1
|
Xu X, Wang X, Li Y, Chen R, Wen H, Wang Y, Ma G. Research progress of ankyrin repeat domain 1 protein: an updated review. Cell Mol Biol Lett 2024; 29:131. [PMID: 39420247 PMCID: PMC11488291 DOI: 10.1186/s11658-024-00647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Ankyrin repeat domain 1 (Ankrd1) is an acute response protein that belongs to the muscle ankyrin repeat protein (MARP) family. Accumulating evidence has revealed that Ankrd1 plays a crucial role in a wide range of biological processes and diseases. This review consolidates current knowledge on Ankrd1's functions in myocardium and skeletal muscle development, neurogenesis, cancer, bone formation, angiogenesis, wound healing, fibrosis, apoptosis, inflammation, and infection. The comprehensive profile of Ankrd1 in cardiovascular diseases, myopathy, and its potential as a candidate prognostic and diagnostic biomarker are also discussed. In the future, more studies of Ankrd1 are warranted to clarify its role in diseases and assess its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xusan Xu
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Yu Li
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Houlang Wen
- Medical Genetics Laboratory, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Yajun Wang
- Respiratory Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
2
|
Diskul-Na-Ayudthaya P, Bae SJ, Bae YU, Van NT, Kim W, Ryu S. ANKRD1 Promotes Breast Cancer Metastasis by Activating NF- κB-MAGE-A6 Pathway. Cancers (Basel) 2024; 16:3306. [PMID: 39409926 PMCID: PMC11476229 DOI: 10.3390/cancers16193306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Early detection and surgical excision of tumors have helped improve the survival rate of patients with breast cancer. However, patients with metastatic cancer typically have a poor prognosis. In this study, we propose that ANKRD1 promotes metastasis of breast cancer. ANKRD1 was found to be highly expressed in the MDA-MB-231 and MDA-LM-2 highly metastatic breast cancer cell lines compared to the non-metastatic breast cancer cell lines (MCF-7, ZR-75-30, T47D) and normal breast cancer cells (MCF-10A). Furthermore, high-grade tumors showed increased levels of ANKRD1 compared to low-grade tumors. Both in vitro and in vivo functional studies demonstrated the essential role of ANKRD1 in cancer cell migration and invasion. The previous studies have suggested a significant role of NF-κB and MAGE-A6 in breast cancer metastasis, but the upstream regulators of this axis are not well characterized. Our study suggests that ANKRD1 promotes metastasis of breast cancer by activating NF-κB as well as MAGE-A6 signaling. Our findings show that ANKRD1 is a potential therapeutic target and a diagnostic marker for breast cancer metastasis.
Collapse
Affiliation(s)
- Penchatr Diskul-Na-Ayudthaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Seon Joo Bae
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Yun-Ui Bae
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Konkuk University, Seoul 05030, Republic of Korea;
| | - Ngu Trinh Van
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Wootae Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Department of Integrated Biomedical Sciences, Soonchunhyang University, Asan-si 31151, Republic of Korea; (P.D.-N.-A.); (S.J.B.); (N.T.V.)
- Department of Pathology, College of Medicine, Soonchunhyang University, Asan-si 311151, Republic of Korea
| |
Collapse
|
3
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Zhou W, Huang Y, Liu J, Liu Y, Liu Y, Yu C. Identification of ANKRD13D as a potential target in renal cell carcinomas. Int J Biol Markers 2024; 39:149-157. [PMID: 38449090 DOI: 10.1177/03936155241236498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND The correlation of the expression of ankyrin repeat domain (ANKRD) family members with renal cell carcinoma prognosis was investigated. METHODS The GEPIA2, GEO2R, UALCAN, GDC, OncoLnc, TIMER, PanglaoDB, CancerSEA, and Tabula Muris databases were used. Twelve ANKRD family members were identified as having overexpressed renal cell carcinoma samples. The ANKRD13D was identified as a renal cell carcinoma-specific target by cross-referencing the multiple survival databases. To clarify the role of ANKRD13D, the expression of NAKRD13D was analyzed at the single-cell level. RESULTS ANKRD13D was mainly expressed in immune cells and positively correlated with Treg cell infiltration. The expression of ANKRD13D was also positively correlated with PDCD1, CTLA4, LAG3, TNFSF14, and ISG20. The overexpression of ANKRD13D in Treg was confirmed using reverse transcription-quantitative polymerase chain reaction. The structure of ANKRD13D was predicted using AlphaFold. CONCLUSION In conclusion, we identified ANKRD13D as a key immune regulator, and targeting ANKRD13D with immune checkpoints blockade may be a promoting strategy for renal cell carcinoma immunotherapy.
Collapse
Affiliation(s)
- Wenqian Zhou
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yonghe Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiguo Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqing Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Milosevic E, Novkovic M, Cenni V, Bavelloni A, Kojic S, Jasnic J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. Histochem Cell Biol 2024; 161:435-444. [PMID: 38396247 DOI: 10.1007/s00418-024-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
6
|
Xu X, Zhong D, Wang X, Luo F, Zheng X, Feng T, Chen R, Cheng Y, Wang Y, Ma G. Pan-cancer integrated analysis of ANKRD1 expression, prognostic value, and potential implications in cancer. Sci Rep 2024; 14:5268. [PMID: 38438492 PMCID: PMC10912109 DOI: 10.1038/s41598-024-56105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
There is substantial evidence demonstrating the crucial role of inflammation in oncogenesis. ANKRD1 has been identified as an anti-inflammatory factor and is related to tumor drug resistance. However, there have been no studies investigating the prognostic value and molecular function of ANKRD1 in pan-cancer. In this study, we utilized the TCGA, GTEx, GSCALite, ENCORI, CTRP, DAVID, AmiGO 2, and KEGG databases as well as R language, to explore and visualize the role of ANKRD1 in tumors. We employed the ROC curve to explore its diagnostic significance, while the Kaplan-Meier survival curve and Cox regression analysis were used to investigate its prognostic value. Additionally, we performed Pearson correlation analysis to evaluate the association between ANKRD1 expression and DNA methylation, immune cell infiltration, immune checkpoints, TMB, MSI, MMR, and GSVA. Our findings indicate that ANKRD1 expression is dysregulated in pan-cancer. The ROC curve revealed that ANKRD1 expression is highly sensitive and specific in diagnosing CHOL, LUAD, LUSC, PAAD, SKCM, and UCS (AUC > 85.0%, P < 0.001). Higher ANKRD1 expression was related to higher overall survival (OS) in LGG, but with lower OS in COAD and STAD (P < 0.001). Moreover, Cox regression and nomogram analyzes suggested that ANKRD1 is an independent factor for COAD, GBM, HNSC, and LUSC. Dysregulation of ANKRD1 expression in pan-cancer involves DNA methylation and microRNA regulation. Using the CTRP database, we discovered that ANKRD1 may influence the half-maximal inhibitory concentration (IC50) of several anti-tumor drugs. ANKRD1 expression showed significant correlations with immune cell infiltration (including cancer-associated fibroblast and M2 macrophages), immune checkpoints, TMB, MSI, and MMR. Furthermore, ANKRD1 is involved in various inflammatory and immune pathways in COAD, GBM, and LUSC, as well as cardiac functions in HNSC. In vitro experiments demonstrated that ANKRD1 promotes migration, and invasion activity, while inhibiting apoptosis in colorectal cancer cell lines (Caco2, SW480). In summary, ANKRD1 represents a potential prognostic biomarker and therapeutic target in human cancers, particularly in COAD.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Dan Zhong
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaoxia Wang
- Department of Neurology, Longjiang Hospital, Foshan, 528300, China
| | - Fei Luo
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Xiaomei Zheng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Taoshan Feng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Yisen Cheng
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China
| | - Yajun Wang
- Institute of Children's Respiratory Diseases, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| | - Guoda Ma
- Institute of Maternal and Child Research, Shunde Women and Children Hospital, Guangdong Medical University, Foshan, 528300, China.
