1
|
Baker Frost D, Savchenko A, Takamura N, Wolf B, Fierkens R, King K, Feghali-Bostwick C. A Positive Feedback Loop Exists between Estradiol and IL-6 and Contributes to Dermal Fibrosis. Int J Mol Sci 2024; 25:7227. [PMID: 39000334 PMCID: PMC11241801 DOI: 10.3390/ijms25137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by dermal fibrosis with a female predominance, suggesting a hormonal influence. Patients with SSc have elevated interleukin (IL)-6 levels, and post-menopausal women and older men also have high estradiol (E2) levels. In the skin, IL-6 increases the enzymatic activity of aromatase, thereby amplifying the conversion of testosterone to E2. Therefore, we hypothesized that an interplay between E2 and IL-6 contributes to dermal fibrosis. We used primary dermal fibroblasts from healthy donors and patients with diffuse cutaneous (dc)SSc, and healthy donor skin tissues stimulated with recombinant IL-6 and its soluble receptor (sIL-6R) or E2. Primary human dermal fibroblasts and tissues from healthy donors stimulated with IL-6+sIL-6R produced E2, while E2-stimulated dermal tissues and fibroblasts produced IL-6. Primary dermal fibroblasts from healthy donors treated with IL-6+sIL-6R and the aromatase inhibitor anastrozole (ANA) and dcSSc fibroblasts treated with ANA produced less fibronectin (FN), type III collagen A1 (Col IIIA1), and type V collagen A1 (Col VA1). Finally, dcSSc dermal fibroblasts treated with the estrogen receptor inhibitor fulvestrant also generated less FN, Col IIIA1, and Col VA1. Our data show that IL-6 exerts its pro-fibrotic influence in human skin in part through E2 and establish a positive feedback loop between E2 and IL-6.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| | - Alisa Savchenko
- College of Osteopathic Medicine, Rocky Vista University, 4130 Rocky Vista Way, Billings, MT 59106, USA;
| | - Naoko Takamura
- Department of Environmental Immuno-Dermatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan;
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Room 305F, Charleston, SC 29425, USA;
| | - Roselyn Fierkens
- Barabara Davis Center, Department of Pediatrics, University of Colorado, School of Medicine, M20-3201N, 1775 Aurora Court, Aurora, CO 80045, USA;
| | - Kimberly King
- School of Medicine, Morehouse College, 720 Westview Drive, Atlanta, GA 30310, USA;
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, MSC 637, Charleston, SC 29425, USA;
| |
Collapse
|
2
|
Teng Y, Wang C, Zhao Y, Teng Y, Yan C, Lu Y, Duan S, Wang J, Li X. Research of correlation between personality traits and hormones with the nature of pulmonary nodules. Heliyon 2024; 10:e22888. [PMID: 38163215 PMCID: PMC10754704 DOI: 10.1016/j.heliyon.2023.e22888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Background Rising rates of lung cancer screening have contributed to an increase in pulmonary nodule diagnosis rates. Studies have shown that psychosocial factors and hormones have an impact on the development of the oncological diseases. Therefore, we conducted this study to explore the potential relationship between pulmonary nodules pathology and patient personality traits and hormone levels. Methods This study enrolled 245 individuals who had first been diagnosed with pulmonary nodules in Tangdu Hospital and admitted for surgery. The personality profile of these patients was analyzed on admission using the C-Type Behavioral Scale and hormone levels were measured in preoperative serum samples. Associations between nodule pathology, personality scores, and hormone levels, were then assessed through Statistical methods analysis. Results Behavioral scale analyses revealed significant differences four items, including depression, anger outward, optimism, and social support (P< 0.05). Specifically, patients with higher depression scores were more likely to harbor malignant pulmonary nodules, as were patients with lower levels of anger outward, social support, and optimism. Univariate analyses indicated that nodule pathology was associated with significant differences in nodule imaging density, CT value, testosterone levels, and T4 levels(P< 0.05), and logistic regression analyses revealed pulmonary nodule imaging density and T4 levels to be significant differences of nodule pathology. Conclusion The results showed a significant association between nodules pathology and the personality characteristics of the patients (depression, anger outward, optimism, social support), the patients' T4 levels and the imaging density of the nodules.
Collapse
Affiliation(s)
- Yonggang Teng
- Department of Thoracic Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yabo Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yongyu Teng
- Department of Anesthesiology, 940th Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, Lanzhou, Gansu Province, China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Xianyang, Shaanxi Province, China
| | - Yongkai Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shijun Duan
- Department of Radiology, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Jian Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Xiaofei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, Shaanxi Province, China
- Department of Thoracic Surgery, Xi'an International Medical Centre Hospital, Northwestern University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Rodriguez-Lara V, Soca-Chafre G, Avila-Costa MR, Whaley JJJV, Rodriguez-Cid JR, Ordoñez-Librado JL, Rodriguez-Maldonado E, Heredia-Jara NA. Role of sex and sex hormones in PD-L1 expression in NSCLC: clinical and therapeutic implications. Front Oncol 2023; 13:1210297. [PMID: 37941543 PMCID: PMC10628781 DOI: 10.3389/fonc.2023.1210297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Currently, immunotherapy based on PD-1/PD-L1 pathway blockade has improved survival of non-small cell lung cancer (NSCLC) patients. However, differential responses have been observed by sex, where men appear to respond better than women. Additionally, adverse effects of immunotherapy are mainly observed in women. Studies in some types of hormone-dependent cancer have revealed a role of sex hormones in anti-tumor response, tumor microenvironment and immune evasion. Estrogens mainly promote immune tolerance regulating T-cell function and modifying tumor microenvironment, while androgens attenuate anti-tumor immune responses. The precise mechanism by which sex and sex hormones may modulate immune response to tumor, modify PD-L1 expression in cancer cells and promote immune escape in NSCLC is still unclear, but current data show how sexual differences affect immune therapy response and prognosis. This review provides update information regarding anti-PD-1/PD-L immunotherapeutic efficacy in NSCLC by sex, analyzing potential roles for sex hormones on PD-L1 expression, and discussing a plausible of sex and sex hormones as predictive response factors to immunotherapy.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Giovanny Soca-Chafre
- Oncological Diseases Research Unit (UIEO), Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Laboratory, Facultad de Estudios Superiores Iztacala, UNAM, Mexico City, Mexico
| | | | | | | | - Emma Rodriguez-Maldonado
- Traslational Medicine Laboratory, Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | |
Collapse
|
4
|
Inoue C, Miki Y, Suzuki T. New Perspectives on Sex Steroid Hormones Signaling in Cancer-Associated Fibroblasts of Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:3620. [PMID: 37509283 PMCID: PMC10377312 DOI: 10.3390/cancers15143620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The importance of sex hormones, especially estrogen, in the pathogenesis of non-small-cell lung cancer (NSCLC) has attracted attention due to its high incidence among young adults and nonsmokers, especially those who are female. Cancer-associated fibroblasts (CAFs) reside in the cancer stroma and influence cancer growth, invasion, metastasis, and acquisition of drug resistance through interactions with cancer cells and other microenvironmental components. Hormone-mediated cell-cell interactions are classic cell-cell interactions and well-known phenomena in breast cancer and prostate cancer CAFs. In cancers of other organs, including NSCLC, the effects of CAFs on hormone-receptor expression and hormone production in cancer tissues have been reported; however, there are few such studies. Many more studies have been performed on breast and prostate cancers. Recent advances in technology, particularly single-cell analysis techniques, have led to significant advances in the classification and function of CAFs. However, the importance of sex hormones in cell-cell interactions of CAFs in NSCLC remains unclear. This review summarizes reports on CAFs in NSCLC and sex hormones in cancer and immune cells surrounding CAFs. Furthermore, we discuss the prospects of sex-hormone research involving CAFs in NSCLC.
Collapse
Affiliation(s)
- Chihiro Inoue
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takashi Suzuki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Cobos-Ontiveros LA, Romero-Hernández LL, Mastranzo-Sánchez EB, Colín-Lozano B, Puerta A, Padrón JM, Merino-Montiel P, Vega Baez JL, Montiel-Smith S. Synthesis, antiproliferative evaluation and in silico studies of a novel steroidal spiro morpholinone. Steroids 2023; 192:109173. [PMID: 36621620 DOI: 10.1016/j.steroids.2023.109173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
Estrogens play a pivotal role in the development of estrogen-dependent breast cancer and other hormone-dependent disorders. A common strategy to overcome the pathological effects of estrogens is the use of aromatase inhibitors (AIs), which bind to the enzyme and prevent the union with the natural substrate, decreasing the amount of estrogens produced. Several AIs have been developed, including inhibitors with a steroidal backbone and a nitrogen heterocycle in their structure. Encouraged by the notable results presented by current and clinical steroidal drugs, herein we present the synthesis of a steroidal spiro morpholinone derivative as a plausible aromatase inhibitor. The morpholinone derivative was synthesized over a six-step methodology starting from estrone. The title compound and its hydroxychloroacetamide derivative precursor were evaluated for their antiproliferative profile against estrogen-dependent and independent solid tumor cell lines: A549, HBL-100, HeLa, SW1573, T-47D and WiDr. Both compounds exhibited a potent antiproliferative activity in the micromolar range against the six cancer cell lines, with the hydroxychloroacetamide derivative precursor being a more potent inhibitor (GI50 = 0.25-2.4 µM) than the morpholinone derivative (GI50 = 2.0-11 µM). Furthermore, both compounds showed, in almost all cases, better GI50 values than the steroidal anticancer drugs abiraterone and galeterone. Docking simulations of the derivatives were performed in order to explain the experimental biological activity. The results showed interactions with the iron heme (derivative 3) and important residues of the steroidal binding-site (Met374) for the inhibition of human aromatase. A correlation was found between in vitro assays and the score obtained from the molecular docking study.
Collapse
Affiliation(s)
- Luis A Cobos-Ontiveros
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Laura L Romero-Hernández
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico.
| | - Eduardo B Mastranzo-Sánchez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Blanca Colín-Lozano
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico.
| | - Jose Luis Vega Baez
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Puebla, Mexico
| |
Collapse
|
6
|
Li J, Qiu Z, Zhang C, Chen S, Wang M, Meng Q, Lu H, Wei L, Lv H, Zhong W, Zhang X. ITHscore: comprehensive quantification of intra-tumor heterogeneity in NSCLC by multi-scale radiomic features. Eur Radiol 2023; 33:893-903. [PMID: 36001124 DOI: 10.1007/s00330-022-09055-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/15/2022] [Accepted: 07/24/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To quantify intra-tumor heterogeneity (ITH) in non-small cell lung cancer (NSCLC) from computed tomography (CT) images. METHODS We developed a quantitative ITH measurement-ITHscore-by integrating local radiomic features and global pixel distribution patterns. The associations of ITHscore with tumor phenotypes, genotypes, and patient's prognosis were examined on six patient cohorts (n = 1399) to validate its effectiveness in characterizing ITH. RESULTS For stage I NSCLC, ITHscore was consistent with tumor progression from stage IA1 to IA3 (p < 0.001) and captured key pathological change in terms of malignancy (p < 0.001). ITHscore distinguished the presence of lymphovascular invasion (p = 0.003) and pleural invasion (p = 0.001) in tumors. ITHscore also separated patient groups with different overall survival (p = 0.004) and disease-free survival conditions (p = 0.005). Radiogenomic analysis showed that the level of ITHscore in stage I and stage II NSCLC is correlated with heterogeneity-related pathways. In addition, ITHscore was proved to be a stable measurement and can be applied to ITH quantification in head-and-neck cancer (HNC). CONCLUSIONS ITH in NSCLC can be quantified from CT images by ITHscore, which is an indicator for tumor phenotypes and patient's prognosis. KEY POINTS • ITHscore provides a radiomic quantification of intra-tumor heterogeneity in NSCLC. • ITHscore is an indicator for tumor phenotypes and patient's prognosis. • ITHscore has the potential to be generalized to other cancer types such as HNC.
