1
|
Burbanks A, Cerasuolo M, Ronca R, Turner L. A hybrid spatiotemporal model of PCa dynamics and insights into optimal therapeutic strategies. Math Biosci 2023; 355:108940. [PMID: 36400316 DOI: 10.1016/j.mbs.2022.108940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Using a hybrid cellular automaton with stochastic elements, we investigate the effectiveness of multiple drug therapies on prostate cancer (PCa) growth. The ability of Androgen Deprivation Therapy to reduce PCa growth represents a milestone in prostate cancer treatment, nonetheless most patients eventually become refractory and develop castration-resistant prostate cancer. In recent years, a "second generation" drug called enzalutamide has been used to treat advanced PCa, or patients already exposed to chemotherapy that stopped responding to it. However, tumour resistance to enzalutamide is not well understood, and in this context, preclinical models and in silico experiments (numerical simulations) are key to understanding the mechanisms of resistance and to assessing therapeutic settings that may delay or prevent the onset of resistance. In our mathematical system, we incorporate cell phenotype switching to model the development of increased drug resistance, and consider the effect of the micro-environment dynamics on necrosis and apoptosis of the tumour cells. The therapeutic strategies that we explore include using a single drug (enzalutamide), and drug combinations (enzalutamide and everolimus or cabazitaxel) with different treatment schedules. Our results highlight the effectiveness of alternating therapies, especially alternating enzalutamide and cabazitaxel over a year, and a comparison is made with data taken from TRAMP mice to verify our findings.
Collapse
Affiliation(s)
- Andrew Burbanks
- School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth, PO1 3HF, Hampshire, United Kingdom
| | - Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth, PO1 3HF, Hampshire, United Kingdom.
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Leo Turner
- School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion Terrace, Portsmouth, PO1 3HF, Hampshire, United Kingdom
| |
Collapse
|
2
|
Ni K, Xu Z, Culbert A, Luo T, Guo N, Yang K, Pearson E, Preusser B, Wu T, La Riviere P, Weichselbaum RR, Spiotto MT, Lin W. Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework. Nat Biomed Eng 2022; 6:144-156. [DOI: 10.1038/s41551-022-00846-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
3
|
Cerasuolo M, Maccarinelli F, Coltrini D, Mahmoud AM, Marolda V, Ghedini GC, Rezzola S, Giacomini A, Triggiani L, Kostrzewa M, Verde R, Paris D, Melck D, Presta M, Ligresti A, Ronca R. Modeling Acquired Resistance to the Second-Generation Androgen Receptor Antagonist Enzalutamide in the TRAMP Model of Prostate Cancer. Cancer Res 2020; 80:1564-1577. [PMID: 32029552 DOI: 10.1158/0008-5472.can-18-3637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
Enzalutamide (MDV3100) is a potent second-generation androgen receptor antagonist approved for the treatment of castration-resistant prostate cancer (CRPC) in chemotherapy-naïve as well as in patients previously exposed to chemotherapy. However, resistance to enzalutamide and enzalutamide withdrawal syndrome have been reported. Thus, reliable and integrated preclinical models are required to elucidate the mechanisms of resistance and to assess therapeutic settings that may delay or prevent the onset of resistance. In this study, the prostate cancer multistage murine model TRAMP and TRAMP-derived cells have been used to extensively characterize in vitro and in vivo the response and resistance to enzalutamide. The therapeutic profile as well as the resistance onset were characterized and a multiscale stochastic mathematical model was proposed to link the in vitro and in vivo evolution of prostate cancer. The model showed that all therapeutic strategies that use enzalutamide result in the onset of resistance. The model also showed that combination therapies can delay the onset of resistance to enzalutamide, and in the best scenario, can eliminate the disease. These results set the basis for the exploitation of this "TRAMP-based platform" to test novel therapeutic approaches and build further mathematical models of combination therapies to treat prostate cancer and CRPC.Significance: Merging mathematical modeling with experimental data, this study presents the "TRAMP-based platform" as a novel experimental tool to study the in vitro and in vivo evolution of prostate cancer resistance to enzalutamide.
