1
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
2
|
Kwon Y, Kim J, Cho SY, Kang YJ, Lee J, Kwon J, Rhee H, Bauer S, Kim HS, Lee E, Kim HS, Jung JH, Kim H, Kim WK. Identification of novel pathogenic roles of BLZF1/ATF6 in tumorigenesis of gastrointestinal stromal tumor showing Golgi-localized mutant KIT. Cell Death Differ 2023; 30:2309-2321. [PMID: 37704840 PMCID: PMC10589262 DOI: 10.1038/s41418-023-01220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.
Collapse
Affiliation(s)
- Yujin Kwon
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Su-Yeon Cho
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Yoon Jin Kang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
- Department of Marine Life Sciences, College of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Jongsoo Lee
- Department of Urology, Urologic Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jaeyoung Kwon
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
| | - Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sebastian Bauer
- Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Germany and German Cancer Consortium (DKTK), Essen, 45141, Germany
| | - Hyung-Sik Kim
- Department of Oral Biochemistry; Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, 50612, South Korea
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jae Hung Jung
- Department of Urology, Yonsei University Wonju College of Medicine/Center of Evidence Based Medicine Institute of Convergence Science, Wonju, 26426, South Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea.
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea.
| |
Collapse
|
3
|
Kim M, Savsani K, Dakshanamurthy S. A Peptide Vaccine Design Targeting KIT Mutations in Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2023; 16:932. [PMID: 37513844 PMCID: PMC10383192 DOI: 10.3390/ph16070932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a leading blood cancer subtype that can be caused by 27 gene mutations. Previous studies have explored potential vaccine and drug treatments against AML, but many were proven immunologically insignificant. Here, we targeted this issue and applied various clinical filters to improve immune response. KIT is an oncogenic gene that can cause AML when mutated and is predicted to be a promising vaccine target because of its immunogenic responses when activated. We designed a multi-epitope vaccine targeting mutations in the KIT oncogene using CD8+ and CD4+ epitopes. We selected the most viable vaccine epitopes based on thresholds for percentile rank, immunogenicity, antigenicity, half-life, toxicity, IFNγ release, allergenicity, and stability. The efficacy of data was observed through world and regional population coverage of our vaccine design. Then, we obtained epitopes for optimized population coverage from PCOptim-CD, a modified version of our original Java-based program code PCOptim. Using 24 mutations on the KIT gene, 12 CD8+ epitopes and 21 CD4+ epitopes were obtained. The CD8+ dataset had a 98.55% world population coverage, while the CD4+ dataset had a 65.14% world population coverage. There were five CD4+ epitopes that overlapped with the top CD8+ epitopes. Strong binding to murine MHC molecules was found in four CD8+ and six CD4+ epitopes, demonstrating the feasibility of our results in preclinical murine vaccine trials. We then created three-dimensional (3D) models to visualize epitope-MHC complexes and TCR interactions. The final candidate is a non-toxic and non-allergenic multi-epitope vaccine against KIT mutations that cause AML. Further research would involve murine trials of the vaccine candidates on tumor cells causing AML.
Collapse
Affiliation(s)
- Minji Kim
- College of Human Ecology, Cornell University, Ithaca, NY 14850, USA
| | - Kush Savsani
- College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Krimmer SG, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, Lee S, Lax I, Mi W, Schlessinger J. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proc Natl Acad Sci U S A 2023; 120:e2300054120. [PMID: 36943885 PMCID: PMC10068818 DOI: 10.1073/pnas.2300054120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.
Collapse
Affiliation(s)
- Stefan G. Krimmer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Nicole Bertoletti
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Yoshihisa Suzuki
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Luka Katic
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Jyotidarsini Mohanty
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sheng Shu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Wei Mi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
5
|
Nam Y, Kim C, Han J, Ryu S, Cho H, Song C, Kim ND, Kim N, Sim T. Identification of Thiazolo[5,4- b]pyridine Derivatives as c-KIT Inhibitors for Overcoming Imatinib Resistance. Cancers (Basel) 2022; 15:143. [PMID: 36612139 PMCID: PMC9817970 DOI: 10.3390/cancers15010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
c-KIT is a promising therapeutic target against gastrointestinal stromal tumor (GIST). In order to identify novel c-KIT inhibitors capable of overcoming imatinib resistance, we synthesized 31 novel thiazolo[5,4-b]pyridine derivatives and performed SAR studies. We observed that, among these substances, 6r is capable of inhibiting significantly c-KIT and suppressing substantially proliferation of GIST-T1 cancer cells. It is of note that 6r is potent against a c-KIT V560G/D816V double mutant resistant to imatinib. Compared with sunitinib, 6r possesses higher differential cytotoxicity on c-KIT D816V Ba/F3 cells relative to parental Ba/F3 cells. In addition, kinase panel profiling reveals that 6r has reasonable kinase selectivity. It was found that 6r remarkably attenuates proliferation of cancer cells via blockade of c-KIT downstream signaling, and induction of apoptosis and cell cycle arrest. Furthermore, 6r notably suppresses migration and invasion, as well as anchorage-independent growth of GIST-T1 cells. This study provides useful SAR information for the design of novel c-KIT inhibitors overcoming imatinib-resistance.
Collapse
Affiliation(s)
- Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chan Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Junghee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Abstract
Gastrointestinal stromal tumours (GIST) have an incidence of ~1.2 per 105 individuals per year in most countries. Around 80% of GIST have varying molecular changes, predominantly mutually exclusive activating KIT or PDGFRA mutations, but other, rare subtypes also exist. Localized GIST are curable, and surgery is their standard treatment. Risk factors for relapse are tumour size, mitotic index, non-gastric site and tumour rupture. Patients with GIST with KIT or PDGFRA mutations sensitive to the tyrosine kinase inhibitor (TKI) imatinib that are at high risk of relapse have improved survival with adjuvant imatinib treatment. In advanced disease, median overall survival has improved from 18 months to >70 months since the introduction of TKIs. The role of surgery in the advanced setting remains unclear. Resistance to TKIs arise mainly from subclonal selection of cells with resistance mutations in KIT or PDGFRA when they are the primary drivers. Advanced resistant GIST respond to second-line sunitinib and third-line regorafenib, as well as to the new broad-spectrum TKI ripretinib. Rare molecular forms of GIST with alterations involving NF1, SDH genes, BRAF or NTRK genes generally show primary resistance to standard TKIs, but some respond to specific inhibitors of the activated genes. Despite major advances, many questions in both advanced and localized disease remain unanswered.
Collapse
Affiliation(s)
- Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France.
| | - Yoon-Koo Kang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Toshiroo Nishida
- Surgery Department, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
7
|
Therapeutic Potential of PI3K/AKT/mTOR Pathway in Gastrointestinal Stromal Tumors: Rationale and Progress. Cancers (Basel) 2020; 12:cancers12102972. [PMID: 33066449 PMCID: PMC7602170 DOI: 10.3390/cancers12102972] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Most gastrointestinal stromal tumors (GISTs) arise due to gain-of-function mutations of KIT and PDGFRA, encoding the receptor tyrosine kinase (RTK). The introduction of the RTK inhibitor imatinib has significantly improved the management of GISTs; however, drug resistance remains a challenge. Constitutive autophosphorylation of RTKs is associated with the activation of the PI3K/AKT/mTOR pathway. Especially, this pathway plays a pivotal role in mRNA translation initiation, directly regulated by eukaryotic initiation factors (eIFs). This review highlights the progress for targeting PI3K/AKT/mTOR-dependent mechanisms in GISTs and explores the relationship between mTOR downstream eIFs and the development of GISTs, which may be a promising future therapeutic target for this tumor entity. Abstract Gastrointestinal stromal tumor (GIST) originates from interstitial cells of Cajal (ICCs) in the myenteric plexus of the gastrointestinal tract. Most GISTs arise due to mutations of KIT and PDGFRA gene activation, encoding the receptor tyrosine kinase (RTK). The clinical use of the RTK inhibitor imatinib has significantly improved the management of GIST patients; however, imatinib resistance remains a challenge. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is a critical survival pathway for cell proliferation, apoptosis, autophagy and translation in neoplasms. Constitutive autophosphorylation of RTKs has an impact on the activation of the PI3K/AKT/mTOR pathway. In several preclinical and early-stage clinical trials PI3K/AKT/mTOR signaling inhibition has been considered as a promising targeted therapy strategy for GISTs. Various inhibitory drugs targeting different parts of the PI3K/AKT/mTOR pathway are currently being investigated in phase Ι and phase ΙΙ clinical trials. This review highlights the progress for PI3K/AKT/mTOR-dependent mechanisms in GISTs, and explores the relationship between mTOR downstream signals, in particular, eukaryotic initiation factors (eIFs) and the development of GISTs, which may be instrumental for identifying novel therapeutic targets.
Collapse
|
8
|
Schmidt-Arras D, Böhmer FD. Mislocalisation of Activated Receptor Tyrosine Kinases - Challenges for Cancer Therapy. Trends Mol Med 2020; 26:833-847. [PMID: 32593582 DOI: 10.1016/j.molmed.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations in genes encoding receptor tyrosine kinases (RTKs) mediate proliferation, cell migration, and cell survival, and are therefore important drivers of oncogenesis. Numerous targeted cancer therapies are directed against activated RTKs, including small compound inhibitors, and immunotherapies. It has recently been discovered that not only certain RTK fusion proteins, but also many full-length RTKs harbouring activating mutations, notably RTKs of the class III family, are to a large extent mislocalised in intracellular membranes. Active kinases in these locations cause aberrant activation of signalling pathways. Moreover, low levels of activated RTKs at the cell surface present an obstacle for immunotherapy. We outline here why understanding of the mechanisms underlying mislocalisation will help in improving existing and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, 24118 Kiel, Germany.
