1
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Selective delivery of imaging probes and therapeutics to the endoplasmic reticulum or Golgi apparatus: Current strategies and beyond. Adv Drug Deliv Rev 2024; 212:115386. [PMID: 38971180 DOI: 10.1016/j.addr.2024.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
To maximize therapeutic effects and minimize unwanted effects, the interest in drug targeting to the endoplasmic reticulum (ER) or Golgi apparatus (GA) has been recently growing because two organelles are distributing hubs of cellular building/signaling components (e.g., proteins, lipids, Ca2+) to other organelles and the plasma membrane. Their structural or functional damages induce organelle stress (i.e., ER or GA stress), and their aggravation is strongly related to diseases (e.g., cancers, liver diseases, brain diseases). Many efforts have been developed to image (patho)physiological functions (e.g., oxidative stress, protein/lipid-related processing) and characteristics (e.g., pH, temperature, biothiols, reactive oxygen species) in the target organelles and to deliver drugs for organelle disruption using organelle-targeting moieties. Therefore, this review will overview the structure, (patho)physiological functions/characteristics, and related diseases of the organelles of interest. Future direction on ER or GA targeting will be discussed by understanding current strategies and investigations on targeting, imaging/sensing, and therapeutic systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea; Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
2
|
Cheng Q, Liu K, Xiao J, Shen K, Wang Y, Zhou X, Wang J, Xu Z, Yang L. SEC23A confers ER stress resistance in gastric cancer by forming the ER stress-SEC23A-autophagy negative feedback loop. J Exp Clin Cancer Res 2023; 42:232. [PMID: 37670384 PMCID: PMC10478313 DOI: 10.1186/s13046-023-02807-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Sec23 homolog A (SEC23A), a core component of coat protein complex II (COPII), has been reported to be involved in several cancers. However, the role of SEC23A in gastric cancer remains unclear. METHODS The expression of SEC23A in gastric cancer was analyzed by using qRT-PCR, western blotting and IHC staining. The role of SEC23A in ER stress resistance was explored by functional experiments in vitro and vivo. The occupation of STAT3 on the SEC23A promoter region was verified by luciferase reporter plasmids and CHIP assay. The interaction between SEC23A and ANXA2 was identified by Co-IP and mass spectrometry analysis. RESULTS We demonstrated that SEC23A was upregulated in gastric cancer and predicted poor prognosis in patients with gastric cancer. Mechanistically, SEC23A was transcriptional upregulated by ER stress-induced pY705-STAT3. Highly expressed SEC23A promoted autophagy by regulating the cellular localization of ANXA2. The SEC23A-ANXA2-autophay axis, in turn, protected gastric cancer cells from ER stress-induced apoptosis. Furthermore, we identified SEC23A attenuated 5-FU therapeutic effectiveness in gastric cancer cells through autophagy-mediated ER stress relief. CONCLUSION We reveal an ER stress-SEC23A-autophagy negative feedback loop that enhances the ability of gastric cancer cells to resist the adverse survival environments. These results identify SEC23A as a promising molecular target for potential therapeutic intervention and prognostic prediction in patients with gastric cancer.
Collapse
Affiliation(s)
- Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jian Xiao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Kuan Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yuanhang Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xinyi Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiawei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
- Department of General Surgery, Liyang People's Hospital, Liyang Branch Hospital of Jiangsu Province Hospital, Liyang, Jiangsu Province, China.
| |
Collapse
|
3
|
Gavagnin E, Vittadello ST, Gunasingh G, Haass NK, Simpson MJ, Rogers T, Yates CA. Synchronized oscillations in growing cell populations are explained by demographic noise. Biophys J 2021; 120:1314-1322. [PMID: 33617836 DOI: 10.1016/j.bpj.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Understanding synchrony in growing populations is important for applications as diverse as epidemiology and cancer treatment. Recent experiments employing fluorescent reporters in melanoma cell lines have uncovered growing subpopulations exhibiting sustained oscillations, with nearby cells appearing to synchronize their cycles. In this study, we demonstrate that the behavior observed is consistent with long-lasting transient phenomenon initiated and amplified by the finite-sample effects and demographic noise. We present a novel mathematical analysis of a multistage model of cell growth, which accurately reproduces the synchronized oscillations. As part of the analysis, we elucidate the transient and asymptotic phases of the dynamics and derive an analytical formula to quantify the effect of demographic noise in the appearance of the oscillations. The implications of these findings are broad, such as providing insight into experimental protocols that are used to study the growth of asynchronous populations and, in particular, those investigations relating to anticancer drug discovery.
Collapse
Affiliation(s)
- Enrico Gavagnin
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom.
| | - Sean T Vittadello
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Gency Gunasingh
- The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Nikolas K Haass
- The University of Queensland, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Matthew J Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tim Rogers
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Christian A Yates
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
4
|
Patruno I, Thompson D, Dall'Angelo S, Windhorst AD, Vugts DJ, Poot AJ, Mody N, Zanda M. Design, Synthesis, Radiosynthesis and Biological Evaluation of Fenretinide Analogues as Anticancer and Metabolic Syndrome-Preventive Agents. ChemMedChem 2020; 15:1579-1590. [PMID: 32497314 DOI: 10.1002/cmdc.202000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Indexed: 12/31/2022]
Abstract
Fenretinide (4-HPR) is a synthetic derivative of all-trans-retinoic acid (ATRA) characterised by improved therapeutic properties and toxicological profile relative to ATRA. 4-HPR has been mostly investigated as an anti-cancer agent, but recent studies showed its promising therapeutic potential for preventing metabolic syndrome. Several biological targets are involved in 4-HPR's activity, leading to the potential use of this molecule for treating different pathologies. However, although 4-HPR displays quite well-understood multitarget promiscuity with regards to pharmacology, interpreting its precise physiological role remains challenging. In addition, despite promising results in vitro, the clinical efficacy of 4-HPR as a chemotherapeutic agent has not been satisfactory so far. Herein, we describe the preparation of a library of 4-HPR analogues, followed by the biological evaluation of their anti-cancer and anti-obesity/diabetic properties. The click-type analogue 3 b showed good capacity to reduce the amount of lipid accumulation in 3T3-L1 adipocytes during differentiation. Furthermore, it showed an IC50 of 0.53±0.8 μM in cell viability tests on breast cancer cell line MCF-7, together with a good selectivity (SI=121) over noncancerous HEK293 cells. Thus, 3 b was selected as a potential PET tracer to study retinoids in vivo, and the radiosynthesis of [18 F]3b was successfully developed. Unfortunately, the stability of [18 F]3b turned out to be insufficient to pursue imaging studies.
Collapse
Affiliation(s)
- Ilaria Patruno
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Albert D Windhorst
- Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Alex J Poot
- Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Matteo Zanda
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,C.N.R.-SCITEC, via Mancinelli 7, 20131, Milan, Italy.,Current address: Loughborough University School of Science, Centre for Sensing and Imaging Science Sir David Davies Building, Loughborough, LE11 3TU, UK
| |
Collapse
|
5
|
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108321. [PMID: 32800272 DOI: 10.1016/j.mrrev.2020.108321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
Collapse
Affiliation(s)
- Rafiq A Rather
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India.