Collapse
Affiliation(s)
- Marianna Cerasuolo
- School of Mathematics and Physics, University of Portsmouth, Hampshire, United Kingdom
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ali Mokhtar Mahmoud
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Viviana Marolda
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Gaia Cristina Ghedini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Roberta Verde
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Italy.
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, Ager C, Nicholas C, Jaiswal AR, Sun Y, Shah K, Balasubramanyam S, Li N, Wang G, Ning J, Zal A, Zal T, Curran MA. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest 2018; 128:5137-5149. [PMID: 30188869 DOI: 10.1172/jci96268] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
Despite the success of immune checkpoint blockade against melanoma, many "cold" tumors like prostate cancer remain unresponsive. We found that hypoxic zones were prevalent across preclinical prostate cancer and resisted T cell infiltration even in the context of CTLA-4 and PD-1 blockade. We demonstrated that the hypoxia-activated prodrug TH-302 reduces or eliminates hypoxia in these tumors. Combination therapy with this hypoxia-prodrug and checkpoint blockade cooperated to cure more than 80% of tumors in the transgenic adenocarcinoma of the mouse prostate-derived (TRAMP-derived) TRAMP-C2 model. Immunofluorescence imaging showed that TH-302 drives an influx of T cells into hypoxic zones, which were expanded by checkpoint blockade. Further, combination therapy reduced myeloid-derived suppressor cell density by more than 50%, and durably reduced the capacity of the tumor to replenish the granulocytic subset. Spontaneous prostate tumors in TRAMP transgenic mice, which completely resist checkpoint blockade, showed minimal adenocarcinoma tumor burden at 36 weeks of age and no evidence of neuroendocrine tumors with combination therapy. Survival of Pb-Cre4, Ptenpc-/-Smad4pc-/- mice with aggressive prostate adenocarcinoma was also significantly extended by this combination of hypoxia-prodrug and checkpoint blockade. Hypoxia disruption and T cell checkpoint blockade may sensitize some of the most therapeutically resistant cancers to immunotherapy.
Collapse
Affiliation(s)
- Priyamvada Jayaprakash
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Midan Ai
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arthur Liu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| | - Pratha Budhani
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| | - Jie Sheng
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Casey Ager
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| | - Courtney Nicholas
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ashvin R Jaiswal
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanqiu Sun
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna Shah
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sadhana Balasubramanyam
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nan Li
- Department of Biostatistics and
| | - Guocan Wang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Anna Zal
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tomasz Zal
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,University of Texas Health Science Center at Houston Graduate School of Biomedical Science, Houston, Texas, USA
| |
Collapse
|
5
|
Tsai YC, Chen WY, Abou-Kheir W, Zeng T, Yin JJ, Bahmad H, Lee YC, Liu YN. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1717-1727. [PMID: 29477409 DOI: 10.1016/j.bbadis.2018.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The chemokine CC motif ligand 2 (CCL2) is important in recruiting tumor-associated macrophages and is involved in the development of castration-resistance prostate cancer (CRPC) after androgen-deprivation therapy (ADT); however, the underlying mechanism remains unclear. We found that inactivation of the androgen receptor (AR) reduces a transcriptional repressor (SAM pointed domain-containing ETS transcription factor, SPDEF) of CCL2, which mediates epithelial-to-mesenchymal transition (EMT) of prostate tumor cells. Cell lines derived from a prostate-specific Pten/Trp53-null mouse and capable of a spontaneous EMT were utilized for identification of CCL2, and showed that reduced SPDEF expression was associated with an elevated CCL2-activated EMT. AR signaling inhibits CCL2 through a SPDEF-mediated mechanism in that the SPDEF recognizes the CCL2 promoter and transcriptionally represses its activity. Ectopically expressed SPDEF reduced the EMT and rescued expression of CCL2 in SPDEF-expressing cells, which induced the EMT and promotes malignant functions of prostate cancer cells. In tissues from prostate cancer patients with ADT, low SPDEF levels were correlated with high CCL2 expression compared to patients without ADT. We present a novel mechanism that contributes to the EMT and metastatic phenotype observed in a subset of ADT-resistant prostate cancer, where the CCL2 is stimulated through the inactivated of AR-mediated SPDEF.
