1
|
Adamoski D, M Dos Reis L, Mafra ACP, Corrêa-da-Silva F, Moraes-Vieira PMMD, Berindan-Neagoe I, Calin GA, Dias SMG. HuR controls glutaminase RNA metabolism. Nat Commun 2024; 15:5620. [PMID: 38965208 PMCID: PMC11224379 DOI: 10.1038/s41467-024-49874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Douglas Adamoski
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Larissa M Dos Reis
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Ana Carolina Paschoalini Mafra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Radiation Oncology, Washington University School of Medicine, S. Louis, MO, USA
| | - Felipe Corrêa-da-Silva
- Graduate Program in Genetics and Molecular Biology, Institute of Biology University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", Cluj-Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Inference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sandra Martha Gomes Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Ma S, Xu Y, Qin X, Tao M, Gu X, Shen L, Chen Y, Zheng M, Qin S, Wu G, Ju S. RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy. Cell Mol Biol Lett 2024; 29:95. [PMID: 38956466 PMCID: PMC11218243 DOI: 10.1186/s11658-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Xinyue Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Mei Tao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Xinliang Gu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Ming Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Shiyi Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
- Diagnostics Department, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Xisi Road, NO.20, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Hotton J, Gauchotte G, Mougel R, Migliorini M, Lacomme S, Battaglia-Hsu SF, Agopiantz M. Expressions of HuR, Methyl-HuR and Phospho-HuR in Endometrial Endometrioid Adenocarcinoma Are Associated with Clinical Features. Int J Mol Sci 2024; 25:954. [PMID: 38256026 PMCID: PMC10815350 DOI: 10.3390/ijms25020954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
HuR regulates cytoplasmic mRNA stability and translatability, with its expression correlating with adverse outcomes in various cancers. This study aimed to assess the prognostic value and pro-oncogenic properties of HuR and its post-translational isoforms methyl-HuR and phospho-HuR in endometrial adenocarcinoma. Examining 89 endometrioid adenocarcinomas, we analyzed the relationship between HuR nuclear or cytoplasmic immunostaining, tumor-cell proliferation, and patient survival. HuR cytoplasmic expression was significantly increased in grade 3 vs. grade 1 adenocarcinomas (p < 0.001), correlating with worse overall survival (OS) (p = 0.02). Methyl-HuR cytoplasmic expression significantly decreased in grade 3 vs. grade 1 adenocarcinomas (p < 0.001) and correlated with better OS (p = 0.002). Phospho-HuR nuclear expression significantly decreased in grade 3 vs. grade 1 adenocarcinomas (p < 0.001) and non-significantly correlated with increased OS (p = 0.06). Cytoplasmic HuR expression strongly correlated with proliferation markers MCM6 (rho = 0.59 and p < 0.001) and Ki67 (rho = 0.49 and p < 0.001). Conversely, these latter inversely correlated with cytoplasmic methyl-HuR and nuclear phospho-HuR. Cytoplasmic HuR expression is a poor prognosis marker in endometrioid endometrial adenocarcinoma, while cytoplasmic methyl-HuR and nuclear phosphoHuR expressions are markers of better prognosis. This study highlights HuR as a promising potential therapeutic target, especially in treatment-resistant tumors, though further research is needed to understand the mechanisms regulating HuR subcellular localization and post-translational modifications.
Collapse
Affiliation(s)
- Judicaël Hotton
- Department of Gynecology and Obstetrics, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France;
- INSERM U1256 NGERE, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.G.); (R.M.); (M.M.); (S.-F.B.-H.)
| | - Guillaume Gauchotte
- INSERM U1256 NGERE, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.G.); (R.M.); (M.M.); (S.-F.B.-H.)
- Department of Biopathology CHRU of Nancy, Institut de Cancérologie de Lorraine, BBB, CHRU de Nancy, Université de Lorraine, 54511 Vandœuvre-lès-Nancy, France
- Centre de Ressources Biologiques, BB-0033-00035, CHRU de Nancy, 54000 Nancy, France;
| | - Romane Mougel
- INSERM U1256 NGERE, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.G.); (R.M.); (M.M.); (S.-F.B.-H.)
- Department of Reproductive Medicine, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France
| | - Mégane Migliorini
- INSERM U1256 NGERE, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.G.); (R.M.); (M.M.); (S.-F.B.-H.)
| | - Stéphanie Lacomme
- Centre de Ressources Biologiques, BB-0033-00035, CHRU de Nancy, 54000 Nancy, France;
| | - Shyue-Fang Battaglia-Hsu
- INSERM U1256 NGERE, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.G.); (R.M.); (M.M.); (S.-F.B.-H.)
| | - Mikaël Agopiantz
- INSERM U1256 NGERE, Université de Lorraine, 54500 Vandœuvre-lès-Nancy, France; (G.G.); (R.M.); (M.M.); (S.-F.B.-H.)
- Department of Reproductive Medicine, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
4
|
Jing L, Yang L, Jianbo C, Yuqiu W, Yehui Z. CircSETD2 inhibits YAP1 by interaction with HuR during breast cancer progression. Cancer Biol Ther 2023; 24:2246205. [PMID: 37606201 PMCID: PMC10446782 DOI: 10.1080/15384047.2023.2246205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/29/2022] [Accepted: 06/06/2023] [Indexed: 08/23/2023] Open
Abstract
CircRNAs have been proven to play a pivotal role in cancer progression. The present study aims to explore the roles and related mechanisms of circSETD2 in breast cancer proliferation, migration and invasion. The expression of circSETD2 in BC was assessed by the GEO database and qRT‒PCR. The biological function and underlying molecular mechanism of circSETD2 in BC were explored using in vitro and in vivo experiments, including CCK8, transwell, RIP, western blot, and xenograft mouse models. The expression of circSETD2 was downregulated in BC tumors, in accordance with the GEO database. Overexpression of circSETD2 significantly suppressed cell growth, cell migration and invasion. Mechanistically, circSETD2 reduced the stabilization of YAP1 by competitively binding with HuR, resulting in inactivation of downstream targets such as CTGF, myc and Slug. Our work suggests that the novel signaling axis circSETD2/HuR/YAP1 plays an important role in BC progression. The molecular mechanism underlying this signaling axis may provide a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Lan Jing
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Liu Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Cao Jianbo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Wan Yuqiu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Zhou Yehui
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
5
|
Chen H, Zhang LF, Miao Y, Xi Y, Li X, Liu MF, Zhang M, Li B. Verteporfin Suppresses YAP-Induced Glycolysis in Breast Cancer Cells. J INVEST SURG 2023; 36:2266732. [PMID: 37828756 DOI: 10.1080/08941939.2023.2266732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVE The inhibition of the Hippo pathway through targeting the Yes-associated protein (YAP) presents a novel and promising approach for treating tumors. However, the efficacy of YAP inhibitors in the context of breast cancer (BC) remains incompletely understood. Here, we aimed to investigate the involvement of YAP in BC's metabolic reprogramming and reveal the potential underlying mechanisms. To this end, we assessed the function of verteporfin (VP), a YAP-TEAD complex inhibitor, on the glycolytic activity of BC cells. METHODS We evaluated the expression of YAP by utilizing immunohistochemistry (IHC) in BC patients who have undergone 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) prior to biopsy/surgery. We employed RNA immunoprecipitation (RIP) and fluorescent in situ hybridization (FISH) assays to assess the interaction between YAP mRNA and human antigen R (HuR) in BC cells. The biological importance of YAP in the metabolism and malignancy of BC was evaluated in vitro. Finally, the effect of VP on glycolysis was determined by using 18F-FDG uptake, glucose consumption, and lactate production assays. RESULTS Our studies revealed that high expression of YAP was positively correlated with the maximum uptake value (SUVmax) determined by 18F-FDG PET/CT imaging in BC samples. Inhibition of YAP activity suppressed glycolysis in BC. The mechanism underlying this phenomenon could be the binding of YAP to HuR, which promotes glycolysis in BC cells. Treatment with VP effectively suppressed glycolysis induced by YAP overexpression in BC cells. CONCLUSION VP exhibited anti-glycolytic effect on BC cells, indicating its therapeutic value as an FDA-approved drug.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Fei Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xi
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
McCarthy GA, Di Niro R, Finan JM, Jain A, Guo Y, Wyatt C, Guimaraes A, Waugh T, Keith D, Morgan T, Sears R, Brody J. Deletion of the mRNA stability factor ELAVL1 (HuR) in pancreatic cancer cells disrupts the tumor microenvironment integrity. NAR Cancer 2023; 5:zcad016. [PMID: 37089813 PMCID: PMC10113877 DOI: 10.1093/narcan/zcad016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Stromal cells promote extensive fibrosis in pancreatic ductal adenocarcinoma (PDAC), which is associated with poor prognosis and therapeutic resistance. We report here for the first time that loss of the RNA-binding protein human antigen R (HuR, ELAVL1) in PDAC cells leads to reprogramming of the tumor microenvironment. In multiple in vivo models, CRISPR deletion of ELAVL1 in PDAC cells resulted in a decrease of collagen deposition, accompanied by a decrease of stromal markers (i.e. podoplanin, α-smooth muscle actin, desmin). RNA-sequencing data showed that HuR plays a role in cell-cell communication. Accordingly, cytokine arrays identified that HuR regulates the secretion of signaling molecules involved in stromal activation and extracellular matrix organization [i.e. platelet-derived growth factor AA (PDGFAA) and pentraxin 3]. Ribonucleoprotein immunoprecipitation analysis and transcription inhibition studies validated PDGFA mRNA as a novel HuR target. These data suggest that tumor-intrinsic HuR supports extrinsic activation of the stroma to produce collagen and desmoplasia through regulating signaling molecules (e.g. PDGFAA). HuR-deficient PDAC in vivo tumors with an altered tumor microenvironment are more sensitive to the standard of care gemcitabine, as compared to HuR-proficient tumors. Taken together, we identified a novel role of tumor-intrinsic HuR in its ability to modify the surrounding tumor microenvironment and regulate PDGFAA.