Collapse
Affiliation(s)
- Jiaqi Li
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
| | - Zhenbin Qiu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sijie Chen
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
| | - Mengmin Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiuchen Meng
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
| | - Haiming Lu
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
| | - Hairong Lv
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China
- Fuzhou Institute of Data Technology, Fuzhou, China
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Xuegong Zhang
- Bioinformatics Division, BNRIST and MOE Key Lab of Bioinformatics, Department of Automation, Tsinghua University, Beijing, China.
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Guo H, Yu H, Feng Y, Cheng W, Li Y, Wang Y. The role of estrogen receptor β in fine particulate matter (PM 2.5) organic extract-induced pulmonary inflammation in female and male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60922-60932. [PMID: 35435549 DOI: 10.1007/s11356-022-20055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter organic extract (Po) was reported to promote inflammation in the lung. Sex differences were reported in many inflammatory diseases. In this study, we investigated the effects of Po exposure on pulmonary inflammatory response and evaluated the role of sex in this process. While mice were exposed to 100 µg/m3 Po for 12 weeks by an inhalation exposure system, the lung histopathological analysis shown obvious inflammation, the cell numbers in bronchoalveolar lavage fluid (BALF) were significantly increased, and most inflammatory cytokines in BALF were upregulated. The results of factorial analysis of variance shown that there was an interaction between sex and Po exposure in the inflammatory cell numbers and the levels of tumor necrosis factor-α (TNF-α), interleukin-5 (IL-5), and growth-related oncogene/keratinocyte chemoattractant (GRO/KC). Notably, these changes and interactions were diminished while Po-exposed mice were administered with the estrogen receptor β (ERβ) antagonist. We speculated that sex might affect the levels of inflammatory indicators in BALF of Po-exposed mice and female mice were more prone to inflammation while exposed to Po. Moreover, ERβ was involved in these processes. To our knowledge, this is the first investigation about the role of sex in Po-induced adverse effects.
Collapse
Affiliation(s)
- Huaqi Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
- The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, no. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hengyi Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yan Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
- The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, no. 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
8
|
Li H, Chen H, Shi J, Fan Q, Zhou Z, Tang X, Wang Y, Liu Y. ERβ overexpression may not be a direct prognostic factor in patients with NSCLC: A meta-analysis. Int J Biol Markers 2022; 37:249-259. [PMID: 35730164 DOI: 10.1177/03936155221105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Overall survival of non-small cell lung cancer (NSCLC) patients remains disappointingly low. The estrogen receptor (ER) was considered a promising therapeutic target for NSCLC. Numerous studies have linked expression of ERβ to lung cancer outcome. However, results are conflicting regarding the association of ERβ with surviving lung cancer. METHOD The aim of this meta-analysis was to evaluate the prognostic aspect of ERβ expression on survival among NSCLC patients. We performed a final analysis of prognostic value of overexpression ERβ on 3500 patients from 18 evaluable studies (from January 1, 2000 to May 1, 2021). The reference category is specified as low ERβ expression levels. Summarized hazard ratios were calculated. RESULTS Our study showed that the pooled hazard ratios of ERβ overexpression for overall survival in NSCLC was 0.81 (95% confidence interval (CI): 0.64-1.02, P = 0.07) by univariate analysis and 1.06 (95% CI: 0.83-1.36, P = 0.63) by multivariate analysis. Pooled hazard ratio by univariate analysis in Asian studies was 0.73 (95%CI: 0.59-0.89, P = 0.002). Pooled hazard ratio by univariate analysis was 0.75 (95% CI: 0.61-0.93, P = 0.009) from seven studies reported for nuclear ERβ. No significant results were found in subgroups by multivariate analysis. No significant results were found in studies outside Asia or in studies reported for cytoplasmic ERβ. CONCLUSION Our results suggested that expression of ERβ might not be a direct prognostic factor for NSCLC patients. More detailed prospective studies are needed to identify direct prognostic factors in these patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haishegn Chen
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Shi
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Fan
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongxia Zhou
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiufeng Tang
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanhong Wang
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuguo Liu
- Department of Pharmacy, 71107Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
9
|
Alsous L, Bardaweel S. Selective Estrogen Receptor Modulators (SERMs) Synergize with Cisplatin, Induce Apoptosis and Suppress Cellular Migration and Colony Formation of Lung Cancer Cells. Anticancer Agents Med Chem 2022; 22:1826-1836. [DOI: 10.2174/1871520621666210908110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
Lung cancer remains the leading cause of cancer-related deaths worldwide. Hence, novel
therapeutic approaches targeting crucial pathways are needed to improve its treatment. Previous studies have verified
the involvement of the estrogen pathway, mediated through estrogen receptor β (ERβ), in the development and progression
of lung carcinogenesis. Selective estrogen receptor modulators (SERMs) are a group of estrogen receptor
agonists/antagonists that have tissue selective effects. Many of the available SERMs are used for the management of
breast cancer. However, their role in lung cancer is still under investigation.
Objectives:
The aim of this research is to investigate the anti-tumorigenic activity of the selective estrogen receptor
modulators, tamoxifen, raloxifene, and toremifene, against different lung cancer cell lines.
Methods:
The anti-proliferative and combined effects of SERMs with standard chemotherapy were evaluated by MTT
assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using
the Annexin V-FITC/ propidium iodide staining flow cytometry method. Cells’ capability to form colonies was evaluated
by soft agar colony formation assay. Estrogen receptors expression was determined using real-time PCR.
Results:
Our results have demonstrated the presence of ERβ in A549, H1299, and H661 lung cancer cells. Cellular
proliferation assay suggested that SERMs have significantly reduced lung cancer cells proliferation in a time and concentration-
dependent manner. Additionally, SERMs exhibited a synergistic effect against A549 cells when combined
with cisplatin. SERMs treatment have increased cell apoptosis and resulted in concentration-dependent inhibition of
cell migration and colony formation of A549 cells.
Conclusion:
Selective estrogen receptor modulators may possess potential therapeutic utility for the treatment of lung
cancer as monotherapy or in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Lina Alsous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
10
|
Estrogens, Cancer and Immunity. Cancers (Basel) 2022; 14:cancers14092265. [PMID: 35565393 PMCID: PMC9101338 DOI: 10.3390/cancers14092265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sex hormones are included in many physiological and pathological pathways. Estrogens belong to steroid hormones active in female sex. Estradiol (E2) is the strongest female sex hormone and, with its receptors, contributes to oncogenesis, cancer progression and response to treatment. In recent years, a role of immunosurveillance and suppression of immune response in malignancy has been well defined, forming the basis for cancer immunotherapy. The interplay of sex hormones with cancer immunity, as well as the response to immune checkpoint inhibitors, is of interest. In this review, we investigate the impact of sex hormones on natural immune response with respect to main active elements in anticancer immune surveillance: dendritic cells, macrophages, lymphocytes and checkpoint molecules. We describe the main sex-dependent tumors and the contribution of estrogen in their progression, response to treatment and especially modulation of anticancer immune response.
Collapse
|
11
|
Ormsby TJR, Owens SE, Clement L, Mills TJ, Cronin JG, Bromfield JJ, Sheldon IM. Oxysterols Protect Epithelial Cells Against Pore-Forming Toxins. Front Immunol 2022; 13:815775. [PMID: 35154132 PMCID: PMC8825411 DOI: 10.3389/fimmu.2022.815775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022] Open
Abstract
Many species of bacteria produce toxins such as cholesterol-dependent cytolysins that form pores in cell membranes. Membrane pores facilitate infection by releasing nutrients, delivering virulence factors, and causing lytic cell damage - cytolysis. Oxysterols are oxidized forms of cholesterol that regulate cellular cholesterol and alter immune responses to bacteria. Whether oxysterols also influence the protection of cells against pore-forming toxins is unresolved. Here we tested the hypothesis that oxysterols stimulate the intrinsic protection of epithelial cells against damage caused by cholesterol-dependent cytolysins. We treated epithelial cells with oxysterols and then challenged them with the cholesterol-dependent cytolysin, pyolysin. Treating HeLa cells with 27-hydroxycholesterol, 25-hydroxycholesterol, 7α-hydroxycholesterol, or 7β-hydroxycholesterol reduced pyolysin-induced leakage of lactate dehydrogenase and reduced pyolysin-induced cytolysis. Specifically, treatment with 10 ng/ml 27-hydroxycholesterol for 24 h reduced pyolysin-induced lactate dehydrogenase leakage by 88%, and reduced cytolysis from 74% to 1%. Treating HeLa cells with 27-hydroxycholesterol also reduced pyolysin-induced leakage of potassium ions, prevented mitogen-activated protein kinase cell stress responses, and limited alterations in the cytoskeleton. Furthermore, 27-hydroxycholesterol reduced pyolysin-induced damage in lung and liver epithelial cells, and protected against the cytolysins streptolysin O and Staphylococcus aureus α-hemolysin. Although oxysterols regulate cellular cholesterol by activating liver X receptors, cytoprotection did not depend on liver X receptors or changes in total cellular cholesterol. However, oxysterol cytoprotection was partially dependent on acyl-CoA:cholesterol acyltransferase (ACAT) reducing accessible cholesterol in cell membranes. Collectively, these findings imply that oxysterols stimulate the intrinsic protection of epithelial cells against pore-forming toxins and may help protect tissues against pathogenic bacteria.
Collapse
Affiliation(s)
- Thomas J R Ormsby
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Sian E Owens
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Liam Clement
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Tom J Mills
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
12
|
Siegfried JM. Sex and Gender Differences in Lung Cancer and Chronic Obstructive Lung Disease. Endocrinology 2022; 163:6470418. [PMID: 34927202 DOI: 10.1210/endocr/bqab254] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Two highly prevalent pulmonary diseases, lung cancer and chronic obstructive lung disease (COPD), show both sex and gender differences in their presentations and outcomes. Sex differences are defined as biological differences associated with the male vs female genotype, and gender differences are defined as behavioral or social differences that primarily arise because of gender identity. The incidence of both lung cancer and COPD has increased dramatically in women over the past 50 years, and both are associated with chronic pulmonary inflammation. Development of COPD is also a risk factor for lung cancer. In this review, the main differences in lung cancer and COPD biology observed between men and women will be summarized. Potential causative factors will be discussed, including the role of estrogen in promoting pro-growth and inflammatory phenotypes which may contribute to development of both lung cancer and COPD. Response of the innate and adaptive immune system to estrogen is a likely factor in the biology of both lung cancer and COPD. Estrogen available from synthesis by reproductive organs as well as local pulmonary estrogen synthesis may be involved in activating estrogen receptors expressed by multiple cell types in the lung. Estrogenic actions, although more pronounced in women, may also have importance in the biology of lung cancer and COPD in men. Effects of estrogen are also timing and context dependent; the multiple cell types that mediate estrogen action in the lungs may confer both positive and negative effects on disease processes.