Collapse
Affiliation(s)
- Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, People's Republic of China
| | - Juan Juan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Opoku-Acheampong AB, Henningson JN, Lindshield BL. The impact of finasteride and dutasteride treatments on proliferation, apoptosis, androgen receptor, 5α-reductase 1 and 5α-reductase 2 in TRAMP mouse prostates. Heliyon 2017; 3:e00360. [PMID: 28765837 PMCID: PMC5526468 DOI: 10.1016/j.heliyon.2017.e00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/16/2017] [Accepted: 07/13/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Previously, we studied the effect of finasteride- or dutasteride-containing diets in male C57BL/6 TRAMP x FVB mice. Pre (6 weeks of age) and post (12 weeks of age) groups received finasteride or dutasteride to determine the efficacy of these pharmaceuticals on prostate cancer (PCa) development in male C57BL/6 TRAMP x FVB mice. Post-Dutasteride treatment was more effective than Pre-Dutasteride treatment, and dutasteride treatments were more effective than finasteride treatments in decreasing prostatic intraepithelial neoplasia (PIN) progression and PCa development. Finasteride and Pre-Dutasteride treatments significantly decreased high-grade PIN incidence, but increased poorly differentiated PCa incidence. In this study, molecular changes in prostates of these mice were characterized in an effort to elucidate the discordant response in Pre-Dutasteride and finasteride groups, and determine why Post-Dutasteride treatment was more effective. METHOD/PRINCIPAL FINDINGS Ki-67 (proliferation marker) and androgen receptor (AR) protein, apoptotic DNA fragmentation (TUNEL assay), 5α-reductase 1 (5αR1) and 5α-reductase 2 (5αR2) mRNA were quantified in male TRAMP mice prostate tissues with genitourinary weight < 1 and > 1 gram. Overall, proliferation and AR were decreased and apoptosis was increased in most tumors versus prostate epithelium and hyperplasia. Proliferation and AR were increased notably in hyperplasia versus prostate epithelium and tumor. There were no clear trends or differences in 5α-reductase 1 and 5α-reductase 2 levels between large and small tumors. The discordant response in Pre-Finasteride and Pre-Dutasteride groups may be due to upregulated 5αR1 levels in large versus small tumors. It is not clear what the mechanism is for the different response in the Post-Finasteride group. Post-Dutasteride treatment was more effective than Pre-Dutasteride treatment in decreasing 5αR1 in large tumors. Therefore, this may be why this treatment was more effective in decreasing PIN progression and PCa development. CONCLUSION The effect of finasteride and dutasteride on these biomarkers did not clearly elucidate their mechanism of action, but tumor 5αR1 levels were significantly positively correlated with adjusted prostate severe lesion score.
Collapse
Affiliation(s)
| | - Jamie N Henningson
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Brian L Lindshield
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Vlachostergios PJ, Balmiki RL, Daya R. GRP78 and α2-macroglobulin are new promising targets for metastatic castrate-resistant prostate cancer treatment. Clin Transl Oncol 2015; 17:932-4. [DOI: 10.1007/s12094-015-1324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
|
8
|
Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: Leading to a therapeutic dead end. Cancer Lett 2015; 367:12-7. [PMID: 26185001 DOI: 10.1016/j.canlet.2015.06.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022]
Abstract
Androgen deprivation therapy (ADT) is considered as the standard therapy for men with de novo or recurrent metastatic prostate cancer. ADT commonly leads to initial biochemical and clinical responses. However, several months after the beginning of treatment, tumors become castration-resistant and virtually all patients show disease progression. At this stage, tumors are no longer curable and cancer treatment options are only palliative. In this review, we describe molecular alterations in tumor cells during ADT, which lead to deregulation of different signaling pathways and castration-resistance, and how they might interfere with the clinical outcome of different second-line therapeutics. A recent breakthrough finding that early chemotherapy is associated with a significant survival benefit in metastatic hormone-sensitive disease highlights the fact that there is time for a fundamental paradigm shift in the treatment of advanced prostate cancer. Therapeutic intervention seems to be indicated before a castration-resistant stage is reached to improve therapeutic outcome and to reduce undesirable side effects.