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
6
|
Chen Q, Yang Z, Chen X, Shu L, Qu W. Peptide P7 inhibits the bFGF-stimulated proliferation and invasion of SKOV3 cells. Exp Ther Med 2019; 17:3003-3008. [PMID: 30936970 PMCID: PMC6434263 DOI: 10.3892/etm.2019.7309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Peptide P7 specifically binds with basic fibroblast growth factor (bFGF) to inhibit the proliferation and invasion of numerous types of cancer cell. However, this effect has remained to be demonstrated in ovarian cancer-derived cell lines. In the present study, the protein P7 was used treat bFGF-stimulated SKOV3 epithelial ovarian cancer cells to explore the therapeutic potential of P7. An MTT and a scratch wound assay were used to respectively evaluate the proliferation and migration of bFGF-stimulated SKOV3 cells treated with P7. Reverse transcription-quantitative polymerase chain reaction analysis was used to detect the gene expression of urokinase-type plasminogen activator (uPA), as well as matrix metallopeptidase (MMP)-2 and −9, which have a role in cell migration/invasion. The morphology and proliferation of SKOV3 cells were not significantly affected by different concentrations of P7. However, P7 had an obvious inhibitory effect on the proliferation and migration of bFGF-stimulated SKOV3 cells. Treatment with P7 significantly lowered the gene expression of uPA, MMP-2 and MMP-9 compared with that in the control group. In conclusion, the present results suggested that P7, which, at least in part, acts through inhibition of bFGF, may have a potential therapeutic application in epithelial ovarian cancer.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziying Yang
- Department of Obstetrics and Gynecology, Shangrao People's Hospital, Shangrao, Jiangxi 334000, P.R. China
| | - Xiangnan Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Li Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wanglei Qu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
7
|
Verykiou S, Alexander M, Edwards N, Plummer R, Chaudhry B, Lovat PE, Hill DS. Harnessing autophagy to overcome mitogen-activated protein kinase kinase inhibitor-induced resistance in metastatic melanoma. Br J Dermatol 2018; 180:346-356. [PMID: 30339727 PMCID: PMC7816093 DOI: 10.1111/bjd.17333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Patients with malignant melanoma often relapse after treatment with BRAF and/or mitogen-activated protein kinase kinase (MEK) inhibitors (MEKi) owing to development of drug resistance. OBJECTIVES To establish the temporal pattern of CD271 regulation during development of resistance by melanoma to trametinib, and determine the association between development of resistance to trametinib and induction of prosurvival autophagy. METHODS Immunohistochemistry for CD271 and p62 was performed on human naevi and primary malignant melanoma tumours. Western blotting was used to analyse expression of CD271, p62 and LC3 in melanoma subpopulations. Flow cytometry and immunofluorescence microscopy was used to evaluate trametinib-induced cell death and CD271 expression. MTS viability assays and zebrafish xenografts were used to evaluate the effect of CD271 and autophagy modulation on trametinib-resistant melanoma cell survival and invasion, respectively. RESULTS CD271 and autophagic signalling are increased in stage III primary melanomas vs. benign naevi. In vitro studies demonstrate MEKi of BRAF-mutant melanoma induced cytotoxic autophagy, followed by the emergence of CD271-expressing subpopulations. Trametinib-induced CD271 reduced autophagic flux, leading to activation of prosurvival autophagy and development of MEKi resistance. Treatment of CD271-expressing melanoma subpopulations with RNA interference and small-molecule inhibitors to CD271 reduced the development of MEKi resistance, while clinically applicable autophagy modulatory agents - including Δ9-tetrahydrocannabinol and Vps34 - reduced survival of MEKi-resistant melanoma cells. Combined MEK/autophagy inhibition also reduced the invasive and metastatic potential of MEKi-resistant cells in an in vivo zebrafish xenograft. CONCLUSIONS These results highlight a novel mechanism of MEKi-induced drug resistance and suggest that targeting autophagy may be a translatable approach to resensitize drug-resistant melanoma cells to the cytotoxic effects of MEKi.
Collapse
Affiliation(s)
- S Verykiou
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.,Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - M Alexander
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - N Edwards
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - R Plummer
- Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - B Chaudhry
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, U.K
| | - P E Lovat
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.,Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - D S Hill
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, U.K
| |
Collapse
|
8
|
Wu S, Yang Y, Li F, Huang L, Han Z, Wang G, Yu H, Li H. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells. Onco Targets Ther 2018; 11:2593-2601. [PMID: 29780252 PMCID: PMC5951218 DOI: 10.2147/ott.s157707] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related mortality worldwide and the third in USA in 2017. Chelerythrine (CHE), a naturalbenzo[c]phenanthridine alkaloid, formerly identified as a protein kinase C inhibitor, has also shown anticancer effect through a number of mechanisms. Herein, effect and mechanism of the CHE-induced apoptosis via reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress in prostate cancer cells were studied for the first time. METHODS In our present study, we investigated whether CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a dose-dependent manner in PC-3 cells. In addition, we showed that CHE increases intracellular ROS and leads to ROS-dependent ER stress and cell apoptosis. RESULTS Pre-treatment with N-acetyl cysteine, an ROS scavenger, totally reversed the CHE-induced cancer cell apoptosis as well as ER stress activation, suggesting that the ROS generation was responsible for the anticancer effects of CHE. CONCLUSION Taken together, our findings support one of the anticancer mechanisms by which CHE increased ROS accumulation in prostate cancer cells, thereby leading to ER stress and caused intrinsic apoptotic signaling. The study reveals that CHE could be a potential candidate for application in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Yanying Yang
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Feiping Li
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Lifu Huang
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Zihua Han
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Guanfu Wang
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Hongyuan Yu
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| | - Haiping Li
- Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group), Taizhou, China
| |
Collapse
|
9
|
Huang YF, Zhu DJ, Chen XW, Chen QK, Luo ZT, Liu CC, Wang GX, Zhang WJ, Liao NZ. Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway. Oncotarget 2018; 8:40264-40275. [PMID: 28402965 PMCID: PMC5522238 DOI: 10.18632/oncotarget.16828] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Although initially effective against metastatic colorectal cancer (CRC), irinotecan-based chemotherapy leads to resistance and adverse toxicity. Curcumin is well known for its anti-cancer effects in many cancers, including CRC. Here, we describe reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress as important mechanisms by which curcumin enhances irinotecan's effects on CRC cells. CRC cell lines were treated with curcumin and/or irinotecan for 24 h, and then evaluated using cell proliferation assays, cell apoptosis assays, cell cycle analysis, intracellular Ca2+ measurements, ROS measurements and immunoblotting for key ER stress-related proteins. We found that cell viability was inhibited and apoptosis was increased, accompanied by ROS generation and ER stress activation in CRC cells treated with curcumin alone or in combination with irinotecan. Blocking ROS production attenuated the expression of two markers of ER stress: binding of immunoglobulin protein (BIP) and CCAAT/enhancer-binding protein homologous protein (CHOP). Blocking CHOP expression using RNA interference also inhibited ROS generation. These results demonstrated that curcumin could enhance the effects of irinotecan on CRC cells by inhibiting cell viability and inducing cell cycle arrest and apoptosis, and that these effects may be mediated, in part, by ROS generation and activation of the ER stress pathway.
Collapse
Affiliation(s)
- Yan-Feng Huang
- Department of Traditional Chinese Medicine, Shunde Hospital of Southern Medical University, Guangdong 528300, China
| | - Da-Jian Zhu
- Department of Gastrointestinal Surgery, Shunde Women and Children's Hospital Affiliated to Jinan University, Guangdong 528300, China
| | - Xiao-Wu Chen
- Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, Guangdong 528300, China
| | - Qi-Kang Chen
- Department of Gastrointestinal Surgery, Shunde Women and Children's Hospital Affiliated to Jinan University, Guangdong 528300, China
| | - Zhen-Tao Luo
- Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, Guangdong 528300, China
| | - Chang-Chun Liu
- Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, Guangdong 528300, China
| | - Guo-Xin Wang
- Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, Guangdong 528300, China
| | - Wei-Jie Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, Guangdong 528300, China
| | - Nv-Zhu Liao
- Department of Gastrointestinal Surgery, Shunde Women and Children's Hospital Affiliated to Jinan University, Guangdong 528300, China
| |
Collapse
|
10
|
Haass NK, Gabrielli B. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities. Exp Dermatol 2017; 26:649-655. [PMID: 28109167 DOI: 10.1111/exd.13303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches.
Collapse
Affiliation(s)
- Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia.,The Centenary Institute, Newtown, NSW, Australia.,Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- Mater Medical Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
11
|
He G, Feng C, Vinothkumar R, Chen W, Dai X, Chen X, Ye Q, Qiu C, Zhou H, Wang Y, Liang G, Xie Y, Wu W. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Cancer Chemother Pharmacol 2016; 78:1151-1161. [PMID: 27787644 DOI: 10.1007/s00280-016-3172-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Colorectal cancer is the most commonly diagnosed malignancy with high mortality rates worldwide. Improved therapeutic strategies with minimal adverse side effects are urgently needed. In this study, the anti-tumor effects of EF24, a novel analog of the natural compound curcumin, were evaluated in colorectal cancer cells. METHODS The anti-tumor activity of EF24 on human colon cancer lines (HCT-116, SW-620, and HT-29) was determined by measures of cell cycle arrest, apoptosis, and mitochondrial function. The contribution of ROS in the EF24-induced anti-tumor activity was evaluated by measures of H2O2 and pretreatment with an ROS scavenger, NAC. RESULTS The findings indicated that EF24 treatment dose-dependently inhibited cell viability and caused cell cycle arrest at G2/M phase in all the tested colon cancer cell lines. Furthermore, we demonstrated that EF24 treatment induced apoptosis effectively via enhancing intracellular accumulation of ROS in both HCT-116 and SW-620 cells, but with moderate effects in HT-29 cells. We found that EF24 treatment decreased the mitochondrial membrane potential in the colon cancer cells, leading to the release of mitochondrial cytochrome c. Also, EF24 induced activation of caspases 9 and 3, causing decreased Bcl-2 protein expression and Bcl-2/Bax ratio. Pretreatment with NAC, a ROS scavenger, abrogated the EF24-induced cell death, apoptosis, cell cycle arrest, and mitochondrial dysfunction, suggesting an upstream ROS generation which was responsible for the anticancer effects of EF24. CONCLUSIONS Our findings support an anticancer mechanism by which EF24 enhanced ROS accumulation in colon cancer cells, thereby resulting in mitochondrial membrane collapse and activated intrinsic apoptotic signaling. Thus, EF24 could be a potential candidate for therapeutic application of colon cancer.