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
Rieger L, O'Shea S, Godsmark G, Stanicka J, Kelly G, O'Connor R. IGF-1 receptor activity in the Golgi of migratory cancer cells depends on adhesion-dependent phosphorylation of Tyr 1250 and Tyr 1251. Sci Signal 2020; 13:13/633/eaba3176. [PMID: 32457113 DOI: 10.1126/scisignal.aba3176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although insulin-like growth factor 1 (IGF-1) signaling promotes tumor growth and cancer progression, therapies that target the IGF-1 receptor (IGF-1R) have shown poor clinical efficacy. To address IGF-1R activity in cancer cells and how it differs from that of the closely related insulin receptor (IR), we focused on two tyrosines in the IGF-1R C-terminal tail that are not present in the IR and are essential for IGF-1-mediated cancer cell survival, migration, and tumorigenic growth. We found that Tyr1250 and Tyr1251 (Tyr1250/1251) were autophosphorylated in a cell adhesion-dependent manner. To investigate the consequences of this phosphorylation, we generated phosphomimetic Y1250E/Y1251E (EE) and nonphosphorylatable Y1250F/Y1251F (FF) mutant forms of IGF-1R. Although fully competent in kinase activity and signaling, the EE mutant was more rapidly internalized and degraded than either the wild-type or FF receptor. IGF-1 promoted the accumulation of wild-type and EE IGF-1R within the Golgi apparatus, whereas the FF mutant remained at the plasma membrane. Golgi-associated IGF-1R signaling was a feature of migratory cancer cells, and Golgi disruption impaired IGF-1-induced signaling and cell migration. Upon the formation of new cell adhesions, IGF-1R transiently relocalized to the plasma membrane from the Golgi. Thus, phosphorylation at Tyr1250/1251 promoted IGF-1R translocation to and signaling from the Golgi to support an aggressive cancer phenotype. This process distinguishes IGF-1R from IR signaling and could contribute to the poor clinical efficacy of antibodies that target IGF-1R on the cell surface.
Collapse
Affiliation(s)
- Leonie Rieger
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Grant Godsmark
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Joanna Stanicka
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Geraldine Kelly
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
10
|
Chin TM, Boopathy GTK, Man EP, Clohessy JG, Csizmadia E, Quinlan MP, Putti T, Wan SC, Xie C, Ali A, Wai FC, Ong YS, Goh BC, Settleman J, Hong W, Levantini E, Tenen DG. Targeting microtubules sensitizes drug resistant lung cancer cells to lysosomal pathway inhibitors. Am J Cancer Res 2020; 10:2727-2743. [PMID: 32194831 PMCID: PMC7052910 DOI: 10.7150/thno.38729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022] Open
Abstract
Oncogene-addicted cancers are predominantly driven by specific oncogenic pathways and display initial exquisite sensitivity to designer therapies, but eventually become refractory to treatments. Clear understanding of lung tumorigenic mechanisms is essential for improved therapies. Methods: Lysosomes were analyzed in EGFR-WT and mutant cells and corresponding patient samples using immunofluorescence or immunohistochemistry and immunoblotting. Microtubule organization and dynamics were studied using immunofluorescence analyses. Also, we have validated our findings in a transgenic mouse model that contain EGFR-TKI resistant mutations. Results: We herein describe a novel mechanism that a mutated kinase disrupts the microtubule organization and results in a defective endosomal/lysosomal pathway. This prevents the efficient degradation of phosphorylated proteins that become trapped within the endosomes and continue to signal, therefore amplifying downstream proliferative and survival pathways. Phenotypically, a distinctive subcellular appearance of LAMP1 secondary to microtubule dysfunction in cells expressing EGFR kinase mutants is seen, and this may have potential diagnostic applications for the detection of such mutants. We demonstrate that lysosomal-inhibitors re-sensitize resistant cells to EGFR tyrosine-kinase inhibitors (TKIs). Identifying the endosome-lysosome pathway and microtubule dysfunction as a mechanism of resistance allows to pharmacologically intervene on this pathway. Conclusions: We find that the combination of microtubule stabilizing agent and lysosome inhibitor could reduce the tumor progression in EGFR TKI resistant mouse models of lung cancer.
Collapse
|
11
|
Takahashi S. Mutations of FLT3 receptor affect its surface glycosylation, intracellular localization, and downstream signaling. Leuk Res Rep 2019; 13:100187. [PMID: 31853441 PMCID: PMC6911968 DOI: 10.1016/j.lrr.2019.100187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 11/29/2022] Open
Abstract
This review describes the effects of FLT3 mutations that alter its intracellular localization and modify its glycosylation, leading to differences in downstream signaling pathways. The most common type of FLT3 mutation, internal tandem duplication (FLT3-ITD), leads to localization in the endoplasmic reticulum and constitutive strong activation of STAT5. In contrast, the ligand-activated FLT3-wild type is mainly expressed on the cell surface and activates MAP kinases. Based on these backgrounds, several reports have demonstrated that glycosylation inhibitors are effective for inhibition of FLT3-ITD expression and intracellular localization. The general subcellular localization regulatory mechanisms for receptor tyrosine kinases are also discussed.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| |
Collapse
|
12
|
Obata Y, Hara Y, Shiina I, Murata T, Tasaki Y, Suzuki K, Ito K, Tsugawa S, Yamawaki K, Takahashi T, Okamoto K, Nishida T, Abe R. N822K- or V560G-mutated KIT activation preferentially occurs in lipid rafts of the Golgi apparatus in leukemia cells. Cell Commun Signal 2019; 17:114. [PMID: 31484543 PMCID: PMC6727407 DOI: 10.1186/s12964-019-0426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background KIT tyrosine kinase is expressed in mast cells, interstitial cells of Cajal, and hematopoietic cells. Permanently active KIT mutations lead these host cells to tumorigenesis, and to such diseases as mast cell leukemia (MCL), gastrointestinal stromal tumor (GIST), and acute myeloid leukemia (AML). Recently, we reported that in MCL, KIT with mutations (D816V, human; D814Y, mouse) traffics to endolysosomes (EL), where it can then initiate oncogenic signaling. On the other hand, KIT mutants including KITD814Y in GIST accumulate on the Golgi, and from there, activate downstream. KIT mutations, such as N822K, have been found in 30% of core binding factor-AML (CBF-AML) patients. However, how the mutants are tyrosine-phosphorylated and where they activate downstream molecules remain unknown. Moreover, it is unclear whether a KIT mutant other than KITD816V in MCL is able to signal on EL. Methods We used leukemia cell lines, such as Kasumi-1 (KITN822K, AML), SKNO-1 (KITN822K, AML), and HMC-1.1 (KITV560G, MCL), to explore how KIT transduces signals in these cells and to examine the signal platform for the mutants using immunofluorescence microscopy and inhibition of intracellular trafficking. Results In AML cell lines, KITN822K aberrantly localizes to EL. After biosynthesis, KIT traffics to the cell surface via the Golgi and immediately migrates to EL through endocytosis in a manner dependent on its kinase activity. However, results of phosphorylation imaging show that KIT is preferentially activated on the Golgi. Indeed, blockade of KITN822K migration to the Golgi with BFA/M-COPA inhibits the activation of KIT downstream molecules, such as AKT, ERK, and STAT5, indicating that KIT signaling occurs on the Golgi. Moreover, lipid rafts in the Golgi play a role in KIT signaling. Interestingly, KITV560G in HMC-1.1 migrates and activates downstream in a similar manner to KITN822K in Kasumi-1. Conclusions In AML, KITN822K mislocalizes to EL. Our findings, however, suggest that the mutant transduces phosphorylation signals on lipid rafts of the Golgi in leukemia cells. Unexpectedly, the KITV560G signal platform in MCL is similar to that of KITN822K in AML. These observations provide new insights into the pathogenic role of KIT mutants as well as that of other mutant molecules. Electronic supplementary material The online version of this article (10.1186/s12964-019-0426-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.
| | - Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Keiichi Ito
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Shou Tsugawa
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan.,Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, 162-8601, Tokyo, Japan
| | - Kouhei Yamawaki
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Osaka University, Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki 2669, Noda, Chiba, 278-0022, Japan. .,SIRC, Teikyo University, Itabashi-ku 2-11-1, Itabashi-ku, 173-8605, Tokyo, Japan.
| |
Collapse
|
13
|
Tarlock K, Alonzo TA, Wang YC, Gerbing RB, Ries R, Loken MR, Pardo L, Hylkema T, Joaquin J, Sarukkai L, Raimondi SC, Hirsch B, Sung L, Aplenc R, Bernstein I, Gamis AS, Meshinchi S, Pollard JA. Functional Properties of KIT Mutations Are Associated with Differential Clinical Outcomes and Response to Targeted Therapeutics in CBF Acute Myeloid Leukemia. Clin Cancer Res 2019; 25:5038-5048. [PMID: 31182436 DOI: 10.1158/1078-0432.ccr-18-1897] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE KIT mutations (KIT +) are common in core binding factor (CBF) AML and have been associated with varying prognostic significance. We sought to define the functional and clinical significance of distinct KIT mutations in CBF pediatric AML. EXPERIMENTAL DESIGN Following transfection of exon 17 (E17) and exon 8 (E8) mutations into HEK293 and Ba/F3 cells, KIT phosphorylation, cytokine-independent growth, and response to tyrosine kinase inhibitors (TKI) were evaluated. Clinical outcomes of patients treated on COG AAML0531 (NCT01407757), a phase III study of gemtuzumab ozogamicin (GO), were analyzed according to mutation status [KIT + vs. wild-type KIT (KIT -)] and mutation location (E8 vs. E17). RESULTS KIT mutations were detected in 63 of 205 patients (31%); 22 (35%) involved only E8, 32 (51%) only E17, 6 (10%) both exons, and 3 (5%) alternative exons. Functional studies demonstrated that E17, but not E8, mutations result in aberrant KIT phosphorylation and growth. TKI exposure significantly affected growth of E17, but not E8, transfected cells. Patients with KIT + CBF AML had overall survival similar to those with KIT - (78% vs. 81%, P = 0.905) but higher relapse rates (RR = 43% vs. 21%; P = 0.005). E17 KIT + outcomes were inferior to KIT - patients [disease-free survival (DFS), 51% vs. 73%, P = 0.027; RR = 21% vs. 46%, P = 0.007)], although gemtuzumab ozogamicin abrogated this negative prognostic impact. E8 mutations lacked significant prognostic effect, and GO failed to significantly improve outcome. CONCLUSIONS E17 mutations affect prognosis in CBF AML, as well as response to GO and TKIs; thus, clinical trials using both agents should be considered for KIT + patients.