Collapse
Affiliation(s)
- Arndt Katzenwadel
- Department of Urology, Medical Center, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg, Engesser Strasse 4b, D-79108 Freiburg, Germany.
| |
Collapse
|
9
|
Kortylewicz ZP, Mack E, Enke CA, Estes KA, Mosley RL, Baranowska-Kortylewicz J. Preclinical evaluation of investigational radiopharmaceutical RISAD-P intended for use as a diagnostic and molecular radiotherapy agent for prostate cancer. Prostate 2015; 75:8-22. [PMID: 25283970 DOI: 10.1002/pros.22885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/05/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND The androgen receptor (AR) plays a dominant role in the pathogenesis of prostate cancer. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is an AR-targeting reagent developed for noninvasive assessment of AR and proliferative status of the AR-expressing tumors, and for molecular radiotherapy with Auger electron-emitting radionuclides. In this study, the preclinical toxicity and targeting potential of RISAD-P was evaluated. METHODS Effects of nonradioactive ISAD-P and RISAD-P labeled with (123) I, (124) I, and (125) I were evaluated in male mice. Expanded-acute single dose toxicity studies, hematologic toxicity, liver and kidney function, pharmacokinetics, biodistribution, and imaging studies were conducted. Imaging and pilot therapy studies were conducted in transgenic mice. RESULTS RISAD-P is not toxic at doses projected for clinical use. Its tissue distribution compares favorably with the distribution reported for (18) F-dihydrotestosterone derivatives. RISAD-P has excellent prostate cancer targeting properties. One hour after (125) IRISAD-P administration, nearly 10% of the injected dose is associated with prostate tumor. The tumor clearance is biphasic and plateaus between 24 and 48 hr post-injection. The estimated radiation doses calculated for 1 g tumor using the MIRD convention are well within the therapeutic range with values of 170, 250, 1,240 Gy × MBq(-1) × g(-1) for (125) I-, (123) I-, and (124) I-labeled RISAD-P, respectively. The transient uptake of radioactivity is observed in the genitourinary tract and stomach. Without the potassium iodide blockade, thyroid uptake is also observed. CONCLUSIONS Biodistribution, toxicity, and radiation dosimetry studies suggest that RISAD-P holds characteristics of a promising candidate for imaging of AR expression and tumor proliferation, as well as molecular radiotherapy for metastatic or locally, regionally advanced prostate cancer.
Collapse
Affiliation(s)
- Zbigniew P Kortylewicz
- Department of Radiation Oncology, J. Bruce Henriksen Cancer Research Laboratories, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | |
Collapse
|
10
|
Lin TH, Izumi K, Lee SO, Lin WJ, Yeh S, Chang C. Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death Dis 2013; 4:e764. [PMID: 23928703 PMCID: PMC3763432 DOI: 10.1038/cddis.2013.270] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 01/09/2023]
Abstract
Despite androgen deprivation therapy (ADT) suppression of prostate cancer (PCa) growth, its overall effects on PCa metastasis remain unclear. Using human (C4-2B/THP1) and mouse (TRAMP-C1/RAW264.7) PCa cells–macrophages co-culture systems, we found currently used anti-androgens, MDV3100 (enzalutamide) or Casodex (bicalutamide), promoted macrophage migration to PCa cells that consequently led to enhanced PCa cell invasion. In contrast, the AR degradation enhancer, ASC-J9, suppressed both macrophage migration and subsequent PCa cell invasion. Mechanism dissection showed that Casodex/MDV3100 reduced the AR-mediated PIAS3 expression and enhanced the pSTAT3-CCL2 pathway. Addition of CCR2 antagonist reversed the Casodex/MDV3100-induced macrophage migration and PCa cell invasion. In contrast, ASC-J9 could regulate pSTAT3-CCL2 signaling using two pathways: an AR-dependent pathway via inhibiting PIAS3 expression and an AR-independent pathway via direct inhibition of the STAT3 phosphorylation/activation. These findings were confirmed in the in vivo mouse model with orthotopically injected TRAMP-C1 cells. Together, these results may raise the potential concern about the currently used ADT with anti-androgens that promotes PCa metastasis and may provide some new and better therapeutic strategies using ASC-J9 alone or a combinational therapy that simultaneously targets androgens/AR signaling and PIAS3-pSTAT3-CCL2 signaling to better battle PCa growth and metastasis at castration-resistant stage.