Collapse
Affiliation(s)
- Guodong He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chen Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rajamanickam Vinothkumar
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Weiqian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuanxuan Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingqing Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chenyu Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huiping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Wei Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
12
|
Dong X, Liao Y, Liu N, Hua X, Cai J, Liu J, Huang H. Combined therapeutic effects of bortezomib and anacardic acid on multiple myeloma cells via activation of the endoplasmic reticulum stress response. Mol Med Rep 2016; 14:2679-84. [DOI: 10.3892/mmr.2016.5533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/17/2016] [Indexed: 11/05/2022] Open
|
13
|
Ye H, Wei X, Wang Z, Zhang S, Ren J, Yao S, Shi L, Yang L, Qiu P, Wu J, Liang G. A novel double carbonyl analog of curcumin induces the apoptosis of human lung cancer H460 cells via the activation of the endoplasmic reticulum stress signaling pathway. Oncol Rep 2016; 36:1640-8. [DOI: 10.3892/or.2016.4911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/29/2016] [Indexed: 11/05/2022] Open
|
14
|
Beaumont KA, Hill DS, Daignault SM, Lui GYL, Sharp DM, Gabrielli B, Weninger W, Haass NK. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. J Invest Dermatol 2016; 136:1479-1489. [PMID: 26970356 DOI: 10.1016/j.jid.2016.02.805] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/06/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment is characterized by cancer cell subpopulations with heterogeneous cell cycle profiles. For example, hypoxic tumor zones contain clusters of cancer cells that arrest in G1 phase. It is conceivable that neoplastic cells exhibit differential drug sensitivity based on their residence in specific cell cycle phases. In this study, we used two-dimensional and organotypic melanoma culture models in combination with fluorescent cell cycle indicators to investigate the effects of cell cycle phases on clinically used drugs. We demonstrate that G1-arrested melanoma cells, irrespective of the underlying cause mediating G1 arrest, are resistant to apoptosis induced by the proteasome inhibitor bortezomib or the alkylating agent temozolomide. In contrast, G1-arrested cells were more sensitive to mitogen-activated protein kinase pathway inhibitor-induced cell death. Of clinical relevance, pretreatment of melanoma cells with a mitogen-activated protein kinase pathway inhibitor, which induced G1 arrest, resulted in resistance to temozolomide or bortezomib. On the other hand, pretreatment with temozolomide, which induced G2 arrest, did not result in resistance to mitogen-activated protein kinase pathway inhibitors. In summary, we established a model to study the effects of the cell cycle on drug sensitivity. Cell cycle phase-specific drug resistance is an escape mechanism of melanoma cells that has implications on the choice and timing of drug combination therapies.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - David S Hill
- The Centenary Institute, Newtown, NSW, Australia; Dermatological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sheena M Daignault
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Goldie Y L Lui
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Danae M Sharp
- The Centenary Institute, Newtown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Brian Gabrielli
- The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Wolfgang Weninger
- The Centenary Institute, Newtown, NSW, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia; Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, Newtown, NSW, Australia; The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Discipline of Dermatology, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Melanoma and the Unfolded Protein Response. Cancers (Basel) 2016; 8:cancers8030030. [PMID: 26927180 PMCID: PMC4810114 DOI: 10.3390/cancers8030030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 12/11/2022] Open
Abstract
The UPR (unfolded protein response) has been identified as a key factor in the progression and metastasis of cancers, notably melanoma. Several mediators of the UPR are upregulated in cancers, e.g., high levels of GRP78 (glucose-regulator protein 78 kDa) correlate with progression and poor outcome in melanoma patients. The proliferative burden of cancer induces stress and activates several cellular stress responses. The UPR is a tightly orchestrated stress response that is activated upon the accumulation of unfolded proteins within the ER (endoplasmic reticulum). The UPR is designed to mediate two conflicting outcomtes, recovery and apoptosis. As a result, the UPR initiates a widespread signaling cascade to return the cell to homeostasis and failing to achieve cellular recovery, initiates UPR-induced apoptosis. There is evidence that ER stress and subsequently the UPR promote tumourigenesis and metastasis. The complete role of the UPR has yet to be defined. Understanding how the UPR allows for adaption to stress and thereby assists in cancer progression is important in defining an archetype of melanoma pathology. In addition, elucidation of the mechanisms of the UPR may lead to development of effective treatments of metastatic melanoma.
Collapse
|
16
|
Bortezomib and fenretinide induce synergistic cytotoxicity in mantle cell lymphoma through apoptosis, cell-cycle dysregulation, and IκBα kinase downregulation. Anticancer Drugs 2015; 26:974-83. [PMID: 26237500 DOI: 10.1097/cad.0000000000000274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mantle cell lymphoma (MCL) remains incurable for most patients, and proteasome inhibitors like bortezomib induce responses in a minority of patients with relapsed disease. Fenretinide is a retinoid that has shown preclinical activity in B-cell lymphomas. We hypothesized that these agents could yield augmented antitumor activity. MCL lines (Granta-519, Jeko-1, and Rec-1) were treated with escalating concentrations of bortezomib and fenretinide singly and in combination. Cytotoxicity was assessed using the MTT assay. Flow cytometric methods were used to assess apoptosis and necrosis, with annexin V-FITC/propidium iodide staining, and G1 and G2 cell-cycle changes were assessed by DAPI staining. Changes in cyclin D1, cyclin B, IκBα, and IKKα expressions were quantified by western blotting. Cytotoxicity was mediated through apoptosis; both agents showed observed versus expected cytotoxicities of 92.2 versus 55.1% in Granta-519, of 87.6 versus 36.3% in Jeko-1, and of 63.2 versus 29.8% in Rec-1. Isobolographic analysis confirmed synergy in Jeko-1 and Rec-1 cell lines. Bortezomib induced G2-phase arrest, with a 1.7-fold increase compared with control, and fenretinide resulted in G1-phase arrest, with an increase of 1.3-fold compared with control. In the combination, G2-phase arrest predominated, with a 1.4-fold increase compared with control, and there was reduced expression of cyclin D1 to 24%, cyclin B to 52 and 64%, cyclin D3 to 25 and 43%, IκBα to 23 and 46%, and IκBα kinase to 34 and 44%. Bortezomib and fenretinide exhibit synergistic cytotoxicity against MCL cell lines. This activity is mediated by IκBα kinase modulation, decreased cyclin expression, cell cycle dysregulation, and apoptotic cell death.
Collapse
|
17
|
Zhang X, Chen M, Zou P, Kanchana K, Weng Q, Chen W, Zhong P, Ji J, Zhou H, He L, Liang G. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells. BMC Cancer 2015; 15:866. [PMID: 26546056 PMCID: PMC4636884 DOI: 10.1186/s12885-015-1851-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background Prostate cancer is the most commonly diagnosed malignancy among men. The Discovery of new agents for the treatment of prostate cancer is urgently needed. Compound WZ35, a novel analog of the natural product curcumin, exhibited good anti-prostate cancer activity, with an IC50 of 2.2 μM in PC-3 cells. However, the underlying mechanism of WZ35 against prostate cancer cells is still unclear. Methods Human prostate cancer PC-3 cells and DU145 cells were treated with WZ35 for further proliferation, apoptosis, cell cycle, and mechanism analyses. NAC and CHOP siRNA were used to validate the role of ROS and ER stress, respectively, in the anti-cancer actions of WZ35. Results Our results show that WZ35 exhibited much higher cell growth inhibition than curcumin by inducing ER stress-dependent cell apoptosis in human prostate cells. The reduction of CHOP expression by siRNA partially abrogated WZ35-induced cell apoptosis. WZ35 also dose-dependently induced cell cycle arrest in the G2/M phase. Furthermore, we found that WZ35 treatment for 30 min significantly induced reactive oxygen species (ROS) production in PC-3 cells. Co-treatment with the ROS scavenger NAC completely abrogated the induction of WZ35 on cell apoptosis, ER stress activation, and cell cycle arrest, indicating an upstream role of ROS generation in mediating the anti-cancer effect of WZ35. Conclusions Taken together, this work presents the novel anticancer candidate WZ35 for the treatment of prostate cancer, and importantly, reveals that increased ROS generation might be an effective strategy in human prostate cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1851-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiuhua Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China. .,Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Minxiao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China. .,Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Peng Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China.
| | - Karvannan Kanchana
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China.
| | - Qiaoyou Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China. .,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Wenbo Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China.
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China.
| | - Jiansong Ji
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
| | - Huiping Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China.
| | - Langchong He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
18
|
Martin S, Lovat PE, Redfern CPF. Cell-type variation in stress responses as a consequence of manipulating GRP78 expression in neuroectodermal cells. J Cell Biochem 2015; 116:438-49. [PMID: 25336069 DOI: 10.1002/jcb.24996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
Abstract
Glucose-regulated protein 78 (GRP78) is a stress sensor which interacts with unfolded protein response (UPR) activators in the endoplasmic reticulum (ER). The aim of this study was to test the hypothesis that GRP78 has distinct functional roles in mediating the effects of ER stress in neuroblastoma compared to other neuroectodermal cancer types. GRP78 was knocked down or overexpressed in neuroectodermal tumor cell lines. Protein and transcript expression were measured using Western blotting, confocal microscopy, and real-time polymerase chain reaction; cell stress was assessed by measurement of oxidative stress and accumulation of ubiquitinated proteins and cell response by measurement of apoptosis and cell viability. Neuroblastoma cells were more sensitive to ER stress than melanoma and glioblastoma cells. GRP78 knockdown increased stress sensitivity of melanoma and glioblastoma cells, but not neuroblastoma cells. Over-expression of GRP78 decreased the stress sensitivity of melanoma and glioblastoma cells but, in contrast, increased the stress sensitivity of neuroblastoma cells by activation of caspase-3-independent cell death and substantially increased the expression of UPR activators, particularly inositol-requiring element 1 (IRE1). The results from this study suggest that cell-type specific differences in the relationships between GRP78 and the UPR activators, particularly IRE1, may determine differential sensitivity to ER stress.