Collapse
Affiliation(s)
- Jill M Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Targeting Estrogens and Various Estrogen-Related Receptors against Non-Small Cell Lung Cancers: A Perspective. Cancers (Basel) 2021; 14:cancers14010080. [PMID: 35008242 PMCID: PMC8750572 DOI: 10.3390/cancers14010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancers (NSCLCs) account for ~85% of lung cancer cases worldwide. Mammalian lungs are exposed to both endogenous and exogenous estrogens. The expression of estrogen receptors (ERs) in lung cancer cells has evoked the necessity to evaluate the role of estrogens in the disease progression. Estrogens, specifically 17β-estradiol, promote maturation of several tissue types including lungs. Recent epidemiologic data indicate that women have a higher risk of lung adenocarcinoma, a type of NSCLC, when compared to men, independent of smoking status. Besides ERs, pulmonary tissues both in healthy physiology and in NSCLCs also express G-protein-coupled ERs (GPERs), epidermal growth factor receptor (EGFRs), estrogen-related receptors (ERRs) and orphan nuclear receptors. Premenopausal females between the ages of 15 and 50 years synthesize a large contingent of estrogens and are at a greater risk of developing NSCLCs. Estrogen-ER/GPER/EGFR/ERR-mediated activation of various cell signaling molecules regulates NSCLC cell proliferation, survival and apoptosis. This article sheds light on the most recent achievements in the elucidation of sequential biochemical events in estrogen-activated cell signaling pathways involved in NSCLC severity with insight into the mechanism of regulation by ERs/GPERs/EGFRs/ERRs. It further discusses the success of anti-estrogen therapies against NSCLCs.
Collapse
|
14
|
Huo Z, Ge F, Li C, Cheng H, Lu Y, Wang R, Wen Y, Yue K, Pan Z, Peng H, Wu X, Liang H, He J, Liang W. Genetically predicted insomnia and lung cancer risk: a Mendelian randomization study. Sleep Med 2021; 87:183-190. [PMID: 34627121 DOI: 10.1016/j.sleep.2021.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relationship between insomnia and lung cancer is scanty. The Mendelian randomization approach provides the rationale for evaluating the potential causality between genetically-predicted insomnia and lung cancer risk. METHODS We extracted 148 insomnia-related single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) from published genome-wide association studies (GWASs). Summary data of individual-level genetic information of participants were obtained from the International Lung Cancer Consortium (ILCCO) (29,266 cases and 56,450 controls). MR analyses were performed using the inverse-variance-weighted approach, MR pleiotropy residual sum and outlier (MR-PRESSO) test, weighted median estimator, and MR-Egger regression. Sensitivity analyses were further performed using Egger intercept analysis, leave-one-out analysis, MR-PRESSO global test, and Cochran's Q test to verify the robustness of our findings. RESULTS The results of the MR analysis indicated an increased risk of lung cancer in insomnia patients (OR = 1.1671; 95% CI 1.0754-1.2666, p = 0.0002). The subgroup analyses showed increased risks of lung adenocarcinoma (OR = 1.1878; 95% CI 1.0594-1.3317, p = 0.0032) and squamous cell lung cancer (OR = 1.1595; 95% CI 1.0248-1.3119, p = 0.0188). CONCLUSION Our study indicated that insomnia is a causal risk factor in the development of lung cancer. Due to the lack of evidence on both the epidemiology and the mechanism level, more studies are needed to better elucidate the results of the study.
Collapse
Affiliation(s)
- Zhenyu Huo
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Nanshan School, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Fan Ge
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; First Clinical School, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Heting Cheng
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Department of Psychology, School of Health Management, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Yi Lu
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Nanshan School, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Nanshan School, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Yaokai Wen
- School of Medicine, Tongji University, Shanghai, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Keqi Yue
- Department of Biological Science, The Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Haoxin Peng
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Nanshan School, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Xiangrong Wu
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Nanshan School, Guangzhou Medical University, Xinzao Road, Panyu District, Guangzhou, 511436, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Investigation of Combination Treatment With an Aromatase Inhibitor Exemestane and Carboplatin-Based Therapy for Postmenopausal Women With Advanced NSCLC. JTO Clin Res Rep 2021; 2:100150. [PMID: 34590007 PMCID: PMC8474426 DOI: 10.1016/j.jtocrr.2021.100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Estrogen receptors (ER) (ERα, ERβ) and aromatase (key enzyme for estrogen synthesis) are expressed in most human NSCLCs. High intratumoral estrogen levels and elevated aromatase expression in NSCLC predict poor outcome. This open-label, phase 1b, single-center study evaluated the safety and tolerability of escalating doses of the aromatase inhibitor, exemestane, in combination with carboplatin and pemetrexed in postmenopausal women with stage IV nonsquamous NSCLC. Methods Patients received exemestane (starting 1-wk before chemotherapy) at 25 mg orally (PO) daily (cohort 1) or 50 mg PO daily (cohort 2) combined with carboplatin (area under the curve 6 mg × min/mL) and pemetrexed (500 mg/m2) intravenously every 3 weeks for four cycles. Thereafter, patients were eligible for continued therapy with exemestane and pemetrexed or pemetrexed alone. Results A total of 10 patients consented for therapy, and two patients failed in the screening. Four patients completed the therapy in cohort 1 and four patients in cohort 2. The median number of cycles administered was 15 (range: 1-54). Maximum tolerated dose was exemestane 50 mg PO daily with combination chemotherapy. Intention-to-treat analysis revealed an objective response rate (ORR) of 62.5% (five of eight patients with partial response) and a clinical benefit rate of 87.5% (seven of eight patients with either stable disease or partial response). ORR was associated with aromatase expression (p = 0.02). Circulating estrogen levels decreased with exemestane use, and quality of life measurements did not significantly change during the treatment. There were no adverse events. Conclusions The combination of carboplatin, pemetrexed, and exemestane in postmenopausal women with metastatic NSCLC is safe and well tolerated. Biomarker studies revealed that ORR correlates with tumor aromatase expression. These findings support future clinical trials to confirm the antitumor efficacy with this combination therapy.
Collapse
|
16
|
Słowikowski BK, Jankowski M, Jagodziński PP. The smoking estrogens - a potential synergy between estradiol and benzo(a)pyrene. Biomed Pharmacother 2021; 139:111658. [PMID: 34243627 DOI: 10.1016/j.biopha.2021.111658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
According to recent statistics, Lung Cancer (LC) is one of the most frequently diagnosed tumor types, representing nearly 12% of all global cancer cases. Moreover, in recent years, an increased mortality rate and incidence of this cancer were observed, especially among nonsmokers. Lung cancer patients are often characterized by poor prognosis and low survival rates, which encourages the scientific community to investigate the biochemical and molecular processes leading to the development of this malignancy. Furthermore, the mechanisms of LC formation and progression are not yet fully elucidated due to their high complexity, as well as a multitude of environmental, genetic, and molecular factors involved. Even though LC's association with exposure to cigarette smoke is indisputable, current research provides evidence that the development of this cancer can also be affected by the presence of estrogens and their interaction with several tobacco smoke components. Hence, the main goal of this brief review was to investigate reports of a possible synergy between 17β estradiol (E2), the most biologically active estrogen, and benzo(a)pyrene (BaP), a strongly carcinogenic compound produced as a result of incomplete tobacco combustion. The literature sources demonstrate a possible carcinogenic synergy between estrogens, especially E2, and BaP, a toxic tobacco smoke component. Therefeore, the combined effect of disturbed estrogen production in cancer cells, as well as the molecular influence exerted by BaP, could explain the increased aggressiveness and rate of LC development. Summarizing, the synergistic effect of these risk factors is an interesting area of further research.
Collapse
Affiliation(s)
- Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznan, Poland.
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznan, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznan, Poland
| |
Collapse
|
17
|
The Sex-Related Interplay between TME and Cancer: On the Critical Role of Estrogen, MicroRNAs and Autophagy. Cancers (Basel) 2021; 13:cancers13133287. [PMID: 34209162 PMCID: PMC8267629 DOI: 10.3390/cancers13133287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
The interplay between cancer cells and the tumor microenvironment (TME) has a fundamental role in tumor progression and response to therapy. The plethora of components constituting the TME, such as stroma, fibroblasts, endothelial and immune cells, as well as macromolecules, e.g., hormones and cytokines, and epigenetic factors, such as microRNAs, can modulate the survival or death of cancer cells. Actually, the TME can stimulate the genetically regulated programs that the cell puts in place under stress: apoptosis or, of interest here, autophagy. However, the implication of autophagy in tumor growth appears still undefined. Autophagy mainly represents a cyto-protective mechanism that allows cell survival but, in certain circumstances, also leads to the blocking of cell cycle progression, possibly leading to cell death. Since significant sex/gender differences in the incidence, progression and response to cancer therapy have been widely described in the literature, in this review, we analyzed the roles played by key components of the TME, e.g., estrogen and microRNAs, on autophagy regulation from a sex/gender-based perspective. We focused our attention on four paradigmatic and different forms of cancers-colon cancer, melanoma, lymphoma, and lung cancer-concluding that sex-specific differences may exert a significant impact on TME/cancer interaction and, thus, tumor growth.
Collapse
|
18
|
Cheng LC, Lin CJ, Chen PY, Li LA. ERα-dependent estrogen-TNFα signaling crosstalk increases cisplatin tolerance and migration of lung adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194715. [PMID: 34082140 DOI: 10.1016/j.bbagrm.2021.194715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Lung adenocarcinoma is the most common type of lung cancer in women. Our previous studies demonstrated that 17β-estradiol (E2) promoted lung adenocarcinoma cell proliferation and tumor growth through estrogen receptor ERα. Transcriptomic analysis suggested that E2 potentiated TNFα-NFκB signaling in ERα-expressing lung adenocarcinoma cells. This study further demonstrated that E2 increased TNFα receptor expression and TNFα-triggered NFκB activity in ERα-expressing cells. E2-activated ERα had no physical association with NFκB p65/p50 heterodimer but facilitated TNFα-initiated IκBα degradation, NFκB nuclear translocation, and S468/S536 phosphorylation of p65 essential for NFκB activity. While knockdown of ERα prevented E2 from boosting NFκB activity, antiestrogen ICI 182,780 stimulated NFκB activity like E2. Inhibition of GSK3β hampered E2:ERα-promoted NFκB activity and abolished S468 phosphorylation of p65, suggesting that GSK3β played a role in the E2-TNFα signaling crosstalk. In ERα-expressing cells, E2 and TNFα synergistically regulated many genes that were not typically responsive to either E2 or TNFα. Functional analysis of microarray data inferred that E2/TNFα-induced transcriptomic changes improved cell survival and movement. Viability and colony formation assays validated that E2 and TNFα together increased cisplatin tolerance of ERα-expressing cells. Wound healing assays also confirmed that E2/TNFα cotreatment increased cell migration in an ERα-dependent manner. E2/TNFα-induced dysregulation of genes such as cell survival and movement-associated genes, proto-oncogenes, metallothioneins and histone core genes was correlated with poor overall survival in patients. In summary, E2 and TNFα engaged in an ERα-dependent positive crosstalk in lung adenocarcinoma cells, consequently increasing NFκB activation, cisplatin tolerance and cell migration and worsening prognosis.