Collapse
Affiliation(s)
- T-H Lin
- George Whipple Lab for Cancer Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
11
|
Lin TH, Lee SO, Niu Y, Xu D, Liang L, Li L, Yeh SD, Fujimoto N, Yeh S, Chang C. Differential androgen deprivation therapies with anti-androgens casodex/bicalutamide or MDV3100/Enzalutamide versus anti-androgen receptor ASC-J9(R) Lead to promotion versus suppression of prostate cancer metastasis. J Biol Chem 2013; 288:19359-69. [PMID: 23687298 DOI: 10.1074/jbc.m113.477216] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that androgen deprivation therapy (ADT) can effectively reduce prostate cancer (PCa) size, its effect on PCa metastasis remains unclear. We examined the existing data on PCa patients treated with ADT plus anti-androgens to analyze ADT effects on primary tumor size, prostate-specific antigen (PSA) values, and metastatic incidence. We found that the current ADT with anti-androgens might lead to primary tumor reduction, with PSA decreased yet metastases increased in some PCa patients. Using in vitro and in vivo metastasis models with four human PCa cell lines, we evaluated the effects of the currently used anti-androgens, Casodex/bicalutamide and MDV3100/enzalutamide, and the newly developed anti-AR compounds, ASC-J9® and cryptotanshinone, on PCa cell growth and invasion. In vitro results showed that 10 μm Casodex or MDV3100 treatments suppressed PCa cell growth and reduced PSA level yet significantly enhanced PCa cell invasion. In vivo mice studies using an orthotopic xenograft mouse model also confirmed these results. In contrast, ASC-J9® led to suppressed PCa cell growth and cell invasion in in vitro and in vivo models. Mechanism dissection indicated these Casodex/MDV3100 treatments enhanced the TGF-β1/Smad3/MMP9 pathway, but ASC-J9® and cryptotanshinone showed promising anti-invasion effects via down-regulation of MMP9 expression. These findings suggest the potential risks of using anti-androgens and provide a potential new therapy using ASC-J9® to battle PCa metastasis at the castration-resistant stage.
Collapse
Affiliation(s)
- Tzu-Hua Lin
- George Whipple Laboratory for Cancer Research, Department of Pathology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Lee SO, Xia S, Jiang Q, Luo J, Li L, Yeh S, Chang C. Endothelial cells enhance prostate cancer metastasis via IL-6→androgen receptor→TGF-β→MMP-9 signals. Mol Cancer Ther 2013; 12:1026-37. [PMID: 23536722 DOI: 10.1158/1535-7163.mct-12-0895] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although the potential roles of endothelial cells in the microvascules of prostate cancer during angiogenesis have been documented, their direct impacts on the prostate cancer metastasis remain unclear. We found that the CD31-positive and CD34-positive endothelial cells are increased in prostate cancer compared with the normal tissues and that these endothelial cells were decreased upon castration, gradually recovered with time, and increased after prostate cancer progressed into the castration-resistant stage, suggesting a potential linkage of these endothelial cells with androgen deprivation therapy. The in vitro invasion assays showed that the coculture of endothelial cells with prostate cancer cells significantly enhanced the invasion ability of the prostate cancer cells. Mechanism dissection found that coculture of prostate cancer cells with endothelial cells led to increased interleukin (IL)-6 secretion from endothelial cells, which may result in downregulation of androgen receptor (AR) signaling in prostate cancer cells and then the activation of TGF-β/matrix metalloproteinase-9 (MMP-9) signaling. The consequences of the IL-6→AR→TGFβ→MMP-9 signaling pathway might then trigger the increased invasion of prostate cancer cells. Blocking the IL-6→AR→TGFβ→MMP-9 signaling pathway either by IL-6 antibody, AR-siRNA, or TGF-β1 inhibitor all interrupted the ability of endothelial cells to influence prostate cancer invasion. These results, for the first time, revealed the important roles of endothelial cells within the prostate cancer microenvironment to promote the prostate cancer metastasis and provide new potential targets of IL-6→AR→TGFβ→MMP-9 signals to battle the prostate cancer metastasis.