| |
Collapse
|
7
|
Xie B, Olalekan S, Back R, Ashitey NA, Eckart H, Basu A. Exploring the tumor micro-environment in primary and metastatic tumors of different ovarian cancer histotypes. Front Cell Dev Biol 2024; 11:1297219. [PMID: 38328306 PMCID: PMC10847324 DOI: 10.3389/fcell.2023.1297219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024] Open
Abstract
Ovarian cancer is a highly heterogeneous disease consisting of at least five different histological subtypes with varying clinical features, cells of origin, molecular composition, risk factors, and treatments. While most single-cell studies have focused on High grade serous ovarian cancer, a comprehensive landscape of the constituent cell types and their interactions within the tumor microenvironment are yet to be established in the different ovarian cancer histotypes. Further characterization of tumor progression, metastasis, and various histotypes are also needed to connect molecular signatures to pathological grading for personalized diagnosis and tailored treatment. In this study, we leveraged high-resolution single-cell RNA sequencing technology to elucidate the cellular compositions on 21 solid tumor samples collected from 12 patients with six ovarian cancer histotypes and both primary (ovaries) and metastatic (omentum, rectum) sites. The diverse collection allowed us to deconstruct the histotypes and tumor site-specific expression patterns of cells in the tumor, and identify key marker genes and ligand-receptor pairs that are active in the ovarian tumor microenvironment. Our findings can be used in improving precision disease stratification and optimizing treatment options.
Collapse
Affiliation(s)
- Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| | | | | | | | | | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Zhang Y, Zhou L, Fu Q, Liu Z. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166693. [PMID: 36958710 DOI: 10.1016/j.bbadis.2023.166693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are considered promising materials for treating bone diseases such as osteoporosis (OP). This research explored the functions and molecular mechanism of ankyrin repeat domain 1 (ANKRD1) in BMSC osteogenesis. An OP model in mice was established by bilateral ovariectomy. Manipulation of ANKRD1 expression in BMSCs or femurs was achieved by lentivirus infection. Increased ANKRD1 expression was observed in BMSCs during osteogenic induction. Silencing of ANKRD1 impaired the osteogenesis of BMSCs, as shown by the decreased alkaline phosphatase (ALP) activity, osteogenic gene (Runx2, Col1a1, Bglap, and Spp1) expression, and mineralized formation. ANKRD1-mediated promotion of osteogenesis was also reproduced in mouse MC3T3-E1 preosteoblastic cells. Activation of Wnt/β-catenin signaling, a well-known osteogenic stimulus, was also impaired in ANKRD1-silenced BMSCs. Overexpression of ANKRD1 resulted in the opposite effects on osteogenesis and Wnt/β-catenin signaling. Mechanistic studies revealed that ANKRD1 modulated caveolin-3 (CAV3) expression by reducing CAV3 ubiquitination, and the knockdown of CAV3 impaired the functions of ANKRD1. Additionally, a very low level of ANKRD1 was observed in the BMSCs from OP mice. Rescue of ANKRD1 significantly restored osteogenic differentiation and Wnt signaling activation in BMSCs from ovariectomized mice. The results of micro-CT, H&E staining, and IHC staining showed that ANKRD1 also promoted bone formation and Wnt activation and ameliorated pathological alterations in the femurs of OP mice. Collectively, this study demonstrated that ANKRD1 plays an important role in regulating the osteogenic differentiation of BMSCs and is a promising target for the treatment of OP and other bone diseases.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
9
|
Wu Y, Liu H, Gong Y, Zhang B, Chen W. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression. Bosn J Basic Med Sci 2021; 21:294-304. [PMID: 32651974 PMCID: PMC8112564 DOI: 10.17305/bjbms.2020.4701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent malignancies in women worldwide. Although great advancements have been achieved in the diagnosis and treatment of breast cancer, the prognosis of patients with breast cancer is still poor due to distal recurrence and metastasis after surgery. This study aimed to assess the role of ankyrin repeat domain 22 (ANKRD22) in the progression of breast cancer and investigate the molecular mechanism. Using immunohistochemistry, we demonstrated that the expression level of ANKRD22 in human breast cancer tissues was significantly higher than that in normal breast tissues. ANKRD22 knockdown inhibited the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of breast cancer cells, as confirmed by BrdU, colony formation, transwell, and immunoblot assays. Immunoblot assays further indicated that ANKRD22 regulated the expression of nucleolar and spindle-associated protein 1 (NuSAP1) and then caused the activation of Wnt/β-catenin signaling pathway. Moreover, overexpression of NUSAP1 reversed the inhibitory effects of ANKRD22 knockdown on the proliferation, invasion, and EMT of breast cancer cells. In summary, this study demonstrated that ANKRD22 enhanced breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression, which might shed light on new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Yange Wu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Hongxia Liu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Yufeng Gong
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Bo Zhang
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Wenxiu Chen
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
10
|
Bortot B, Mongiat M, Valencic E, Dal Monego S, Licastro D, Crosera M, Adami G, Rampazzo E, Ricci G, Romano F, Severini GM, Biffi S. Nanotechnology-Based Cisplatin Intracellular Delivery to Enhance Chemo-Sensitivity of Ovarian Cancer. Int J Nanomedicine 2020; 15:4793-4810. [PMID: 32764921 PMCID: PMC7368240 DOI: 10.2147/ijn.s247114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background Platinum resistance is a major challenge in the management of ovarian cancer. Even low levels of acquired resistance at the cellular level lead to impaired response to cisplatin. In ovarian cancer intraperitoneal therapy, nanoparticle formulation can improve the cisplatin’s pharmacokinetics and safety profile. Purpose This work aimed to investigate the chemo-sensitivity of ovarian cancer SKOV3 cells upon short-term (72h) single treatment of cisplatin and cisplatin-loaded biodegradable nanoparticles (Cis-NP). The aim was then to determine the therapeutic properties of Cis-NP in vivo using a SKOV3-luc cells’ xenograft model in mice. Methods Cell cytotoxicity was assessed after the exposure of the cell culture to cisplatin or Cis-NP. The effect of treatments on EMT and CSC-like phenotype was studied by analyzing a panel of markers by flow cytometry. Intracellular platinum concentration was determined by inductively coupled plasma mass spectrometry (ICS-MS), and gene expression was evaluated by RNAseq analysis. The efficacy of intraperitoneal chemotherapy was evaluated in a SKOV3-luc cells’ xenograft model in mice, through a combination of bioluminescence imaging, histological, and immunohistochemical analyses. Results We observed in vitro that short-term treatment of cisplatin has a critical role in determining the potential induction of chemoresistance, and a nanotechnology-based drug delivery system can modulate it. The RNAseq analysis underlines a protective effect of nanoparticle system according to their ability to down-regulate several genes involved in chemoresistance, cell proliferation, and apoptosis. The highest intracellular platinum concentration obtained with Cis-NP treatment significantly improved the efficacy. Consistent with in vitro results, we found that Cis-NP treatment in vivo can significantly reduce tumor burden and aggressiveness compared to the free drug. Conclusion Nanoparticle-mediated cisplatin delivery may serve as an intracellular depot impacting the cisplatin pharmacodynamic performance at cellular levels. These features may contribute to improving the drawbacks of conventional intraperitoneal therapy, and therefore will require further investigations in vivo.