Collapse
Affiliation(s)
- Katherine Tarlock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Todd A Alonzo
- University of Southern California Keck School of Medicine, Los Angeles, California.,Children's Oncology Group, Monrovia, California
| | | | | | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jason Joaquin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leela Sarukkai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Betsy Hirsch
- University of Minnesota Cancer Center, Minneapolis, Minnesota
| | - Lillian Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Aplenc
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Alan S Gamis
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Jessica A Pollard
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Couch T, Murphy Z, Getman M, Kurita R, Nakamura Y, Steiner LA. Human erythroblasts with c-Kit activating mutations have reduced cell culture costs and remain capable of terminal maturation. Exp Hematol 2019; 74:19-24.e4. [PMID: 31004744 DOI: 10.1016/j.exphem.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 11/16/2022]
Abstract
A major barrier to the in vitro production of red blood cells for transfusion therapy is the cost of culture components, with cytokines making up greater than half of the culture costs. Cell culture cytokines also represent a major expense for in vitro studies of human erythropoiesis. HUDEP-2 cells are an E6/E7 immortalized erythroblast line used for the in vitro study of human erythropoiesis. In contrast to other cell lines used to study human erythropoiesis, such as K562 cells, HUDEP-2 cells are capable of terminal maturation, including hemoglobin accumulation and chromatin condensation. As such, HUDEP-2 cells represent a valuable resource for studies not amenable to primary cell cultures; however, reliance on the cytokines stem cell factor (SCF) and erythropoietin (EPO) make HUDEP-2 cultures very expensive to maintain. To decrease culture costs, we used CRISPR/Cas9 genome editing to introduce a constitutively activating mutation into the SCF receptor gene KIT, with the goal of generating human erythroblasts capable of SCF-independent expansion. Three independent HUDEP-2 lines with unique KIT receptor genotypes were generated and characterized. All three lines were capable of robust expansion in the absence of SCF, decreasing culture costs by approximately half. Importantly, these lines remained capable of terminal maturation. Together, these data suggest that introduction of c-Kit activating mutations into human erythroblasts may help reduce the cost of erythroblast culture, making the in vitro study of erythropoiesis, and the eventual in vitro production of red blood cells, more economically feasible.
Collapse
Affiliation(s)
- Tyler Couch
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY; Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Zachary Murphy
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Michael Getman
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Laurie A Steiner
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY.
| |
Collapse
|
15
|
Laurent M, Brahmi M, Dufresne A, Meeus P, Karanian M, Ray-Coquard I, Blay JY. Adjuvant therapy with imatinib in gastrointestinal stromal tumors (GISTs)-review and perspectives. Transl Gastroenterol Hepatol 2019; 4:24. [PMID: 31143845 DOI: 10.21037/tgh.2019.03.07] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor of the gastrointestinal (GI) tract. Most of them (>75%) are driven by an oncogenic initiating event involving activating mutations of the genes encoding for tyrosine kinase, KIT or platelet derived growth factor receptor alpha (PDGFRA). Efficacy of the tyrosine kinase Inhibitor imatinib is now well established for advanced disease. For localized GISTs, 3 years treatment is the recommended adjuvant therapy for high risk patients. Whether a longer duration and selection of patients for this adjuvant therapy in localized GISTs remains is not yet established (PERSIST-5 study). Similarly, it will be important to further refine the definition of the population of GIST patients at high risk of relapse including molecular criteria (Annals of Oncology, ESMO guidelines 2018). This review aims to describe current knowledges on the issue of adjuvant therapy of primary GISTs in view of available results.
Collapse
Affiliation(s)
- Marie Laurent
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Mehdi Brahmi
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Armelle Dufresne
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Pierre Meeus
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | - Marie Karanian
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| | | | - Jean-Yves Blay
- Department of Medical Oncology, Centre Leon Berard, Lyon, France
| |
Collapse
|
16
|
Frazier NM, Brand T, Gordan JD, Grandis J, Jura N. Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3 phosphorylation. Oncogene 2019; 38:1936-1950. [PMID: 30390071 PMCID: PMC6417953 DOI: 10.1038/s41388-018-0537-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
Ligand-dependent oligomerization of receptor tyrosine kinases (RTKs) results in their activation through highly specific conformational changes in the extracellular and intracellular receptor domains. These conformational changes are unique for each RTK subfamily, limiting cross-activation between unrelated RTKs. The proto-oncogene MET receptor tyrosine kinase overcomes these structural constraints and phosphorylates unrelated RTKs in numerous cancer cell lines. The molecular basis for these interactions is unknown. We investigated the mechanism by which MET phosphorylates the human epidermal growth factor receptor-3 (HER3 or ERBB3), a catalytically impaired RTK whose phosphorylation by MET has been described as an essential component of drug resistance to inhibitors targeting EGFR and HER2. We find that in untransformed cells, HER3 is not phosphorylated by MET in response to ligand stimulation, but rather to increasing levels of MET expression, which results in ligand-independent MET activation. Phosphorylation of HER3 by its canonical co-receptors, EGFR and HER2, is achieved by engaging an allosteric site on the HER3 kinase domain, but this site is not required when HER3 is phosphorylated by MET. We also observe that HER3 preferentially interacts with MET during its maturation along the secretory pathway, before MET is post translationally processed by cleavage within its extracellular domain. This results in accumulation of phosphorylated HER3 in the Golgi apparatus. We further show that in addition to HER3, MET phosphorylates other RTKs in the Golgi, suggesting that this mechanism is not limited to HER3 phosphorylation. These data demonstrate a link between MET overexpression and its aberrant activation in the Golgi endomembranes and suggest that non-canonical interactions between MET and other RTKs occur during maturation of receptors. Our study highlights a novel aspect of MET signaling in cancer that would not be accessible to inhibition by therapeutic antibodies.
Collapse
Affiliation(s)
- Nicole Michael Frazier
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Toni Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA, 94113, USA
| | - John D Gordan
- Division of Hematology and Oncology - University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, CA, 94113, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
17
|
L'Italien L, Orozco O, Abrams T, Cantagallo L, Connor A, Desai J, Ebersbach H, Gelderblom H, Hoffmaster K, Lees E, Maacke H, Schleyer S, Skegro D, Lee-Hoeflich ST. Mechanistic Insights of an Immunological Adverse Event Induced by an Anti-KIT Antibody Drug Conjugate and Mitigation Strategies. Clin Cancer Res 2018; 24:3465-3474. [PMID: 29615457 DOI: 10.1158/1078-0432.ccr-17-3786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Hypersensitivity reactions (HSRs) were observed in three patients dosed in a phase I clinical trial treated with LOP628, a KIT targeted antibody drug conjugate. Mast cell degranulation was implicated as the root cause for the HSR. Underlying mechanism of this reported HSR was investigated with an aim to identifying potential mitigation strategies.Experimental Design: Biomarkers for mast cell degranulation were evaluated in patient samples and in human peripheral blood cell-derived mast cell (PBC-MC) cultures treated with LOP628. Mitigation strategies interrogated include pretreatment of mast cells with small molecule inhibitors that target KIT or signaling pathways downstream of FcεR1, FcγR, and treatment with Fc silencing antibody formats.Results: Transient elevation of serum tryptase was observed in patients 1-hour posttreatment of LOP628. In agreement with the clinical observation, LOP628 and its parental antibody LMJ729 induced degranulation of human PBC-MCs. Unexpectedly, KIT small molecule inhibitors did not abrogate mast cell degranulation. By contrast, small molecule inhibitors that targeted pathways downstream of Fc receptors blunted degranulation. Furthermore, interference of the KIT antibody to engage Fc receptors by pre-incubation with IgG or using engineered Fc silencing mutations reduced or prevented degranulation. Characterization of Fcγ receptors revealed human PBC-MCs expressed both FcγRII and low levels of FcγRI. Interestingly, increasing the level of FcγRI upon addition of IFNγ, significantly enhanced LOP628-mediated mast cell degranulation.Conclusions: Our data suggest LOP628-mediated mast cell degranulation is the likely cause of HSR observed in the clinic due to co-engagement of the FcγR and KIT, resulting in mast cell activation. Clin Cancer Res; 24(14); 3465-74. ©2018 AACR.