Collapse
Affiliation(s)
- Grace A McCarthy
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Roberto Di Niro
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yifei Guo
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexander R Guimaraes
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR 97239, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Trent A Waugh
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rosalie C Sears
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
7
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
8
|
Deb S, Chakrabarti A, Fox SB. Prognostic and Predictive Biomarkers in Familial Breast Cancer. Cancers (Basel) 2023; 15:cancers15041346. [PMID: 36831687 PMCID: PMC9953970 DOI: 10.3390/cancers15041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Large numbers of breast cancers arise within a familial context, either with known inherited germline mutations largely within DNA repair genes, or with a strong family history of breast and/or ovarian cancer, with unknown genetic underlying mechanisms. These cancers appear to be different to sporadic cases, with earlier age of onset, increased multifocality and with association with specific breast cancer histological and phenotypic subtypes. Furthermore, tumours showing homologous recombination deficiency, due to loss of BRCA1, BRCA2, PALB2 and CHEK2 function, have been shown to be especially sensitive to platinum-based chemotherapeutics and PARP inhibition. While there is extensive research and data accrued on risk stratification and genetic predisposition, there are few data pertaining to relevant prognostic and predictive biomarkers within this breast cancer subgroup. The following is a review of such biomarkers in male and female familial breast cancer, although the data for the former are particularly sparse.
Collapse
Affiliation(s)
- Siddhartha Deb
- Anatpath, Gardenvale, VIC 3185, Australia
- Monash Health Pathology, Clayton, VIC 3168, Australia
- Correspondence:
| | | | - Stephen B. Fox
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Mebourne, Melbourne, VIC 3101, Australia
| |
Collapse
|
9
|
RNA-binding proteins: Underestimated contributors in tumorigenesis. Semin Cancer Biol 2022; 86:431-444. [PMID: 35124196 DOI: 10.1016/j.semcancer.2022.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
mRNA export, translation, splicing, cleavage or capping determine mRNA stability, which represents one of the primary aspects regulating gene expression and function. RNA-binding proteins (RBPs) bind to their target mRNAs to regulate multiple cell functions by increasing or reducing their stability. In recent decades, studies of the role of RBPs in tumorigenesis have revealed an increasing number of proteins impacting the prognosis, diagnosis and cancer treatment. Several RBPs have been identified based on their interactions with oncogenes or tumor suppressor genes in human cancers, which are involved in apoptosis, the epithelial-mesenchymal transition (EMT), DNA repair, autophagy, cell proliferation, immune response, metabolism, and the regulation of noncoding RNAs. In this review, we propose a model showing how RBP mutations influence tumorigenesis, and we update the current knowledge regarding the molecular mechanism by which RBPs regulate cancer. Special attention is being devoted to RBPs that represent prognostic and diagnostic factors in cancer patients.
Collapse
|
10
|
Majumder M, Chakraborty P, Mohan S, Mehrotra S, Palanisamy V. HuR as a molecular target for cancer therapeutics and immune-related disorders. Adv Drug Deliv Rev 2022; 188:114442. [PMID: 35817212 DOI: 10.1016/j.addr.2022.114442] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
The control of eukaryotic gene expression occurs at multiple levels, from transcription to messenger RNA processing, transport, localization, turnover, and translation. RNA-binding proteins control gene expression and are involved in different stages of mRNA processing, including splicing, maturation, turnover, and translation. A ubiquitously expressed RBP Human antigen R is engaged in the RNA processes mentioned above but, most importantly, controls mRNA stability and turnover. Dysregulation of HuR is linked to many diseases, including cancer and other immune-related disorders. HuR targets mRNAs containing AU-rich elements at their 3'untranslated region, which encodes proteins involved in cell growth, proliferation, tumor formation, angiogenesis, immune evasion, inflammation, invasion, and metastasis. HuR overexpression has been reported in many tumor types, which led to a poor prognosis for patients. Hence, HuR is considered an appealing drug target for cancer treatment. Therefore, multiple attempts have been made to identify small molecule inhibitors for blocking HuR functions. This article reviews the current prospects of drugs that target HuR in numerous cancer types, their mode of action, and off-target effects. Furthermore, we will summarize drugs that interfered with HuR-RNA interactions and established themselves as novel therapeutics. We will also highlight the significance of HuR overexpression in multiple cancers and discuss its role in immune functions. This review provides evidence of a new era of HuR-targeted small molecules that can be used for cancer therapeutics either as a monotherapy or in combination with other cancer treatment modalities.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sarumathi Mohan
- Department of Biochemistry and Molecular Biology, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
11
|
Wu X, Xu L. The RNA-binding protein HuR in human cancer: A friend or foe? Adv Drug Deliv Rev 2022; 184:114179. [PMID: 35248670 PMCID: PMC9035123 DOI: 10.1016/j.addr.2022.114179] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/27/2022] [Indexed: 12/12/2022]
Abstract
The RNA-binding proteins (RBPs) are critical trans factors that associate with specific cis elements present in mRNAs whose stability and translation are subject to regulation. The RBP Hu antigen R (HuR) is overexpressed in a wide variety of human cancers and serves as a prognostic factor of poor clinical outcome. HuR promotes tumorigenesis by interacting with a subset of oncogenic mRNAs implicated in different cancer hallmarks, and resistance to therapy. Reduction of HuR levels in cancer cells leads to tumor regression in mouse xenograft models. These findings prompt a working model whereby cancer cells use HuR, a master switch of multiple oncogenic mRNAs, to drive drug resistance and promote cell survival and metastasis, thus rendering the tumor cells with high cytoplasmic HuR more progressive and resistant to therapy. This review summarizes the roles of HuR in cancer and other diseases, therapeutic potential of HuR inhibition, and the current status of drug discovery on HuR.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA; The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA.
| | - Liang Xu
- The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, USA; Department of Radiation Oncology, The University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Cai H, Zheng D, Yao Y, Yang L, Huang X, Wang L. Roles of Embryonic Lethal Abnormal Vision-Like RNA Binding Proteins in Cancer and Beyond. Front Cell Dev Biol 2022; 10:847761. [PMID: 35465324 PMCID: PMC9019298 DOI: 10.3389/fcell.2022.847761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022] Open
Abstract
Embryonic lethal abnormal vision-like (ELAVL) proteins are RNA binding proteins that were originally discovered as indispensable regulators of the development and functioning of the nervous system. Subsequent studies have shown that ELAVL proteins not only exist in the nervous system, but also have regulatory effects in other tissues. ELAVL proteins have attracted attention as potential therapeutic targets because they stabilize multiple mRNAs by binding within the 3′-untranslated region and thus promote the development of tumors, including hepatocellular carcinoma, pancreatic cancer, ovarian cancer, breast cancer, colorectal carcinoma and lung cancer. Previous studies have focused on these important relationships with downstream mRNAs, but emerging studies suggest that ELAVL proteins also interact with non-coding RNAs. In this review, we will summarize the relationship of the ELAVL protein family with mRNA and non-coding RNA and the roles of ELAVL protein family members in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
| | | | | | - Lehe Yang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Xiaoying Huang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Liangxing Wang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| |
Collapse
|
13
|
Yaseen MM, Abuharfeil NM, Darmani H. CMTM6 as a master regulator of PD-L1. Cancer Immunol Immunother 2022; 71:2325-2340. [PMID: 35294592 DOI: 10.1007/s00262-022-03171-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022]
Abstract
Immune checkpoint proteins, such as programmed cell death receptor 1 (PD-1) and its ligand (PD-L1), play critical roles in the pathology of chronic inflammatory pathological conditions, particularly cancer. In addition, the activation of PD-1/PD-L1 pathway is involved in mediating resistance to certain anti-cancer chemo- and immuno-therapeutics. Unfortunately, targeting the PD-1/PD-L1 pathway by the available anti-PD-1/PD-L1 drugs can benefit only a small proportion of cancer patients. Thus, studying the factors that regulate the expression of these immune checkpoint proteins is of central importance in this context. Recent investigations have identified CMTM6 and, to a lesser extent, CMTM4, as master regulators of PD-L1 expression in various cancer cells. Understanding the mechanisms by which such proteins upregulate the expression of PD-L1 in tumor cells, and determining the potential regulators of CMTM6 expression in different types of cancers will accelerate the development of new therapeutic targets and/or lead to the enhancement of the currently available PD-1/PD-L1 blockade therapies.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
14
|
Li X, Wang C, Chen G, Zou W, Deng Y, Zhou F. EIF4A3-induced circCCNB1 (hsa_circ_0001495) promotes glioma progression by elevating CCND1 through interacting miR-516b-5p and HuR. Metab Brain Dis 2022; 37:819-833. [PMID: 35038081 DOI: 10.1007/s11011-021-00899-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/26/2021] [Indexed: 01/29/2023]
Abstract
To explore the functions of circRNA cyclin B1 (circCCNB1) in glioma and its possible mechanisms. The expression of circCCNB1, eukaryotic translation initiation factor 4A3 (EIF4A3), cyclin D1 (CCND1) and miR-516b-5p was determined by qRT-PCR, western blot or immunohistochemistry (IHC) assay. The feature of circCCNB1 was analyzed by Actinomycin D (ActD), RNase R and subcellular fraction assays. The molecule relationships were analyzed by RIP, dual-luciferase reporter and RNA pull-down assays. CCK-8, EdU and colony formation assays were performed to analyze cell proliferation. Flow cytometry analysis was executed to estimate the cell cycle. Murine xenograft model assay was used for the role of circCCNB1 in vivo. CircCCNB1 was overexpressed in glioma tissues and cells. EIF4A3 positively regulated circCCNB1 expression. CircCCNB1 knockdown repressed glioma cell proliferation and cell cycle process in vitro and blocked tumor growth in vivo. CircCCNB1 knockdown reduced CCND1 expression in glioma cells and CCND1 overexpression bated the effect of circCCNB1 knockdown on glioma cell growth. CircCCNB1 interacted with HuR to elevate CCND1 expression. miR-516b-5p could interact with circCCNB1 and CCND1. CircCCNB1 regulated glioma cell progression and CCND1 expression by miR-516b-5p and HuR. CircCCNB1 aggravated glioma cell growth by elevating CCND1 through targeting miR-516b-5p and HuR.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, No. 39, Chaoyang Middle Road, Maojian District, Shiyan, 442000, China
| | - Chengmou Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, No. 39, Chaoyang Middle Road, Maojian District, Shiyan, 442000, China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, No. 39, Chaoyang Middle Road, Maojian District, Shiyan, 442000, China
| | - Wenqin Zou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, No. 39, Chaoyang Middle Road, Maojian District, Shiyan, 442000, China
| | - Yanqing Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, No. 39, Chaoyang Middle Road, Maojian District, Shiyan, 442000, China
| | - Faming Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, No. 39, Chaoyang Middle Road, Maojian District, Shiyan, 442000, China.
