregulated in GC plasma and tissue samples. In addition, it was upregulated in GC plasma and tissues from patients with cisplatin-resistant gastric cancer cell line SGC7901/cisplatin (DDP). And the upregulation of miR-20a was concurrent with the downregulation of NFKBIB (also known as IκBβ) as well as upregulation of p65, livin, and survivin. The luciferase activity suggested that NFKBIB was the direct target gene of miR-20a. Transfection of miR-20a inhibitor could increase NFKBIB level; downregulate the expression of p65, livin, and survivin; and lead to a higher proportion of apoptotic cells in SGC7901/DDP cells. Conversely, ectopic expression of miR-20a dramatically decreased the expression of NFKBIB; increased the expression of p65, livin, and survivin; and resulted in a decrease in the apoptosis induced by DDP in SGC7901 cells. Taken together, our findings suggested that miR-20a could promote activation of the NFκB pathway and downstream targets livin and survivin by targeting NFKBIB, which potentially contributed to GC chemoresistance.
Collapse
|
47
|
Hird AW, Aquila BM, Hennessy EJ, Vasbinder MM, Yang B. Small molecule inhibitor of apoptosis proteins antagonists: a patent review. Expert Opin Ther Pat 2015; 25:755-74. [PMID: 25980951 DOI: 10.1517/13543776.2015.1041922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The family of inhibitor of apoptosis proteins (IAPs) plays a key role in the suppression of proapoptotic signaling; hence, a small molecule that disrupts the binding of IAPs with their functional partner should restore apoptotic response to proapoptotic stimuli in cells. The continued publication of new patent applications of IAP antagonists over the past 4 years is a testament to the continued interest surrounding the IAP family of proteins. AREAS COVERED This review summarizes the IAP antagonist patent literature from 2010 to 2014. Monovalent and bivalent Smac mimetics will be covered as well as two new developments in the field: IAP antagonists coupled to or merged with other targeted agents and new BIR2 selective IAP antagonists. EXPERT OPINION In addition to the well-explored scaffolds for monovalent and bivalent Smac-mimetics, some companies have taken more drastic approaches to explore new chemical space - for example, fragment-based approaches and macrocyclic inhibitors. Furthermore, other companies have designed compounds with alternative biological profiles - tethering to known kinase binding structures, trying to target to the mitochondria or introducing selective binding to the BIR2 domain. An overview of the status for the four small molecule IAP antagonists being evaluated in active human clinical trials is also provided.
Collapse
Affiliation(s)
- Alexander W Hird
- AstraZeneca, Medicinal Chemistry, Oncology iMed , 35 Gatehouse Drive, Waltham, MA 02451 , USA +1 781 839 4145 ;
| | | | | | | | | |
Collapse
|
48
|
Gill ML, Byrd RA. Dynamic activation of apoptosis: conformational ensembles of cIAP1 are linked to a spring-loaded mechanism. Nat Struct Mol Biol 2015; 21:1022-3. [PMID: 25469840 DOI: 10.1038/nsmb.2925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Michelle L Gill
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
49
|
Ubiquitination profiling identifies sensitivity factors for IAP antagonist treatment. Biochem J 2015; 466:45-54. [DOI: 10.1042/bj20141195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using immunoaffinity enrichment methods coupled to MS, we identified IAP (inhibitor of apoptosis) antagonist-specific ubiquitination profile. Our study reveals that RIP1 (receptor-interacting protein 1) ubiquitination could serve as a prognostic biomarker for IAP antagonist treatment to enhance the efficacy of this therapeutic anti-tumour strategy.
Collapse
|
50
|
Yang L, Shu T, Liang Y, Gu W, Wang C, Song X, Fan C, Wang W. GDC-0152 attenuates the malignant progression of osteosarcoma promoted by ANGPTL2 via PI3K/AKT but not p38MAPK signaling pathway. Int J Oncol 2015; 46:1651-8. [PMID: 25651778 DOI: 10.3892/ijo.2015.2872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/07/2015] [Indexed: 01/28/2023] Open
Abstract
Angiopoietin-like protein 2 (ANGPTL2) plays an important role in inflammatory carcinogenesis and tumor metastasis. The compound GDC-0152 is a peptidomimetic small molecule antagonist of inhibitor of apoptosis (IAP) proteins with antitumor activity. However, the interaction between ANGPTL2 and GDC-0152 has not been studied. It has been proven that ANGPTL2 promotes metastasis of osteosarcoma. Therefore, in the present study, the effect of GDC-0152 on the malignant progression of osteosarcoma promoted by ANGPTL2 was investigated. Human osteosarcoma cell line SaOS2 cells were pre-treated or non-treated with GDC-0152 and then exposed to recombinant human ANGPTL2. The viability of SaOS2 cells was determined by MTT assay, the migration of SaOS2 cells was analyzed by chamber migration assay kit, and the SaOS2 cell apoptosis was determined by fluorescence-activated cell sorting (FACS) and nuclear staining. Treatment with ANGPTL2 increased SaOS2 cell growth and migration and decreased cell apoptosis. The increased cell growth and decreased cell apoptosis were significantly attenuated in SaOS2 cells receiving GDC-0152. However, the ANGPTL2-increased SaOS2 cell migration was not inhibited by GDC-0152 treatment. Furthermore, western blot analysis showed that the activation of phosphatidyl inositol 3-kinase (PI3K) (p85), PI3K (p110), protein kinase B (Akt) (Ser473), Akt (Thr308) and p38 mitogen-activated protein kinase (p38MAPK) were upregulated by ANGPTL2. Quantitative real-time polymerase chain reaction (qTR-PCR) and gelatin zymography showed that the mRNA expression and activity of matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2) were also increased by ANGPTL2. The upregulated activation of PI3K and Akt were significantly suppressed by the treatment of GDC-0152. In contrast, GDC-0152 did not suppress ANGPTL2-induced p38MAPK phosphorylation, MMP-9/MMP-2 mRNA expression or MMP-9/MMP-2 activity. Taken together, these data indicate that GDC-0152 attenuates the malignant progression of osteosarcoma promoted by ANGPTL2 via PI3K/AKT but not p38MAPK signaling pathway. The present study indicated a novel therapeutic strategy to inhibit tumor growth by indirectly preventing ANGPTL2 signaling.
Collapse
Affiliation(s)
- Lin Yang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Taipengfei Shu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenguang Gu
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunlei Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xuanhe Song
- Department of Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Changdong Fan
- Department of Emergency Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- Department of Orthopedics, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|