Collapse
Affiliation(s)
- Shaun Martin
- Northern Institute for Cancer Research, Medical School, Newcastle University, NE2 4HH, United Kingdom
| | | | | |
Collapse
|
19
|
Cheung BB, Tan O, Koach J, Liu B, Shum MSY, Carter DR, Sutton S, Po'uha ST, Chesler L, Haber M, Norris MD, Kavallaris M, Liu T, O'Neill GM, Marshall GM. Thymosin-β4 is a determinant of drug sensitivity for Fenretinide and Vorinostat combination therapy in neuroblastoma. Mol Oncol 2015; 9:1484-500. [PMID: 25963741 PMCID: PMC5528804 DOI: 10.1016/j.molonc.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022] Open
Abstract
Retinoids are an important component of neuroblastoma therapy at the stage of minimal residual disease, yet 40-50% of patients treated with 13-cis-retinoic acid (13-cis-RA) still relapse, indicating the need for more effective retinoid therapy. Vorinostat, or Suberoylanilide hydroxamic acid (SAHA), is a potent inhibitor of histone deacetylase (HDAC) classes I & II and has antitumor activity in vitro and in vivo. Fenretinide (4-HPR) is a synthetic retinoid which acts on cancer cells through both nuclear retinoid receptor and non-receptor mechanisms. In this study, we found that the combination of 4-HPR + SAHA exhibited potent cytotoxic effects on neuroblastoma cells, much more effective than 13-cis-RA + SAHA. The 4-HPR + SAHA combination induced caspase-dependent apoptosis through activation of caspase 3, reduced colony formation and cell migration in vitro, and tumorigenicity in vivo. The 4-HPR and SAHA combination significantly increased mRNA expression of thymosin-beta-4 (Tβ4) and decreased mRNA expression of retinoic acid receptor α (RARα). Importantly, the up-regulation of Tβ4 and down-regulation of RARα were both necessary for the 4-HPR + SAHA cytotoxic effect on neuroblastoma cells. Moreover, Tβ4 knockdown in neuroblastoma cells increased cell migration and blocked the effect of 4-HPR + SAHA on cell migration and focal adhesion formation. In primary human neuroblastoma tumor tissues, low expression of Tβ4 was associated with metastatic disease and predicted poor patient prognosis. Our findings demonstrate that Tβ4 is a novel therapeutic target in neuroblastoma, and that 4-HPR + SAHA is a potential therapy for the disease.
Collapse
Affiliation(s)
- Belamy B Cheung
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia.
| | - Owen Tan
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Michael S Y Shum
- Kids Research Institute, Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Sela T Po'uha
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research, Sutton, Surrey, UK
| | - Michelle Haber
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia
| | - Geraldine M O'Neill
- Kids Research Institute, Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, University of Sydney, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, University of New South Wales, Sydney, Australia; Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia.
| |
Collapse
|
20
|
Lai SL, Wong PF, Lim TK, Lin Q, Mustafa MR. Cytotoxic mechanisms of panduratin A on A375 melanoma cells: A quantitative and temporal proteomics analysis. Proteomics 2015; 15:1608-21. [DOI: 10.1002/pmic.201400039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 11/16/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Siew-Li Lai
- Centre of Natural Products & Drug Discovery (CENAR); Department of Pharmacology; Faculty of Medicine; University of Malaya; Malaysia
| | - Pooi-Fong Wong
- Centre of Natural Products & Drug Discovery (CENAR); Department of Pharmacology; Faculty of Medicine; University of Malaya; Malaysia
| | - Teck-Kwang Lim
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Qingsong Lin
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Mohd Rais Mustafa
- Centre of Natural Products & Drug Discovery (CENAR); Department of Pharmacology; Faculty of Medicine; University of Malaya; Malaysia
| |
Collapse
|
21
|
Armstrong JL, Hill DS, McKee CS, Hernandez-Tiedra S, Lorente M, Lopez-Valero I, Eleni Anagnostou M, Babatunde F, Corazzari M, Redfern CPF, Velasco G, Lovat PE. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol 2015; 135:1629-1637. [PMID: 25674907 DOI: 10.1038/jid.2015.45] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/09/2015] [Accepted: 01/21/2015] [Indexed: 01/12/2023]
Abstract
Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.
Collapse
Affiliation(s)
- Jane L Armstrong
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Applied Sciences, University of Sunderland, Sunderland, UK
| | - David S Hill
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christopher S McKee
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sonia Hernandez-Tiedra
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | - Israel Lopez-Valero
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Maria Eleni Anagnostou
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Fiyinfoluwa Babatunde
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Marco Corazzari
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
22
|
Hill DS, Lovat PE, Haass NK. Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future? Melanoma Manag 2014; 1:127-137. [PMID: 30190818 DOI: 10.2217/mmt.14.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanoma cells employ several survival strategies, including induction of the unfolded protein response, which mediates resistance to endoplasmic reticulum (ER) stress-induced apoptosis. Activation of oncogenes specifically suppresses ER stress-induced apoptosis, while upregulation of ER chaperone proteins and antiapoptotic BCL-2 family members increases the protein folding capacity of the cell and the threshold for the induction of ER stress-induced apoptosis, respectively. Modulation of unfolded protein response signaling, inhibition of the protein folding machinery and/or active induction of ER stress may thus represent potential strategies for the therapeutic management of melanoma. To this aim, the present article focuses on the current understanding of how melanoma cells avoid or overcome ER stress-induced apoptosis, as well as therapeutic strategies through which to harness ER stress for therapeutic benefit.
Collapse
Affiliation(s)
- David S Hill
- The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,The Centenary Institute, Newtown, New South Wales, Australia.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nikolas K Haass
- The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia.,The Centenary Institute, Newtown, New South Wales, Australia.,Discipline of Dermatology, University of Sydney, Camperdown, New South Wales, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| |
Collapse
|
23
|
Oliverio S, Corazzari M, Sestito C, Piredda L, Ippolito G, Piacentini M. The spermidine analogue GC7 (N1-guanyl-1,7-diamineoheptane) induces autophagy through a mechanism not involving the hypusination of eIF5A. Amino Acids 2014; 46:2767-76. [PMID: 25218134 DOI: 10.1007/s00726-014-1821-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/31/2014] [Indexed: 01/07/2023]
Abstract
The exogenous administration of spermidine promotes longevity in many model organisms. It has been proposed that this anti-age activity of spermidine is related to this polyamine's ability to promote autophagy. Since spermidine is the substrate for the eIF5A post-translational modification by hypusination, we asked ourselves whether mature eIF5A may represent the link between spermidine and autophagy induction. To test this hypothesis, we inhibited the conversion of native eIF5A by a pharmacological approach, using the N1-guanyl-1,7-diamineoheptane (GC7), a spermidine analogue which competitively and reversibly inhibits deoxyhypusine synthase (DHS). In addition, we also employed genetic approaches by ablating both the eIF5A protein itself and DHS, the rate limiting enzyme catalyzing the conversion of lysine to hypusine. Collectively the data presented in this study demonstrate that the mature eIF5A (hypusinated form) is not involved in the autophagic pathway and that the inhibitor of DHS, GC7, produces off-target effect(s) resulting in marked induction of basal autophagy. These data are relevant in light of the fact that GC7 is considered a potent and selective inhibitor of DHS and is a potential candidate drug for cancer, diabetes and HIV therapy.