| |
Collapse
|
15
|
Umar SM, Patra S, Kashyap A, Dev J R A, Kumar L, Prasad CP. Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells. Nutr Cancer 2021; 74:1497-1510. [PMID: 34278888 DOI: 10.1080/01635581.2021.1952628] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study, we have explored the prognostic value of HuR gene as well as protein in breast cancers. Furthermore, we have also investigated the HuR therapeutic relevance in TNBCs, which is an aggressive breast cancer subtype. Using an online meta-analysis tool, we found that HuR protein overexpression positively correlates with reduced overall survival of TNBC patients (p = 0.028). Furthermore, we demonstrated that the TNBC breast cancer cell lines i.e., MDA-MB-231 and MDA-MB-468 are good model systems to study HuR protein, as they both exhibit a significant amount of cytoplasmic HuR (active form). Quercetin treatment significantly inhibited the cytoplasmic HuR in both TNBC cell lines. By using specific HuR siRNA, we established that quercetin-mediated inhibition of adhesion and migration of TNBC cells is dependent on HuR. Upon analyzing adhesion proteins i.e., β-catenin and CD44, we found that quercetin mediated effect on TNBC adhesion and migration was through the HuR-β-catenin axis and CD44, independently. Overall, the present results demonstrate that elevated HuR levels are associated with TNBC progression and relapse, and the ability of quercetin to inhibit cytoplasmic HuR protein provides a rationale for using it as an anticancer agent for the treatment of aggressive TNBCs.Supplemental data for this article is available online at at 10.1080/01635581.2021.1952628.
Collapse
Affiliation(s)
| | - Sushmita Patra
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | - Akanksha Kashyap
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | | - Lalit Kumar
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | |
Collapse
|
16
|
Dagamajalu S, Vijayakumar M, Shetty R, Rex DAB, Narayana Kotimoole C, Prasad TSK. Proteogenomic examination of esophageal squamous cell carcinoma (ESCC): new lines of inquiry. Expert Rev Proteomics 2020; 17:649-662. [PMID: 33151123 DOI: 10.1080/14789450.2020.1845146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Esophageal squamous cell carcinoma (ESCC), a histopathologic subtype of esophageal cancer is a major cause of cancer-related morbidity and mortality worldwide. This is primarily because patients are diagnosed at an advanced stage by the time symptoms appear. The genomics and mass spectrometry-based proteomics continue to provide important leads toward biomarker discovery for ESCC. However, such leads are yet to be translated into clinical utilities. Areas covered: We gathered information pertaining to proteomics and proteogenomics efforts in ESCC from the literature search until 2020. An overview of omics approaches to discover the candidate biomarkers for ESCC were highlighted. We present a summary of recent investigations of alterations in the level of gene and protein expression observed in biological samples including body fluids, tissue/biopsy and in vitro-based models. Expert opinion: A large number of protein-based biomarkers and therapeutic targets are being used in cancer therapy. Several candidates are being developed as diagnostics and prognostics for the management of cancers. High-resolution proteomic and proteogenomic approaches offer an efficient way to identify additional candidate biomarkers for diagnosis, monitoring of disease progression, prediction of response to chemo and radiotherapy. Some of these biomarkers can also be developed as therapeutic targets.
Collapse
Affiliation(s)
- Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University) , Mangalore, India
| | - D A B Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University) , Mangalore, India
| |
Collapse
|
17
|
Wu M, Tong CWS, Yan W, To KKW, Cho WCS. The RNA Binding Protein HuR: A Promising Drug Target for Anticancer Therapy. Curr Cancer Drug Targets 2020; 19:382-399. [PMID: 30381077 DOI: 10.2174/1568009618666181031145953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The stability of mRNA is one of the key factors governing the regulation of eukaryotic gene expression and function. Human antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. While HuR is normally localized within the nucleus, it has been shown that HuR binds mRNAs in the nucleus and then escorts the mRNAs to the cytoplasm where HuR protects them from degradation. It contains several RNA recognition motifs, which specifically bind to adenylate and uridylate-rich regions within the 3'-untranslated region of the target mRNA to mediate its effect. Many of the HuR target mRNAs encode proteins important for cell growth, tumorigenesis, angiogenesis, tumor inflammation, invasion and metastasis. HuR overexpression is known to correlate well with high-grade malignancy and poor prognosis in many tumor types. Thus, HuR has emerged as an attractive drug target for cancer therapy. Novel small molecule HuR inhibitors have been identified by high throughput screening and new formulations for targeted delivery of HuR siRNA to tumor cells have been developed with promising anticancer activity. This review summarizes the significant role of HuR in cancer development, progression, and poor treatment response. We will discuss the potential and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Mingxia Wu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Christy W S Tong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong
| |
Collapse
|
18
|
Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol 2020; 3:193. [PMID: 32332873 PMCID: PMC7181695 DOI: 10.1038/s42003-020-0933-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/07/2020] [Indexed: 01/02/2023] Open
Abstract
Patients diagnosed with metastatic breast cancer have a dismal 5-year survival rate of only 24%. The RNA-binding protein Hu antigen R (HuR) is upregulated in breast cancer, and elevated cytoplasmic HuR correlates with high-grade tumors and poor clinical outcome of breast cancer. HuR promotes tumorigenesis by regulating numerous proto-oncogenes, growth factors, and cytokines that support major tumor hallmarks including invasion and metastasis. Here, we report a HuR inhibitor KH-3, which potently suppresses breast cancer cell growth and invasion. Furthermore, KH-3 inhibits breast cancer experimental lung metastasis, improves mouse survival, and reduces orthotopic tumor growth. Mechanistically, we identify FOXQ1 as a direct target of HuR. KH-3 disrupts HuR–FOXQ1 mRNA interaction, leading to inhibition of breast cancer invasion. Our study suggests that inhibiting HuR is a promising therapeutic strategy for lethal metastatic breast cancer. Wu et al. identify an inhibitor to the RNA-binding protein HuR, KH-3, that disrupts the interaction between HuR and target RNAs and inhibits human cancer growth and metastasis in mouse xenograft assays. This study suggests the therapeutic potential of targeting HuR in breast cancer with HuR overexpression.