Collapse
Affiliation(s)
- Xiaohai Wang
- George Whipple Lab for Cancer Research, Department of Pathology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lai KP, Huang CK, Chang YJ, Chung CY, Yamashita S, Li L, Lee SO, Yeh S, Chang C. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:460-73. [PMID: 23219429 DOI: 10.1016/j.ajpath.2012.10.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/02/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022]
Abstract
Using androgen receptor (AR) knockout mice to determine AR functions in selective prostate cancer (PCa) cells, we determined that AR might play differential roles in various cell types, either to promote or suppress PCa development/progression. These observations partially explain the failure of current androgen deprivation therapy (ADT) to reduce/prevent androgen binding to AR in every cell. Herein, we identified the AR degradation enhancer ASC-J9, which selectively degrades AR protein via interruption of the AR-AR selective coregulator interaction. Such selective interruption could, therefore, suppress AR-mediated PCa growth in the androgen-sensitive stage before ADT and in the castration-resistant stage after ADT. Mechanistic dissection suggested that ASC-J9 could activate the proteasome-dependent pathway to promote AR degradation through the enhanced association of AR-Mdm2 complex. The consequences of ASC-J9-promoted AR degradation included reduced androgen binding to AR, AR N-C terminal interaction, and AR nuclear translocation. Such inhibitory regulation could then result in suppression of AR transactivation and AR-mediated cell growth in eight different mouse models, including intact or castrated nude mice xenografted with androgen-sensitive LNCaP cells or androgen-insensitive C81 cells and castrated nude mice xenografted with castration-resistant C4-2 and CWR22Rv1 cells, and TRAMP and Pten(+/-) mice. These results demonstrate that ASC-J9 could serve as an AR degradation enhancer that effectively suppresses PCa development/progression in the androgen-sensitive and castration-resistant stages.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- Department of Pathology, Urology, and Radiation Oncology, the George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mimeault M, Batra SK. Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 2011; 17:949-64. [PMID: 21607288 DOI: 10.2119/molmed.2011.00115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/19/2011] [Indexed: 12/14/2022] Open
Abstract
Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
15
|
Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim Biophys Acta Rev Cancer 2011; 1816:25-37. [PMID: 21396984 DOI: 10.1016/j.bbcan.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 02/27/2011] [Accepted: 03/01/2011] [Indexed: 12/17/2022]
Abstract
Recent development of animal models relevant to human prostate cancer (PC) etiopathogenesis has provided important information on the specific functions provided by key gene products altered during disease initiation and progression to locally invasive, metastatic and hormone-refractory stages. Especially, the characterization of transgenic mouse models has indicated that the inactivation of distinct tumor suppressor proteins such as phosphatase tensin homolog deleted on chromosome 10 (PTEN), Nkx3.1, p27(KIP1), p53 and retinoblastoma (pRb) may cooperate for the malignant transformation of prostatic stem/progenitor cells into PC stem/progenitor cells and tumor development and metastases. Moreover, the sustained activation of diverse oncogenic signaling elements, including epidermal growth factor receptor (EGFR), sonic hedgehog, Wnt/β-catenin, c-Myc, Akt and nuclear factor-kappaB (NF-κB) also may contribute to the acquisition of more aggressive and hormone-refractory phenotypes by PC stem/progenitor cells and their progenies during disease progression. Importantly, it has also been shown that an enrichment of PC stem/progenitor cells expressing stem cell-like markers may occur after androgen deprivation therapy and docetaxel treatment in the transgenic mouse models of PC suggesting the critical implication of these immature PC cells in treatment resistance, tumor re-growth and disease recurrence. Of clinical interest, the molecular targeting of distinct gene products altered in PC cells by using different dietary compounds has also been shown to counteract PC initiation and progression in animal models supporting their potential use as chemopreventive or chemotherapeutic agents for eradicating the total tumor cell mass, improving current anti-hormonal and chemotherapies and preventing disease relapse.