Collapse
Affiliation(s)
- Serafina Oliverio
- Department of Biology, University of Rome 'Tor Vergata', Via Della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
25
|
Role of Bcl-xL/Beclin-1 in interplay between apoptosis and autophagy in oxaliplatin and bortezomib-induced cell death. Biochem Pharmacol 2014; 88:178-88. [PMID: 24486574 DOI: 10.1016/j.bcp.2014.01.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
Abstract
Recent studies indicate that a complex relationship exists between autophagy and apoptosis. In this study we investigated a regulatory relationship between autophagy and apoptosis in colorectal cancer cells utilizing molecular and biochemical approaches. For this study, human colorectal carcinoma HCT116 and CX-1 cells were treated with two chemotherapeutic agents-oxaliplatin, which induces apoptosis, and bortezomib, which triggers both apoptosis and autophagy. A combinatorial treatment of oxaliplatin and bortezomib caused a synergistic induction of apoptosis which was mediated through an increase in caspase activation. The combinational treatment of oxaliplatin and bortezomib promoted the JNK-Bcl-xL-Bax pathway which modulated the synergistic effect through the mitochondria-dependent apoptotic pathway. JNK signaling led to Bcl-xL phosphorylation at serine 62, oligomerization of Bax, alteration of mitochondrial membrane potential, and subsequent cytochrome c release. Overexpression of dominant-negative mutant of Bcl-xL (S62A), but not dominant-positive mutant of Bcl-xL (S62D), suppressed cytochrome c release and synergistic death effect. Interestingly, Bcl-xL also affected autophagy through alteration of interaction with Beclin-1. Beclin-1 was dissociated from Bcl-xL and initiated autophagy during treatment with oxaliplatin and bortezomib. However, activated caspase 8 cleaved Beclin-1 and suppressed Beclin-1-associated autophagy and enhanced apoptosis. A combinatorial treatment of oxaliplatin and bortezomib-induced Beclin-1 cleavage was abolished in Beclin-1 double mutant (D133AA/D149A) knock-in HCT116 cells, restoring the autophagy-promoting function of Beclin-1 and suppressing the apoptosis induced by the combination therapy. In addition, the combinatorial treatment significantly inhibited colorectal cancer xenografts' tumor growth. An understanding of the molecular mechanisms of crosstalk between apoptosis and autophagy will support the application of combinatorial treatment to colorectal cancer.
Collapse
|
26
|
Matsumoto H, Miyazaki S, Matsuyama S, Takeda M, Kawano M, Nakagawa H, Nishimura K, Matsuo S. Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF4 expression pattern with or without CHOP expression. Biol Open 2013; 2:1084-90. [PMID: 24167719 PMCID: PMC3798192 DOI: 10.1242/bio.20135033] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022] Open
Abstract
Cells exposed to ER-stress undergo the Unfolded Protein Response (UPR) to avoid apoptosis, but may also activate autophagy. However, the signal for selection of one of these two protective responses is unknown. To clarify the key switch between autophagy and apoptosis, we examined the correlation of UPR-related signals with autophagy and/or apoptosis inductions in HepG2 cells exposed to three ER-stress inducers (NaF, tunicamycin, and thapsigargin) with time, including the effect of small interfering RNA on the cell responses. Thapsigargin-induced ER-stress caused only apoptosis after ∼2 hr with Ire1 phosphorylation, and Grp78, ATF4, and CHOP expressions. On the other hand, NaF- and tunicamycin-induced ER-stress caused only autophagy in the early stage by ∼8 hr with ATF4 expression and without CHOP expression. ATF4-siRNA completely inhibited the autophagy induced by NaF or tunicamycin with suppressed ATF4 protein and mRNA expressions, and also inhibited apoptosis by thapsigargin with suppression of both ATF4 and CHOP. CHOP-siRNA had no effect on autophagy activation by NaF and tunicamycin. On the other hand, CHOP-siRNA activated autophagy in thapsigargin-induced ER-stress with significant ATF4 expression, and suppressed apoptosis with CHOP suppression. These results showed that ATF4 is the key signal for autophagy induced by ER-stress, and that autophagy is switched to apoptosis by subsequent CHOP upregulation, suggesting that the changeover switch between autophagy and apoptosis is located between ATF4 to CHOP in the PERK pathway.
Collapse
Affiliation(s)
- Hiroki Matsumoto
- Laboratory of Toxicology, Course of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University , 1-58, Rinku-Ourai-Kita, Izumisano 598-8531 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, Gong L, Chen J, Liu Y, Cao R, Lv J. B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Biol Sci 2013; 9:766-77. [PMID: 23983610 PMCID: PMC3753441 DOI: 10.7150/ijbs.5711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The unfolded protein response, autophagy and endoplasmic reticulum (ER) stress-induced apoptosis regulate tumor cell fate and have become novel signaling targets for the development of cancer therapeutic drugs. Curcumin has been used to treat several different cancers, including ovarian cancer, in clinical trials and research; however, the role of ER stress and autophagy in the therapeutic effects of curcumin and new curcumin analogues remains unclear. METHODS Cell viability was determined using the MTT assay. Apoptosis was detected using flow cytometry with PI/Annexin V-FITC staining. The expression levels of ER stress- and autophagy-related proteins were analyzed by western blotting. The activation of autophagy was detected using immunofluorescence staining. RESULTS We demonstrated that B19 induced HO8910 cell apoptosis in a dose-responsive manner. We also determined and that this effect was associated with corresponding increases in a series of key components in the UPR and ER stress-mediated apoptosis pathways, followed by caspase 3 cleavage and activation. We also observed that B19 treatment induced autophagy in HO8910 cells. The inhibition of autophagy using 3-methyladenine (3-MA) increased levels of intracellular misfolded proteins, which enhanced ovarian cancer apoptosis. CONCLUSIONS Our data indicate that ER stress and autophagy may play a role in the apoptosis that is induced by the curcumin analogue B19 in an epithelial ovarian cancer cell line and that autophagy inhibition can increase curcumin analogue-induced apoptosis by inducing severe ER stress.
Collapse
Affiliation(s)
- Wanglei Qu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martin S, Lamb HK, Brady C, Lefkove B, Bonner MY, Thompson P, Lovat PE, Arbiser JL, Hawkins AR, Redfern CPF. Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br J Cancer 2013; 109:433-43. [PMID: 23807168 PMCID: PMC3721410 DOI: 10.1038/bjc.2013.325] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023] Open
Abstract
Background: Glucose regulated protein 78 (GRP78) functions as a sensor of endoplasmic reticulum (ER) stress. The aim of this study was to test the hypothesis that molecules that bind to GRP78 induce the unfolded protein response (UPR) and enhance cell death in combination with ER stress inducers. Methods: Differential scanning calorimetry (DSC), measurement of cell death by flow cytometry and the induction of ER stress markers using western blotting. Results: Epigallocatechin gallate (EGCG), a flavonoid component of Green Tea Camellia sinensis, and honokiol (HNK), a Magnolia grandiflora derivative, bind to unfolded conformations of the GRP78 ATPase domain. Epigallocatechin gallate and HNK induced death in six neuroectodermal tumour cell lines tested. Levels of death to HNK were twice that for EGCG; half-maximal effective doses were similar but EGCG sensitivity varied more widely between cell types. Honokiol induced ER stress and UPR as predicted from its ability to interact with GRP78, but EGCG was less effective. With respect to cell death, HNK had synergistic effects on melanoma and glioblastoma cells with the ER stress inducers fenretinide or bortezomib, but only additive (fenretinide) or inhibitory (bortezomib) effects on neuroblastoma cells. Conclusion: Honokiol induces apoptosis due to ER stress from an interaction with GRP78. The data are consistent with DSC results that suggest that HNK binds to GRP78 more effectively than EGCG. Therefore, HNK may warrant development as an antitumour drug.
Collapse
Affiliation(s)
- S Martin
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The ubiquitin+proteasome system (UPS) is a highly complex network that maintains protein homeostasis and cell viability through the selective turnover of targeted substrates. The proteasome serves as the catalytic core of the UPS to recognize and execute the coordinated and efficient removal of ubiquitinated proteins. Pharmacologic inhibitors that exploit the pivotal role of the proteasome in cellular metabolism promote tumor cytotoxicity and have yielded durable clinical responses that dramatically improve patient survival. Success of the proteasome inhibitor (PI) bortezomib in the treatment of the hematologic malignancy multiple myeloma (MM) has emerged as the standard-of-care and catapulted the UPS into a position of prominence as a model system in cancer biology and drug development. However, expansion of PIs in the treatment of the more complex solid tumors has been less successful. While clinical evaluation of second-generation PIs progresses, other potential sites of therapeutic intervention within the UPS continue to emerge, such as the non-proteolytic activities associated with the proteasome and the rapidly expanding number of Ub-binding proteins. Molecular-genetic approaches to further unravel the complexity of the UPS will advance its utilization as a platform for the development of novel, mechanism-based anticancer strategies.