Collapse
|
19
|
Li Q, Tong D, Guo C, Wu F, Li F, Wang X, Jiang Q, Wei Y, Liu L, Ni L, Guo B, Huang C. MicroRNA-145 suppresses gastric cancer progression by targeting Hu-antigen R. Am J Physiol Cell Physiol 2020; 318:C605-C614. [PMID: 31940247 DOI: 10.1152/ajpcell.00118.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hu-antigen R (HuR) is involved in the carcinogenesis and progression of multiple types of cancer. However, its precise role in gastric cancer (GC) and the relevant molecular mechanism remain largely unclear. In the present study, we found that HuR expression level was higher in GC tissues and cell lines than in adjacent normal tissues and normal gastric epithelial cell lines, and this elevated expression was found to have a significant association with lymph node metastasis. Moreover, silencing HuR with RNA interference inhibited cell viability and induced cell apoptosis through the apoptosis-related regulators (Bcl-2 and Bax) in GC cells. In addition, bioinformatic analysis revealed that HuR expression was inversely correlated with miR-145 expression in GC tissue samples, and HuR was identified as a direct target of miR-145 with the dual-luciferase reporter. Enforced expression of miR-145 inhibited the HuR expression at both mRNA and protein levels and induced similar biologic effects of silencing HuR in GC cells. Additionally, we also found that restoration of HuR could eliminate the effects induced by miR-145 in GC cells. Taken together, these findings demonstrate the exact role of the miR-145-HuR axis in the progression of GC and indicate a potential target for GC therapy.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fei Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, People's Republic of China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yameng Wei
- Department of Genetics, Medical College of Yan'an University, Yan'an, China
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, People's Republic of China
| | - Lei Ni
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, People's Republic of China
| | - Bo Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, People's Republic of China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China.,Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
20
|
Soni S, Anand P, Padwad YS. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:121. [PMID: 30850014 PMCID: PMC6408796 DOI: 10.1186/s13046-019-1115-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
21
|
Kakuguchi W, Nomura T, Kitamura T, Otsuguro S, Matsushita K, Sakaitani M, Maenaka K, Tei K. Suramin, screened from an approved drug library, inhibits HuR functions and attenuates malignant phenotype of oral cancer cells. Cancer Med 2018; 7:6269-6280. [PMID: 30449075 PMCID: PMC6308099 DOI: 10.1002/cam4.1877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/20/2018] [Accepted: 10/24/2018] [Indexed: 01/16/2023] Open
Abstract
AU‐rich elements (ARE) exist in the 3′‐untranslated regions of the mRNA transcribed from cell growth‐related genes such as proto‐oncogenes, cyclin‐related genes, and growth factors. HuR binds and stabilizes ARE‐mRNA. HuR is expressed abundantly in cancer cells and related malignant phenotypes. HuR knockdown attenuates the malignant phenotype of oral cancer cells. In this study, we screened 1570 compounds in the approved drug library by differential scanning fluorimetry (DSF) to discover a HuR‐targeted compound. Firstly, 55 compounds were selected by DSF. Then, 8 compounds that showed a shift in the melting temperature value in a concentration‐dependent manner were selected by DSF. Of them, suramin, an anti‐trypanosomal drug, binds to HuR, exhibiting fast‐on and fast‐off kinetic behavior on surface plasmon resonance (SPR). We confirmed that suramin significantly decreased mRNA and protein expression of cyclin A2 and cyclin B1. The cyclin A2 and cyclin B1 mRNAs were destabilized by suramin. Furthermore, the motile and invasive activities of a tongue carcinoma cell line treated with suramin were markedly lower than those of control cells. The above findings suggest that suramin binds to HuR and inhibits its function. We also showed that the anticancer effects of suramin were caused by the inhibition of HuR function, indicating its potential as a novel therapeutic agent in the treatment of oral cancer. Our results suggest that suramin, via its different mechanism, may effectively suppress progressive oral cancer that cannot be controlled using other anticancer agents.
Collapse
Affiliation(s)
- Wataru Kakuguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takao Nomura
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Oral Pathology and Biology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Satoko Otsuguro
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Matsushita
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Sakaitani
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kanchu Tei
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Sun Q, Tripathi V, Yoon JH, Singh D, Hao Q, Min KW, Davila S, Zealy R, Li X, Polycarpou-Schwarz M, Lehrmann E, Zhang Y, Becker K, Freier S, Zhu Y, Diederichs S, Prasanth S, Lal A, Gorospe M, Prasanth K. MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs. Nucleic Acids Res 2018; 46:10405-10416. [PMID: 30102375 PMCID: PMC6212728 DOI: 10.1093/nar/gky696] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Richard W Zealy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria Polycarpou-Schwarz
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | | | - Yuelin Zhu
- Molecular Genetics Section, CCR, NCI, NIH, Bethesda, MD, USA
| | - Sven Diederichs
- Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106 Freiburg & German Cancer Consortium (DKTK), Freiburg, Germany
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Yao Y, Chu H, Wang J, Wang B. Decreased human antigen R expression confers resistance to tyrosine kinase inhibitors in epidermal growth factor receptor-mutant lung cancer by inhibiting Bim expression. Int J Mol Med 2018; 42:2930-2942. [PMID: 30226552 DOI: 10.3892/ijmm.2018.3835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
Primary resistance to epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) is an obstacle for the treatment of non‑small cell lung cancer (NSCLC); however, the associated mechanisms are not well understood. Studies have reported that Bim expression levels may be associated with the efficacy of EGFR‑TKI treatment in NSCLC patients harboring EGFR mutations. Human antigen R (HuR) regulates the mRNA and protein expression of target genes, including certain B‑cell lymphoma 2 family members. The present study investigated whether HuR mediates resistance to EGFR‑TKIs via the regulation of Bim. The results demonstrated that decreased levels of HuR and Bim protein expression are associated with primary resistance to EGFR‑TKIs and reduced median progression‑free survival in NSCLC patients. In vitro assays also revealed that knockdown of HuR resulted in primary EGFR‑TKI resistance and reduced gefitinib‑induced apoptosis in HCC827 cells by decreasing Bim expression. Furthermore, elevated HuR expression restored gefitinib sensitivity and enhanced gefitinib‑induced apoptosis in H1650 cells by increasing Bim expression. In vivo, it was further demonstrated that overexpression of HuR was able to restore the gefitinib sensitivity of H1650 cells. Therefore, altered HuR/Bim expression is proposed to be a novel mechanism of EGFR‑TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yunfeng Yao
- Institute of Post‑Graduate, The Second Military Medical University, People's Liberation Army, Shanghai 200433, P.R. China
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of The People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Baocheng Wang
- Institute of Post‑Graduate, The Second Military Medical University, People's Liberation Army, Shanghai 200433, P.R. China
| |
Collapse
|
24
|
Lei W, Wang ZL, Feng HJ, Lin XD, Li CZ, Fan D. Long non-coding RNA SNHG12promotes the proliferation and migration of glioma cells by binding to HuR. Int J Oncol 2018; 53:1374-1384. [PMID: 30015836 DOI: 10.3892/ijo.2018.4478] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/20/2018] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in biological processes and provide a novel approach with which to understand the molecular mechanisms responsible for glioma. Previous studies have demonstrated that lncRNA small nucleolar RNA host gene 12 (SNHG12) is involved in cell growth and migration. However, the accurate expression pattern of SNHG12 in glioma and the possible associations between this pattern and the clinicopathological characteristics of glioma cohorts are not yet known. The present study investigated the role of lncRNA SNHG12 in the development and progression of glioma, as well as the potential diagnostic value of SNHG12 in patients with glioma. The levels of SNHG12 were detected in resected specimens from patients and in glioma cell lines using reverse transcription-quantitative polymerase chain reaction. The potential effects of SNHG12 on the viability, mobility and apoptosis of glioma cells were evaluated using in vitro assays. The association between SNHG12 and Hu antigen R (HuR) was also determined using RNA immunoprecipitation (RIP) and RNA pull-down assays. The results revealed that SNHG12 was significantly upregulated in glioma tissues and cell lines. High levels of SNHG12 were associated with the deterioration of patients with glioma. Patients with high levels of SNHG12 exhibited a reduced 5-year overall survival rate (compared to those with lower levels), particularly in cohorts with high-grade carcinoma (III-IV). The silencing of SNHG12 expression by RNA interference led to a reduced viability and mobility, and in an increased apoptosis of human glioma cells. Furthermore, RIP and RNA pull-down assays demonstrated that SNHG12 was associated with and was stabilized by HuR. The findings of the present study thus identify a novel therapeutic target in glioma.
Collapse
Affiliation(s)
- Wei Lei
- Institute of Neurology, General Hospital of Shenyang Military Command, Shengyang, Liaoning 110000, P.R. China
| | - Zhi-Long Wang
- Graduate School of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - He-Jun Feng
- Graduate School of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xiang-Dan Lin
- Graduate School of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chuang-Zhong Li
- Institute of Neurology, General Hospital of Shenyang Military Command, Shengyang, Liaoning 110000, P.R. China
| | - Di Fan
- Institute of Neurology, General Hospital of Shenyang Military Command, Shengyang, Liaoning 110000, P.R. China
| |
Collapse
|
25
|
Xu W, Chen C, Xu R, Li Y, Hu R, Li Z, Zhu X. Knockdown of HuR represses osteosarcoma cells migration, invasion and stemness through inhibition of YAP activation and increases susceptibility to chemotherapeutic agents. Biomed Pharmacother 2018; 102:587-593. [PMID: 29597092 DOI: 10.1016/j.biopha.2018.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022] Open
Abstract
This study aims to explore the roles and related mechanisms of HuR in osteosarcoma (OS) cells migration, invasion, stemness and chemotherapeutical sensitivity. Here, we found that HuR exhibited higher level in OS tissues compared with the adjacent normal tissues. Knockdown of HuR with lentivirus infection suppressed OS cells migration and invasion, and thus the epithelial-mesenchymal transition (EMT) process. Additionally, HuR knockdown inhibited OS cells stemness. Mechanistically, YAP was identified as a direct target of HuR in OS cells, and HuR knockdown decreased its expression. Moreover, YAP transcriptional activity was attenuated by HuR knockdown, and RNA immunization co-precipitation (RIP) assay showed that HuR directly bound with YAP. Importantly, YAP overexpression rescued the inhibition of HuR knockdown on OS cells migration, invasion and stemness. Furthermore, HuR knockdown enhanced adriamycin sensitivity in OS cells, this effect was attenuated by YAP overexpression too. Importantly, HuR and YAP expression was positively correlated in OS tissues. Therefore, HuR acts as a tumor promoter by enhancing YAP expression in OS cells.