Collapse
Affiliation(s)
- Barbara Bortot
- Department of Medical Genetics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, Aviano, Italy
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome Sequencing, AREA Science Park, Trieste, Italy
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome Sequencing, AREA Science Park, Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Gianpiero Adami
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Enrico Rampazzo
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Giuseppe Ricci
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Federico Romano
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Maria Severini
- Department of Medical Genetics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Stefania Biffi
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
11
|
Lin HC, Chu LJ, Huang PJ, Cheng WH, Zheng YH, Huang CY, Hong SW, Chen LC, Lin HA, Wang JY, Chen RM, Lin WN, Tang P, Huang KY. Proteomic signatures of metronidazole-resistant Trichomonas vaginalis reveal novel proteins associated with drug resistance. Parasit Vectors 2020; 13:274. [PMID: 32487244 PMCID: PMC7268490 DOI: 10.1186/s13071-020-04148-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Trichomoniasis is the most common non-viral sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. Metronidazole (MTZ) is a widely used drug for the treatment of trichomoniasis; however, increased resistance of the parasite to MTZ has emerged as a highly problematic public health issue. METHODS We conducted iTRAQ-based analysis to profile the proteomes of MTZ-sensitive (MTZ-S) and MTZ-resistant (MTZ-R) parasites. STRING and gene set enrichment analysis (GESA) were utilized to explore the protein-protein interaction networks and enriched pathways of the differentially expressed proteins, respectively. Proteins potentially related to MTZ resistance were selected for functional validation. RESULTS A total of 3123 proteins were identified from the MTZ-S and MTZ-R proteomes in response to drug treatment. Among the identified proteins, 304 proteins were differentially expressed in the MTZ-R proteome, including 228 upregulated and 76 downregulated proteins. GSEA showed that the amino acid-related metabolism, including arginine, proline, alanine, aspartate, and glutamate are the most upregulated pathways in the MTZ-R proteome, whereas oxidative phosphorylation is the most downregulated pathway. Ten proteins categorized into the gene set of oxidative phosphorylation were ATP synthase subunit-related proteins. Drug resistance was further examined in MTZ-S parasites pretreated with the ATP synthase inhibitors oligomycin and bafilomycin A1, showing enhanced MTZ resistance and potential roles of ATP synthase in drug susceptibility. CONCLUSIONS We provide novel insights into previously unidentified proteins associated with MTZ resistance, paving the way for future development of new drugs against MTZ-refractory trichomoniasis.
Collapse
Affiliation(s)
- Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 333, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City, 333, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City, 333, Taiwan
| | - Wei-Hung Cheng
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Yu-Hsing Zheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Ching-Yun Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Shu-Wen Hong
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Hsin-An Lin
- Division of Infection, Department of Medicine, Tri-Service General Hospital SongShan Branch, Taipei City, 105, Taiwan
| | - Jui-Yang Wang
- Division of Family Medicine, Tri-Service General Hospital Songshan Branch, Taipei City, 105, Taiwan
| | - Ruei-Min Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan City, 333, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, 114, Taiwan.
| |
Collapse
|
12
|
Takahashi A, Seike M, Chiba M, Takahashi S, Nakamichi S, Matsumoto M, Takeuchi S, Minegishi Y, Noro R, Kunugi S, Kubota K, Gemma A. Ankyrin Repeat Domain 1 Overexpression is Associated with Common Resistance to Afatinib and Osimertinib in EGFR-mutant Lung Cancer. Sci Rep 2018; 8:14896. [PMID: 30291293 PMCID: PMC6173712 DOI: 10.1038/s41598-018-33190-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
Overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is critical in combating EGFR-mutant non-small cell lung cancer (NSCLC). We tried to construct a novel therapeutic strategy to conquer the resistance to second-and third-generation EGFR-TKIs in EGFR-positive NSCLC patients. We established afatinib- and osimertinib-resistant lung adenocarcinoma cell lines. Exome sequencing, cDNA array and miRNA microarray were performed using the established cell lines to discover novel therapeutic targets associated with the resistance to second-and third-generation EGFR-TKIs. We found that ANKRD1 which is associated with the epithelial-mesenchymal transition (EMT) phenomenon and anti-apoptosis, was overexpressed in the second-and third-generation EGFR-TKIs-resistant cells at the mRNA and protein expression levels. When ANKRD1 was silenced in the EGFR-TKIs-resistant cell lines, afatinib and osimertinib could induce apoptosis of the cell lines. Imatinib could inhibit ANKRD1 expression, resulting in restoration of the sensitivity to afatinib and osimertinib of EGFR-TKI-resistant cells. In EGFR-mutant NSCLC patients, ANKRD1 was overexpressed in the tumor after the failure of EGFR-TKI therapy, especially after long-duration EGFR-TKI treatments. ANKRD1 overexpression which was associated with EMT features and anti-apoptosis, was commonly involved in resistance to second-and third-generation EGFR-TKIs. ANKRD1 inhibition could be a promising therapeutic strategy in EGFR-mutant NSCLC patients.