Collapse
|
16
|
Modeling Human Prostate Cancer in Genetically Engineered Mice. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:1-49. [DOI: 10.1016/b978-0-12-384878-9.00001-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Zhang J, Wang L, Anderson LB, Witthuhn B, Xu Y, Lü J. Proteomic profiling of potential molecular targets of methyl-selenium compounds in the transgenic adenocarcinoma of mouse prostate model. Cancer Prev Res (Phila) 2010; 3:994-1006. [PMID: 20647336 DOI: 10.1158/1940-6207.capr-09-0261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because the Selenium (Se) and Vitamin E Cancer Prevention Trial (SELECT) failed to show the efficacy of selenomethionine for prostate cancer prevention, there is a critical need to identify safe and efficacious Se forms for future trials. We have recently shown significant preventive benefit of methylseleninic acid (MSeA) and Se-methylselenocysteine (MSeC) in the transgenic adenocarcinoma mouse prostate (TRAMP) model by oral administration. The present work applied iTRAQ proteomic approach to profile protein changes of the TRAMP prostate and to characterize their modulation by MSeA and MSeC to identify their potential molecular targets. Dorsolateral prostates from wild-type mice at 18 weeks of age and TRAMP mice treated with water (control), MSeA, or MSeC (3 mg Se/kg) from 8 to 18 weeks of age were pooled (9-10 mice per group) and subjected to protein extraction, followed by protein denaturation, reduction, and alkylation. After tryptic digestion, the peptides were labeled with iTRAQ reagents, mixed together, and analyzed by two-dimensional liquid chromatography/tandem mass spectrometry. Of 342 proteins identified with >95% confidence, the expression of 75 proteins was significantly different between TRAMP and wild-type mice. MSeA mainly affected proteins related to prostate functional differentiation, androgen receptor signaling, protein (mis)folding, and endoplasmic reticulum-stress responses, whereas MSeC affected proteins involved in phase II detoxification or cytoprotection, and in stromal cells. Although MSeA and MSeC are presumed precursors of methylselenol and were equally effective against the TRAMP model, their distinct affected protein profiles suggest biological differences in their molecular targets outweigh similarities.
Collapse
Affiliation(s)
- Jinhui Zhang
- The Hormel Institute, University of Minnesota, Austin, 55912, USA
| | | | | | | | | | | |
Collapse
|
18
|
Tang Y, Wang L, Goloubeva O, Khan MA, Lee D, Hussain A. The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Prostate 2009; 69:1763-73. [PMID: 19691128 DOI: 10.1002/pros.21026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neuroendocrine differentiation and neuroendocrine carcinoma (NEC) have been linked to androgen deprivation in prostate cancers. No previous study has directly connected neuroendocrine phenotypes to chemotherapy. The pathogenesis of prostatic NEC has not yet been determined. METHODS Using the transgenic adenocarcinoma of mouse prostate (TRAMP) model, we studied tumor progression after hormone ablation (castration) and/or chemotherapy (docetaxel), and analyzed the incidence of NEC as a function of the anti-tumor therapies. Non-treated mice were used as controls. Protein expressions in tumor tissues were analyzed by Western blots and immunohistochemistry. RESULTS Although all animals developed prostate cancer, no NEC was found in control mice. However, over 30% of the mice that received an anti-tumor therapy developed NEC. A similar incidence of NEC was found in the castration-only and docetaxel-only treatment groups, while a higher incidence was observed in the combined treatment (castration and docetaxel) group. The NEC-bearing mice had smaller tumors in their prostates and lived longer than mice with adenocarcinoma (ADC-only). However, NEC tumors had a higher proliferative index and greater potential for metastasis and drug-resistance, as evidenced by significantly higher expression levels of PCNA, S100A4, and Pgp, but lower levels of E-cadherin. SV40 T-antigen was highly expressed in both NEC and ADC tumors. CONCLUSIONS Stress induced by anti-cancer treatments may play a role in NEC development. Although NEC and ADC differ in their expressions of many proteins, a high level of SV40 T-antigen in both tumor types suggest a common progenitor..
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Adenocarcinoma/drug therapy
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/secondary
- Androgen Antagonists/administration & dosage
- Androgen Antagonists/adverse effects
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Carcinoma, Neuroendocrine/chemically induced
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/secondary
- Cell Proliferation
- Docetaxel
- Drug Therapy, Combination
- Incidence
- Male
- Mice
- Mice, Transgenic
- Neoplasm Proteins/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Survival Analysis
- Taxoids/administration & dosage
- Taxoids/adverse effects
Collapse
Affiliation(s)
- Yao Tang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|