Collapse
Affiliation(s)
- Wei Xu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Chao Chen
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Ruijun Xu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Yifan Li
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Ruixi Hu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China
| | - Zhikun Li
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China.
| | - Xiaodong Zhu
- TongRen Hospital, School of Medicine, Shanghai JiaoTong University, 1111 Xianxia Road, Shanghai, 200331, People's Republic of China.
| |
Collapse
|
26
|
Oba A, Ban D, Kudo A, Kirimura S, Ito H, Matsumura S, Mitsunori Y, Aihara A, Ochiai T, Tanaka S, Tanabe M. Correlation Between the Acquisition of Resistance to Gemcitabine Therapy and the Expression of HuR in Pancreatic Ductal Adenocarcinoma: A Case Report. Int Surg 2018; 103:116-120. [DOI: 10.9738/intsurg-d-15-00278.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Recently, several studies have revealed the usefulness of biomarkers to predict the response to chemotherapy for pancreatic ductal adenocarcinoma (PDAC). Among them, human antigen R (HuR) is reported as a powerful marker for response to gemcitabine chemotherapy for PDAC. The present report describes a patient with PDAC who underwent gemcitabine therapy before resection and after recurrence, and HuR expression was examined at multiple stages. A 72-year-old man was diagnosed with locally advanced unresectable PDAC invading the common hepatic artery. After 9 cycles of gemcitabine treatment, a computed tomography (CT) scan demonstrated a partial response. He underwent distal pancreatectomy with portal vein resection. The pathologic assessment for response to the chemotherapy was grade Ib by Evans's criteria, and HuR expression was high. Serum carbohydrate antigen 19-9 (CA19-9) level rose rapidly at 4 months after the first resection. A CT scan and needle biopsy revealed a solitary recurrence in the abdominal wall, and HuR expression remained high. After 4 cycles of gemcitabine and S-1 combination therapy, a CT scan demonstrated a partial response, and serum CA19-9 decreased. However, after 2 additional cycles of the therapy, a CT scan demonstrated progressive disease, and serum CA19-9 increased slightly. By laparotomy, an abdominal wall recurrence and multiple peritoneal dissemination were found. HuR expression in the biopsy specimen obtained during the laparotomy was decreased. Although gemcitabine therapy was reinitiated, the disease progressed rapidly so the treatment was stopped. In this case, a correlation between the acquisition of resistance to gemcitabine therapy and change in HuR expression was demonstrated.
Collapse
Affiliation(s)
- Atsushi Oba
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Ito
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Huang YH, Peng W, Furuuchi N, DuHadaway JB, Jimbo M, Pirritano A, Dunton CJ, Daum GS, Leiby BE, Brody JR, Sawicki JA. Insights from HuR biology point to potential improvement for second-line ovarian cancer therapy. Oncotarget 2017; 7:21812-24. [PMID: 26943573 PMCID: PMC5008325 DOI: 10.18632/oncotarget.7840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/21/2016] [Indexed: 12/28/2022] Open
Abstract
This retrospective study aimed to investigate the role that an RNA-binding protein, HuR, plays in the response of high-grade serous ovarian tumors to chemotherapeutics. We immunohistochemically stained sections of 31 surgically-debulked chemo-naïve ovarian tumors for HuR and scored the degree of HuR cytoplasmic staining. We found no correlation between HuR intracellular localization in tumor sections and progression free survival (PFS) of these patients, 29 of whom underwent second-line gemcitabine/platin combination therapy for recurrent disease. Ribonucleoprotein immunoprecipitation (RNP-IP) analysis of ovarian cancer cells in culture showed that cytoplasmic HuR increases deoxycytidine kinase (dCK), a metabolic enzyme that activates gemcitabine. The effects of carboplatin treatment on HuR and WEE1 (a mitotic inhibitor) expression, and on cell cycle kinetics, were also examined. Treatment of ovarian cancer cells with carboplatin results in increased HuR cytoplasmic expression and elevated WEE1 expression, arresting cell cycle G2/M transition. This may explain why HuR cytoplasmic localization in chemo-naïve tumors is not predictive of therapeutic response and PFS following second-line gemcitabine/platin combination therapy. These results suggest treatment of recurrent ovarian tumors with a combination of gemcitabine, carboplatin, and a WEE1 inhibitor may be potentially advantageous as compared to current clinical practices.
Collapse
Affiliation(s)
- Yu-Hung Huang
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA.,Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA
| | - Narumi Furuuchi
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA
| | | | - Masaya Jimbo
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Pirritano
- Main Line Gynecologic Oncology, Lankenau Medical Center, Wynnewood, PA 19096, USA
| | - Charles J Dunton
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA.,Main Line Gynecologic Oncology, Lankenau Medical Center, Wynnewood, PA 19096, USA
| | - Gary S Daum
- Main Line Health Laboratories, Lankenau Medical Center, Wynnewood, PA 19096, USA
| | - Benjamin E Leiby
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jonathan R Brody
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janet A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, PA 19086, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
28
|
Elevated Hu-Antigen Receptor (HuR) Expression is Associated with Tumor Aggressiveness and Poor Prognosis but not with COX-2 Expression in Invasive Breast Carcinoma Patients. Pathol Oncol Res 2017; 24:631-640. [DOI: 10.1007/s12253-017-0288-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/09/2017] [Indexed: 01/04/2023]
|
29
|
Filippova N, Yang X, Ananthan S, Sorochinsky A, Hackney JR, Gentry Z, Bae S, King P, Nabors LB. Hu antigen R (HuR) multimerization contributes to glioma disease progression. J Biol Chem 2017; 292:16999-17010. [PMID: 28790173 DOI: 10.1074/jbc.m117.797878] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sejong Bae
- Medicine, School of Medicine, University of Alabama, Birmingham, Alabama 35294
| | - Peter King
- From the Departments of Neurology.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | | |
Collapse
|
30
|
Vaklavas C, Blume SW, Grizzle WE. Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Front Oncol 2017; 7:158. [PMID: 28798901 PMCID: PMC5526920 DOI: 10.3389/fonc.2017.00158] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/06/2017] [Indexed: 01/04/2023] Open
Abstract
Although transcript levels have been traditionally used as a surrogate measure of gene expression, it is increasingly recognized that the latter is extensively and dynamically modulated at the level of translation (messenger RNA to protein). Over the recent years, significant progress has been made in dissecting the complex posttranscriptional mechanisms that regulate gene expression. This advancement in knowledge came hand in hand with the progress made in the methodologies to study translation both at gene-specific as well as global genomic level. The majority of translational control is exerted at the level of initiation; nonetheless, protein synthesis can be modulated at the level of translation elongation, termination, and recycling. Sequence and structural elements and epitranscriptomic modifications of individual transcripts allow for dynamic gene-specific modulation of translation. Cancer cells usurp the regulatory mechanisms that govern translation to carry out translational programs that lead to the phenotypic hallmarks of cancer. Translation is a critical nexus in neoplastic transformation. Multiple oncogenes and signaling pathways that are activated, upregulated, or mutated in cancer converge on translation and their transformative impact "bottlenecks" at the level of translation. Moreover, this translational dysregulation allows cancer cells to adapt to a diverse array of stresses associated with a hostile microenviroment and antitumor therapies. All elements involved in the process of translation, from the transcriptional template, the components of the translational machinery, to the proteins that interact with the transcriptome, have been found to be qualitatively and/or quantitatively perturbed in cancer. This review discusses the regulatory mechanisms that govern translation in normal cells and how translation becomes dysregulated in cancer leading to the phenotypic hallmarks of malignancy. We also discuss how dysregulated mediators or components of translation can be utilized as biomarkers with potential diagnostic, prognostic, or predictive significance. Such biomarkers have the potential advantage of uniform applicability in the face of inherent tumor heterogeneity and deoxyribonucleic acid instability. As translation becomes increasingly recognized as a process gone awry in cancer and agents are developed to target it, the utility and significance of these potential biomarkers is expected to increase.
Collapse
Affiliation(s)
- Christos Vaklavas
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Scott W Blume
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Grizzle
- Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Tan S, Ding K, Chong QY, Zhao J, Liu Y, Shao Y, Zhang Y, Yu Q, Xiong Z, Zhang W, Zhang M, Li G, Li X, Kong X, Ahmad A, Wu Z, Wu Q, Zhao X, Lobie PE, Zhu T. Post-transcriptional regulation of ERBB2 by miR26a/b and HuR confers resistance to tamoxifen in estrogen receptor-positive breast cancer cells. J Biol Chem 2017. [PMID: 28637868 DOI: 10.1074/jbc.m117.780973] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen-resistant (TAMR) estrogen receptor-positive (ER+) breast cancer is characterized by elevated Erb-B2 receptor tyrosine kinase 2 (ERBB2) expression. However, the underlying mechanisms responsible for the increased ERBB2 expression in the TAMR cells remain poorly understood. Herein, we reported that the ERBB2 expression is regulated at the post-transcriptional level by miR26a/b and the RNA-binding protein human antigen R (HuR), both of which associate with the 3'-UTR of the ERBB2 transcripts. We demonstrated that miR26a/b inhibits the translation of ERBB2 mRNA, whereas HuR enhances the stability of the ERBB2 mRNA. In TAMR ER+ breast cancer cells with elevated ERBB2 expression, we observed a decrease in the level of miR26a/b and an increase in the level of HuR. The forced expression of miR26a/b or the depletion of HuR decreased ERBB2 expression in the TAMR cells, resulting in the reversal of tamoxifen resistance. In contrast, the inactivation of miR26a/b or forced expression of HuR decreased tamoxifen responsiveness of the parental ER+ breast cancer cells. We further showed that the increase in HuR expression in the TAMR ER+ breast cancer cells is attributable to an increase in the HuR mRNA isoform with shortened 3'-UTR, which exhibits increased translational activity. This shortening of the HuR mRNA 3'-UTR via alternative polyadenylation (APA) was observed to be dependent on cleavage stimulation factor subunit 2 (CSTF2/CstF-64), which is up-regulated in the TAMR breast cancer cells. Taken together, we have characterized a model in which the interplay between miR26a/b and HuR post-transcriptionally up-regulates ERBB2 expression in TAMR ER+ breast cancer cells.