Collapse
Affiliation(s)
- Akiko Takahashi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masahiro Seike
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | - Mika Chiba
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shinji Nakamichi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Masaru Matsumoto
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Susumu Takeuchi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Yuji Minegishi
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Rintaro Noro
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shinobu Kunugi
- Division of Pathology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Kaoru Kubota
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Gemma
- Division of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Bin L, Li X, Richers B, Streib JE, Hu JW, Taylor P, Leung DYM. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum. J Allergy Clin Immunol 2018; 141:2085-2093.e1. [PMID: 29371118 DOI: 10.1016/j.jaci.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease. A subset of patients with AD are susceptible to disseminated herpes simplex virus (HSV) infection, a complication termed eczema herpeticum (ADEH+). The immune mechanisms causing ADEH+ remain elusive. Using RNA sequencing, we recently found that ankyrin repeat domain 1 (ANKRD1) was significantly induced in human PBMCs upon HSV-1 stimulation, and its induction in patients with ADEH+ was significantly reduced compared with that seen in AD patients without a history of eczema herpeticum (ADEH-). OBJECTIVE We sought to validate ANKRD1 gene expression in nonatopic (NA) subjects, patients with ADEH-, and patients with ADEH+ and to delineate the biological function of ANKRD1 and the signaling pathway or pathways involved. METHODS Purification of human PBMCs, monocytes, B cells, dendritic cells, T cells, and natural killer cells; RNA extraction and quantitative RT-PCR; small interfering RNA technique; co-immunoprecipitation; and Western blot assays were used. RESULTS ANKRD1 expression was significantly reduced in PBMCs from patients with ADEH+ after HSV-1 stimulation compared with PBMCs from patients with ADEH-. We found that the induction of ANKRD1 by HSV-1 and multiple pattern recognition receptor agonists are mediated by inflammatory cytokines. Silencing ANKRD1 gene expression in antigen-presenting cells led to increased viral load and reduced IFNB1 and IL29 production. Using co-immunoprecipitation methods, we demonstrated that ANKRD1 formed protein complexes with interferon regulatory factor (IRF) 3 and IRF7, which are important transcription factors regulating signaling transduction of pattern recognition receptors. Overexpression of ANKRD1 enhanced the IRF3-mediated signaling pathways. CONCLUSION ANKRD1 is involved in IRF3-mediated antiviral innate immune signaling pathways. Its reduced expression in patients with ADEH+ might contribute to the pathogenesis of ADEH+.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colo; First Affiliated Hospital, Biomedical Translational Research Institute, the International Immunology Center and the Key Laboratory of Antibody Engineering of Guangdong Province, Jinan University, Guangzhou, China
| | - Xiaozhao Li
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Joanne E Streib
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
14
|
Qin Y, Sekine I, Fan M, Takiguchi Y, Tada Y, Shingyoji M, Hanazono M, Yamaguchi N, Tagawa M. Augmented expression of cardiac ankyrin repeat protein is induced by pemetrexed and a possible marker for the pemetrexed resistance in mesothelioma cells. Cancer Cell Int 2017; 17:120. [PMID: 29238267 PMCID: PMC5725641 DOI: 10.1186/s12935-017-0493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022] Open
Abstract
Background Pemetrexed (PEM) is an anti-cancer agent targeting DNA and RNA synthesis, and clinically in use for mesothelioma and non-small cell lung carcinoma. A mechanism of resistance to PEM is associated with elevated activities of several enzymes involved in nucleic acid metabolism. Methods We established two kinds of PEM-resistant mesothelioma cells which did not show any increase of the relevant enzyme activities. We screened genes enhanced in the PEM-resistant cells with a microarray analysis and confirmed the expression levels with Western blot analysis. A possible involvement of the candidates in the PEM-resistance was examined with a WST assay after knocking down the expression with si-RNA. We also analyzed a mechanism of the up-regulated expression with agents influencing AMP-activated protein kinase (AMPK) and p53. Results We found that expression of cardiac ankyrin repeat protein (CARP) was elevated in the PEM-resistant cells with a microarray and Western blot analysis. Down-regulation of CARP expression with si-RNA did not however influence the PEM resistance. Parent and PEM-resistant cells treated with PEM increased expression of CARP, AMPK, p53 and histone H2AX. The CARP up-regulation was however irrelevant to the p53 genotypes and not induced by an AMPK activator. Augmented p53 levels with nutlin-3a, an inhibitor for p53 degradation, and DNA damages were not always associated with the enhanced CARP expression. Conclusions These data collectively suggest that up-regulated CARP expression is a potential marker for development of PEM-resistance in mesothelioma and that the PEM-mediated enhanced expression is not directly linked with immediate cellular responses to PEM. Electronic supplementary material The online version of this article (10.1186/s12935-017-0493-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiyang Qin
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Zhang N, Xie XJ, Wang JA. Multifunctional protein: cardiac ankyrin repeat protein. J Zhejiang Univ Sci B 2017; 17:333-41. [PMID: 27143260 DOI: 10.1631/jzus.b1500247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases.
Collapse
Affiliation(s)
- Na Zhang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao-Jie Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
16
|
Kikuchi M, Yamashita K, Waraya M, Minatani N, Ushiku H, Kojo K, Ema A, Kosaka Y, Katoh H, Sengoku N, Enomoto T, Tanino H, Sawanobori M, Watanabe M. Epigenetic regulation of ZEB1-RAB25/ESRP1 axis plays a critical role in phenylbutyrate treatment-resistant breast cancer. Oncotarget 2016; 7:1741-53. [PMID: 26646320 PMCID: PMC4811494 DOI: 10.18632/oncotarget.6480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/15/2015] [Indexed: 01/14/2023] Open
Abstract
Phenylbutyrate (PB) is a histone deacetylase antagonist that also exhibits antitumor activity. In this study, we used 7 breast cancer cell lines to identify biomarker candidates that predict PB sensitivity in breast cancer. Comprehensive gene expression profiles were compared using microarrays, and the importance of the identified genes to PB sensitivity was confirmed in gene transfection experiments. CRL and MDAMB453 cells were identified as PB-sensitive, while MDAMB231 cells were PB-resistant.RAB25 and ESRP1 were identified as key regulators of PB sensitivity, while ANKD1, ETS1, PTRF, IFI16 and KIAA1199 acted as PB resistance-related genes. Expression of these genes was dramatically altered by DNA demethylation treatments. RAB25 expression inhibited IFI16 and PTRF, while ESRP1 expression suppressed ANKRD1, ETS1, and KIAA1199. Both RAB25 and ESRP1 were suppressed by ZEB1, which was in turn regulated via epigenetic mechanisms. Thus, PB sensitivity is influenced by epigenetic expression alteration of ZEB1. The genes associated with PB sensitivity are downstream targets of ZEB1. Epigenetic regulation of ZEB1 may prove valuable as a critical biomarker for predicting resistance to breast cancer therapies.