Collapse
Affiliation(s)
| | - Olivia Orozco
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tinya Abrams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Lisa Cantagallo
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Anu Connor
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jayesh Desai
- Royal Melbourne Hospital, Parkville VIC, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | | | - Keith Hoffmaster
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Heiko Maacke
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Siew Schleyer
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Darko Skegro
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | | |
Collapse
|
18
|
Obata Y, Horikawa K, Shiina I, Takahashi T, Murata T, Tasaki Y, Suzuki K, Yonekura K, Esumi H, Nishida T, Abe R. Oncogenic Kit signalling on the Golgi is suppressed by blocking secretory trafficking with M-COPA in gastrointestinal stromal tumours. Cancer Lett 2017; 415:1-10. [PMID: 29196126 DOI: 10.1016/j.canlet.2017.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 02/08/2023]
Abstract
Most gastrointestinal stromal tumours (GISTs) are caused by constitutively active mutations in Kit tyrosine kinase. The drug imatinib, a specific Kit inhibitor, improves the prognosis of metastatic GIST patients, but these patients become resistant to the drug by acquiring secondary mutations in the Kit kinase domain. We recently reported that a Kit mutant causes oncogenic signals only on the Golgi apparatus in GISTs. In this study, we show that in GIST, 2-methylcoprophilinamide (M-COPA, also known as "AMF-26"), an inhibitor of biosynthetic protein trafficking from the endoplasmic reticulum (ER) to the Golgi, suppresses Kit autophosphorylation at Y703/Y721/Y730/Y936, resulting in blockade of oncogenic signalling. Results of our M-COPA treatment assay show that Kit Y703/Y730/Y936 in the ER are dephosphorylated by protein tyrosine phosphatases (PTPs), thus the ER-retained Kit is unable to activate downstream molecules. ER-localized Kit Y721 is not phosphorylated, but not due to PTPs. Importantly, M-COPA can inhibit the activation of the Kit kinase domain mutant, resulting in suppression of imatinib-resistant GIST proliferation. Our study demonstrates that Kit autophosphorylation is spatio-temporally regulated and may offer a new strategy for treating imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Tsuyoshi Takahashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Osaka, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Keita Yonekura
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku 162-8601, Tokyo, Japan
| | - Hiroyasu Esumi
- Division of Clinical Research, Research Institute for Biomedical Sciences, Tokyo, University of Science, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Chuo-ku, 104-0045, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan.
| |
Collapse
|
19
|
Ran L, Chen Y, Sher J, Wong EWP, Murphy D, Zhang JQ, Li D, Deniz K, Sirota I, Cao Z, Wang S, Guan Y, Shukla S, Li KY, Chramiec A, Xie Y, Zheng D, Koche RP, Antonescu CR, Chen Y, Chi P. FOXF1 Defines the Core-Regulatory Circuitry in Gastrointestinal Stromal Tumor. Cancer Discov 2017; 8:234-251. [PMID: 29162563 DOI: 10.1158/2159-8290.cd-17-0468] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/26/2017] [Accepted: 11/14/2017] [Indexed: 01/04/2023]
Abstract
The cellular context that integrates upstream signaling and downstream nuclear response dictates the oncogenic behavior and shapes treatment responses in distinct cancer types. Here, we uncover that in gastrointestinal stromal tumor (GIST), the forkhead family member FOXF1 directly controls the transcription of two master regulators, KIT and ETV1, both required for GIST precursor-interstitial cells of Cajal lineage specification and GIST tumorigenesis. Further, FOXF1 colocalizes with ETV1 at enhancers and functions as a pioneer factor that regulates the ETV1-dependent GIST lineage-specific transcriptome through modulation of the local chromatin context, including chromatin accessibility, enhancer maintenance, and ETV1 binding. Functionally, FOXF1 is required for human GIST cell growth in vitro and murine GIST tumor growth and maintenance in vivo The simultaneous control of the upstream signaling and nuclear response sets up a unique regulatory paradigm and highlights the critical role of FOXF1 in enforcing the GIST cellular context for highly lineage-restricted clinical behavior and treatment response.Significance: We uncover that FOXF1 defines the core-regulatory circuitry in GIST through both direct transcriptional regulation and pioneer factor function. The unique and simultaneous control of signaling and transcriptional circuitry by FOXF1 sets up an enforced transcriptional addiction to FOXF1 in GIST, which can be exploited diagnostically and therapeutically. Cancer Discov; 8(2); 234-51. ©2017 AACR.See related commentary by Lee and Duensing, p. 146This article is highlighted in the In This Issue feature, p. 127.
Collapse
Affiliation(s)
- Leili Ran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuedan Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
| | - Jessica Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Devan Murphy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenny Q Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kemal Deniz
- Department of Pathology, Erciyes University, Kayseri, Turkey
| | - Inna Sirota
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Zhen Cao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shipra Shukla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katie Yang Li
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan Chramiec
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biomedical Engineering, Columbia University, New York, New York
| | - Yuanyuan Xie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Richard P Koche
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. Br J Cancer 2017; 117:1787-1797. [PMID: 29024938 PMCID: PMC5729471 DOI: 10.1038/bjc.2017.354] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/31/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
Abstract
Background: Leiomyosarcoma (LMS) are 15% of adult sarcomas and remain seldom curable in metastatic phase. The TAM receptors and their ligands are overexpressed or activated in multiple malignancies, including LMS. Methods: The TAM receptor and ligand expression was evaluated in LMS cell lines and 358 sarcoma samples by either gene expression or immunohistochemistry. TYRO3 and AXL were knocked down. Crizotinib and foretinib were investigated in vitro. Results: High expression of TYRO3 and AXL was detected in LMS cell lines. TYRO3 or AXL gene knockdown reduced cell proliferation/colony formation. Crizotinib and foretinib decreased TYRO3 and AXL phosphorylation, apoptosis, G2/arrest and reduced colony formation. Immunohistochemistry performed in 107 sarcomas showed higher expression of TYRO3 and GAS6 in LMS vs other sarcomas and nuclear TYRO3 only in LMS. Microarray gene expression performed in 251 sarcomas revealed significantly higher expression of TYRO3 and GAS6 in LMS than other sarcomas. Leiomyosarcoma patients with high expression of GAS6 or PROS1 present a significantly worse PFS. Conclusions: Leiomyosarcoma patients, especially those whom develop metastasis, express higher levels of TYRO3 and GAS6. Crizotinib and foretinib showed effective antitumour activity in LMS through TYRO3 and AXL deactivation indicating that clinical trials using TYRO3 and AXL inhibitors are warranted in advanced LMS.
Collapse
|
21
|
Hara Y, Obata Y, Horikawa K, Tasaki Y, Suzuki K, Murata T, Shiina I, Abe R. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells. PLoS One 2017; 12:e0175514. [PMID: 28403213 PMCID: PMC5389679 DOI: 10.1371/journal.pone.0175514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/27/2017] [Indexed: 01/28/2023] Open
Abstract
Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to activate Akt and also demonstrates that M-COPA is efficacious for growth suppression of neoplastic mast cells.
Collapse
Affiliation(s)
- Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
22
|
Li K, Cheng H, Li Z, Pang Y, Jia X, Xie F, Hu G, Cai Q, Wang Y. Genetic progression in gastrointestinal stromal tumors: mechanisms and molecular interventions. Oncotarget 2017; 8:60589-60604. [PMID: 28947997 PMCID: PMC5601165 DOI: 10.18632/oncotarget.16014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common sarcomas in humans. Constitutively activating mutations in the KIT or PDGFRA receptor tyrosine kinases are the initiating oncogenic events. Most metastatic GISTs respond dramatically to therapies with KIT/PDGFRA inhibitors. Asymptomatic and mitotically-inactive KIT/PDGFRA-mutant "microGISTs" are found in one third of adults, but most of these small tumors never progress to malignancy, underscoring that a progression of oncogenic mutations is required. Recent studies have identified key genomic abnormalities in GIST progression. Novel insights into the genetic progression of GISTs are shedding new light on therapeutic innovations.
Collapse
Affiliation(s)
- Ke Li
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of SATCM for Empirical Formulae Evaluation and Achievements Transformation, Nanjing, China.,Collaborative Innovation Center of Jiangsu Province Chinese Medicine in Cancer Prevention and Treatment, Nanjing, China
| | - Zhang Li
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhi Pang
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Jia
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Xie
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohong Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingping Cai
- Department of Gastro-intestinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuexiang Wang
- SIBS (Institute of Health Sciences), Changzheng Hospital Joint Center for Translational Medicine, Institute of Health Sciences, Shanghai Changzheng Hospital, Institutes for Translational Medicine (CAS-SMMU), University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Obata Y, Horikawa K, Takahashi T, Akieda Y, Tsujimoto M, Fletcher JA, Esumi H, Nishida T, Abe R. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors. Oncogene 2017; 36:3661-3672. [PMID: 28192400 PMCID: PMC5500841 DOI: 10.1038/onc.2016.519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023]
Abstract
Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase–Akt (PI3K–Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek–Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)’s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.
Collapse
Affiliation(s)
- Y Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - K Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - T Takahashi
- Department of Surgery, Osaka University, Graduate School of Medicine, Suita, Osaka, Japan
| | - Y Akieda
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - M Tsujimoto
- Department of Diagnostic Pathology, Osaka Police Hospital, Osaka, Osaka, Japan
| | - J A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Esumi
- Division of Clinical Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - T Nishida
- National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - R Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
24
|
Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition. Proc Natl Acad Sci U S A 2016; 113:E4784-93. [PMID: 27482095 DOI: 10.1073/pnas.1610179113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants.