Collapse
Affiliation(s)
- Sheng Tan
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Keshuo Ding
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,the Department of Pathology, Anhui Medical University, Meishan Road, Hefei 230032, China
| | - Qing-Yun Chong
- the Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599, Singapore
| | - Junsong Zhao
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuan Liu
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yunying Shao
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuanyuan Zhang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qing Yu
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Zirui Xiong
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weijie Zhang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Min Zhang
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Gaopeng Li
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoni Li
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Xiangjun Kong
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| | - Akhlaq Ahmad
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengsheng Wu
- the Department of Pathology, Anhui Medical University, Meishan Road, Hefei 230032, China
| | - Qiang Wu
- the Department of Pathology, Anhui Medical University, Meishan Road, Hefei 230032, China
| | - Xiaodong Zhao
- the School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai 200240, China, and
| | - Peter E Lobie
- the Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore 117599, Singapore, .,the National Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore.,the Tsinghua Berkeley Shenzhen Institute (TBSI), Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Tao Zhu
- From the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China, .,Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Kaur K, Wu X, Fields JK, Johnson DK, Lan L, Pratt M, Somoza AD, Wang CCC, Karanicolas J, Oakley BR, Xu L, De Guzman RN. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS One 2017; 12:e0175471. [PMID: 28414767 PMCID: PMC5393604 DOI: 10.1371/journal.pone.0175471] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
The RNA-binding protein Hu antigen R (HuR) binds to AU-rich elements (ARE) in the 3'-untranslated region (UTR) of target mRNAs. The HuR-ARE interactions stabilize many oncogenic mRNAs that play important roles in tumorigenesis. Thus, small molecules that interfere with the HuR-ARE interaction could potentially inhibit cancer cell growth and progression. Using a fluorescence polarization (FP) competition assay, we identified the compound azaphilone-9 (AZA-9) derived from the fungal natural product asperbenzaldehyde, binds to HuR and inhibits HuR-ARE interaction (IC50 ~1.2 μM). Results from surface plasmon resonance (SPR) verified the direct binding of AZA-9 to HuR. NMR methods mapped the RNA-binding interface of HuR and identified the involvement of critical RNA-binding residues in binding of AZA-9. Computational docking was then used to propose a likely binding site for AZA-9 in the RNA-binding cleft of HuR. Our results show that AZA-9 blocks key RNA-binding residues of HuR and disrupts HuR-RNA interactions in vitro. This knowledge is needed in developing more potent AZA-9 derivatives that could lead to new cancer therapy.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - James K Fields
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, United States of America
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Miranda Pratt
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Amber D Somoza
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Clay C C Wang
- Department of Chemistry, University of Southern California, Los Angeles, California, United States of America.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California United States of America
| | - John Karanicolas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America.,Center for Computational Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
33
|
Xu X, Song C, Chen Z, Yu C, Wang Y, Tang Y, Luo J. Downregulation of HuR Inhibits the Progression of Esophageal Cancer through Interleukin-18. Cancer Res Treat 2017; 50:71-87. [PMID: 28231690 PMCID: PMC5784622 DOI: 10.4143/crt.2017.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effect of human antigen R (HuR) downregulation and the potential target genes of HuR on the progression of esophageal squamous cell carcinoma (ESCC). Materials and Methods In this study, a proteomics assay was used to detect the expression of proteins after HuR downregulation, and a luciferase assay was used to detect the potential presence of a HuR binding site on the 3’-untranslated region (3'-UTR) of interleukin 18 (IL-18). In addition, colony formation assay, MTT, EdU incorporation assay, Western blot, flow cytometry, immunohistochemistry, transwell invasion assay, and wound healing assay were used. Results In the present study, we found that the expression of both HuR protein and mRNA levels were higher in tumor tissues than in the adjacent tissues. HuR downregulation significantly suppressed cell proliferation. In addition, the metastasis of esophageal cancer cells was inhibited, while the expression of E-cadherin was increased and the expression of matrix metalloproteinase (MMP) 2, MMP9, and vimentin was decreased after HuR knockdown. Moreover, silencing of HuR disturbed the cell cycle of ESCC cells mainly by inducing G1 arrest. Furthermore, proteomics analysis showed that downregulation of HuR in TE-1 cells resulted in 100 upregulated and 122 downregulated proteins, including IL-18 as a significantly upregulated protein. The expression of IL-18 was inversely regulated by HuR. IL-18 expression was decreased in ESCC tissues, and exogenous IL-18 significantly inhibited the proliferation and metastasis of ESCC cells. The 3'-UTR of IL-18 harbored a HuR binding site, as shown by an in vitro luciferase assay. Conclusion HuR plays an important role in the progression of esophageal carcinoma by targeting IL-18, which may be a potential therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Song
- Department of Plastic Surgery, The Central Hospital of Zaozhuang Mining Group, Shandong Province, China
| | - Zhihua Chen
- Department of General Surgery, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenxiao Yu
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yi Wang
- Department of General Surgery, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiting Tang
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| | - Judong Luo
- Department of Radiation Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| |
Collapse
|
34
|
Green Tea Polyphenol Induces Changes in Cancer-Related Factors in an Animal Model of Bladder Cancer. PLoS One 2017; 12:e0171091. [PMID: 28141864 PMCID: PMC5283747 DOI: 10.1371/journal.pone.0171091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/15/2017] [Indexed: 12/16/2022] Open
Abstract
Green tea polyphenol (GTP) suppresses carcinogenesis and aggressiveness in many types of malignancies including bladder cancer. However, the mechanistic basis of these effects is not well understood. This was investigated in the present study using a mouse model of chemically induced bladder cancer. C3H/He mice (8 weeks old; n = 46) were treated with 0.05% N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) solution for 14-24 weeks. Mice in the BBN + GTP group (n = 47) were also treated with 0.5% GTP solution over the same period. Tumor cell proliferation and microvessel density were evaluated along with immunohistochemical analysis of human antigen (Hu)R, vascular endothelial growth factor (VEGF)-A, cyclooxygenase (COX)-2, and hemeoxygenase (HO)-1 expression. Cytoplasmic HuR expression in cancer cells was higher at 14 and 24 weeks in the BBN than in the control group and was associated with increased invasion of tumor cells in muscle. However, these effects were not observed in the BBN + GTP group. A multivariate analysis of GTP intake and cytoplasmic HuR expression revealed that GTP was independently associated with COX-2 and HO-1 expression, while cytoplasmic HuR expression was associated with COX-2 and VEGF-A levels. Expression of COX-2 and HO-1 was associated with cell proliferation and that of VEGF-A and HO-1 was associated with angiogenesis. Nuclear HuR expression was not associated with any parameters such as carcinogenesis, muscle invasion, and GTP intake. These results indicate that GTP intake can suppress tumor progression and malignant behavior in an animal model of bladder cancer. We also speculate that GTP directly and indirectly suppresses tumor cell proliferation and angiogenesis via HuR-related pathways in bladder cancer.
Collapse
|
35
|
Kotta-Loizou I, Vasilopoulos SN, Coutts RHA, Theocharis S. Current Evidence and Future Perspectives on HuR and Breast Cancer Development, Prognosis, and Treatment. Neoplasia 2016; 18:674-688. [PMID: 27764700 PMCID: PMC5071540 DOI: 10.1016/j.neo.2016.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Hu-antigen R (HuR) is an RNA-binding posttranscriptional regulator that belongs to the Hu/ELAV family. HuR expression levels are modulated by a variety of proteins, microRNAs, chemical compounds, or the microenvironment, and in turn, HuR affects mRNA stability and translation of various genes implicated in breast cancer formation, progression, metastasis, and treatment. The aim of the present review is to critically summarize the role of HuR in breast cancer development and its potential as a prognosticator and a therapeutic target. In this aspect, all the existing English literature concerning HuR expression and function in breast cancer cell lines, in vivo animal models, and clinical studies is critically presented and summarized. HuR modulates many genes implicated in biological processes crucial for breast cancer formation, growth, and metastasis, whereas the link between HuR and these processes has been demonstrated directly in vitro and in vivo. Additionally, clinical studies reveal that HuR is associated with more aggressive forms of breast cancer and is a putative prognosticator for patients' survival. All the above indicate HuR as a promising drug target for cancer therapy; nevertheless, additional studies are required to fully understand its potential and determine against which types of breast cancer and at which stage of the disease a therapeutic agent targeting HuR would be more effective.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom; First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Spyridon N Vasilopoulos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Robert H A Coutts
- Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
36
|
Dysregulation of TTP and HuR plays an important role in cancers. Tumour Biol 2016; 37:14451-14461. [DOI: 10.1007/s13277-016-5397-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022] Open
|
37
|
Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene 2016; 36:1745-1752. [PMID: 27593929 DOI: 10.1038/onc.2016.327] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/03/2016] [Accepted: 07/28/2016] [Indexed: 12/27/2022]
Abstract
Musashi RNA-binding protein 2 (MSI2) has important roles in human cancer. However, the regulatory mechanisms by which MSI2 alters breast cancer pathophysiology have not been clearly identified. Here we demonstrate that MSI2 directly regulates estrogen receptor 1 (ESR1), which is a well-known therapeutic target and has been shown to reflect clinical outcomes in breast cancer. Based on gene expression data analysis, we found that MSI2 expression was highly enriched in estrogen receptor (ER)-positive breast cancer and that MSI2 expression was significantly correlated with ESR1 expression, including expression of ESR1 downstream target genes. In addition, MSI2 levels were associated with clinical outcomes. MSI2 influenced breast cancer cell growth by altering ESR1 function. MSI2 alters ESR1 by binding specific sites in ESR1 RNA and by increasing ESR1 protein stability. Taken together, our findings identified a novel regulatory mechanism of MSI2 as an upstream regulator of ESR1 and revealed the clinical relevance of the RNA-binding protein MSI2 in breast cancer.