Collapse
Affiliation(s)
- Mariko Kikuchi
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan.,Epigenetic Treatment Research Group, Japan
| | - Mina Waraya
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoko Minatani
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hideki Ushiku
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ken Kojo
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yoshimasa Kosaka
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroshi Katoh
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Norihiko Sengoku
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takumo Enomoto
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hirokazu Tanino
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | | | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
17
|
Virant-Klun I, Stimpfel M. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Sci Rep 2016; 6:34730. [PMID: 27703207 PMCID: PMC5050448 DOI: 10.1038/srep34730] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in "healthy" ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from "healthy" ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Liu XH, Bauman WA, Cardozo C. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity. Biochem Biophys Res Commun 2015; 464:208-13. [DOI: 10.1016/j.bbrc.2015.06.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
|
19
|
Gatti L, Cassinelli G, Zaffaroni N, Lanzi C, Perego P. New mechanisms for old drugs: Insights into DNA-unrelated effects of platinum compounds and drug resistance determinants. Drug Resist Updat 2015; 20:1-11. [PMID: 26003720 DOI: 10.1016/j.drup.2015.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/11/2023]
Abstract
Platinum drugs have been widely used for the treatment of several solid tumors. Although DNA has been recognized as the primary cellular target for these agents, there are unresolved issues concerning their effects and the molecular mechanisms underlying the antitumor efficacy. These cytotoxic agents interact with sub-cellular compartments other than the nucleus. Here, we review how such emerging phenomena contribute to the pharmacologic activity as well as to drug resistance phenotypes. DNA-unrelated effects of platinum drugs involve alterations at the plasma membrane and in endo-lysosomal compartments. A direct interaction with the mitochondria also appears to be implicated in drug-induced cell death. Moreover, the pioneering work of a few groups has shown that platinum drugs can act on the tumor microenvironment as well, and potentiate antitumor activity of the immune system. These poorly understood aspects of platinum drug activity sites may be harnessed to enhance their antitumor efficacy. A complete understanding of DNA-unrelated effects of platinum compounds might reveal new aspects of drug resistance allowing the implementation of the antitumor therapeutic efficacy of platinum compound-based regimens and minimization of their toxic side effects.
Collapse
Affiliation(s)
- Laura Gatti
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42/via Venezian 1, 20133 Milan, Italy.
| |
Collapse
|
20
|
Jensen NF, Stenvang J, Beck MK, Hanáková B, Belling KC, Do KN, Viuff B, Nygård SB, Gupta R, Rasmussen MH, Tarpgaard LS, Hansen TP, Budinská E, Pfeiffer P, Bosman F, Tejpar S, Roth A, Delorenzi M, Andersen CL, Rømer MU, Brünner N, Moreira JMA. Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive signature of chemoresistance. Mol Oncol 2015; 9:1169-85. [PMID: 25759163 DOI: 10.1016/j.molonc.2015.02.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/13/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023] Open
Abstract
Current standard treatments for metastatic colorectal cancer (CRC) are based on combination regimens with one of the two chemotherapeutic drugs, irinotecan or oxaliplatin. However, drug resistance frequently limits the clinical efficacy of these therapies. In order to gain new insights into mechanisms associated with chemoresistance, and departing from three distinct CRC cell models, we generated a panel of human colorectal cancer cell lines with acquired resistance to either oxaliplatin or irinotecan. We characterized the resistant cell line variants with regards to their drug resistance profile and transcriptome, and matched our results with datasets generated from relevant clinical material to derive putative resistance biomarkers. We found that the chemoresistant cell line variants had distinctive irinotecan- or oxaliplatin-specific resistance profiles, with non-reciprocal cross-resistance. Furthermore, we could identify several new, as well as some previously described, drug resistance-associated genes for each resistant cell line variant. Each chemoresistant cell line variant acquired a unique set of changes that may represent distinct functional subtypes of chemotherapy resistance. In addition, and given the potential implications for selection of subsequent treatment, we also performed an exploratory analysis, in relevant patient cohorts, of the predictive value of each of the specific genes identified in our cellular models.
Collapse
Affiliation(s)
- Niels F Jensen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark
| | - Jan Stenvang
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark
| | - Mette K Beck
- Technical University of Denmark, Department for Systems Biology, Center for Biological Sequence Analysis, Lyngby, Denmark
| | - Barbora Hanáková
- Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, Brno, Czech Republic
| | - Kirstine C Belling
- Technical University of Denmark, Department for Systems Biology, Center for Biological Sequence Analysis, Lyngby, Denmark
| | - Khoa N Do
- Technical University of Denmark, Department for Systems Biology, Center for Biological Sequence Analysis, Lyngby, Denmark
| | - Birgitte Viuff
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark
| | - Sune B Nygård
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark
| | - Ramneek Gupta
- Technical University of Denmark, Department for Systems Biology, Center for Biological Sequence Analysis, Lyngby, Denmark
| | - Mads H Rasmussen
- Aarhus University Hospital, Department of Molecular Medicine, Aarhus, Denmark
| | - Line S Tarpgaard
- University of Southern Denmark, Institute of Clinical Research, Oncology Unit, Odense, Denmark
| | - Tine P Hansen
- University of Southern Denmark, Institute of Clinical Research, Pathology Unit, Odense, Denmark
| | - Eva Budinská
- Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, Brno, Czech Republic
| | - Per Pfeiffer
- University of Southern Denmark, Institute of Clinical Research, Oncology Unit, Odense, Denmark
| | - Fred Bosman
- University of Lausanne, University Institute of Pathology, Lausanne, Switzerland
| | - Sabine Tejpar
- University Hospital Gasthuisberg, Digestive Oncology Unit, Leuven, Belgium
| | - Arnaud Roth
- University Hospital of Geneva, Oncosurgery Unit, Geneva, Switzerland
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, Bioinformatics Core Facility, Lausanne, Switzerland; University of Lausanne, Ludwig Center for Cancer Research, Lausanne, Switzerland; University of Lausanne, Oncology Department, Lausanne, Switzerland
| | - Claus L Andersen
- Aarhus University Hospital, Department of Molecular Medicine, Aarhus, Denmark
| | - Maria U Rømer
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark
| | - Nils Brünner
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark.
| | - José M A Moreira
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, Frederiksberg, Denmark
| |
Collapse
|
21
|
Samaras SE, Almodóvar-García K, Wu N, Yu F, Davidson JM. Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:96-109. [PMID: 25452119 DOI: 10.1016/j.ajpath.2014.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/27/2022]
Abstract
The expression of ankyrin repeat domain protein 1 (Ankrd1), a transcriptional cofactor and sarcomeric component, is strongly elevated by wounding and tissue injury. We developed a conditional Ankrd1(fl/fl) mouse, performed global deletion with Sox2-cre, and assessed the role of this protein in cutaneous wound healing. Although global deletion of Ankrd1 did not affect mouse viability or development, Ankrd1(-/-) mice had at least two significant wound-healing phenotypes: extensive necrosis of ischemic skin flaps, which was reversed by adenoviral expression of ANKRD1, and delayed excisional wound closure, which was characterized by decreased contraction and reduced granulation tissue thickness. Skin fibroblasts isolated from Ankrd1(-/-) mice did not spread or migrate on collagen- or fibronectin-coated surfaces as efficiently as fibroblasts isolated from Ankrd1(fl/fl) mice. More important, Ankrd1(-/-) fibroblasts failed to contract three-dimensional floating collagen gels. Reconstitution of ANKRD1 by adenoviral infection stimulated both collagen gel contraction and actin fiber organization. These in vitro data were consistent with in vivo wound closure studies, and suggest that ANKRD1 is important for the proper interaction of fibroblasts with a compliant collagenous matrix both in vitro and in vivo.