Collapse
|
25
|
Oncogenic KIT mutations in different exons lead to specific changes in melanocyte phospho-proteome. J Proteomics 2016; 144:140-7. [PMID: 27216642 DOI: 10.1016/j.jprot.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/27/2016] [Accepted: 05/18/2016] [Indexed: 01/15/2023]
Abstract
UNLABELLED Mutations in the proto-oncogene c-KIT (KIT) are found in several cancers, and the site of these mutations differs markedly between cancer types. We used site directed mutagenesis to induce KIT(559), KIT(642) and KIT(816) mutations in primary human melanocytes (PHM) and we investigated the impact of each mutation on KIT function. We studied canonical KIT-signaling pathways by immunoblotting, and we used stable isotope labeling by amino acids in cell culture (SILAC) and kinase prediction models to identify kinases differently activated in respective mutants. We validated our results with the analysis of phosphorylation levels of selected substrates for each kinase. We concluded that CK1 ε and δ are more active in cell clones harboring KIT(559) and KIT(642) mutations, whereas PAK4 is more active in clones with KIT(816) mutation. Our findings might help to develop further therapeutic options for tumors with specific KIT mutations in different domains. BIOLOGICAL SIGNIFICANCE Different types of cancers harbor mutations in the oncogene KIT. The use of small molecules inhibitors directly targeting KIT had a limited success in the treatment of patients with KIT mutant cancers. Our study describes specific phospho-proteome changes due to different KIT mutations, and provides targets of further therapeutic options.
Collapse
|
26
|
Brahmi M, Alberti L, Dufresne A, Ray-Coquard I, Cassier P, Meeus P, Decouvelaere AV, Ranchère-Vince D, Blay JY. KIT exon 10 variant (c.1621 A > C) single nucleotide polymorphism as predictor of GIST patient outcome. BMC Cancer 2015; 15:780. [PMID: 26498480 PMCID: PMC4619434 DOI: 10.1186/s12885-015-1817-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022] Open
Abstract
Background Tumor genotype plays a crucial role in clinical management of GIST. Whether genetic polymorphism of KIT may influence GIST patient outcome is unclear. Methods We investigated the biological and clinical significance of the presence of KIT exon 10 variant (c.1621 A > C), KITL541, in a transfected cell line (3 T3 L541) and in two retrospectively collected series of 109 GIST patients in total. The control group consisted of 60 healthy donors collected at the French department of blood transfusion. Results In the 3 T3 L541 cell line, KITL541 protein exhibited a spontaneous phosphorylation status comparable to that of wild-type KIT but displayed a phosphorylation pattern of AKT and ERK1/2 that was found similar to that of the classical mutated forms of the KIT receptor. Of 109 patients enrolled in this retrospective translational research study, 24 (22 %) harboured KITL541, similarly to the control group of healthy donors (n = 10 of 60, 17 %). A higher prevalence of the variant KITL541 was observed in patients with metastatic status at diagnosis (KITL541 correlated nine of 22 versus 15 of 87, p = 0.02). In addition, patients with KITL541 and localized GIST had a higher rate of relapse at 5 years and lower relapse free survival at 5 years in univariate, as well as in multivariate analysis. Response rate and duration of response to imatinib was similar in KITL541 and KITM541 patients. Conclusion KITL541 genotype is associated with a higher risk of metastasis at diagnosis and a higher risk of relapse in GIST patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1817-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehdi Brahmi
- Department of medical oncology, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| | - Laurent Alberti
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| | - Armelle Dufresne
- Cancer Research Center of Lyon, INSERM UMR 1052, CNRS UMR 5286, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| | - Isabelle Ray-Coquard
- Department of medical oncology, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| | - Philippe Cassier
- Department of medical oncology, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| | - Pierre Meeus
- Department of medical oncology, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| | | | | | - Jean-Yves Blay
- Department of medical oncology, Centre Leon Berard, 28 rue Laennec, Lyon, France.
| |
Collapse
|
27
|
Thompson JJ, Morrison JA, Pearl DL, Boston SE, Wood GA, Foster RA, Coomber BL. Receptor Tyrosine Kinase Expression Profiles in Canine Cutaneous and Subcutaneous Mast Cell Tumors. Vet Pathol 2015; 53:545-58. [DOI: 10.1177/0300985815610388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The receptor tyrosine kinase (RTK) KIT is a major focus of current research into canine mast cell tumors (MCTs). Little is known about the role of other RTKs, such as vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs). These RTKs are dysregulated in many human and animal cancers and are key regulators of tumor angiogenesis. The aims of this study were to assess the expression and activation (phosphorylation) status of KIT, VEGFR2, and PDGFR (α and β) in canine MCTs and to examine associations with various clinical outcomes. c- KIT mutational status and KIT cellular localization pattern were also evaluated for these tumors. Twenty-seven MCTs, consisting of 5 subcutaneous and 22 cutaneous tumors, from 25 dogs were evaluated. MCT biopsies, cultured mast cells, and skin from the surgical margin were analyzed through Western blotting. MCT biopsies were also used for KIT immunohistochemical labeling and polymerase chain reaction for c- KIT mutational analysis. MCT had heterogeneous expression profiles for all 3 RTKs, which varied in intensity and activation status. Statistical analyses showed phosphorylated KIT, VEGFR2, and KIT cellular localization to be predictive of decreased survival time, disease-free interval, and increased metastatic rate. Expression of VEGFR2 and KIT diffuse cytoplasmic labeling were also significantly associated with increased rate of local recurrence. The results of the study show that phosphorylated KIT, KIT, VEGFR2, and PDGFRβ, in addition to KIT localization, may be valuable prognostic determinants in MCTs and should be further studied to improve diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- J. J. Thompson
- University of Guelph, Ontario Veterinary College, Guelph, Canada
| | - J. A. Morrison
- University of Guelph, Ontario Veterinary College, Guelph, Canada
| | - D. L. Pearl
- University of Guelph, Ontario Veterinary College, Guelph, Canada
| | - S. E. Boston
- University of Guelph, Ontario Veterinary College, Guelph, Canada
- University of Florida, Gainesville, FL, USA
| | - G. A. Wood
- University of Guelph, Ontario Veterinary College, Guelph, Canada
| | - R. A. Foster
- University of Guelph, Ontario Veterinary College, Guelph, Canada
| | - B. L. Coomber
- University of Guelph, Ontario Veterinary College, Guelph, Canada
| |
Collapse
|
28
|
Nätynki M, Kangas J, Miinalainen I, Sormunen R, Pietilä R, Soblet J, Boon LM, Vikkula M, Limaye N, Eklund L. Common and specific effects of TIE2 mutations causing venous malformations. Hum Mol Genet 2015; 24:6374-89. [PMID: 26319232 DOI: 10.1093/hmg/ddv349] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Venous malformations (VMs) are localized defects in vascular morphogenesis frequently caused by mutations in the gene for the endothelial tyrosine kinase receptor TIE2. Here, we report the analysis of a comprehensive collection of 22 TIE2 mutations identified in patients with VM, either as single amino acid substitutions or as double-mutations on the same allele. Using endothelial cell (EC) cultures, mouse models and ultrastructural analysis of tissue biopsies from patients, we demonstrate common as well as mutation-specific cellular and molecular features, on the basis of which mutations cluster into categories that correlate with data from genetic studies. Comparisons of double-mutants with their constituent single-mutant forms identified the pathogenic contributions of individual changes, and their compound effects. We find that defective receptor trafficking and subcellular localization of different TIE2 mutant forms occur via a variety of mechanisms, resulting in attenuated response to ligand. We also demonstrate, for the first time, that TIE2 mutations cause chronic activation of the MAPK pathway resulting in loss of normal EC monolayer due to extracellular matrix (ECM) fibronectin deficiency and leading to upregulation of plasminogen/plasmin proteolytic pathway. Corresponding EC and ECM irregularities are observed in affected tissues from mouse models and patients. Importantly, an imbalance between plasminogen activators versus inhibitors would also account for high d-dimer levels, a major feature of unknown cause that distinguishes VMs from other vascular anomalies.
Collapse
Affiliation(s)
- Marjut Nätynki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jaakko Kangas
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Raija Sormunen
- Biocenter Oulu, University of Oulu, Oulu, Finland, Department of Pathology and Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka Pietilä
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Julie Soblet
- Human Molecular Genetics, de Duve Institute, and
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, and Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Nisha Limaye
- Human Molecular Genetics, de Duve Institute, and
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland,
| |
Collapse
|
29
|
Van Looy T, Wozniak A, Floris G, Li H, Wellens J, Vanleeuw U, Sciot R, Debiec-Rychter M, Schöffski P. Therapeutic Efficacy Assessment of CK6, a Monoclonal KIT Antibody, in a Panel of Gastrointestinal Stromal Tumor Xenograft Models. Transl Oncol 2015; 8:112-8. [PMID: 25926077 PMCID: PMC4415139 DOI: 10.1016/j.tranon.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/19/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
We evaluated the efficacy of CK6, a KIT monoclonal antibody, in a panel of human gastrointestinal stromal tumor (GIST) xenograft models. Nude mice were bilaterally transplanted with human GIST xenografts (four patient derived and two cell line derived), treated for 3 weeks, and grouped as follows: control (untreated); CK6 (40 mg/kg, 3 × weekly); imatinib (50 mg/kg, twice daily); sunitinib (40 mg/kg, once daily); imatinib + CK6; sunitinib + CK6 (same doses and schedules as in the single-agent treatments). Tumor volume assessment, Western blot analysis, and histopathology were used for evaluation of efficacy. Statistical analysis was performed using Mann-Whitney U (MWU) and Wilcoxon matched-pairs tests. CK6 as a single agent only reduced tumor growth rate in the UZLX-GIST3 model (P = .053, MWU compared to control), while in none of the other GIST models an effect on tumor growth rate was observed. CK6 did not result in significant anti-proliferative or pro-apoptotic effects in any of the GIST models, and moreover, CK6 did not induce a remarkable inhibition of KIT activation. Furthermore, no synergistic effect of combining CK6 with tyrosine kinase inhibitors (TKIs) was observed. Conversely, in certain GIST xenografts, anti-tumor effects seemed to be inferior under combination treatment compared to single-agent TKI treatment. In the GIST xenografts tested, the anti-tumor efficacy of CK6 was limited. No synergy was observed on combination of CK6 with TKIs in these GIST models. Our findings highlight the importance of using relevant in vivo human tumor xenograft models in the preclinical assessment of drug combination strategies.