Collapse
|
38
|
Jimbo M, Blanco FF, Huang YH, Telonis AG, Screnci BA, Cosma GL, Alexeev V, Gonye GE, Yeo CJ, Sawicki JA, Winter JM, Brody JR. Targeting the mRNA-binding protein HuR impairs malignant characteristics of pancreatic ductal adenocarcinoma cells. Oncotarget 2016; 6:27312-31. [PMID: 26314962 PMCID: PMC4694992 DOI: 10.18632/oncotarget.4743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional regulation is a powerful mediator of gene expression, and can rapidly alter the expression of numerous transcripts involved in tumorigenesis. We have previously shown that the mRNA-binding protein HuR (ELAVL1) is elevated in human pancreatic ductal adenocarcinoma (PDA) specimens compared to normal pancreatic tissues, and its cytoplasmic localization is associated with increased tumor stage. To gain a better insight into HuR’s role in PDA biology and to assess it as a candidate therapeutic target, we altered HuR expression in PDA cell lines and characterized the resulting phenotype in preclinical models. HuR silencing by short hairpin and small interfering RNAs significantly decreased cell proliferation and anchorage-independent growth, as well as impaired migration and invasion. In comparison, HuR overexpression increased migration and invasion, but had no significant effects on cell proliferation and anchorage-independent growth. Importantly, two distinct targeted approaches to HuR silencing showed marked impairment in tumor growth in mouse xenografts. NanoString nCounter® analyses demonstrated that HuR regulates core biological processes, highlighting that HuR inhibition likely thwarts PDA viability through post-transcriptional regulation of diverse signaling pathways (e.g. cell cycle, apoptosis, DNA repair). Taken together, our study suggests that targeted inhibition of HuR may be a novel, promising approach to the treatment of PDA.
Collapse
Affiliation(s)
- Masaya Jimbo
- Department of Surgery and The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fernando F Blanco
- Department of Surgery and The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Pharmacology & Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yu-Hung Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brad A Screnci
- Department of Surgery and The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gabriela L Cosma
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Charles J Yeo
- Department of Surgery and The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jordan M Winter
- Department of Surgery and The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan R Brody
- Department of Surgery and The Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Mukherjee J, Ohba S, See WL, Phillips JJ, Molinaro AM, Pieper RO. PKM2 uses control of HuR localization to regulate p27 and cell cycle progression in human glioblastoma cells. Int J Cancer 2016; 139:99-111. [PMID: 26874904 PMCID: PMC6615049 DOI: 10.1002/ijc.30041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 01/01/2023]
Abstract
The M2 isoform of pyruvate kinase (PK) is upregulated in most cancers including glioblastoma. Although PKM2 has been reported to use dual kinase activities to regulate cell growth, it also interacts with phosphotyrosine (pY)-containing peptides independently of its kinase activity. The potential for PKM2 to use the binding of pY-containing proteins to control tumor growth has not been fully examined. We here describe a novel mechanism by which PKM2 interacts in the nucleus with the RNA binding protein HuR to regulate HuR sub-cellular localization, p27 levels, cell cycle progression and glioma cell growth. Suppression of PKM2 in U87, T98G and LN319 glioma cells resulted in increased p27 levels, defects in entry into mitosis, increased centrosome number, and decreased cell growth. These effects could be reversed by shRNA targeting p27. The increased levels of p27 in PKM2 knock-down cells were caused by a loss of the nuclear interaction between PKM2 and HuR, and a subsequent cytoplasmic re-distribution of HuR, which in turn led to increased cap-independent p27 mRNA translation. Consistent with these results, the alterations in p27 mRNA translation, cell cycle progression and cell growth caused by PKM2 suppression could be reversed in vitro and in vivo by suppression of HuR or p27 levels, or by introduction of forms of PKM2 that could bind pY, regardless of their kinase activity. These results define a novel mechanism by which PKM2 regulates glioma cell growth, and also define a novel set of potential therapeutic targets along the PKM2-HuR-p27 pathway.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Shigeo Ohba
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Wendy L See
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Joanna J Phillips
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Annette M Molinaro
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| | - Russell O Pieper
- The Department of Neurological Surgery and the Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, 94158
| |
Collapse
|
40
|
Exploiting a novel miR-519c-HuR-ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp Cell Res 2015; 338:222-31. [PMID: 26386386 DOI: 10.1016/j.yexcr.2015.09.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. While surgery remains the mainstay of treatment for early stage CRC, adjuvant chemotherapy is usually given to reduce the risk of recurrence after colectomy. Overexpression of a multidrug resistance (MDR) transporter ABCG2 in vitro has been shown to cause resistance to 5-fluorouracil (5-FU) and irinotecan, components of the most commonly adopted regimens for treating CRC. Both anticancer drugs are known ABCG2 substrates. An effective way to predict drug response may provide guidance for better cancer treatment. We investigated the effect of ABCG2 dysregulation on cancer cell sensitivity to chemotherapy using pairs of snap-frozen paraffin-embedded archival blocks of human colorectal cancer tissues and their matched non-cancerous colon tissues from CRC patients. In CRC patients responding to chemotherapy, the tumors were found to have remarkable lower ABCG2 expression than the adjacent normal colon tissues. On the contrary, the tumors from patients not responding to 5-FU-based chemotherapy have higher ABCG2 level than the adjacent normal tissues. The high ABCG2 expression in the tumor is associated with the concomitant overexpression of the mRNA binding protein HuR but a low expression of miR-519c because miR-519c is known to target both ABCG2 and HuR. Further investigation in CRC cell lines revealed that the ABCG2 overexpression was caused by an interplay between miR-519c, HuR and the length of the 3' untranslated region (UTR) of ABCG2. These parameters may be further developed as useful biomarkers to predict patient response to adjuvant chemotherapy. Besides being predictive biomarkers, the microRNAs and mRNA binding protein identified may also be potential drug targets for modulating ABCG2 to combat resistance in CRC chemotherapy.
Collapse
|
41
|
Podszywalow-Bartnicka P, Wolczyk M, Kusio-Kobialka M, Wolanin K, Skowronek K, Nieborowska-Skorska M, Dasgupta Y, Skorski T, Piwocka K. Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation. Cell Cycle 2015; 13:3727-41. [PMID: 25483082 DOI: 10.4161/15384101.2014.965013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3'UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins - HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3'UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 -positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in "BRCAness" CML and BCR-ABL1 -positive ALL cells.
Collapse
Key Words
- ARE, AU-rich element
- ATM, Ataxia telangiectasia mutated kinase
- ATR, Ataxia telangiectasia and Rad3-related kinase
- BCR-ABL
- BRCA1
- BRCA1, Breast cancer type 1 susceptibility
- CML, chronic myeloid leukemia
- DNA damage response
- HuR
- HuR, Hu antigen R (alternative name: ELAV-like protein 1)
- TIAR
- TIAR, TIA1 cytotoxic granule-associated RNA-binding protein-like 1
- UPR, unfolded protein response
- UTR, untranslated region
- cell cycle
- eIF, eukaryotic initiation factor
- mRNA binding protein
- stress response
- synthetic lethality
- translation
Collapse
|
42
|
Wu X, Lan L, Wilson DM, Marquez RT, Tsao WC, Gao P, Roy A, Turner BA, McDonald P, Tunge JA, Rogers SA, Dixon DA, Aubé J, Xu L. Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem Biol 2015; 10:1476-84. [PMID: 25750985 DOI: 10.1021/cb500851u] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HuR, an RNA binding protein, binds to adenine- and uridine-rich elements (ARE) in the 3'-untranslated region (UTR) of target mRNAs, regulating their stability and translation. HuR is highly abundant in many types of cancer, and it promotes tumorigenesis by interacting with cancer-associated mRNAs, which encode proteins that are implicated in different tumor processes including cell proliferation, cell survival, angiogenesis, invasion, and metastasis. Drugs that disrupt the stabilizing effect of HuR upon mRNA targets could have dramatic effects on inhibiting cancer growth and persistence. In order to identify small molecules that directly disrupt the HuR-ARE interaction, we established a fluorescence polarization (FP) assay optimized for high throughput screening (HTS) using HuR protein and an ARE oligo from Musashi RNA-binding protein 1 (Msi1) mRNA, a HuR target. Following the performance of an HTS of ∼6000 compounds, we discovered a cluster of potential disruptors, which were then validated by AlphaLISA (Amplified Luminescent Proximity Homogeneous Assay), surface plasmon resonance (SPR), ribonucleoprotein immunoprecipitation (RNP IP) assay, and luciferase reporter functional studies. These compounds disrupted HuR-ARE interactions at the nanomolar level and blocked HuR function by competitive binding to HuR. These results support future studies toward chemical probes for a HuR function study and possibly a novel therapy for HuR-overexpressing cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Dan A. Dixon
- Department
of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | | |
Collapse
|
43
|
Nagpal N, Ahmad HM, Chameettachal S, Sundar D, Ghosh S, Kulshreshtha R. HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Sci Rep 2015; 5:9650. [PMID: 25867965 PMCID: PMC4394754 DOI: 10.1038/srep09650] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms of hypoxia induced breast cell migration remain incompletely understood. Our results show that hypoxia through hypoxia-inducible factor (HIF) brings about a time-dependent increase in the level of an oncogenic microRNA, miR-191 in various breast cancer cell lines. miR-191 enhances breast cancer aggressiveness by promoting cell proliferation, migration and survival under hypoxia. We further established that miR-191 is a critical regulator of transforming growth factor beta (TGFβ)-signaling and promotes cell migration by inducing TGFβ2 expression under hypoxia through direct binding and indirectly by regulating levels of a RNA binding protein, human antigen R (HuR). The levels of several TGFβ pathway genes (like VEGFA, SMAD3, CTGF and BMP4) were found to be higher in miR-191 overexpressing cells. Lastly, anti-miR-191 treatment given to breast tumor spheroids led to drastic reduction in spheroid tumor volume. This stands as a first report of identification of a microRNA mediator that links hypoxia and the TGFβ signaling pathways, both of which are involved in regulation of breast cancer metastasis. Together, our results show a critical role of miR-191 in hypoxia-induced cancer progression and suggest that miR-191 inhibition may offer a novel therapy for hypoxic breast tumors.