Collapse
Affiliation(s)
- James J Driscoll
- Division of Hematology-Oncology, Department of Internal Medicine, The Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, OH 45267, USA
| | | |
Collapse
|
30
|
Cheng Y, Ren X, Zhang Y, Shan Y, Huber-Keener KJ, Zhang L, Kimball SR, Harvey H, Jefferson LS, Yang JM. Integrated regulation of autophagy and apoptosis by EEF2K controls cellular fate and modulates the efficacy of curcumin and velcade against tumor cells. Autophagy 2012. [PMID: 23182879 DOI: 10.4161/auto.22801] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endoplasmic reticulum (ER) stress induces both autophagy and apoptosis yet the molecular mechanisms and pathways underlying the regulation of these two cellular processes in cells undergoing ER stress remain less clear. We report here that eukaryotic elongation factor-2 kinase (EEF2K) is a critical controller of the ER stress-induced autophagy and apoptosis in tumor cells. DDIT4, a stress-induced protein, was required for transducing the signal for activation of EEF2K under ER stress. We further showed that phosphorylation of EEF2K at Ser398 was essential for induction of autophagy, while phosphorylation of the kinase at Ser366 and Ser78 exerted an inhibitory effect on autophagy. Suppression of the ER stress-activated autophagy via silencing of EEF2K aggravated ER stress and promoted apoptotic cell death in tumor cells. Moreover, inhibiting EEF2K by either RNAi or NH125, a small molecule inhibitor of the enzyme, rendered tumor cells more sensitive to curcumin and velcade, two anticancer agents that possess ER stress-inducing action. Our study indicated that the DDIT4-EEF2K pathway was essential for inducing autophagy and for determining the fate of tumor cells under ER stress, and suggested that inhibiting the EEF2K-mediated autophagy can deteriorate ER stress and lead to a greater apoptotic response, thereby potentiating the efficacy of the ER stress-inducing agents against cancer.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vorinostat and bortezomib synergistically cause ubiquitinated protein accumulation in prostate cancer cells. J Urol 2012; 188:2410-8. [PMID: 23088964 DOI: 10.1016/j.juro.2012.07.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Protein ubiquitination is a novel strategy used to treat malignancies. We investigated whether the histone deacetylase inhibitor vorinostat (Cayman Chemical, Ann Arbor, Michigan) and the proteasome inhibitor bortezomib (LC Laboratories, Woburn, Massachusetts) would synergistically cause the accumulation of ubiquitinated proteins in prostate cancer cells. MATERIALS AND METHODS LNCaP, PC-3 and DU 145 cells (ATCC™) were treated with vorinostat and/or bortezomib. Cell viability and induction of apoptosis were assessed. In vivo efficacy was evaluated in a murine subcutaneous tumor model using PC-3 cells. The influence of androgen receptor expression on bortezomib efficacy was examined using RNA interference. Changes in the expression of ubiquitinated proteins, cell cycle associated proteins and acetylated histone were evaluated. RESULTS Androgen receptor expression seemed to decrease bortezomib activity. PC-3 and DU 145 cells were more susceptible to bortezomib than LNCaP cells and the silencing of androgen receptor expression in LNCaP cells enhanced bortezomib activity. Vorinostat and bortezomib synergistically induced apoptosis, inhibited prostate cancer cell growth and suppressed tumor growth in a murine xenograft model. The combination decreased cyclin D1 and cyclin-dependent kinase 4 expression, and increased p21 expression. The combination synergistically caused the accumulation of ubiquitinated proteins and histone acetylation. This histone acetylation was a consequence of the accumulation of ubiquitinated proteins. CONCLUSIONS Vorinostat and bortezomib inhibit the growth of prostate cancer cells synergistically by causing ubiquitinated proteins to accumulate in cells. The current study provides a framework for testing the combination in patients with advanced prostate cancer.
Collapse
|
32
|
Lin WC, Chuang YC, Chang YS, Lai MD, Teng YN, Su IJ, Wang CCC, Lee KH, Hung JH. Endoplasmic reticulum stress stimulates p53 expression through NF-κB activation. PLoS One 2012; 7:e39120. [PMID: 22859938 PMCID: PMC3408479 DOI: 10.1371/journal.pone.0039120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 05/18/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Induction of apoptosis by endoplasmic reticulum (ER) stress is implicated as the major factor in the development of multiple diseases. ER stress also appears to be a potentially useful major response to many chemotherapeutic drugs and environmental chemical compounds. A previous study has indicated that one major apoptotic regulator, p53, is significantly increased in response to ER stress, and participates in ER stress-induced apoptosis. However, the regulators of p53 expression during ER stress are still not fully understood. PRINCIPAL FINDINGS In this report, we demonstrate that induction of p53 expression is mediated through NF-κB signaling pathways during ER stress in MCF-7 cells. Tunicamycin or brefeldin A, two ER stress inducers, increased p53 expression in MCF-7 and Hela cells. We found p53 nuclear localization, activity, and phosphorylation at serine 15 on p53 increased during ER stress. Nuclear translocation of NF-κB and activity of NF-κB were also observed during ER stress. ER stress-induced p53 expression was significantly inhibited by coincubation with the NF-κB inhibitor, Bay 11-7082 and downregulation of NF-κB p65 expression. The role of p53 in mediating Brefeldin A-induced apoptosis was also investigated. Induction of p53 expression by Brefeldin A was correlated to Brefeldin A-induced apoptosis. Furthermore, downregulation of p53 expression by p53 siRNA significantly reduced Brefeldin A-induced apoptosis in MCF-7 cells. SIGNIFICANCE Taken together, NF-κB activation and induction of p53 expression is essential for ER stress-induced cell death which is important for therapeutic effects of clinical cancer drugs. Our results may provide insight into the mechanism of cancer chemotherapy efficacy that is associated with induction of ER stress.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yu-Chi Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Sheng Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Diseases and Signaling Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, United States of America
| | - Kuan-Han Lee
- Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
33
|
Jazirehi AR, Economou JS. Proteasome inhibition blocks NF-κB and ERK1/2 pathways, restores antigen expression, and sensitizes resistant human melanoma to TCR-engineered CTLs. Mol Cancer Ther 2012; 11:1332-41. [PMID: 22532603 DOI: 10.1158/1535-7163.mct-11-0814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive cell transfer (ACT) of ex vivo engineered autologous lymphocytes encoding high-affinity MART-1/HLA-A*0201-specific T-cell receptor (TCR)α/β chains (F5 CTL), densely infiltrate into sites of metastatic disease, mediating dramatic but partial clinical responses in patients with melanoma. We hypothesized that MART-1 downmodulation in addition to aberrant apoptotic/survival signaling could confer resistance to death signals delivered by transgenic CTLs. To explore this hypothesis, we established an in vitro model of resistant (R) lines from MART-1(+)/HLA-A*0201(+) F5 CTL-sensitive parental (P) lines under serial F5 CTL-selective pressure. We have recently reported that several melanoma R lines, while retaining MART-1 expression, exhibited constitutive NF-κB activation and overexpression of NF-κB-dependent resistance factors. Another established melanoma cell line M244, otherwise sensitive to F5 CTL, yielded R lines after serial F5 CTL-selective pressure, which had both reduced MART-1 expression levels, thus, could not be recognized, and were resistant to CTL-delivered apoptotic death signals. The proteasome inhibitor bortezomib blocked NF-κB activity, decreased phospho-ERK1/2, increased phospho-c-jun-NH(2)-kinase (p-JNK) levels, reduced expression of resistance factors, restored MART-1 expression to sufficient levels, which in combination allowed M244R lines be sensitized to F5 CTL killing. These findings suggest that proteasome inhibition in immune resistant tumors can restore proapoptotic signaling and improve tumor antigen expression.
Collapse
Affiliation(s)
- Ali R Jazirehi
- Department of Surgery and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
34
|
Kraskiewicz H, FitzGerald U. InterfERing with endoplasmic reticulum stress. Trends Pharmacol Sci 2011; 33:53-63. [PMID: 22112465 DOI: 10.1016/j.tips.2011.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 12/13/2022]
Abstract
Stress to the endoplasmic reticulum (ER) is a recognized factor in Alzheimer's and Parkinson's diseases, diabetes, heart disease, liver disorders and cancer. Thus, drugs that interfere with ER stress have wide therapeutic potential. Here we review the effects of drugs on three arms of ER stress: the protein kinase RNA-activated (PKR)-like ER kinase (PERK) arm, the activated transcription factor 6 (ATF6) arm and the inositol-requiring enzyme 1 (IRE1) arm. Drugs fall into five groups: (i) compounds directly binding to ER stress molecules; (ii) chemical chaperones; (iii) inhibitors of protein degradation; (iv) antioxidants; (v) drugs affecting calcium signaling. Treatments are generally inhibitory and lead to increased viability, except when applied to cancer cells. A focus on interfering with the ATF6 arm is required, and more in vivo testing of these compounds concurrently across all three arms is needed if the full importance of ER stress to human disease is to be realized.