Collapse
Affiliation(s)
- Susan E Samaras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Karinna Almodóvar-García
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nanjun Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Fang Yu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
22
|
Chen C, Shen L, Cao S, Li X, Xuan W, Zhang J, Huang X, Bin J, Xu D, Li G, Kitakaze M, Liao Y. Cytosolic CARP promotes angiotensin II- or pressure overload-induced cardiomyocyte hypertrophy through calcineurin accumulation. PLoS One 2014; 9:e104040. [PMID: 25089522 PMCID: PMC4121294 DOI: 10.1371/journal.pone.0104040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
The gene ankyrin repeat domain 1 (Ankrd1) is an enigmatic gene and may exert pleiotropic function dependent on its expression level, subcellular localization and even types of pathological stress, but it remains unclear how these factors influence the fate of cardiomyocytes. Here we attempted to investigate the role of CARP on cardiomyocyte hypertrophy. In neonatal rat ventricular cardiomyocytes (NRVCs), angiotensin II (Ang II) increased the expression of both calpain 1 and CARP, and also induced cytosolic translocation of CARP, which was abrogated by a calpain inhibitor. In the presence of Ang-II in NRVCs, infection with a recombinant adenovirus containing rat Ankrd1 cDNA (Ad-Ankrd1) enhanced myocyte hypertrophy, the upregulation of atrial natriuretic peptide and β-myosin heavy chain genes and calcineurin proteins as well as nuclear translocation of nuclear factor of activated T cells. Cyclosporin A attenuated Ad-Ankrd1-enhanced cardiomyocyte hypertrophy. Intra-myocardial injection of Ad-Ankrd1 in mice with transverse aortic constriction (TAC) markedly increased the cytosolic CARP level, the heart weight/body weight ratio, while short hairpin RNA targeting Ankrd1 inhibited TAC-induced hypertrophy. The expression of calcineurin was also significantly increased in Ad-Ankrd1-infected TAC mice. Olmesartan (an Ang II receptor antagonist) prevented the upregulation of CARP in both Ang II-stimulated NRVCs and hearts with pressure overload. These findings indicate that overexpression of Ankrd1 exacerbates pathological cardiac remodeling through the enhancement of cytosolic translocation of CARP and upregulation of calcineurin.
Collapse
Affiliation(s)
- Ci Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Shen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiping Cao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (YL); (SC)
| | - Xixian Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanling Xuan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobo Huang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Masafumi Kitakaze
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cardiovascular Division of the Department of Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yulin Liao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (YL); (SC)
| |
Collapse
|
23
|
McCloskey CW, Goldberg RL, Carter LE, Gamwell LF, Al-Hujaily EM, Collins O, Macdonald EA, Garson K, Daneshmand M, Carmona E, Vanderhyden BC. A new spontaneously transformed syngeneic model of high-grade serous ovarian cancer with a tumor-initiating cell population. Front Oncol 2014; 4:53. [PMID: 24672774 PMCID: PMC3957277 DOI: 10.3389/fonc.2014.00053] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
Improving screening and treatment options for patients with epithelial ovarian cancer has been a major challenge in cancer research. Development of novel diagnostic and therapeutic approaches, particularly for the most common subtype, high-grade serous ovarian cancer (HGSC), has been hampered by controversies over the origin of the disease and a lack of spontaneous HGSC models to resolve this controversy. Over long-term culture in our laboratory, an ovarian surface epithelial (OSE) cell line spontaneously transformed OSE (STOSE). The objective of this study was to determine if the STOSE cell line is a good model of HGSC. STOSE cells grow faster than early passage parental M0505 cells with a doubling time of 13 and 48 h, respectively. STOSE cells form colonies in soft agar, an activity for which M0505 cells have negligible capacity. Microarray analysis identified 1755 down-regulated genes and 1203 up-regulated genes in STOSE compared to M0505 cells, many associated with aberrant Wnt/β-catenin and Nf-κB signaling. Upregulation of Ccnd1 and loss of Cdkn2a in STOSE tumors is consistent with changes identified in human ovarian cancers by The Cancer Genome Atlas. Intraperitoneal injection of STOSE cells into severe combined immunodeficient and syngeneic FVB/N mice produced cytokeratin+, WT1+, inhibin-, and PAX8+ tumors, a histotype resembling human HGSC. Based on evidence that a SCA1+ stem cell-like population exists in M0505 cells, we examined a subpopulation of SCA1+ cells that is present in STOSE cells. Compared to SCA1- cells, SCA1+ STOSE cells have increased colony-forming capacity and form palpable tumors 8 days faster after intrabursal injection into FVB/N mice. This study has identified the STOSE cells as the first spontaneous murine model of HGSC and provides evidence for the OSE as a possible origin of HGSC. Furthermore, this model provides a novel opportunity to study how normal stem-like OSE cells may transform into tumor-initiating cells.
Collapse
Affiliation(s)
- Curtis W. McCloskey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Reuben L. Goldberg
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lauren E. Carter
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lisa F. Gamwell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ensaf M. Al-Hujaily
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Olga Collins
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Elizabeth A. Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kenneth Garson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Manijeh Daneshmand
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Lei Y, Henderson BR, Emmanuel C, Harnett PR, deFazio A. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene 2014; 34:485-95. [PMID: 24531715 DOI: 10.1038/onc.2013.566] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 11/30/2013] [Accepted: 12/07/2013] [Indexed: 02/07/2023]
Abstract
High expression of Ankyrin Repeat Domain 1 (ANKRD1) in ovarian carcinoma is associated with poor survival, and in ovarian cancer cell lines is associated with platinum resistance. Importantly, decreasing ANKRD1 expression using siRNA increases cisplatin sensitivity. In this study, we investigated possible mechanisms underlying the association of ANKRD1 with cisplatin response. We first demonstrated that cisplatin-induced apoptosis in ovarian cancer cell lines was associated with endoplasmic reticulum (ER) stress, evidenced by induction of Glucose-Regulated Protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and increased intracellular Ca(2+) release. The level of sensitivity to cisplatin-induced apoptosis was associated with ANKRD1 protein levels and poly (ADP-ribose) polymerase (PARP) cleavage. COLO 316 ovarian cancer cells, which express high ANKRD1 levels, were relatively resistant to cisplatin, and ER stress-induced apoptosis, whereas OAW42 and PEO14 cells, which express lower ANKRD1 levels, are more sensitive to ER stress-induced apoptosis. Furthermore, we show that overexpression of ANKRD1 attenuated cisplatin-induced cytotoxicity, and conversely siRNA knockdown of ANKRD1 sensitized ovarian cancer cells to cisplatin and ER stress-induced apoptosis associated with induction of GADD153, and downregulation of BCL2 and BCL-XL. Taken together, these results suggest that ANKRD1 has a significant role in the regulation of apoptosis in human ovarian cancer cells, and is a potential molecular target to enhance sensitivity of ovarian cancer to chemotherapy.