Collapse
Affiliation(s)
- Neha Nagpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India-110016
| | - Hafiz M. Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India- 110067
| | - Shibu Chameettachal
- Department of Textile Technology, Indian Institute of Technology Delhi, India-110016
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India-110016
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology Delhi, India-110016
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India-110016
- ;
| |
Collapse
|
44
|
Guo X, Connick MC, Vanderhoof J, Ishak MA, Hartley RS. MicroRNA-16 modulates HuR regulation of cyclin E1 in breast cancer cells. Int J Mol Sci 2015; 16:7112-32. [PMID: 25830480 PMCID: PMC4425007 DOI: 10.3390/ijms16047112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023] Open
Abstract
RNA binding protein (RBPs) and microRNAs (miRNAs or miRs) are post-transcriptional regulators of gene expression that are implicated in development of cancers. Although their individual roles have been studied, the crosstalk between RBPs and miRNAs is under intense investigation. Here, we show that in breast cancer cells, cyclin E1 upregulation by the RBP HuR is through specific binding to regions in the cyclin E1 mRNA 3' untranslated region (3'UTR) containing U-rich elements. Similarly, miR-16 represses cyclin E1, dependent on its cognate binding sites in the cyclin E1 3'UTR. Evidence in the literature indicates that HuR can regulate miRNA expression and recruit or dissociate RNA-induced silencing complexes (RISC). Despite this, miR-16 and HuR do not affect the other’s expression level or binding to the cyclin E1 3'UTR. While HuR overexpression partially blocks miR-16 repression of a reporter mRNA containing the cyclin E1 3'UTR, it does not block miR-16 repression of endogenous cyclin E1 mRNA. In contrast, miR-16 blocks HuR-mediated upregulation of cyclin E1. Overall our results suggest that miR-16 can override HuR upregulation of cyclin E1 without affecting HuR expression or association with the cyclin E1 mRNA.
Collapse
Affiliation(s)
- Xun Guo
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Melanie C Connick
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Jennifer Vanderhoof
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Mohammad-Ali Ishak
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Rebecca S Hartley
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
45
|
Gupta R, Liu AY, Glazer PM, Wajapeyee N. LKB1 preserves genome integrity by stimulating BRCA1 expression. Nucleic Acids Res 2014; 43:259-71. [PMID: 25488815 PMCID: PMC4288185 DOI: 10.1093/nar/gku1294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Serine/threonine kinase 11 (STK11, also known as LKB1) functions as a tumor suppressor in many human cancers. However, paradoxically loss of LKB1 in mouse embryonic fibroblast results in resistance to oncogene-induced transformation. Therefore, it is unclear why loss of LKB1 leads to increased predisposition to develop a wide variety of cancers. Here, we show that LKB1 protects cells from genotoxic stress. Cells lacking LKB1 display increased sensitivity to irradiation, accumulates more DNA double-strand breaks, display defective homology-directed DNA repair (HDR) and exhibit increased mutation rate, compared with that of LKB1-expressing cells. Conversely, the ectopic expression of LKB1 in cells lacking LKB1 protects them against genotoxic stress-induced DNA damage and prevents the accumulation of mutations. We find that LKB1 post-transcriptionally stimulates HDR gene BRCA1 expression by inhibiting the cytoplasmic localization of the RNA-binding protein, HU antigen R, in an AMP kinase-dependent manner and stabilizes BRCA1 mRNA. Cells lacking BRCA1 similar to the cell lacking LKB1 display increased genomic instability and ectopic expression of BRCA1 rescues LKB1 loss-induced sensitivity to genotoxic stress. Collectively, our results demonstrate that LKB1 is a crucial regulator of genome integrity and reveal a novel mechanism for LKB1-mediated tumor suppression with direct therapeutic implications for cancer prevention.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alex Y Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
46
|
Chua CEL, Tang BL. The role of the small GTPase Rab31 in cancer. J Cell Mol Med 2014; 19:1-10. [PMID: 25472813 PMCID: PMC4288343 DOI: 10.1111/jcmm.12403] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/18/2014] [Indexed: 12/28/2022] Open
Abstract
Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
47
|
Kotta-Loizou I, Giaginis C, Theocharis S. Clinical significance of HuR expression in human malignancy. Med Oncol 2014; 31:161. [PMID: 25112469 DOI: 10.1007/s12032-014-0161-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 12/28/2022]
Abstract
Hu-antigen R (HuR) is an RNA-binding protein that regulates the stability, translation, and nucleus-to-cytoplasm translocation of target mRNAs. The aim of the present review was to summarize and present the currently available information in the English literature on HuR expression in various human tumors, verifying its possible clinical significance. HuR function is directly linked to its subcellular localization. In normal cells, HuR is mostly localized in the nucleus, while in malignant cells, an increase in cytoplasmic HuR levels has been noted, in both cell lines and tissue samples. Moreover, in malignancy, elevated HuR expression levels and cytoplasmic immunohistochemical pattern have been correlated with advanced clinicopathological parameters and altered expression levels of proteins implicated in neoplasia. Additionally, elevated HuR expression levels and mainly cytoplasmic immunohistochemical pattern were correlated with decreased patients' survival rate in various human tumors. HuR is a putative drug target for cancer therapy, since it is expressed ubiquitously in malignant clinical samples and has an apparently consistent role in tumor formation and progression.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | | | |
Collapse
|
48
|
Cha JD, Kim HK, Cha IH. Cytoplasmic HuR expression: correlation with cellular inhibitors of apoptosis protein-2 expression and clinicopathologic factors in oral squamous cell carcinoma cells. Head Neck 2014; 36:1168-75. [PMID: 23852810 DOI: 10.1002/hed.23431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 02/05/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND HuR expression has been noted in several cancer types, in which it may contribute to increased expression of cellular inhibitors of apoptosis protein-2 (cIAP2) observed during tumorigenesis. METHODS To assess the correlation between cIAP2 and HuR in cases of oral squamous cell carcinoma (OSCC), the expression patterns of HuR and cIAP2 were assessed by immunohistochemical analyses of 95 treated OSCC samples. RESULTS In the tumor tissues, positive cytoplasmic HuR expression was evident in 71.6% of samples and positive cIAP2 expression was noted in 95.8% of samples. Positive cytoplasmic HuR expression was significantly associated with positive cIAP2 (p < .035) and high cIAP2 expression (p < .007), as well as high grade (p < .050). The inhibition of HuR expression by small interfering RNA or leptomycin B caused a reduction in the inducibility of cIAP2 in oral cancer cells. CONCLUSION Cytoplasmic expression of HuR is associated with cIAP2 expression in OSCCs.
Collapse
Affiliation(s)
- Jeong-Dan Cha
- Department of Research Development, Institute of Jinan Red Ginseng, Jinan-gun, South Korea
| | | | | |
Collapse
|
49
|
Maréchal R, Van Laethem JL. HuR modulates gemcitabine efficacy: new perspectives in pancreatic cancer treatment. Expert Rev Anticancer Ther 2014; 9:1439-41. [DOI: 10.1586/era.09.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Zhang C, Xue G, Bi J, Geng M, Chu H, Guan Y, Wang J, Wang B. Cytoplasmic expression of the ELAV-like protein HuR as a potential prognostic marker in esophageal squamous cell carcinoma. Tumour Biol 2013; 35:73-80. [PMID: 23873103 DOI: 10.1007/s13277-013-1008-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequent cancers and a leading cause of death from cancer in China. The human ELAV-like protein HuR has been found to contribute to cancer development and progression through stabilizing a group of cellular mRNAs of cancer-related genes. In this study, we investigated the expression of HuR in a cohort of ESCC patients using immunohistochemical staining. HuR detected in the cytoplasm of cancer cells was positive in 46.6% of 58 ESCC specimens; 75.9% of these specimens had nuclear immunoreactivity for HuR. Cytoplasmic HuR expression was higher in cancer tissues compared to 20 matched adjacent noncancerous tissues. A clinicopathological study showed that cytoplasmic HuR expression was positively associated with lymph node metastasis, depth of tumor invasion, and advanced stage, whereas nuclear HuR expression was not correlated with any clinicopathological factors. Patients positive for cytoplasmic HuR expression had a cumulative 5-year survival rate of 25.3%, whereas it was 43.8% for patients negative for cytoplasmic HuR expression. In a multivariate analysis, cytoplasmic HuR expression was an independent prognostic factor, whereas nuclear positivity for HuR was not. Our results indicate that high cytoplasmic HuR expression is associated with positive lymph node metastasis, deep tumor invasion, high stage, and poor survival in ESCC. Thus, HuR is the first mRNA stability protein whose expression is associated with poor survival in esophageal cancer.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Oncology, General Hospital, Jinan Command of the People's Liberation Army, Shifan Street 25, Tianqiao District, Jinan, 250031, China
| | | | | | | | | | | | | | | |
Collapse
|