Collapse
Affiliation(s)
- Honorata Kraskiewicz
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
35
|
Shahshahan MA, Beckley MN, Jazirehi AR. Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastatic melanoma: basic and clinical aspects. Am J Cancer Res 2011; 1:913-924. [PMID: 22016836 PMCID: PMC3196288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023] Open
Abstract
Protein degradation by proteasome is essential to the regulation of important cellular functions including cell cycle progression, proliferation, differentiation and apoptosis. Abnormal proteasomal degradation of key regulatory proteins perturbs the normal dynamics of these cellular processes culminating in uncontrolled cell cycle progression and decreased apoptosis leading to the characteristic cancer cell phenotype. Proteasome inhibitors are a novel group of therapeutic agents designed to oppose the increased proteasomal degradation observed in various cancers while restoring key cellular functions such as apoptosis, cell cycle progression, and the inhibition of angiogenesis. Several proteasome inhibitors have been evaluated in pre- and clinical studies for their potential usage in clinical oncology. Bortezomib (Velcade, PS-341) is the first Food and Drug Administration-approved proteasome inhibitor for the treatment of multiple myeloma and mantle cell lymphoma. Bortezomib's ability to preferentially induce toxicity and cell death in tumor cells while rendering healthy cells unaffected makes it a powerful therapeutic agent and has extended its use in other types of malignancies. The ability of bortezomib and other proteasome inhibitors to synergize with conventional therapies in killing tumors in various in vitro and in vivo models makes this class of drugs a powerful tool in overcoming acquired and inherent resistance observed in many cancers. This is achieved through modulation of aberrant cellular survival signal transduction pathways and their downstream anti-apoptotic gene products. This review will discuss the anti-neoplastic effects of various proteasome inhibitors in a variety of cancers with a special emphasis on bortezomib, its mechanism of action and role in cancer therapy. We further discuss the potential use of bortezomib in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Mohammad A Shahshahan
- Department of Surgery and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
36
|
Wilczynski J, Duechler M, Czyz M. Targeting NF-κB and HIF-1 pathways for the treatment of cancer: part I. Arch Immunol Ther Exp (Warsz) 2011; 59:289-99. [PMID: 21625848 DOI: 10.1007/s00005-011-0131-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/02/2011] [Indexed: 02/06/2023]
Abstract
The process of chronic inflammation is a common link which connects different kinds of environmental pollutants and infections with tumorigenesis. Transcription factor NF-κB is a common final target for many inflammatory and cell proliferation pathways, independent of the source of stimuli (e.g., cytokines, growth factors, environmental carcinogens, radiation, hypoxia, bacteria, and viruses). Over-activation of NF-κB has been confirmed in many tumors, resulting in worse prognosis for patient survival. Therefore, inhibition of cellular pathways for NF-κB activation is nowadays considered as a promising anti-cancer therapy and is extensively studied in clinical trials, or even has been adopted as an approved therapy in some kinds of cancer.
Collapse
Affiliation(s)
- Jacek Wilczynski
- "Polish Mother's Health Center" Research Institute, Lodz, Poland.
| | | | | |
Collapse
|
37
|
Wang Y, Xiao J, Zhou H, Yang S, Wu X, Jiang C, Zhao Y, Liang D, Li X, Liang G. A novel monocarbonyl analogue of curcumin, (1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one, induced cancer cell H460 apoptosis via activation of endoplasmic reticulum stress signaling pathway. J Med Chem 2011; 54:3768-78. [PMID: 21504179 DOI: 10.1021/jm200017g] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced cancer cell apoptosis has become a novel signaling target for development of cancer therapeutic drugs. Curcumin exhibits growth-suppressive activity against a variety of cancer cells. We previously synthesized a series of monocarbonyl analogues of curcumin with strong cytotoxicity against tumor cells. In this study, we found that only compound 19 [(1E,4E)-1,5-bis(2,3-dimethoxyphenyl)penta-1,4-dien-3-one] can induce C/EBP-homologous protein (CHOP) expression in human lung cancer H460 cells. Treatment with 19 induced H460 cell apoptosis in a dose-responsive manner, and this effect was associated with corresponding increases in a series of key components in ER stress-mediated apoptosis pathway, followed by caspase cleavage and activation. However, curcumin at the same concentrations does not display such properties. CHOP knockdown by specific siRNA attenuated 19-induced cell apoptosis, further indicating that the apoptotic pathway is ER stress-dependent. In vivo, 19 showed a dramatic 53.5% reduction in H460 xenograft tumor size after 22 days of treatment. Taken together, these mechanistic insights on the novel compound 19, with nontoxicity, may provide us with a novel anticancer candidate.
Collapse
Affiliation(s)
- Yi Wang
- Wenzhou Medical College, Wenzhou 325035, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Armstrong JL, Corazzari M, Martin S, Pagliarini V, Falasca L, Hill DS, Ellis N, Al Sabah S, Redfern CPF, Fimia GM, Piacentini M, Lovat PE. Oncogenic B-RAF signaling in melanoma impairs the therapeutic advantage of autophagy inhibition. Clin Cancer Res 2011; 17:2216-26. [PMID: 21270111 DOI: 10.1158/1078-0432.ccr-10-3003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Metastatic melanoma is characterized by extremely poor survival rates and hence novel therapies are urgently required. The ability of many anticancer drugs to activate autophagy, a lysosomal-mediated catabolic process which usually promotes cell survival, suggests targeting the autophagy pathway may be a novel means to augment therapy. EXPERIMENTAL DESIGN Autophagy and apoptosis were assessed in vitro in human melanoma cell lines in response to clinically achievable concentrations of the endoplasmic reticulum (ER) stress-inducing drugs fenretinide or bortezomib, and in vivo using a s.c. xenograft model. RESULTS Autophagy was activated in response to fenretinide or bortezomib in B-RAF wild-type cells, shown by increased conversion of LC3 to the autophagic vesicle-associated form (LC3-II) and redistribution to autophagosomes and autolysosomes, increased acidic vesicular organelle formation and autophagic vacuolization. In contrast, autophagy was significantly reduced in B-RAF-mutated melanoma cells, an effect attributed partly to oncogenic B-RAF. Rapamycin treatment was unable to stimulate LC3-II accumulation or redistribution in the presence of mutated B-RAF, indicative of de-regulated mTORC1-dependent autophagy. Knockdown of Beclin-1 or ATG7 sensitized B-RAF wild-type cells to fenretinide- or bortezomib-induced cell death, demonstrating a pro-survival function of autophagy. In addition, autophagy was partially reactivated in B-RAF-mutated cells treated with the BH3 mimetic ABT737 in combination with fenretinide or bortezomib, suggesting autophagy resistance is partly mediated by abrogated Beclin-1 function. CONCLUSIONS Our findings suggest inhibition of autophagy in combination with ER stress-inducing agents may represent a means by which to harness autophagy for the therapeutic benefit of B-RAF wild-type melanoma.
Collapse
Affiliation(s)
- Jane L Armstrong
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Henry L, Lavabre-Bertrand T, Douche T, Uttenweiler-Joseph S, Fabbro-Peray P, Monsarrat B, Martinez J, Meunier L, Stoebner PE. Diagnostic value and prognostic significance of plasmatic proteasome level in patients with melanoma. Exp Dermatol 2010; 19:1054-9. [PMID: 20707810 DOI: 10.1111/j.1600-0625.2010.01151.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmatic proteasome (p-proteasome) also called circulating proteasome has recently been described as a tumor marker. We investigated the diagnostic and prognostic accuracies of p-proteasome levels in a melanoma population classified according to the American Joint Committee on Cancer staging system. Using an ELISA test, we measured p-proteasome levels in 90 patients and 40 controls between March 2003 and March 2008. The subunit composition of p-proteasomes was determined in metastatic melanoma by proteomic analysis. The mean p-proteasome levels were correlated with stages (P < 0.0001; r(S) = 0.664). They were significantly higher in patients with stage IV and stage III with lymph node metastasis (9187 ± 1294 and 5091 ± 454 ng/ml, respectively) compared to controls (2535 ± 187 ng/ml; P < 0.001), to stage I/II (2864 ± 166 ng/ml; P < 0.001) and to stage III after curative lymphadenectomy (2859 ± 271 ng/ml; P < 0.001). The diagnostic accuracy of p-proteasome was evaluated by receiver operating characteristic analysis. With a cut-off of 4300 ng/ml, diagnostic specificity and sensitivity of p-proteasome for regional or visceral metastases were respectively 96.3% and 72.2%. In univariate analysis, high p-proteasome levels (>4300 ng/ml) were significantly correlated with an increased risk of progression [hazard ratio (HR) = 7.34; 95% CI 3.54-15.21, P < 0.0001] and a risk of death (HR = 5.92; 95% CI 2.84-12.33, P < 0.0001). In multivariate analysis, high p-proteasome levels were correlated with a poorer clinical outcome in the subgroup analysis limited to patients with disease stages I, II and III. Proteomic analysis confirmed the presence of all proteasome and immunoproteasome subunits. Taken together, these results indicate that p-proteasomes are a new marker for metastatic dissemination in patients with melanoma.
Collapse
Affiliation(s)
- Laurent Henry
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Université Montpellier 1, Faculté de Médecine Montpellier-Nîmes, CHU de Nîmes, Nîmes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martin S, Hill DS, Paton JC, Paton AW, Birch-Machin MA, Lovat PE, Redfern CPF. Targeting GRP78 to enhance melanoma cell death. Pigment Cell Melanoma Res 2010; 23:675-82. [PMID: 20546536 DOI: 10.1111/j.1755-148x.2010.00731.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Targeting endoplasmic reticulum stress-induced apoptosis may offer an alternative therapeutic strategy for metastatic melanoma. Fenretinide and bortezomib induce apoptosis of melanoma cells but their efficacy may be hindered by the unfolded protein response, which promotes survival by ameliorating endoplasmic reticulum stress. The aim of this study was to test the hypothesis that inhibition of GRP78, a vital unfolded protein response mediator, increases cell death in combination with endoplasmic reticulum stress-inducing agents. Down-regulation of GRP78 by small-interfering RNA increased fenretinide- or bortezomib-induced apoptosis. Treatment of cells with a GRP78-specific subtilase toxin produced a synergistic enhancement with fenretinide or bortezomib. These data suggest that combining endoplasmic reticulum stress-inducing agents with strategies to down-regulate GRP78, or other components of the unfolded protein response, may represent a novel therapeutic approach for metastatic melanoma.