Collapse
Affiliation(s)
- Thomas Van Looy
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Giuseppe Floris
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Haifu Li
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Jasmien Wellens
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Ulla Vanleeuw
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium.
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven and Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| |
Collapse
|
30
|
Constitutive activation of oncogenic PDGFRα-mutant proteins occurring in GIST patients induces receptor mislocalisation and alters PDGFRα signalling characteristics. Cell Commun Signal 2015; 13:21. [PMID: 25880691 PMCID: PMC4396151 DOI: 10.1186/s12964-015-0096-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background Gastrointestinal stromal tumours (GIST) are mainly characterised by the presence of activating mutations in either of the two receptor tyrosine kinases c-KIT or platelet-derived growth factor receptor-α (PDGFRα). Most mechanistic studies dealing with GIST mutations have focused on c-KIT and far less is known about the signalling characteristics of the mutated PDGFRα proteins. Here, we study the signalling capacities and corresponding transcriptional responses of the different PDGFRα proteins under comparable genomic conditions. Results We demonstrate that the constitutive signalling via the oncogenic PDGFRα mutants favours a mislocalisation of the receptors and that this modifies the signalling characteristics of the mutated receptors. We show that signalling via the oncogenic PDGFRα mutants is not solely characterised by a constitutive activation of the conventional PDGFRα signalling pathways. In contrast to wild-type PDGFRα signal transduction, the activation of STAT factors (STAT1, STAT3 and STAT5) is an integral part of signalling mediated via mutated PDGF-receptors. Furthermore, this unconventional STAT activation by mutated PDGFRα is already initiated in the endoplasmic reticulum whereas the conventional signalling pathways rather require cell surface expression of the receptor. Finally, we demonstrate that the activation of STAT factors also translates into a biologic response as highlighted by the induction of STAT target genes. Conclusion We show that the overall oncogenic response is the result of different signatures emanating from different cellular compartments. Furthermore, STAT mediated responses are an integral part of mutated PDGFRα signalling. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0096-8) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Abstract
Gastrointestinal stromal tumors (GISTs) were originally thought to harbor either KIT or platelet-derived growth factor receptor A (PDGFRA) mutations only. However, more recent discoveries have highlighted additional, less common oncogenic driver mutations including NF1, BRAF, and succinate dehydrogenase (SDH) mutations. Genotyping GISTs has become more important since not all genotypes respond equally to FDA-approved tyrosine kinase inhibitors. GIST is a paradigm for personalized cancer therapy. Recent studies demonstrate how immunohistochemistry can be used both to diagnose GIST and to screen for specific mutations. DOG1 is particularly useful in the diagnosis of KIT-negative GIST, including tumors with PDGFRA mutations, which can also potentially be identified by immunohistochemistry for PDGFRA. SDHB immunohistochemistry is useful in characterizing GISTs with SDHA-D mutations, whereas SDHA immunohistochemistry is able to identify SDHA mutant GISTs.
Collapse
Affiliation(s)
- Brian P Rubin
- Robert J. Tomsich Pathology Institute, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Genetics, Lerner Research Institute, Taussig Cancer Center, Cleveland Clinic, NE20, 9500 Euclid Ave, Cleveland, Ohio.
| | - Michael C Heinrich
- Department of Oncology, Veterans Affairs Portland Heatlh Care System and OHSU Knight Cancer Institute, Portland, Oregon
| |
Collapse
|
32
|
Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation. Nat Commun 2014; 5:5715. [PMID: 25493654 PMCID: PMC4284665 DOI: 10.1038/ncomms6715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/30/2014] [Indexed: 11/08/2022] Open
Abstract
Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit's kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation.
Collapse
|
33
|
Emile JF. [Gastrointestinal stromal tumors (GIST): at the forefront of targeted therapies]. Med Sci (Paris) 2013; 29:630-6. [PMID: 23859518 DOI: 10.1051/medsci/2013296016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although gastrointestinal stromal tumors (GIST) are the most frequent sarcomas, they were usually not diagnosed before 1998. GIST derive from interstitial cells of Cajal, and may develop along the digestive tract, mainly from stomach and small intestine. GIST are characterized by the expression of KIT (CD117), and mutations KIT or PDGFRA are present in 85 % of cases. More than 150 different types of mutations have been reported. They are responsible for a constitutive activation of these tyrosine kinase receptors, in absence of their specific ligand. Detection of these mutations may help to confirm the diagnosis or to evaluate the prognosis. The mutations also have a predictive value. Indeed patients with metastatic GIST and duplication within exon 9 of KIT deserve to receive twice the dose of imatinib, while GIST with PDGFRA p.D842 V mutation are resistant to this drug. This review presents the main characteristics of GIST, and focus on the important insights of studies on GIST and their cell models in the field of oncology.
Collapse
Affiliation(s)
- Jean-François Emile
- Université de Versailles, hôpital Ambroise Paré, assistance publique-hôpitaux de Paris, Boulogne, France
| |
Collapse
|
34
|
Bachet JB, Tabone-Eglinger S, Dessaux S, Besse A, Brahimi-Adouane S, Emile JF, Blay JY, Alberti L. Gene expression patterns of hemizygous and heterozygous KIT mutations suggest distinct oncogenic pathways: a study in NIH3T3 cell lines and GIST samples. PLoS One 2013; 8:e61103. [PMID: 23593401 PMCID: PMC3625162 DOI: 10.1371/journal.pone.0061103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/05/2013] [Indexed: 12/18/2022] Open
Abstract
Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways.
Collapse
Affiliation(s)
- Jean-Baptiste Bachet
- EA4340 'Epidémiologie et Oncogénèse des tumeurs digestives', Faculté de médecine PIFO, UVSQ, Guyancourt, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Relocalization of KIT D816V to Cell Surface After Dasatinib Treatment: Potential Clinical Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2013; 13:62-9. [DOI: 10.1016/j.clml.2012.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/13/2012] [Accepted: 08/23/2012] [Indexed: 11/21/2022]
|
36
|
el Sayadi H, Pissaloux D, Alberti L, Tabone-Eglinger S, Ranchere D, Decouvelaere AV, Tabone E, Ray-Coquard I, Caux C, Fayette J, Blay JY. Autocrine role for Gas6 with Tyro3 and Axl in leiomyosarcomas. Target Oncol 2013; 8:261-9. [PMID: 23354874 DOI: 10.1007/s11523-012-0249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/20/2012] [Indexed: 12/11/2022]
Abstract
Leiomyosarcoma (LMS) represent 15 % of adult sarcomas. The aim of this work was to identify novel altered pathways in LMS, which may be of therapeutic value for patients. Thirteen fresh frozen samples of soft tissue and visceral LMS were analyzed and compared with normal smooth muscle uterine tissue (NSM) for phosphoproteomic profile. Four proteins were found differentially expressed including Tyro3. The functional role of Tyro3 and its ligand Gas6 was investigated in two LMS cell lines, SK-LMS-1 and CNIO-AA. Four proteins and phosphoproteins were differentially expressed in LMS samples vs NSM: A loss of FAK Y397 phosphorylation was observed in all LMSs, while Tyro3, MSH2 and PKC theta were consistently overexpressed. Gas6, the major ligand of Tyro3, was expressed in 8 of the 13 LMS samples, and Gas6 expression highly correlated to Akt Y473 phosphorylation and to a lesser extent to Erk1/2 phosphorylation. SK-LMS-1 and CNIO-AA LMS expressed Tyro3, Axl and Gas6 at high level in CNIO-AA while at low levels in SK-LMS-1. Exposure of both cell lines to foretinib, a tyrosine kinase inhibitor of Met, Axl and Tyro3, reduced cell viability and induced caspase 3/7 activation. Transfection of CNIO-AA with small interfering RNA directed against Tyro3 and Axl genes induced a reduction of the expression of the specific proteins and, when combined, significantly reduced CNIO-AA cell viability. Leiomyosarcomas overexpress Tyro3. Gas6, a ligand of Tyro3, exerts an autocrine activities though Tyro3 and Axl in a subgroup of LMS.