Collapse
Affiliation(s)
- Li-Chuan Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Chun-Ju Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Pei-Yu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Lih-Ann Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China..
| |
Collapse
|
19
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
20
|
Rodriguez-Lara V, Avila-Costa MR. An Overview of Lung Cancer in Women and the Impact of Estrogen in Lung Carcinogenesis and Lung Cancer Treatment. Front Med (Lausanne) 2021; 8:600121. [PMID: 34079807 PMCID: PMC8165182 DOI: 10.3389/fmed.2021.600121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Lung cancer incidence and mortality have significantly increased in women worldwide. Lung adenocarcinoma is the most common form of lung cancer globally. This type of lung cancer shows differences by sex, including the mutational burden, behavior, clinical characteristics, and response to treatment. The effect of sex on lung cancer patients' survival is still controversial; however, lung adenocarcinoma is considered a different disease in women and men. Moreover, lung adenocarcinoma is strongly influenced by estrogen and is also different depending on the hormonal status of the patient. Young pre-menopausal women have been explored as an independent group. They presented in more advanced stages at diagnosis, exhibited more aggressive tumors, and showed poor survival compared to men and post-menopausal women, supporting the role of sex hormones in this pathology. Several reports indicate the estrogen's role in lung carcinogenesis and tumor progression. Thus, there are currently some clinical trials testing the efficacy of antihormonal therapy in lung cancer treatment. This mini review shows the updated data about lung cancer in women, its characteristics, the etiological factors that influence carcinogenesis, and the critical role of estrogen in lung cancer and treatment.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Laboratory, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
21
|
Peng H, Wu X, Wen Y, Du X, Li C, Liang H, Lin J, Liu J, Ge F, Huo Z, He J, Liang W. Age at first birth and lung cancer: a two-sample Mendelian randomization study. Transl Lung Cancer Res 2021; 10:1720-1733. [PMID: 34012788 PMCID: PMC8107761 DOI: 10.21037/tlcr-20-1216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Growing evidence suggests that female reproductive factors, like age at first birth (AFB), may play a potential role in the progression of lung cancer (LC). However, previous studies are susceptible to confounding factors, inadequate attention to variation by histology or reverse causality. Few studies have comprehensively evaluated their association and the causal effect remains unclear. Methods We aimed to determine whether AFB is causally correlated with the risk of LC, by means of utilizing aggregated data from the large genome-wide association studies conducted on AFB (251,151 individuals) and data of LC from International Lung and Cancer Consortium (ILCCO, 11,348 cases and 15,861 controls). We used 10 AFB-related single nucleotide polymorphisms as instrument variables and applied several two-sample Mendelian randomization (MR) methods. Secondary results according to different histological subtypes of lung cancer were also implemented. Results Conventional inverse-variance weighted method indicated that genetic predisposition towards number unit (1 year) increase of AFB was associated with a 18% lower risk of LC [odds ratio (OR) =0.82, 95% confidence interval (CI): 0.69–0.97; P=0.029]. When results were examined by histotypes, an inverse association was observed between genetically predisposed number unit (1 year) increase of AFB and lung adenocarcinoma (OR =0.75, 95% CI: 0.59–0.97, P=0.017) but not with squamous cell lung cancer (OR =0.77, 95% CI: 0.57–1.05, P=0.103). The results demonstrated no association between number unit decrease of AFB and LC. Pleiotropy was not presented through sensitivity analyses including MR pleiotropy residual sum and outlier test (P=0.412). Genetic predisposition towards older AFB was additionally associated with longer years of schooling (OR =1.12, 95% CI: 1.08–1.16, P<0.001), lower body mass index (OR =0.93, 95% CI: 0.88–0.98, P=0.004) and less alcohol consumption (OR =0.99, 95% CI: 0.99–1.00, P=0.004). Conclusions Our study suggested that older AFB was a causal protective factor in the progression of LC. Further studies elucidating the potential mechanisms are needed.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yaokai Wen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Du
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Lin
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Ge
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Huo
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Medical Oncology, The First People's Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
22
|
Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia. Int J Mol Sci 2021; 22:ijms22073378. [PMID: 33806075 PMCID: PMC8036653 DOI: 10.3390/ijms22073378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.
Collapse
|
23
|
Pinton G, Manzotti B, Balzano C, Moro L. Expression and clinical implications of estrogen receptors in thoracic malignancies: a narrative review. J Thorac Dis 2021; 13:1851-1863. [PMID: 33841973 PMCID: PMC8024832 DOI: 10.21037/jtd-20-2277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thoracic malignancies represent a significant global health burden with incidence and mortality increasing year by year. Thoracic cancer prognosis and treatment options depend on several factors, including the type and size of the tumor, its location, and the overall health status of patients. Gender represents an important prognostic variable in thoracic malignancies. One of the greatest biological differences between women and men is the presence of female sex hormones, and an increasing number of studies suggest that estrogens may play either a causative or a protective role in thoracic malignancies. Over the past 60 years since the discovery of the first nuclear estrogen receptor (ER) isoform α and the almost 20 years since the discovery of the second estrogen receptor, ERβ, different mechanisms governing estrogen action have been identified and characterized. This literature review reports the published data regarding the expression and function of ERs in different thoracic malignancies and discuss sex disparity in clinical outcomes. From this analysis emerges that further efforts are warranted to better elucidate the role of sex hormones in thoracic malignancies, and to reduce disparities in care between genders. Understanding the mechanisms by which gender-related differences can affect and interfere with the onset and evolution of thoracic malignancies and impact on response to therapies could help to improve the knowledge needed to develop increasingly personalized and targeted treatments.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Beatrice Manzotti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cecilia Balzano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
24
|
Tulchiner G, Pichler R, Ulmer H, Staudacher N, Lindner AK, Brunner A, Zelger B, Steinkohl F, Aigner F, Horninger W, Thurnher M. Sex-specific hormone changes during immunotherapy and its influence on survival in metastatic renal cell carcinoma. Cancer Immunol Immunother 2021; 70:2805-2817. [PMID: 33646368 PMCID: PMC8423679 DOI: 10.1007/s00262-021-02882-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Renal cell carcinoma (RCC) is a highly vascularized and immunogenic tumor, being an ideal candidate for checkpoint blockade-based immunotherapy. Accordingly, checkpoint inhibitors have demonstrated clinical efficacy in patients with metastatic RCC (mRCC). Sex-specific differences in cancer immunotherapy may be explained by the interaction of sex hormone signaling, genetic and environmental factors, affecting the innate and adaptive immune response in men and women in different ways. The aim of this prospective study was to monitor for the first time changes in sex hormones including luteinizing hormone (LH), follicle-stimulating hormone (FSH), LH/FSH ratio and 17-ß-estradiol (E2) in 22 mRCC patients (12 male and 10 female) receiving nivolumab therapy. In contrast to female patients, male patients showed a significant increase in E2 (p = 0.006) and LH/FSH ratio (p = 0.013) from the beginning of nivolumab therapy to week 12 of follow-up. Moreover, survival analysis revealed a significant negative association between LH/FSH ratio and progression-free survival (PFS) (p = 0.022) as well as between therapy response (p = 0.009) in males compared to females at interim evaluation (week 6/8). Our findings may therefore be the first reference to sex hormone changes during immunotherapy.
Collapse
Affiliation(s)
- Gennadi Tulchiner
- Department of Urology & Immunotherapy Unit, Medical University Innsbruck, Anichstrasse 35 and Innrain 66a, 6020, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology & Immunotherapy Unit, Medical University Innsbruck, Anichstrasse 35 and Innrain 66a, 6020, Innsbruck, Austria.
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University Innsbruck, Schoepfstraße 41, 6020, Innsbruck, Austria
| | - Nina Staudacher
- Department of Urology & Immunotherapy Unit, Medical University Innsbruck, Anichstrasse 35 and Innrain 66a, 6020, Innsbruck, Austria
| | - Andrea Katharina Lindner
- Department of Urology & Immunotherapy Unit, Medical University Innsbruck, Anichstrasse 35 and Innrain 66a, 6020, Innsbruck, Austria
| | - Andrea Brunner
- Department of Pathology, Medical University Innsbruck, Muellerstraße 44, 6020, Innsbruck, Austria
| | - Bettina Zelger
- Department of Pathology, Medical University Innsbruck, Muellerstraße 44, 6020, Innsbruck, Austria
| | - Fabian Steinkohl
- Department of Radiology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Friedrich Aigner
- Department of Radiology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wolfgang Horninger
- Department of Urology & Immunotherapy Unit, Medical University Innsbruck, Anichstrasse 35 and Innrain 66a, 6020, Innsbruck, Austria
| | - Martin Thurnher
- Department of Urology & Immunotherapy Unit, Medical University Innsbruck, Anichstrasse 35 and Innrain 66a, 6020, Innsbruck, Austria.