Collapse
Affiliation(s)
- Y Lei
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - B R Henderson
- Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - C Emmanuel
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - P R Harnett
- 1] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia [2] Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - A deFazio
- 1] Department of Gynaecological Oncology, Westmead Hospital, Westmead, New South Wales, Australia [2] Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, New South Wales, Australia [3] Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
25
|
Liu WB, Han F, Jiang X, Yin L, Chen HQ, Li YH, Liu Y, Cao J, Liu JY. Epigenetic regulation of ANKRD18B in lung cancer. Mol Carcinog 2013; 54:312-21. [PMID: 24249358 DOI: 10.1002/mc.22101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/23/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
The identification of the key genetic and epigenetic changes underlying lung carcinogenesis would aid effective early diagnosis and targeted therapies for lung cancer. In this study, we screened a novel hypermethylated gene ankyrin repeat domain 18B (ANKRD18B), to determine whether it is regulated by DNA methylation and clarify its biological and clinical implications in lung cancer. Methylation status and expression level were analyzed by methylation-specific PCR, bisulfite genomic sequencing, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We detected ANKRD18B hypermethylation in 52 of 98 (53.1%) primary lung cancer tissues and in nine of 10 (90%) cell lines, whereas no methylation was seen in 10 normal lung tissue samples. ANKRD18B methylation was more frequently observed in patients with poor differentiation (P < 0.05). Notably, 62 pairs of samples from patients whose tumor tissue showed hypermethylation of ANKRD18B exhibited the same aberrant methylation in 72.7% and 69.7% of their corresponding plasma and sputum samples, respectively; whereas no hypermethylation of ANKRD18B was detected in the sputum and plasma from patients whose tumor sample lacked this alteration. In addition, ANKRD18B mRNA expression was significantly decreased or silenced in lung cancer tissues and cell lines associated with hypermethylation of the ANKRD18B region. Demethylation agent 5-aza-2'-deoxycytidine significantly increased ANKRD18B mRNA expression in lung cancer cell lines. Furthermore, overexpression of ANKRD18B suppressed lung cancer cell growth. These results suggest that the expression of ANKRD18B is regulated by CpG island hypermethylation in lung cancer. Our findings confirm the importance of the identification of new markers of epigenetic dysregulation in cancer.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wu Y, Ruggiero CL, Bauman WA, Cardozo C. Ankrd1 is a transcriptional repressor for the androgen receptor that is downregulated by testosterone. Biochem Biophys Res Commun 2013; 437:355-60. [PMID: 23811403 DOI: 10.1016/j.bbrc.2013.06.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The ankryn repeat domain proteins, Ankrd1 and Ankrd2, are expressed at the highest levels in skeletal muscle and heart where they are localized to the I band of the sarcomere through binding to titin and myopaladin. Ankrd1 and Ankrd2 migrate from the sarcomere to the nucleus when muscle is stressed, and act as coregulators for a growing number of transcription factors. Expression of Ankrd1 is altered by castration suggesting a link to androgen action. This investigation explored the effects of testosterone on Ankrd1 and Ankrd2 expression and determined whether Ankrd1 or Ankrd2 binds to or regulates the transcriptional activity of the androgen receptor (AR). Incubation of rat L6 myoblasts expressing the human AR (L6.AR) with testosterone reduced mRNA levels for Ankrd1 by approximately 50% and increased those for Ankrd2 by 20-fold. In reporter gene assays conducted with CHO cells co-transfected with an ARE-Luc reporter gene, Ankrd1 blocked the ability of testosterone to increase reporter gene activity while Ankrd2 had no effect. The effect of Ankrd1 and Ankrd2 on repression of the MAFbx promoter by testosterone was also tested in C2C12 cells using an MAFbx-Luc reporter gene (pMAF400-Luc); Ankrd1 blocked repression of pMAF400-Luc by testosterone while Ankrd2 did not. Co-immunoprecipitation studies revealed that Ankrd1 bound to the AR whereas Ankrd2 did not. The effect of Ankrd1 or Ankrd2 on changes in gene expression induced by testosterone in L6.AR cells was also evaluated. Incubation of L6.AR cells with testosterone modestly reduced myogenin mRNA levels but did not significantly alter those for mdm2, MEF2d, TnnI1, TnnI2, or p21. When cells were transfected with Ankrd1, testosterone markedly reduced mRNA levels for MEF2d, myogenin, p21 and TnnI1, increased those for TnnI2, but did not alter those for mdm2. When cells were transfected with Ankrd2, testosterone increased MEF2d and myogenin mRNA levels, having the opposite effect to cells transfected with Ankrd1; Ankrd2 did not change the effects of testosterone on TnnI1, TnnI2, p21, or mdm2 mRNA levels. In conclusion, testosterone regulates the expression of Ankrd1 and Ankrd2; Ankrd1 binds to and directly regulates the transcriptional activity of the AR whereas Ankrd2 does not; expression levels of both Ankrd1 and Ankrd2 modulate effects of testosterone on gene expression in cultured myoblasts.
Collapse
Affiliation(s)
- Yong Wu
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter Medical Center, Bronx, NY, United States
| | | | | | | |
Collapse
|
27
|
Song Y, Xu J, Li Y, Jia C, Ma X, Zhang L, Xie X, Zhang Y, Gao X, Zhang Y, Zhu D. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways. PLoS One 2012; 7:e50436. [PMID: 23227174 PMCID: PMC3515619 DOI: 10.1371/journal.pone.0050436] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/22/2012] [Indexed: 12/17/2022] Open
Abstract
AIMS It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jialin Xu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunshi Jia
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Ma
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Lei Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojie Xie
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Gao
- National Resource Center for Mutant Mice Model Animal Research of Nanjing University, Pukou High-Tech District, Nanjing, China
- * E-mail: (DZ); (YZ); (XG)
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- * E-mail: (DZ); (YZ); (XG)
| | - Dahai Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (DZ); (YZ); (XG)
| |
Collapse
|
28
|
Liu WB, Han F, Jiang X, Yang LJ, Li YH, Liu Y, Chen HQ, Ao L, Cui ZH, Cao J, Liu JY. ANKRD18A as a novel epigenetic regulation gene in lung cancer. Biochem Biophys Res Commun 2012; 429:180-5. [PMID: 23131552 DOI: 10.1016/j.bbrc.2012.10.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 01/10/2023]
Abstract
Lung cancer is one of the most common causes of cancer-related mortality worldwide. Effective early diagnosis and targeted therapies for lung cancer to reduce incidence and mortality would benefit from a better understanding of the key molecular changes that occur from normal to malignant tumor cells during lung cancer initiation and development, but these are largely unknown. Previous studies have shown that DNA methylation, an important mechanism for the regulation of gene expression, plays a key role in lung carcinogenesis. In this study, we screened a novel methylation gene, ANKRD18A, encoding ankyrin repeat domain 18A, to determine whether it is regulated by DNA methylation in lung cancer. Methylation-specific PCR and bisulfite sequencing PCR were used to analyze gene methylation status, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) examined mRNA levels. Promoter hypermethylation of ANKRD18A was detected in 68.4% (26/38) of lung cancer tissues but not (0/20) in normal lung tissues (P<0.01), whereas ANKRD18A mRNA expression was significantly decreased in lung cancer tissues compared with adjacent normal tissues. In addition, we found that ANKRD18A expression was significantly decreased in 9 of 10 lung cancer cell lines. This was associated with hypermethylation of the ANKRD18A promoter region. Moreover, weak expression of ANKRD18A in methylated lung cancer cell lines increased markedly after treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine. These results suggest that ANKRD18A hypermethylation and consequent mRNA alterations might be a vital molecular mechanism in lung cancer.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Samaras SE, Chen B, Koch SR, Sawyer DB, Lim CC, Davidson JM. 26S proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells. Biochem Biophys Res Commun 2012; 425:830-5. [PMID: 22892129 DOI: 10.1016/j.bbrc.2012.07.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/30/2012] [Indexed: 01/04/2023]
Abstract
Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.