Collapse
Affiliation(s)
- Shaun Martin
- Northern Institute of Cancer Research and Newcastle Cancer Centre, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Sogno I, Venè R, Ferrari N, De Censi A, Imperatori A, Noonan DM, Tosetti F, Albini A. Angioprevention with fenretinide: Targeting angiogenesis in prevention and therapeutic strategies. Crit Rev Oncol Hematol 2010; 75:2-14. [DOI: 10.1016/j.critrevonc.2009.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/15/2009] [Accepted: 10/29/2009] [Indexed: 01/01/2023] Open
|
42
|
Targeting X-linked inhibitor of apoptosis protein to increase the efficacy of endoplasmic reticulum stress-induced apoptosis for melanoma therapy. J Invest Dermatol 2010; 130:2250-8. [PMID: 20520630 DOI: 10.1038/jid.2010.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Melanoma remains notoriously resistant to current chemotherapeutics, leaving an acute need for novel therapeutic approaches. The aim of this study was to determine the prognostic and therapeutic significance of X-linked inhibitor of apoptosis protein (XIAP) in melanoma through correlation of XIAP expression with disease stage, RAS/RAF mutational status, clinical outcome, and susceptibility to endoplasmic reticulum (ER) stress-induced cell death. XIAP expression and N-RAS/B-RAF mutational status were retrospectively determined in a cohort of 55 primary cutaneous melanocytic lesions selected and grouped according to the American Joint Committee on Cancer staging system. Short hairpin RNA interference of XIAP was used to analyze the effect of XIAP expression on ER stress-induced apoptosis in response to fenretinide or bortezomib in vitro. The results showed that XIAP positivity increased with progressive disease stage, although there was no significant correlation between XIAP positivity and combined N-RAS/B-RAF mutational status or clinical outcome. However, XIAP knockdown significantly increased ER stress-induced apoptosis of melanoma cells in a caspase-dependant manner. The correlation of XIAP expression with disease stage, as well as data showing that XIAP knockdown significantly increases fenretinide and bortezomib-induced apoptosis of metastatic melanoma cells, suggests that XIAP may prove to be an effective therapeutic target for melanoma therapy.
Collapse
|
43
|
Bair JS, Palchaudhuri R, Hergenrother PJ. Chemistry and Biology of Deoxynyboquinone, a Potent Inducer of Cancer Cell Death. J Am Chem Soc 2010; 132:5469-78. [DOI: 10.1021/ja100610m] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph S. Bair
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Rahul Palchaudhuri
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
44
|
Armstrong JL, Flockhart R, Veal GJ, Lovat PE, Redfern CPF. Regulation of endoplasmic reticulum stress-induced cell death by ATF4 in neuroectodermal tumor cells. J Biol Chem 2009; 285:6091-100. [PMID: 20022965 DOI: 10.1074/jbc.m109.014092] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuroectodermal tumors neuroblastoma and melanoma represent biologically aggressive and chemoresistant cancers. The chemotherapeutic agents fenretinide and bortezomib induce apoptosis through endoplasmic reticulum (ER) stress in these tumor types. The aim of this study was to test the hypothesis that the early events of ER stress signaling and response pathways induced by fenretinide and bortezomib are mediated by the eukaryotic initiation factor 2alpha (eIF2alpha)-ATF4 signaling pathway. Treatment of neuroblastoma and melanoma cell lines with fenretinide, bortezomib, or thapsigargin resulted in induction of eIF2alpha signaling, characterized by increased expression of phosphorylated eIF2alpha, ATF4, ATF3, and GADD34. These events correlated with induction of the pro-apoptotic protein Noxa. The cytotoxic response, characterized by up-regulation of Noxa and cell death, was dependent on ATF4, but not the ER-related pro-death signaling pathways involving GADD153 or IRE1. Although PERK-dependent phosphorylation of eIF2alpha enhanced ATF4 protein levels during ER stress, cell death in response to fenretinide, bortezomib, or thapsigargin was not abrogated by inhibition of eIF2alpha phosphorylation through PERK knockdown or overexpression of wild-type eIF2alpha. Furthermore, ATF4 induction in response to ER stress was dependent primarily on transcriptional activation, which occurred in a PERK- and phosphorylated eIF2alpha-independent manner. These results demonstrate that ATF4 mediates ER stress-induced cell death of neuroectodermal tumor cells in response to fenretinide or bortezomib. Understanding the complex regulation of cell death pathways in response to ER stress-inducing drugs has the potential to reveal novel therapeutic targets, thus allowing the development of improved treatment strategies to overcome chemoresistance.
Collapse
Affiliation(s)
- Jane L Armstrong
- Northern Institute for Cancer Research, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Human melanoma cells under endoplasmic reticulum stress are more susceptible to apoptosis induced by the BH3 mimetic obatoclax. Neoplasia 2009; 11:945-55. [PMID: 19724688 DOI: 10.1593/neo.09692] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/24/2009] [Accepted: 05/26/2009] [Indexed: 02/07/2023] Open
Abstract
Past studies have shown that melanoma cells have largely adapted to endoplasmic reticulum (ER) stress, and this is associated with up-regulation of the antiapoptotic proteins Bcl-2 and Mcl-1. In this report, we show that the BH3 mimetic obatoclax potently overcomes resistance of melanoma cells to apoptosis induced by ER stress. Obatoclax, as a single agent at nanomolar concentrations, was relatively ineffective in the induction of apoptosis in melanoma cells, but treatment with obatoclax at these concentrations in combination with the ER stress inducer tunicamycin (TM) or thapsigargin markedly enhanced apoptotic cell death. This was primarily because of the inhibition of Mcl-1 by obatoclax, in that cotreatment with TM and another BH3 mimetic ABT737, which does not antagonize Mcl-1, caused only minimal increases in apoptosis. Moreover, overexpression of Mcl-1 inhibited apoptosis to greater degrees than overexpression of Bcl-2. In addition to direct inhibition of Mcl-1 by obatoclax, the combination of obatoclax and TM caused strong up-regulation of the BH3-only protein Noxa. Small RNA interference knockdown of Noxa partially inhibited apoptosis induced by cotreatment with obatoclax and TM. Similarly, knockdown of Bak also blocked induction of apoptosis by the compounds. The Mcl-1/Bak interaction seemed to be disrupted more efficiently in melanoma cells cotreated with obatoclax and TM. Taken together, these results identify obatoclax as a potent agent that overcomes resistance of melanoma cells to ER stress-induced apoptosis and seem to have important implications in the use of BH3 mimetics in the treatment of melanoma.
Collapse
|
46
|
Wlodkowic D, Skommer J, McGuinness D, Hillier C, Darzynkiewicz Z. ER-Golgi network--a future target for anti-cancer therapy. Leuk Res 2009; 33:1440-7. [PMID: 19595459 DOI: 10.1016/j.leukres.2009.05.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/14/2009] [Accepted: 05/29/2009] [Indexed: 02/04/2023]
Abstract
Tumor cell demise is an important event in the elimination of abnormal malignant cells and provides an important mechanism of natural tumor suppression. Abnormalities incapacitating these finely tuned processes provide a strong advantage for cancer clones to succeed in evading both the physiological control systems and therapeutic intervention. Expanding our knowledge of the molecular "crosstalks" that regulate tumor cell demise is crucial in guiding the successful design of future anti-cancer therapeutics. Although currently available data indicate that elimination of malignant cells often depends on classical apoptotic pathways (mitochondrial and/or death-receptor pathways), the evidence is mounting that alternative apoptotic and non-apoptotic pathways may effectively contribute to tumor cell death. The assumption that every organelle is capable of sensing, amplificating and executing cell death is also a relatively novel and unexplored concept. As recently shown, the secretory pathway can be actively involved in sensing stress stimuli and possibly even initiating and propagating cell death signaling. Experimental evidence indicates that ER and Golgi apparatus can activate both pro-survival (recovery) mechanisms as well as cell suicide programs if the stress-signaling threshold is exceeded. It is thus conceivable that the fragile balance of protein trafficking between various subcellular compartments provides an exceptional therapeutic opportunity. Interestingly, a growing number of reports recognize novel therapeutic targets, including proteins in control of endoplasmic reticulum (ER) and Golgi homeostasis. Further studies are, however, needed to elucidate precise signaling pathways emanating from ER-Golgi compartment. Development of more potent and selective small-molecule drugs that activate ER-Golgi mediated cell demise is also needed. As the interest in the role of ER-Golgi network during cancer cell death has been gaining momentum, we attempt here to critically appraise current status of development of investigational anti-cancer agents that target ER and/or Golgi.
Collapse
Affiliation(s)
- Donald Wlodkowic
- Department of Biological & Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | | | | | | | | |
Collapse
|