| |
Collapse
|
25
|
Zeng M, Ren Y, Zhang B, Wang S, Liu M, Jia J, Guo P, Zhang Q, Zheng X, Feng W. In vitro Non-Small Cell Lung Cancer Inhibitory Effect by New Diphenylethane Isolated From Stems and Leaves of Dioscorea oppositifolia L. via ERβ-STAT3 Pathway. Front Pharmacol 2021; 12:622681. [PMID: 33708130 PMCID: PMC7941213 DOI: 10.3389/fphar.2021.622681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most leading cause of cancer mortality throughout the world, of which about 85% cases comprise the non-small cell lung cancer (NSCLC). Estrogen and estrogen receptors are known to be involved in the pathogenesis and development of lung cancer. Dioscorea oppositifolia L. is a traditional Chinese medicine and a nutritious food, and can be an excellent candidate as an anti-cancer agent owing to its estrogen-like effects. However, the stems and leaves of D. oppositifolia L. are piled up in the field as a waste, causing environmental pollution and waste of resources. In the present study, a new diphenylethane (D1) was isolated from the stems and leaves of D. oppositifolia L. It was observed that D1 reduced the cell viability, migration, energy metabolism, and induced apoptosis in the A549 cells. Mechanistic studies showed that D1 reduced the STAT3 nuclear localization and downregulated the expression of the STAT3 target genes like Mcl-1, Bcl-xL and MMP-2 that are involved in the cell survival and mobility. Moreover, our results indicated that D1 exhibited estrogenic activities mediated by ERβ, and antagonising ERβ decreased the cytotoxic effect of D1 in A549 cells. In addition, inhibition of the nuclear translocation of STAT3 did not interfere with the binding of D1 and ERβ. However, after antagonizing ERβ, the nuclear translocation of STAT3 increased, thereby demonstrating that STAT3 was the downstream signaling molecule of ERβ. In conclusion, the D1 mediated anti-NSCLC in vitro effects or at least in part can be attributed to the ERβ-STAT3 signaling. Our findings suggest the role of D1 in treating NSCLC on a molecular level, and can help to improve the comprehensive utilization rate of D. oppositifolia L.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yingjie Ren
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
26
|
Pozios I, Seel NN, Hering NA, Hartmann L, Liu V, Camaj P, Müller MH, Lee LD, Bruns CJ, Kreis ME, Seeliger H. Raloxifene inhibits pancreatic adenocarcinoma growth by interfering with ERβ and IL-6/gp130/STAT3 signaling. Cell Oncol (Dordr) 2021; 44:167-177. [PMID: 32940862 PMCID: PMC7906944 DOI: 10.1007/s13402-020-00559-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Currently, the exact role of estrogen receptor (ER) signaling in pancreatic cancer is unknown. Recently, we showed that expression of phosphorylated ERβ correlates with a poor prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). Here, we hypothesized that raloxifene, a FDA-approved selective ER modulator (SERM), may suppress PDAC tumor growth by interfering with ERβ signaling. To test this hypothesis, we studied the impact of raloxifene on interleukin-6/glycoprotein-130/signal transducer and activator of transcription-3 (IL-6/gp130/STAT3) signaling. METHODS Human PDAC cell lines were exposed to raloxifene after which growth inhibition was assessed using a BrdU assay. ER knockdown was performed using siRNAs specific for ERα and ERβ. The effects of raloxifene on IL-6 expression and STAT3 phosphorylation in PDAC cells were assessed by ELISA and Western blotting, respectively. In addition, raloxifene was administered to an orthotopic PDAC tumor xenograft mouse model, after which tumor growth was monitored and immunohistochemistry was performed. RESULTS Raloxifene inhibited the in vitro growth of PDAC cells, and this effect was reversed by siRNA-mediated knockdown of ERβ, but not of ERα, indicating ER isotype-specific signaling. We also found that treatment with raloxifene inhibited the release of IL-6 and suppressed the phosphorylation of STAT3Y705 in PDAC cells. In vivo, we found that orthotopic PDAC tumor growth, lymph node and liver metastases as well as Ki-67 expression were reduced in mice treated with raloxifene. CONCLUSIONS Inhibition of ERβ and the IL-6/gp130/STAT3 signaling pathway by raloxifene leads to potent reduction of PDAC growth in vitro and in vivo. Our results suggest that ERβ signaling and IL-6/gp130 interaction may serve as promising drug targets for pancreatic cancer and that raloxifene may serve as an attractive therapeutic option for PDAC patients expressing the ERβ isotype.
Collapse
Affiliation(s)
- Ioannis Pozios
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Nina N Seel
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
| | - Nina A Hering
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Lisa Hartmann
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Verena Liu
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Minimal Invasive and Visceral Surgery, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Peter Camaj
- Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, Munich, Germany
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Mario H Müller
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Minimal Invasive and Visceral Surgery, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Lucas D Lee
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Martin E Kreis
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Hendrik Seeliger
- Department of General, Visceral and Vascular Surgery, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
27
|
Plausible Role of Estrogens in Pathogenesis, Progression and Therapy of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020648. [PMID: 33466597 PMCID: PMC7828659 DOI: 10.3390/ijerph18020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Malignant neoplasms are among the most common diseases and are responsible for the majority of deaths in the developed world. In contrast to men, available data show a clear upward trend in the incidence of lung cancer in women, making it almost as prevalent as breast cancer. Women might be more susceptible to the carcinogenic effect of tobacco smoke than men. Furthermore, available data indicate a much more frequent mutation of the tumor suppressor gene-p53 in non-small cell lung cancer (NSCLC) female patients compared to males. Another important factor, however, might lie in the female sex hormones, whose mitogenic or carcinogenic effect is well known. Epidemiologic data show a correlation between hormone replacement therapy (HRT) or oral contraceptives (OCs), and increased mortality rates due to the increased incidence of malignant tumors, including lung cancer. Interestingly, two types of estrogen receptors have been detected in lung cancer cells: ERα and ERβ. The presence of ERα has been detected in tissues and non-small-cell lung carcinoma (NSCLC) cell lines. In contrast, overexpression of ERβ is a prognostic marker in NSCLC. Herein, we summarize the current knowledge on the role of estrogens in the etiopathogenesis of lung cancer, as well as biological, hormonal and genetic sex-related differences in this neoplasm.
Collapse
|
28
|
Hexiao T, Yuquan B, Lecai X, Yanhong W, Li S, Weidong H, Ming X, Xuefeng Z, Gaofeng P, Li Z, Minglin Z, Zheng T, Zetian Y, Xiao Z, Yi C, Lanuti M, Jinping Z. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging (Albany NY) 2021; 13:2604-2625. [PMID: 33428600 PMCID: PMC7880349 DOI: 10.18632/aging.202303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/05/2020] [Indexed: 01/21/2023]
Abstract
Many studies have reported that estrogen (E2) promotes lung cancer by binding to nuclear estrogen receptors (ER), and altering ER related nuclear protein expressions. With the GEO database analysis, Human centromere protein F (CENPF) is highly expressed in lung adenocarcinoma (LUAD), and the co-expression of CENPF and ERβ was found in the nucleus of LUAD cells through immunofluorescence. We identified the nuclear protein CENPF and explored its relationship with the ER pathway. CENPF and ERβ2/5 were related with T stage and poor prognosis (P<0.05). CENPF knockout significantly inhibited LUAD cell growth, the tumor growth of mice and the expression of ERβ2/5 (P<0.05). The protein expression of CENPF and ERβ2/5 in the CENPF-Knockdown+Fulvestrant group was lower than CENPF- Negative Control +Fulvestrant group (P=0.002, 0.004, 0.001) in A549 cells. The tumor size and weight of the CENPF-Knockdown+Fulvestrant group were significantly lower than CENPF- Negative Control +Fulvestrant group (P=0.001, 0.039) in nude mice. All the results indicated that both CENPF and ERβ2/5 play important roles in the progression of LUAD, and knockdown CENPF can inhibit the progression of LUAD by inhibiting the expression of ER2/5. Thus, the development of inhibitors against ERβ2/5 and CENPF remained more effective in improving the therapeutic effect of LUAD.
Collapse
Affiliation(s)
- Tang Hexiao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bai Yuquan
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Lecai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Yanhong
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shen Li
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hu Weidong
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Ming
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Xuefeng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pan Gaofeng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhang Li
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhu Minglin
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tang Zheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Zetian
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Xiao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cai Yi
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhao Jinping
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Luo F, Guo H, Yu H, Li Y, Feng Y, Wang Y. PM2.5 organic extract mediates inflammation through the ERβ pathway to contribute to lung carcinogenesis in vitro and vivo. CHEMOSPHERE 2021; 263:127867. [PMID: 32841872 DOI: 10.1016/j.chemosphere.2020.127867] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of researches have shown that fine particulate matter (PM2.5) is closely related to increased respiratory inflammation and can even lead to lung cancer. Estrogen receptor β (ERβ) has been demonstrated to be involved in several cancers. However, the exact role of ERβ in PM2.5 organic extract (Po)-promoted inflammation and lung cancer remains unknown. The purpose of this study was to investigate whether ERβ is involved in Po induced inflammation and lung cancer. In vitro, our results showed that interleukin-6 (IL-6) and ERβ were simultaneously increased in lung bronchial epithelial cells exposed to Po; additionally, inhibition of ERβ decreased IL-6 expression and secretion through inactivating ERK and AKT and further promoted cells malignant transformation. Moreover, we performed an animal model of inhalation exposure to Po using female C57BL/6 mice. Although we were unable to find tumor tissue in mice exposed to Po, we detected evidence of lung inflammation, epithelial-to-mesenchymal transition (EMT) phenotype and severe pulmonary injury; in addition, intraperitoneal injection of PHTPP (an ERβ inhibitor) showed that the above phenomena have been improved, which demonstrate that Po stimulates IL-6 expression to promote inflammation, EMT phenotype and lung injury through the ERβ pathway. In conclusion, our results confirmed the potential toxic effect of PM2.5, and increased our understanding of PM2.5 carcinogenic potential by exploring the mechanism of ERβ regulating inflammation.
Collapse
Affiliation(s)
- Fei Luo
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Huaqi Guo
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Hengyi Yu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Li
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Feng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Wang
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
30
|
Jin K, Hung RJ, Thomas S, Le Marchand L, Matsuo K, Seow A, Shen H, Kok WP, Yuan JM, Wu M, Li L, Zhao JK, Zhang ZF. Hormonal factors in association with lung cancer among Asian women: A pooled analysis from the International Lung Cancer Consortium. Int J Cancer 2020; 148:2241-2254. [PMID: 33210298 DOI: 10.1002/ijc.33405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Two thousand sixty-four lung cancer cases and 5342 controls were evaluated in this International Lung Cancer Consortium (ILCCO) pooled analysis on estrogen-related hormonal factors and lung cancer in Asian women. Random effect of study site and fixed effect of age, smoking status, comprehensive smoking index and family history of lung cancer were adjusted for in the multivariable logistic regression models. We found that late onset of menarche conferred elevated odds of lung cancer with adjusted odds ratio (OR) of 1.24 (95% confidence interval [CI] = 1.05, 1.45) for 17 years or older, compared to 14 years or younger. Late onset of menopause at 55 years old or older was associated with lung cancer with OR = 1.24 (95% CI = 1.02, 1.51). Nonnatural menopause was associated with an OR of 1.39 (95% CI = 1.13, 1.71). More live births showed reversed association with lung cancer (ORs of 5 or more live births: 0.71 (95% CI = 0.60, 0.84), compared to 0-2 live births (Ptrend < 0.001). A later first child delivery seemed associated with an increased susceptibility: OR of 21 to 25 years old: 1.23 (95% CI = 1.06, 1.40), 26 or older: 1.27 (95% CI = 1.06, 1.52), Ptrend = .010). The use of oral contraceptives appeared to be protective with an OR of 0.69 (95% CI = 0.57, 0.83). Stronger for adenocarcinoma than squamous cell carcinoma, these relationships were not clearly modified by smoking status, probably because of lower prevalence of smoking. This is a first and largest pooling study of lung cancer among Asian women and the results suggested potential roles of hormone-related pathways in the etiology of this disease.
Collapse
Affiliation(s)
- Kexin Jin
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Sera Thomas
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
| | - Woon-Puay Kok
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Health Service and Systems Research, Duke-NUS Medical School, Singapore
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Ming Wu
- Department of Non-communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jin-Kou Zhao
- Department of Non-communicable Chronic Disease Control, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA.,David Geffen School of Medicine, Center for Human Nutrition, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
31
|
Abstract
Lung cancer is the first cause of death from malignant disease. The distressing epidemiological data show the increasing female to male incidence ratio for this tumor. A high incidence of lung cancer in never smokers with importance of environmental agents makes a problem among women. Adenocarcinoma (ADC) is noted in women with increasing rate and ethnic background impacts female lung cancer with differences in the incidence of genetic aberrations. The conception of different hormonal status is taken into consideration as potential explanation of variant cancer biology and clinical manifestation in women and men. The impact of 17-β-estradiol, estrogen receptors, aromatase expression, pituitary sex hormones receptors in carcinogenesis with relation between estrogens and genetic aberrations are investigated. The response to newest therapies among female is also different than in men. This overview summarizes currently available evidence on the specificity of female lung cancer and presents the direction of necessary studies.