Collapse
Affiliation(s)
- Hiba el Sayadi
- Pole des Sciences Cliniques & Centre de Recherche en Cancerologie de Lyon, INSERM UMR5286 Equipe 11, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kashiwagi S, Yashiro M, Takashima T, Aomatsu N, Kawajiri H, Ogawa Y, Onoda N, Ishikawa T, Wakasa K, Hirakawa K. c-Kit expression as a prognostic molecular marker in patients with basal-like breast cancer. Br J Surg 2013; 100:490-6. [DOI: 10.1002/bjs.9021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2012] [Indexed: 01/24/2023]
Abstract
Abstract
Background
As patients with basal-like breast cancer (BLBC) have a poor prognosis and there is no specifically tailored therapy, molecular biological characterization of BLBC is necessary. c-Kit is a transmembrane receptor tyrosine kinase known to play important roles in various solid cancers. This study classified BLBCs from patients with breast carcinoma, and addressed the significance of c-Kit expression in these tumours.
Methods
Primary breast tumours were stained with antibodies against oestrogen receptor, progesterone receptor, human epidermal growth factor receptor (HER) 2, epidermal growth factor receptor (EGFR), cytokeratin 5/6 and c-Kit. The association between c-Kit, BLBC and survival was analysed.
Results
A total of 667 patients with breast cancer were followed up for a median of 39 (range 6–72) months. Some 190 tumours (28·5 per cent) were classified as triple-negative for breast cancer (negative for oestrogen receptor, progesterone receptor and HER2) and 149 (78·4 per cent) had characteristics of BLBC (positive for cytokeratin 5/6 and/or EGFR). c-Kit expression was detected in 111 (16·6 per cent) of 667 tumours. c-Kit-positive tumours were more commonly found among patients with BLBC (42 of 149, 28·2 per cent; P < 0·001) and in patients with nodal metastasis (47 of 216, 21·8 per cent; P = 0·014) than in those without. In patients with BLBC, the prognosis was significantly worse in those with c-Kit expression (P < 0·001). Multivariable logistic regression analysis revealed c-Kit as an independent negative prognostic factor for cancer-specific survival in patients with BLBC (hazard ratio 2·29, 95 per cent confidence interval 1·11 to 4·72).
Conclusion
c-Kit might be a prognostic marker and possible molecular target for therapy in patients with BLBC.
Collapse
Affiliation(s)
- S Kashiwagi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - M Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - T Takashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - N Aomatsu
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - H Kawajiri
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Y Ogawa
- Department of Breast Surgical Oncology, Osaka City General Hospital, Osaka, Japan
| | - N Onoda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - T Ishikawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - K Wakasa
- Department of Diagnostic Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - K Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
38
|
Köthe S, Müller JP, Böhmer SA, Tschongov T, Fricke M, Koch S, Thiede C, Requardt RP, Rubio I, Böhmer FD. Features of Ras activation by a mislocalized oncogenic tyrosine kinase: FLT3 ITD signals via K-Ras at the plasma membrane of Acute Myeloid Leukemia cells. J Cell Sci 2013; 126:4746-55. [DOI: 10.1242/jcs.131789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FLT3 ITD (FMS-like tyrosine kinase 3 with internal tandem duplication) is an important oncoprotein in Acute Myeloid Leukemia (AML). Owing to its constitutive kinase activity FLT3 ITD accumulates partially at endomembranes, a feature shared with other disease-associated, mutated receptor tyrosine kinases. Since Ras proteins also transit through endomembranes we have investigated the possible existence of an intracellular FLT3 ITD/Ras signaling pathway by comparing Ras signaling of FLT3 ITD with that of wild-type FLT3. Ligand stimulation activated both K- and N-Ras in cells expressing wild-type FLT3. Life-cell Ras-GTP imaging revealed ligand-induced Ras activation at the plasma membrane (PM). FLT3 ITD dependent constitutive activation of K-Ras and N-Ras was also observed primarily at the PM, supporting the view that the PM-resident pool of FLT3 ITD engaged the Ras/Erk pathway in AML cells. Accordingly, specific interference with FLT3 ITD/Ras signaling at the PM using PM-restricted dominant negative K-RasS17N potently inhibited cell proliferation and promoted apoptosis, corroborating that Ras signalling is crucial for FLT3 ITD dependent cell transformation and confirming that FLT3 ITD addresses PM-bound Ras despite its pronounced mislocalization to endomembranes.
Collapse
|
39
|
Hou XW, Bai CG, Liu XH, Qiu C, Huang L, Xu JJ, Ma DAL. Expression of stem cell factor in gastrointestinal stromal tumors: Implications for proliferation and imatinib resistance. Oncol Lett 2012; 5:552-558. [PMID: 23420128 PMCID: PMC3572958 DOI: 10.3892/ol.2012.1019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/31/2012] [Indexed: 01/13/2023] Open
Abstract
KIT autophosphorylation caused by mutation of KIT is considered to be a critical mechanism for the oncogenesis of gastrointestinal stromal tumors (GISTs). However, little is known regarding whether stem cell factor (SCF), the KIT ligand, is able to induce the proliferation of GIST cells by activating the wild-type KIT receptor in GISTs. Imatinib, a tyrosine kinase inhibitor, has been demonstrated to be effective as treatment for the majority of GISTs. However, primary resistance to imatinib in GISTs with wild-type KIT and acquired resistance in GISTs with mutant KIT are becoming increasingly significant problems. The aims of this study were to detect the expression and function of SCF in 68 GIST samples, and to explore the relationship between SCF activity and imatinib resistance using immunohistochemical staining and western blot analysis. Results showed abundant expression of SCF in GISTs and demonstrated that SCF is capable of enhancing GIST cell proliferation. Similar to its ineffectiveness in wild-type GISTs, imatinib also failed to inhibit SCF-induced KIT activation in GISTs with mutant KIT. We also found increased SCF expression in GIST cells treated with imatinib. Overall, our results indicated that SCF-induced KIT activation is a novel essential pathway for the proliferation of GISTs. Imatinib was not able to inhibit the activity of SCF, while it promoted the expression of SCF, which may have contributed to acquired imatinib resistance.
Collapse
Affiliation(s)
- Xiao-Wei Hou
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433; ; Department of Oncology, 401 Hospital of PLA, Qingdao, Shandong 266071
| | | | | | | | | | | | | |
Collapse
|
40
|
Brahimi-Adouane S, Bachet JB, Tabone-Eglinger S, Subra F, Capron C, Blay JY, Emile JF. Effects of endoplasmic reticulum stressors on maturation and signaling of hemizygous and heterozygous wild-type and mutant forms of KIT. Mol Oncol 2012; 7:323-33. [PMID: 23146721 DOI: 10.1016/j.molonc.2012.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
Gain of function mutations of KIT are frequent in some human tumors, and are sensible to tyrosine kinase inhibitors. In most tumors, oncogenic mutations are heterozygous, however most in vitro data of KIT activation have been obtained with hemizygous mutation. This study aimed to investigate the maturation and activation of wild-type (WT) and mutant (M) forms of KIT in hemizygous and heterozygous conditions. WT and two types of exon 11 deletions M forms of human KIT were expressed in NIH3T3 cell lines. Membrane expression of KIT was quantified by flow cytometry. Quantification of glycosylated forms of KIT and phosphorylated forms of AKT and ERK were performed by western blot. Simultaneous activation of WT KIT and treatment with endoplasmic reticulum (ER) inhibitors, tunicamycin or brefeldin A induced a complete inhibition of membrane expression of the 145 kDa form of KIT. By contrast activation or ER inhibitors alone, only partly inhibited this form. ER inhibitors also inhibited KIT activation-dependent phosphorylation of AKT and ERK1/2. Brefeldin A induced a complete down regulation of the 145 kDa form in hemizygous M, and induced an intra-cellular accumulation of the 125 kDa form in WT but not in hemizygous M. Heterozygous cells had glycosylation and response to ER inhibitors patterns more similar to WT than to hemizygous M. Phosphorylated AKT was reduced in hemizygous cells in comparison to WT KIT cells and heterozygous cells, and in the presence of brefeldin A in all cell lines. Effects of ER inhibitors are significantly different in hemizygous and heterozygous mutants. Differences in intra-cellular trafficking of KIT forms result in differences in downstream signaling pathways, and activation of PI3K/AKT pathway appears to be tied to the presence of the mature 145 kDa form of KIT at the membrane surface.
Collapse
Affiliation(s)
- Sabrina Brahimi-Adouane
- EA4340 'Epidémiologie et Oncogénèse des tumeurs digestives', Faculté de médecine PIFO, UVSQ, 78280 Guyancourt, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
42
|
Qiu C, Ma DL. Gastrointestinal stromal tumors: Molecular pathogenesis and targeted therapy. Shijie Huaren Xiaohua Zazhi 2012; 20:1595-1601. [DOI: 10.11569/wcjd.v20.i18.1595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The autophosphorylation of KIT protein, resulting from gain-of-function mutations of the c-kit or PDGFR gene, is the most important molecular mechanism involved in the pathogenesis of gastrointestinal stromal tumors (GISTs). Imatinib is a small molecule tyrosine kinase inhibitor and is effective in the treatment of GISTs. KIT is a convenient target in GISTs, and inhibition of this receptor with imatinib (Gleevec, STI571) in GISTs has shown dramatic efficacy. Unfortunately, resistance to imatinib is a significant clinical problem. Further understanding of the molecular pathogenesis of GISTs is therefore important and may lead to the identification of novel drug targets. This review will focus on recent advances in the understanding of molecular mechanisms involved in the pathogenesis of all types of GISTs. The molecular biological characteristics of each type of GISTs will also be discussed.