Collapse
Affiliation(s)
- Susan E Samaras
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2561, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Abstract
Background: Molecular characterisation using gene-expression profiling will undoubtedly improve the prediction of treatment responses, and ultimately, the clinical outcome of cancer patients. Methods: To establish the procedures to identify responders to FOLFOX therapy, 83 colorectal cancer (CRC) patients including 42 responders and 41 non-responders were divided into training (54 patients) and test (29 patients) sets. Using Random Forests (RF) algorithm in the training set, predictor genes for FOLFOX therapy were identified, which were applied to test samples and sensitivity, specificity, and out-of-bag classification accuracy were calculated. Results: In the training set, 22 of 27 responders (81.4% sensitivity) and 23 of 27 non-responders (85.1% specificity) were correctly classified. To improve the prediction model, we removed the outliers determined by RF, and the model could correctly classify 21 of 23 responders (91.3%) and 22 of 23 non-responders (95.6%) in the training set, and 80.0% sensitivity and 92.8% specificity, with an accuracy of 69.2% in 29 independent test samples. Conclusion: Random Forests on gene-expression data for CRC patients was effectively able to stratify responders to FOLFOX therapy with high accuracy, and use of pharmacogenomics in anticancer therapy is the first step in planning personalised therapy.
Collapse
|
32
|
Abstract
MARP Protein Family: A Possible Role in Molecular Mechanisms of TumorigenesisThe MARP (muscle ankyrin repeat protein) family comprises three structurally similar proteins: CARP/Ankrd1, Ankrd2/Arpp and DARP/Ankrd23. They share four conserved copies of 33-residue ankyrin repeats and contain a nuclear localization signal, allowing the sorting of MARPs to the nucleus. They are found both in the nucleus and in the cytoplasm of skeletal and cardiac muscle cells, suggesting that MARPs shuttle within the cell enabling them to play a role in signal transduction in striated muscle. Expression of MARPs is altered under different pathological conditions. In skeletal muscle, CARP/Ankrd1 and Ankrd2/Arpp are up-regulated in muscle in patients suffering from Duchene muscular dystrophy, congenital myopathy and spinal muscular atrophy. Mutations inAnkrd1gene (coding CARP/Ankrd1) were identified in dilated and hypertrophic cardiomyopathies. Altered expression of MARPs is also observed in rhabdomyosarcoma, renal oncocytoma and ovarian cancer. In order to functionally characterize MARP family members CARP/Ankrd1 and Ankrd2/Arpp, we have found that both proteins interact with the tumor suppressor p53 bothin vivoandin vitroand that p53 up-regulates their expression. Our results implicate the potential role of MARPs in molecular mechanisms relevant to tumor response and progression.
Collapse
|
33
|
Sahab ZJ, Hall MD, Zhang L, Cheema AK, Byers SW. Tumor Suppressor RARRES1 Regulates DLG2, PP2A, VCP, EB1, and Ankrd26. J Cancer 2010; 1:14-22. [PMID: 20842219 PMCID: PMC2931349 DOI: 10.7150/jca.1.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Retinoic Acid Receptor Responder (RARRES1) initially identified as a novel retinoic acid receptor regulated gene in the skin is a putative tumor suppressor of unknown function. RARRES1 was knocked down in immortalized human prostatic epithelial cell line PWR-1E cells and differential protein expression was identified using differential in-gel electrophoresis (DIGE) followed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry and western Blot analysis excluding highly abundant proteins routinely identified in almost all proteomics projects. Knock-down of RARRES1: 1- down-regulates PP2A, an enzyme involved in the negative regulation of the growth hormone-stimulated signal transduction pathways; 2- down-regulates Valosin-containing protein causing impaired autophagy; 3- up-regulates the tumor suppressor disks large 2; 4- up-regulates Ankrd26 that belongs to the POTE family of genes that are highly expressed in cancer patients with poor outcome; and 5- down-regulates EB1, a protein that is involved in spindle dynamics and chromosome alignment during mitosis.
Collapse
Affiliation(s)
- Ziad J Sahab
- 1. Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Department of Oncology, Washington, DC, 20007, USA
| | | | | | | | | |
Collapse
|
34
|
Rohrbeck A, Borlak J. Cancer genomics identifies regulatory gene networks associated with the transition from dysplasia to advanced lung adenocarcinomas induced by c-Raf-1. PLoS One 2009; 4:e7315. [PMID: 19812696 PMCID: PMC2754338 DOI: 10.1371/journal.pone.0007315] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/13/2009] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity. To improve an understanding of molecular causes of disease a transgenic mouse model was investigated where targeted expression of the serine threonine kinase c-Raf to respiratory epithelium induced initially dysplasia and subsequently adenocarcinomas. This enables dissection of genetic events associated with precancerous and cancerous lesions. METHODOLOGY/PRINCIPAL FINDINGS By laser microdissection cancer cell populations were harvested and subjected to whole genome expression analyses. Overall 473 and 541 genes were significantly regulated, when cancer versus transgenic and non-transgenic cells were compared, giving rise to three distinct and one common regulatory gene network. At advanced stages of tumor growth predominately repression of gene expression was observed, but genes previously shown to be up-regulated in dysplasia were also up-regulated in solid tumors. Regulation of developmental programs as well as epithelial mesenchymal and mesenchymal endothelial transition was a hall mark of adenocarcinomas. Additionally, genes coding for cell adhesion, i.e. the integrins and the tight and gap junction proteins were repressed, whereas ligands for receptor tyrosine kinase such as epi- and amphiregulin were up-regulated. Notably, Vegfr- 2 and its ligand Vegfd, as well as Notch and Wnt signalling cascades were regulated as were glycosylases that influence cellular recognition. Other regulated signalling molecules included guanine exchange factors that play a role in an activation of the MAP kinases while several tumor suppressors i.e. Mcc, Hey1, Fat3, Armcx1 and Reck were significantly repressed. Finally, probable molecular switches forcing dysplastic cells into malignantly transformed cells could be identified. CONCLUSIONS/SIGNIFICANCE This study provides insight into molecular pertubations allowing dysplasia to progress further to adenocarcinoma induced by exaggerted c-Raf kinase activity.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Jürgen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Center for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|