Collapse
Affiliation(s)
- Joanna Domagala-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Anna Trojnar
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Saito R, Miki Y, Abe T, Miyauchi E, Abe J, Nanamiya R, Inoue C, Sato I, Sasano H. 11β hydroxysteroid dehydrogenase 1: a new marker for predicting response to immune-checkpoint blockade therapy in non-small-cell lung carcinoma. Br J Cancer 2020; 123:61-71. [PMID: 32336752 PMCID: PMC7341889 DOI: 10.1038/s41416-020-0837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022] Open
Abstract
Background Understanding the status of intratumoural immune microenvironment is necessary to ensure the efficacy of immune-checkpoint (IC) blockade therapy. Cortisol plays pivotal roles in glucocorticoid interactions in the immune system. We examined the correlation between intratumourally synthesised cortisol through 11β hydroxysteroid dehydrogenase (HSD) 1 and the immune microenvironment in non-small-cell lung carcinoma (NSCLC). Methods We correlated 11βHSD1 immunoreactivity in 125 cases of NSCLC with the amount of intratumoural immune cells present, and 11βHSD1 immunoreactivity with the efficacy of IC blockade therapy in 18 specimens of NSCLC patients. In vitro studies were performed to validate the immunohistochemical examination. Results 11βHSD1 immunoreactivity showed a significant inverse correlation with the number of tumour-infiltrating lymphocytes and CD3- or CD8-positive T cells. 11βHSD1 immunoreactivity tended to be inversely correlated with the clinical efficacy of the IC blockade therapy. In vitro studies revealed that 11βHSD1 promoted the intratumoural synthesis of cortisol. This resulted in a decrease in cytokines and in the inhibition of monocyte migration. Conclusions Our study is the first report clarifying the inhibitory effects of intratumourally synthesised cortisol through 11βHSD1 on immune cell migration. We propose that the response to IC blockade therapy in NSCLC may be predicted by 11βHSD1.
Collapse
Affiliation(s)
- Ryoko Saito
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan.
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Takuto Abe
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Hospital, Miyagi, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Ren Nanamiya
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Chihiro Inoue
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
33
|
Hu Z, Zou X, Qin S, Li Y, Wang H, Yu H, Sun S, Wu X, Wang J, Chang J. Hormone receptor expression correlates with EGFR gene mutation in lung cancer in patients with simultaneous primary breast cancer. Transl Lung Cancer Res 2020; 9:325-336. [PMID: 32420072 PMCID: PMC7225161 DOI: 10.21037/tlcr-20-513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The coexistence of double primaries of lung cancer (LC) and breast cancer (BC) are not uncommon in women, but there has been limited research conducted of their molecular association. To decipher the internal pathogenesis of LC in patients with concurrent BC and LC, this study explored the clinical factors and relationship between hormone receptor (HR) expression and epidermal growth factor receptor (EGFR) gene mutation. Methods The clinicopathological characteristics of 400 female patients clinically diagnosed with double primary LC and BC at Fudan University Shanghai Cancer Center were collected. Pathological discrimination was performed to further confirm the double primaries in patients with available tissues. LC samples were then examined to detect EGFR gene mutation status by PCR-based assays and HR expression by immunohistochemistry (IHC). As a control cohort, the characteristics of 114 consecutive patients with LC only were compared with the double-primary patient group. Results A total of 169 patients were pathologically confirmed with simultaneous LC and BC between January 2010 and October 2018. The dominant LC subtype was adenocarcinoma (ADC) (95.1%), and invasive ductal carcinoma (IDC) was the main BC subtype (71.0%). Synchronous and metachronous double primary BC-LC cases accounted for 39.1% and 60.9% of the patients, respectively. The absence of family cancer history was associated with a shorter interval between the two primary cancer diagnoses. Among 64 patients with EGFR mutations, 34.4% had HR-positive LC tissue, compared with 0/24 (0%) of those with EGFR wild-type LC (P<0.001). All of the patients with positive HR expression harbored an activating EGFR mutation (n=22); however, no correlation was observed in the control cohort. Conclusions Double primary BC-LC patients have distinctive clinicopathological features compared to those with LC only. The expression of HRs is significantly correlated with EGFR mutation status of LC tissues.
Collapse
Affiliation(s)
- Zhihuang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China
| | - Xuan Zou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shanshan Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Center for Tumor Diagnosis and Therapy, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Huijie Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Si Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xianghua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianhua Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Drzewiecka H, Jarmołowska-Jurczyszyn D, Kluk A, Gałęcki B, Dyszkiewicz W, Jagodziński PP. Altered expression of 17‑β‑hydroxysteroid dehydrogenase type 2 and its prognostic significance in non‑small cell lung cancer. Int J Oncol 2020; 56:1352-1372. [PMID: 32236582 PMCID: PMC7170045 DOI: 10.3892/ijo.2020.5014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have reported that oestrogens may contribute to the development of non small cell lung cancer (NSCLC). Although different steroidogenic enzymes have been detected in the lung, the precise mechanism leading to an exaggerated accumulation of active oestrogens in NSCLC remains unexplained. 17 β Hydroxysteroid dehydro genase type 2 (HSD17B2) is an enzyme involved in oestrogen and androgen inactivation by converting 17 β oestradiol into oestrone, and testosterone into 4 androstenedione. Therefore, the enzyme serves an important role in regulation of the intra cellular availability of active sex steroids. This study aimed to determine the expression levels of HSD17B2 in lung cancer (LC) and adjacent histopathologically unchanged tissues obtained from 161 patients with NSCLC, and to analyse the association of HSD17B2 with clinicopathological features. For that purpose, reverse transcription quantitative PCR, western blotting and immunohistochemistry were conducted. The results revealed that the mRNA and protein expression levels of HSD17B2 were significantly decreased in LC tissues compared with matched controls (P<10 6). Conversely, strong cytoplasmic staining of HSD17B2 was detected in the unchanged respiratory epithelium and in glandular cells. Notably, a strong association was detected between reduced HSD17B2 expression and advanced tumour stage, grade and size. Furthermore, it was revealed that HSD17B2 may have potential prognostic significance in NSCLC. A log-rank test revealed the benefit of high HSD17B2 protein expression for the overall survival (OS) of patients (P=0.0017), and multivariate analysis confirmed this finding (hazard ratio=0.21; 95% confidence interval=0.07-0.63; P=0.0043). Stratified analysis in the Kaplan Meier Plotter database indicated that patients with higher HSD17B2 expression presented better OS and post-progression survival. This beneficial effect was particularly evident in patients with adenocarcinoma and during the early stages of NSCLC. Decreased expression of HSD17B2 appears to be a frequent feature in NSCLC. Retrospective analysis suggests that the HSD17B2 mRNA and protein status might be independent prognostic factors in NSCLC and should be further investigated.
Collapse
Affiliation(s)
- Hanna Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60‑781 Poznan, Poland
| | | | - Andrzej Kluk
- Department of Clinical Pathomorphology, Poznan University of Medical Sciences, 60‑355 Poznan, Poland
| | - Bartłomiej Gałęcki
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60‑569 Poznan, Poland
| | - Wojciech Dyszkiewicz
- Department of Thoracic Surgery, Poznan University of Medical Sciences, 60‑569 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60‑781 Poznan, Poland
| |
Collapse
|
35
|
Mazieres J, Barlesi F, Rouquette I, Molinier O, Besse B, Monnet I, Audigier-Valette C, Toffart AC, Renault PA, Fraboulet S, Hiret S, Mennecier B, Debieuvre D, Westeel V, Masson P, Madroszyk-Flandin A, Pichon E, Cortot AB, Amour E, Morin F, Zalcman G, Moro-Sibilot D, Souquet PJ. Randomized Phase II Trial Evaluating Treatment with EGFR-TKI Associated with Antiestrogen in Women with Nonsquamous Advanced-Stage NSCLC: IFCT-1003 LADIE Trial. Clin Cancer Res 2020; 26:3172-3181. [DOI: 10.1158/1078-0432.ccr-19-3056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 11/16/2022]
|
36
|
Smida T, Bruno TC, Stabile LP. Influence of Estrogen on the NSCLC Microenvironment: A Comprehensive Picture and Clinical Implications. Front Oncol 2020; 10:137. [PMID: 32133288 PMCID: PMC7039860 DOI: 10.3389/fonc.2020.00137] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer mortality represents the leading cause of cancer related deaths in the United States and worldwide. Almost half of these deaths occur in female patients, making lung cancer the most common cause of cancer mortality in women with a higher annual mortality rate than breast, uterine, and ovarian cancers combined. The distinct epidemiological, histological and biological presentation of non-small cell lung cancer (NSCLC) in women combined with extensive preclinical data have demonstrated that the female sex hormone β-estradiol (E2) plays an important role in NSCLC tumorigenesis, prognosis, and treatment response. Estrogen receptors are widely expressed on stromal and immune cells, and estrogen-linked signaling pathways are known to be involved in regulating the response of both the innate and adaptive immune system. Immune evasion has been recognized as a “hallmark” of cancer and immunotherapy has re-defined standard of care treatment for NSCLC. Despite these advancements, the low response rates observed in patients treated with immune checkpoint inhibitors has led to a search for mediators of immunosuppression and ways to augment the action of these agents. We focus on emerging data describing sex differences that modulate immunotherapy efficacy in NSCLC, immunosuppressive properties of E2 that lead to a pro-tumor microenvironment (TME), and the translational potential of altering the immune microenvironment by targeting the estrogen signaling pathway. E2-induced modulation affects multiple cell types within the TME, including cancer-associated fibroblasts, tumor infiltrating myeloid cells, and tumor infiltrating lymphocytes, all of which interplay with lung tumor cells via E2 and estrogen receptor engagement, ultimately shaping the TME that may, in part, be responsible for the sex-based disparities observed in NSCLC. An improved understanding of the role of the estrogen pathway in NSCLC anti-cancer immunity may lead to novel therapeutic approaches for altering the TME to improve the efficacy of immunotherapy agents.
Collapse
Affiliation(s)
- Tanner Smida
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Laura P Stabile
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
37
|
Asavasupreechar T, Chan MSM, Saito R, Miki Y, Boonyaratanakornkit V, Sasano H. Sex steroid metabolism and actions in non-small cell lung carcinoma. J Steroid Biochem Mol Biol 2019; 193:105440. [PMID: 31386890 DOI: 10.1016/j.jsbmb.2019.105440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Despite recent development in targeted therapies, lung cancer still remains the leading cause of cancer death. Therefore, a better understanding of its pathogenesis and progression could contribute to improving the eventual clinical outcome of the patients. Results of recently published several in vitro and clinical studies indicated the possible involvement of sex steroids in both development and progression of non-small cell lung carcinoma (NSCLC). Therefore we summarized the reported clinical relevant information of the sex steroids, their receptors and steroid metabolizing enzymes related to NSCLC in this mini-review. In addition, we also reviewed the potential "endocrine therapy", targeting sex steroid actions and/or metabolism in NSCLC patients.