Collapse
|
43
|
Asmane I, Watkin E, Alberti L, Duc A, Marec-Berard P, Ray-Coquard I, Cassier P, Decouvelaere AV, Ranchère D, Kurtz JE, Bergerat JP, Blay JY. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: a predictive biomarker for IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur J Cancer 2012; 48:3027-35. [PMID: 22682017 DOI: 10.1016/j.ejca.2012.05.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/01/2012] [Accepted: 05/09/2012] [Indexed: 01/16/2023]
Abstract
AIMS A minority of patients with advanced sarcoma achieve prolonged progression free survival (PFS) with insulin growth factor type 1 receptor (IGF-1R) monoclonal antibody (Ab) therapy. A biomarker identifying those patients beforehand would be useful to select patients for the development of these agents. METHODS This single centre series includes patients with unresectable or metastatic soft tissue sarcomas (STS), Ewing sarcoma (ES) and osteosarcoma treated with IGF-1R Ab (R1507, IMC-A12, SCH 717454 and CP-751.871) in the Centre Léon Bérard. Tumour samples were analysed by immunohistochemistry for expression of IGF-1R, insulin-like growth factor binding protein type 3 (IGFBP-3), Ki67, epidermal growth factor receptor (HER1) and human epidermal growth factor receptor 2 (HER2). Predictive factors for PFS and overall survival (OS) were investigated. RESULTS All tumour samples had a positive IGF-1R immunostaining on 60% to 100% of tumour cells. IGFBP-3 immunostaining was observed in 12 (75%) samples with 5% to 100% of positive cells. IGF-1R immunostaining was nuclear (n=9, 56%), cytoplasmic (n=4, 25%), or nuclear +cytoplasmic (n=3, 19%). Neither IGFBP-3 expression, nor Ki67 was correlated to PFS. HER2 and HER1 staining were positive in 0 and 2 samples respectively (both primary resistant to IGF-1R Ab therapy). Exclusive intra-nuclear immunoreactivity for IGF-1R was significantly associated with a better PFS (p=0.01) and OS (p=0.007). CONCLUSION Exclusive nuclear localisation of IGF-1R is an easily testable biomarker associated with a better PFS and OS for patients treated with IGF-1R Ab therapy. Nuclear localisation of IGF-1R in tumour cells might be a hallmark of pathway activation.
Collapse
Affiliation(s)
- Irène Asmane
- CHU Strasbourg, 1, Avenue Molière, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Scientific knowledge on gastrointestinal stromal tumors (GIST) has highly progressed over the last 10 years. The molecular bases of oncogenic transformation, KIT activating mutations, were identified in 1998 by Hirota et al. The product of KIT proto-oncogene, KIT protein, is a transmembrane receptor with tyrosine kinase activity. Tyrosine kinase inhibitors targeting these mutated activated kinases, namely imatinib and more recently sunitinib, nilotinib, masitinib or sorafenib, have deeply modified GIST prognosis. Molecular biology in GIST is now becoming a routine tool for treatment selection. In patients with advanced GIST, imatinib should be given until progression, and then, other tyrosine kinase inhibitors targeting KIT should be used. In the adjuvant setting, the optimal duration of imatinib treatment remains unknown.
Collapse
|
45
|
Carpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, Bresler SC, Vigny M, Mazot P, Asgharzadeh S, Seeger RC, Zhao H, Guo R, Christensen JG, Orange JS, Pawel BR, Lemmon MA, Mossé YP. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012; 31:4859-67. [PMID: 22266870 DOI: 10.1038/onc.2011.647] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies-as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK.
Collapse
Affiliation(s)
- E L Carpenter
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Imatinib elicited a favorable response in a dog with a mast cell tumor carrying a c-kit c.1523A>T mutation via suppression of constitutive KIT activation. Vet Immunol Immunopathol 2011; 142:101-6. [DOI: 10.1016/j.vetimm.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 11/17/2022]
|
47
|
Bozzi F, Conca E, Manenti G, Negri T, Brich S, Gronchi A, Pierotti MA, Tamborini E, Pilotti S. High CD133 expression levels in gastrointestinal stromal tumors. CYTOMETRY PART B-CLINICAL CYTOMETRY 2011; 80:238-47. [PMID: 21462307 DOI: 10.1002/cyto.b.20589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 12/28/2010] [Accepted: 01/06/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Gastrointestinal stromal tumours (GISTs) have activating KIT or PDGFRA gene mutations. Imatinib mesylate, which targets KIT and PDGFRA, is effective in treating GISTs, but 90% of GIST patients become imatinib-resistant as a result of acquiring secondary KIT mutations. Recent findings suggest that tumour growth can be driven by mutated self-renewing progenitors known as cancer stem cells (CSCs), which are believed to be present in all neoplastic proliferations and are thought to accumulate mutations. It is therefore possible that the acquisition of secondary KIT mutations during imatinib treatment may occur in putative GIST CSCs. METHODS Using flow cytometry, in vivo murine xenografts and molecular characterization, we tried to identify putative GIST CSCs by looking for the occurrence of common CSC markers such as KIT, CD133, CD90, CD44, and CD34 in 18 surgical samples obtained from nine untreated and nine imatinib-treated KIT-mutated GIST patients. RESULTS The results indicated the homogeneous and previously unreported expression of CD133 (18/18), CD90 (15/16), and CD44 (12/14), together with KIT (18/18) and CD34 (13/18). This profile is similar to that identified in bone marrow mesenchymal progenitors and does not seem to be significantly modified by imatinib as only marginal changes in KIT and CD133 expression (P ≤ 0.05, Mann-Whitney test) were found in the treated samples. CONCLUSIONS These findings suggest that GISTs are a clonal expansion of quite primitive cells that strictly depend on KIT oncogenic addiction, and have no cancer/stem cell component that can be detected by means of the antigens used in this study.
Collapse
Affiliation(s)
- Fabio Bozzi
- Laboratory of Experimental Molecular Pathology, Department of Pathology, Fondazione IRCCS, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Blay JY. A decade of tyrosine kinase inhibitor therapy: Historical and current perspectives on targeted therapy for GIST. Cancer Treat Rev 2010; 37:373-84. [PMID: 21195552 DOI: 10.1016/j.ctrv.2010.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/17/2010] [Accepted: 11/21/2010] [Indexed: 01/24/2023]
Abstract
The introduction of molecularly targeted therapies has ushered in a considerable transformation in the management of gastrointestinal stromal tumors (GIST) that currently defines the paradigm of targeted therapy for solid tumors. Indeed, in the past decade the management of GIST has evolved from a disease only effectively treatable by surgery to the archetype of a tumor treatable with a molecularly targeted therapy. Better understanding of the molecular and genetic characteristics that underlie the aberrant behavior of GIST has increased the accuracy of its diagnosis and allowed for the identification of distinct genetic hallmarks, prognostic groups, and treatment strategies. Collectively, this has resulted in the development of the targeted tyrosine kinase inhibitors (TKIs) imatinib and sunitinib, and continues to prompt studies of novel agents in this disease. Since approval in 2002, imatinib has been shown to provide a high level of clinical efficacy in patients with advanced GIST, including a median progression-free survival (PFS) of 2 years and median overall survival approaching 5 years, with some patients progression-free after 10 years of treatment. Imatinib is now also approved in adult patients following resection of KIT-positive GIST. In 2006, sunitinib was approved for the treatment of advanced GIST after failure of imatinib. Sunitinib provides significant benefit in this setting, with a median PFS close to 6 months after imatinib failure. Following progression on these agents, patients have limited treatment options. This critical unmet need is being addressed by the development of new TKIs and the use of novel regimens with approved agents.
Collapse
|
49
|
Thompson JJ, Yager JA, Best SJ, Pearl DL, Coomber BL, Torres RN, Kiupel M, Foster RA. Canine subcutaneous mast cell tumors: cellular proliferation and KIT expression as prognostic indices. Vet Pathol 2010; 48:169-81. [PMID: 21160022 DOI: 10.1177/0300985810390716] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Molecular assays are widely used to prognosticate canine cutaneous mast cell tumors (MCT). There is limited information about these prognostic assays used on MCT that arise in the subcutis. The aims of this study were to evaluate the utility of KIT immunohistochemical labeling pattern, c-KIT mutational status (presence of internal tandem duplications in exon 11), and proliferation markers--including mitotic index, Ki67, and argyrophilic nucleolar organizing regions (AgNOR)--as independent prognostic markers for local recurrence and/or metastasis in canine subcutaneous MCT. A case-control design was used to analyze 60 subcutaneous MCT from 60 dogs, consisting of 24 dogs with subsequent local recurrence and 12 dogs with metastasis, as compared to dogs matched by breed, age, and sex with subcutaneous MCT that did not experience these events. Mitotic index, Ki67, the combination of Ki67 and AgNOR, and KIT cellular localization pattern were significantly associated with local recurrence and metastasis, thereby demonstrating their prognostic value for subcutaneous MCT. No internal tandem duplication mutations were detected in exon 11 of c-KIT in any tumors. Because c-KIT mutations have been demonstrated in only 20 to 30% of cutaneous MCT and primarily in tumors of higher grade, the number of subcutaneous MCT analyzed in this study may be insufficient to draw conclusions on the role c-KIT mutations in these tumors.
Collapse
Affiliation(s)
- J J Thompson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheng L, Roth LM, Zhang S, Wang M, Morton MJ, Zheng W, Abdul Karim FW, Montironi R, Lopez-Beltran A. KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer 2010; 117:2096-103. [DOI: 10.1002/cncr.25794] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/09/2010] [Accepted: 10/15/2010] [Indexed: 01/04/2023]
|