Collapse
Affiliation(s)
| | - Monica S M Chan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoko Saito
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
38
|
Chen H, Yan M, Shi W, Shi J, Duan C, Fan Q, Wang Y, Li H. Expression of estrogen receptor beta and overall survival in non-small cell lung cancer patients: Protocol for a systematic review and meta-analysis of cohort studies. Medicine (Baltimore) 2019; 98:e17559. [PMID: 31651857 PMCID: PMC6824691 DOI: 10.1097/md.0000000000017559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths among males and the second leading cause among females worldwide. Numerous studies have linked estrogen status to lung cancer outcome. However, there are studies with conflicting results about the effect of ERβ on survival of lung cancer. The aim of this meta-analysis is to evaluate the prognostic impact of estrogen receptor beta expression on survival among NSCLC patients. METHODS We will search 15 electronic databases, including PubMed, Web of Science, EMBASE, Cochrane Library, and CNKI from inception to June 1, 2019. We will include all cohort studies comparing overall survival of NSCLC patients with high or low estrogen receptor beta expression. The database searches will be supplemented by searching through citations and references. Two reviewers will independently screen search results to identify eligible articles, complete data collection, and conduct quality assessment. All disagreements will be resolved by an independent third reviewer. Methodological quality of the included studies will be assessed using the Newcastle- Ottawa scale. Discrepancies will be resolved by consensus or by consulting a third author. Meta-analyses will be performed, and findings will be reported according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the meta-analysis of observational studies in epidemiology (MOOSE) guidelines. RESULTS The results will be submitted to a peer-reviewed journal for publication. CONCLUSION This review will provide a comprehensive evaluation of the evidence on the prognostic impact of ERβ expression among NSCLC patients and will help clinicians find potential treatments based on estrogen signaling.
Collapse
Affiliation(s)
- Haisheng Chen
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Mi Yan
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Jing Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Cunxian Duan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Yanhong Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
| |
Collapse
|
39
|
Velez MA, Burns TF, Stabile LP. The estrogen pathway as a modulator of response to immunotherapy. Immunotherapy 2019; 11:1161-1176. [PMID: 31361169 DOI: 10.2217/imt-2019-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with a 5-year survival rate of about 18%. Thus, there is a great need for novel therapeutic approaches to treat non-small-cell lung cancer (NSCLC). Immune checkpoint inhibitors (ICIs) have improved outcomes for a subset of patients, especially those with high programmed death-ligand 1 expression and/or high tumor mutational burden, but have failed in the majority of patients. Increasing evidence suggests that the estrogen signaling pathway may be a therapeutic target in metastatic NSCLC and that the estrogen pathway may play a role in sex-based responses to ICIs. This report will review the epidemiologic, preclinical and clinical data on the estrogen pathway in NSCLC, its implications in sex-based responses to ICIs and the potential use of antiestrogen therapy in combination with ICIs.
Collapse
Affiliation(s)
- Maria A Velez
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Timothy F Burns
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Medicine, Division of Hematology-Oncology, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Laura P Stabile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Stanisławska-Sachadyn A, Borzyszkowska J, Krzemiński M, Janowicz A, Dziadziuszko R, Jassem J, Rzyman W, Limon J. Folate/homocysteine metabolism and lung cancer risk among smokers. PLoS One 2019; 14:e0214462. [PMID: 30939165 PMCID: PMC6445430 DOI: 10.1371/journal.pone.0214462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Background Folate and homocysteine are involved in DNA synthesis and methylation processes, which are deregulated during carcinogenesis. Objectives The aim of this study was to assess the relationship between folate/homocysteine concentrations, the functional polymorphisms of folate/homocysteine genes and lung cancer risk among cigarette smokers. Study design The study included 132 lung cancer patients and 396 controls from northern Poland, matched by sex, age and smoking status. The median cigarette pack-years of smoking among both cases and controls was 30.0. Serum, red blood cell (RBC) folates and serum homocysteine concentrations were measured. The genotypes in selected polymorphic sites of the MTHFR, CBS, SHMT1, MTHFD1, MTRR, MTR, TYMS DHFR, TCN2, and SLC19A1 genes were determined. All study participants underwent scanning with low-dose computed tomography. Results Serum folate concentrations above the median (> 17.5 nmol/l among the healthy controls) were associated with an increased lung cancer risk (odds ratio [OR], 1.54, 95% confidence intervals [CI], 1.04–2.29, P = 0.031). An analogous trend was observed when the population was analysed after subdivision according to RBC folate concentrations, that is, above a value of 506.5 nmol/l (OR, 1.53; 95% CI, 0.95–2.47; P = 0.084). Additionally, in a subset of women, an increased risk of lung cancer development was associated with the SLC19A1 c.80AA genotype (c.80AA versus GG OR, 3.14; 95% CI, 1.32–7.46; P = P = 0.010). Conclusion These results suggest that, in the population consisting of heavy smokers, high folate levels add to the cancerogenic effect of smoking.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
- Department of Molecular Biotechnology and Microbiology, Gdańsk University of Technology, Gdańsk, Poland
- * E-mail: ,
| | - Joanna Borzyszkowska
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Krzemiński
- Department of Probability and Biomathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Alicja Janowicz
- Department of Thoracic Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdańsk, Gdańsk, Poland
- Gdańsk Branch of the Polish Academy of Sciences, Gdańsk, Poland
| |
Collapse
|
41
|
Tang H, Bai Y, Xiong L, Zhang L, Wei Y, Zhu M, Wu X, Long D, Yang J, Yu L, Xu S, Zhao J. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem 2019; 120:2028-2038. [PMID: 30216513 DOI: 10.1002/jcb.27510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Numerous studies have shown that the estrogen receptor beta (ERβ) and interleukin 6 receptor (IL-6R) had interaction in many tumors, including lung cancer. Previous studies found that ERβ5 exhibits a different biological function compared with the other subtypes of ERβ. Therefore, this study mainly explores the interaction between ERβ5 and IL-6R in the progression of lung cancer. We found that the expression of ERβ5, IL-6 and glycoprotein 130 (GP130) were significantly increased (P < 0.001) and the 5-year survival rate with the co-expression of ERβ5 and GP130 is significantly lower (P = 0.0315) in non-small cell lung cancer (NSCLC) patients. The cell proliferation, invasion, and cell cycle were markedly increased, and the cell apoptotic was markedly inhibited with the concurrent action of ERβ5 and IL-6 in A549 cells (P < 0.05). In addition, the expression of ERβ5, GP130, p-AKT, and p-44/42 MAPK was also significantly increased in A549 cells (P < 0.05). These results indicate that ERβ5 and GP130 can synergistically promote the progression of NSCLC and maybe combined as an independent prognostic factor in patients. In addition, these results also provide a theoretical basis for the combined targeting therapy of ERβ5 and GP130 in NSCLC.
Collapse
Affiliation(s)
- Hexiao Tang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lecai Xiong
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Wu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Long
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhui Yang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Xu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
The Importance of CYP19A1 in Estrogen Receptor-Positive Cholangiocarcinoma. Discov Oncol 2018; 9:408-419. [DOI: 10.1007/s12672-018-0349-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022] Open
|
43
|
Vondráček J, Pivnička J, Machala M. Polycyclic aromatic hydrocarbons and disruption of steroid signaling. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
45
|
Garon EB, Siegfried JM, Stabile LP, Young PA, Marquez-Garban DC, Park DJ, Patel R, Hu EH, Sadeghi S, Parikh RJ, Reckamp KL, Adams B, Elashoff RM, Elashoff D, Grogan T, Wang HJ, Dacic S, Brennan M, Valdes Y, Davenport S, Dubinett SM, Press MF, Slamon DJ, Pietras RJ. Randomized phase II study of fulvestrant and erlotinib compared with erlotinib alone in patients with advanced or metastatic non-small cell lung cancer. Lung Cancer 2018; 123:91-98. [PMID: 30089602 PMCID: PMC6118115 DOI: 10.1016/j.lungcan.2018.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVES This open-label, randomized phase II trial evaluated antitumor efficacy of an antiestrogen, fulvestrant, in combination with human epidermal growth factor receptor (EGFR) inhibitor, erlotinib, in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS Patients with advanced or metastatic NSCLC, ECOG 0-2, previous chemotherapy unless patient refusal, and no prior EGFR-directed therapy were randomized 2:1 to erlotinib 150 mg oral daily plus 500 mg intramuscular fulvestrant on day 1, 15, 29 and every 28 days thereafter or erlotinib alone 150 mg oral daily. The primary end point was objective response rate (ORR); secondary endpoints included progression free survival (PFS) and overall survival (OS). RESULTS Among 106 randomized patients, 100 received at least one dose of study drug. ORR was 16.4% (11 of 67 patients) for the combination versus 12.1% (4 of 33 patients) for erlotinib (p = 0.77). PFS median 3.5 versus 1.9 months [HR = 0.86, 95% CI (0.52-1.43), p = 0.29] and OS median 9.5 versus 5.8 months [HR = 0.92, 95% CI (0.57-1.48), p = 0.74] numerically favored the combination. In an unplanned subset analysis, among EGFR wild type patients (n = 51), but not EGFR mutant patients (n = 17), median PFS was 3.5 versus 1.7 months [HR = 0.35, 95% CI (0.14-0.86), p = 0.02] and OS was 6.2 versus 5.2 months [HR = 0.72, 95% CI (0.35-1.48), p = 0.37] for combined therapy versus erlotinib, respectively. Notably, EGFR WT patients were more likely to be hormone receptor-positive (either estrogen receptor α- and/or progesterone receptor-positive) compared to EGFR mutant patients (50% versus 9.1%, respectively) (p = 0.03). Treatment was well tolerated with predominant grade 1-2 dermatologic and gastrointestinal adverse effects. CONCLUSION Addition of fulvestrant to erlotinib was well tolerated, with increased activity noted among EGFR wild type patients compared to erlotinib alone, albeit in an unplanned subset analysis.
Collapse
Affiliation(s)
- Edward B Garon
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA.
| | - Jill M Siegfried
- University of Minnesota, Masonic Cancer Center, 420 Delaware Street SE, NHH 3-112, CCRB 3-130 Minneapolis, MN 55455, USA
| | - Laura P Stabile
- University of Pittsburgh Cancer Institute, Department of Pharmacology & Chemical Biology, 5117 Centre Avenue, Lab 2.7, Pittsburgh, PA 15232, USA
| | - Patricia A Young
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Diana C Marquez-Garban
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - David J Park
- St. Jude Heritage Healthcare, Virginia K. Crosson Cancer Center, 2151 N. Harbor Boulevard, Suite 2200, Fullerton, CA 92835, USA
| | - Ravi Patel
- Comprehensive Blood and Cancer Center, 6501 Truxtun Avenue, Bakersfield, CA 93309, USA
| | - Eddie H Hu
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Saeed Sadeghi
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Rupesh J Parikh
- Comprehensive Cancer Care Centers of Nevada, 10001 So. Eastern Ave., Suite 108, Henderson, NV 89052, USA
| | | | - Brad Adams
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Robert M Elashoff
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - David Elashoff
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Tristan Grogan
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - He-Jing Wang
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Sanja Dacic
- University of Pittsburgh Cancer Institute, Department of Pharmacology & Chemical Biology, 5117 Centre Avenue, Lab 2.7, Pittsburgh, PA 15232, USA
| | - Meghan Brennan
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Yacgley Valdes
- Translational Research in Oncology, 8-684 Factor Building, Box 951781, 90095-1781 Los Angeles, CA, USA
| | - Simon Davenport
- University of Southern California School of Medicine and Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Los Angeles, CA 90089, USA
| | - Steven M Dubinett
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Michael F Press
- University of Southern California School of Medicine and Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Los Angeles, CA 90089, USA
| | - Dennis J Slamon
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| | - Richard J Pietras
- David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center, 2825 Santa Monica Blvd, Suite 200, Santa Monica, CA, USA
| |
Collapse
|
46
|
Huang Q, Zhang Z, Liao Y, Liu C, Fan S, Wei X, Ai B, Xiong J. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:133. [PMID: 29970138 PMCID: PMC6029357 DOI: 10.1186/s13046-018-0804-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023]
Abstract
Background In non-small cell lung cancer (NSCLC), estrogen (E2) significantly promotes NSCLC cell growth via estrogen receptor beta (ERβ). Discovery and elucidation of the mechanism underlying estrogen-promoted NSCLC progression is critical for effective preventive interventions. IL6 has been demonstrated to be involved in the development, progression and metastasis in several cancers and IL6 overexpression is associated with poor prognosis in NSCLC. However, the exact role played by IL6 in estrogen-promoted NSCLC progress remain unknown. Here, we evaluated the expression and biological effects of IL6 in NSCLC cells when treated with E2 and explored the underlying mechanism of IL6 in E2-promoted NSCLC progression. Methods Expression of ERβ/IL6 in 289 lung cancer samples was assessed by immunohistochemistry. Matched samples of metastatic lymph node and primary tumor tissues were used to quantify the expression of ERβ/IL6 by western blot. Expression levels of IL6 in NSCLC cells were quantified by western blotting, ELISA, and immunofluorescence staining. The effects of IL6 stimulated by E2 on cell malignancy were evaluated using CCK8, colony formation, wound healing and transwell. Furthermore, overexpression and knockdown ERβ constructs were constructed to measure the expression of IL6. The effects of IL6 stimulated by E2 on tumor growth were evaluated using a urethane-induced adenocarcinoma model. In addition, a xenograft mouse model was used to observe differences in ERβ subtype tumor growth with respect to IL6 expression. Results IL6/ERβ expression were significantly increased in lung cancer. Higher IL6/ERβ expression was associated with decreased differentiation or increased metastasis. IL6 was an independent prognostic factor for overall survival (OS), higher IL6 expression was associated with decreased OS. Furthermore, ERβ regulates IL6 expression via MAPK/ERK and PI3K/AKT pathways when stimulated by E2 and promotes cell malignancy in vitro and induced tumor growth in vivo. Finally we confirm that ERβ isolation 1/5 is essential for E2 promotion of IL6 expression, while ERβ2 not. Conclusions Our findings demonstrate that E2 stimulates IL6 expression to promote lung adenocarcinoma progression through the ERβ pathway. We also clarify the difference in each ERβ subtype for E2 promoting IL6 expression, suggesting that ERβ/IL6 might be potential targets for prognostic assessment and therapeutic intervention in lung cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0804-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quanfu Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Changyu Liu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Fan
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Ai
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Nuvoli B, Sacconi A, Cortese G, Germoni S, Murer B, Galati R. Reduction of estradiol in human malignant pleural mesothelioma tissues may prevent tumour growth, as implied by in in-vivo and in-vitro models. Oncotarget 2018; 7:47116-47126. [PMID: 27323398 PMCID: PMC5216928 DOI: 10.18632/oncotarget.9964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
This study aimed to investigate intratumoural estradiol and estrogen-receptors (ERα, ERβ and GPR30) in malignant pleural mesothelioma (MPM) to understand their function. Here, we report that immunohistochemistry of estradiol showed cytoplasmatic staining in 95% of fifty-seven human MPM samples with a trend toward a negative correlation between estradiol levels and the median post-diagnosis survival time. ERβ was only focally positive in 5.3% of cases, GPR30 and ERα were negative in our cases of MPM. GPR30 was detected mainly in glycosylated form in MPM cells. Moreover, G15, a GPR30 antagonist, induced MPM cell death. Altogether, these data suggest that MPM cells produce E2 interact with glycosylated forms of GPR30, and this facilitates tumour growth. Estradiol was found in MPM cells and plasma from mice mesothelioma xenografts. Concurrent reduction in tumour mass and plasmatic estradiol levels were observed in the mice treated with exemestane, suggesting that the reduction of E2 levels inhibit MPM growth. Thus, it appears that agents reducing estradiol levels could be useful to MPM therapy.
Collapse
Affiliation(s)
- Barbara Nuvoli
- Preclinical Models and New Therapeutic Agent Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Sabrina Germoni
- SAFU Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Murer
- Department of Anatomic Pathology, Mestre Hospital, Venezia, Italy
| | - Rossella Galati
- Preclinical Models and New Therapeutic Agent Unit, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
48
|
Rodriguez-Lara V, Hernandez-Martinez JM, Arrieta O. Influence of estrogen in non-small cell lung cancer and its clinical implications. J Thorac Dis 2018; 10:482-497. [PMID: 29600083 DOI: 10.21037/jtd.2017.12.61] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer death in men worldwide and has significantly increased in women. Differences in non-small cell lung cancer (NSCLC) behavior, prognosis, and response to treatment have been reported by sex and hormonal status, with premenopausal women presenting the worst prognosis compared to postmenopausal women and men. Additionally, the use of hormonal replacement therapy significantly increases NSCLC mortality; supporting the role of estrogen signaling in the pathogenesis of LC. The mechanisms by which estrogen promotes lung carcinogenesis have not been fully elucidated. Estrogen, through its receptor, can stimulate LC cell proliferation, death resistance, angiogenesis, migration and metastasis. Estrogen also induces expression of pro-inflammatory proteins and ligands that promote tumor evasion, suggesting that estrogen might modify the microenvironment and anti-tumor immune response. Recent reports have shown an interaction between the epidermal growth factor receptor (EGFR) pathway and estrogen signaling in lung adenocarcinoma, whence, combined treatment based on tyrosine kinase inhibitors (TKIs) and antiestrogen therapy is beginning to be evaluated. This review focuses on the differences in NSCLC behavior by sex and hormonal status, highlighting the role of estrogen and its receptors in lung carcinogenesis and LC prognosis. Due to the importance of estrogen in NSCLC development and progression we finally discuss the potential of antiestrogen therapy in LC treatment and show the results from preclinical and clinical trials.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Juan-Manuel Hernandez-Martinez
- CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico.,Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Oscar Arrieta
- Functional Unit of Thoracic Oncology and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
49
|
Nikolos F, Thomas C, Bado I, Gustafsson JÅ. ERβ Sensitizes NSCLC to Chemotherapy by Regulating DNA Damage Response. Mol Cancer Res 2017; 16:233-242. [PMID: 29117942 DOI: 10.1158/1541-7786.mcr-17-0201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/12/2017] [Accepted: 10/16/2017] [Indexed: 11/16/2022]
Abstract
The expression of wild-type estrogen receptor β (ESR2/ERβ1) correlates with clinical outcome in patients with non-small cell lung cancer (NSCLC). However, the molecular mechanism that accounts for this association is currently poorly understood. ERβ1 was previously linked to chemotherapy response in patients with breast cancer and in breast cancer cells. The effect of the receptor in NSCLC cells after chemotherapy treatment, a common remedy for advanced NSCLC, has not been studied. Here, upregulation of ERβ1 increases the sensitivity of NSCLC cells to treatment with doxorubicin and etoposide. This effect was primarily observed in p53-defecient NSCLC cells. In these cells, ERβ1 either enhanced G2-M cell-cycle arrest by activating the checkpoint kinase 1 (Chk1) and altering downstream signaling or induced apoptosis. The expression of p63 target genes that control G2-M checkpoint activation was altered by ERβ1 suggesting an ERβ1-p63 transcriptional cooperation in lung cancer cells that affects DNA damage response (DDR). These results suggest involvement of ERβ1 in the mechanism that regulates DNA damage response in NSCLC cells and support the potential predictive and therapeutic value of the receptor in clinical management of the disease.Implications: This study demonstrating the impact of ERβ1 on chemosensitivity of NSCLC cells suggests the predictive value of the receptor for successful response of tumors to chemotherapy and the potential benefit of chemotherapy-treated patients from the use of ER ligands. Mol Cancer Res; 16(2); 233-42. ©2017 AACR.
Collapse
Affiliation(s)
- Fotis Nikolos
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Christoforos Thomas
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas.
| | - Igor Bado
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas
| |
Collapse
|
50
|
Peng J, Meireles SI, Xu X, Smith WE, Slifker MJ, Riel SL, Zhai S, Zhang G, Ma X, Kurzer MS, Ma GX, Clapper ML. Estrogen metabolism in the human lung: impact of tumorigenesis, smoke, sex and race/ethnicity. Oncotarget 2017; 8:106778-106789. [PMID: 29290988 PMCID: PMC5739773 DOI: 10.18632/oncotarget.22269] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/30/2017] [Indexed: 12/13/2022] Open
Abstract
Previous data from this group demonstrate that the murine lung metabolizes estrogen. Production of the putative carcinogen 4-hydroxyestrogen (4-OHE) is elevated within the lungs of female vs. male mice and accelerated by tobacco smoke. The goal of this study was to determine if the human lung metabolizes estrogen and evaluate the impact of tumor formation, smoke, sex and race/ethnicity on metabolism. Urine and lung tissue (normal, tumor) were obtained from 49 non-small cell lung cancer patients. Healthy postmenopausal Caucasian (n = 19) and Chinese (n = 20) American women (never-smokers) donated urine. Quantitative RT-PCR analyses indicate that multiple estrogen synthesis and metabolism genes are expressed in human bronchoalveolar cells. Estrogen and its metabolites were measured in lung tissue and urine using liquid chromatography/tandem mass spectrometry. Wilcoxon rank tests were used for statistical comparisons. E1, E2, E3 and estrogen metabolites 2-OHE1, 2-OHE2, 4-OHE1, 4-OHE2, 2-OME1 and 2-OME2 were detected at higher levels in tumor vs. adjacent normal tissue and in women vs. men (P < 0.05). The proportion of 4-OHEs was higher in tumors than in normal lung tissue (P < 0.05), and elevated in normal tissue from current- vs. never-smoking women (P = 0.006); similar trends were observed in urine. The proportion of 4-OHEs in the urine of postmenopausal Chinese American women was 1.8-fold higher than that of Caucasian women (P = 0.015). These data indicate that estrogen metabolites are present in the human lung. A shift towards 4-hydroxylation during lung tumorigenesis may contribute to the risk conferred by smoking, sex or race/ethnicity.
Collapse
Affiliation(s)
- Jing Peng
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sibele I Meireles
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Xia Xu
- Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - William E Smith
- Department of Food Science and Nutrition and Department of Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Michael J Slifker
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Stacy L Riel
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Shumenghui Zhai
- Center for Asian Health, Temple University, Philadelphia, PA 19140, USA
| | - Guo Zhang
- Center for Asian Health, Temple University, Philadelphia, PA 19140, USA
| | - Xiang Ma
- Center for Asian Health, Temple University, Philadelphia, PA 19140, USA
| | - Mindy S Kurzer
- Department of Food Science and Nutrition and Department of Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Grace X Ma
- Center for Asian Health, Temple University, Philadelphia, PA 19140, USA
| | - Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|