1
|
Zhang Z, Yang A, Chaurasiya S, Park AK, Kim SI, Lu J, Olafsen T, Warner SG, Fong Y, Woo Y. PET imaging and treatment of pancreatic cancer peritoneal carcinomatosis after subcutaneous intratumoral administration of a novel oncolytic virus, CF33-hNIS-antiPDL1. Mol Ther Oncolytics 2022; 24:331-339. [PMID: 35118191 PMCID: PMC8784298 DOI: 10.1016/j.omto.2021.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
Peritoneal carcinomatosis of gastrointestinal malignancies remains fatal. CF33-hNIS-antiPDL1, a chimeric orthopoxvirus expressing the human sodium iodide symporter (hNIS) and anti-human programmed death-ligand 1 antibody, has demonstrated robust preclinical activity against pancreatic adenocarcinoma (PDAC). We investigated the ability of CF33-hNIS-antiPDL1 to infect, help detect, and kill peritoneal tumors following intratumoral (i.t.) injection of subcutaneous (s.c.) tumors in vivo. Human PDAC AsPC-1-ffluc cells were inoculated in both the s.c. space and the peritoneal cavity of athymic mice. After successful tumor engraftment, s.c. tumors were injected with CF33-hNIS-antiPDL1 or PBS. We assessed the ability of CF33-hNIS-antiPDL1 to infect, replicate in, and allow the imaging of tumors at both sites (immunohistochemistry [IHC] and 124I-based positron emission tomography/computed tomography [PET/CT] imaging), tumor burden (bioluminescence imaging), and animal survival. IHC staining for hNIS confirmed expression in s.c. and peritoneal tumors following virus treatment. Compared to the controls, CF33-hNIS-antiPDL1-treated mice showed significantly decreased s.c. and peritoneal tumor burden and improved survival (p < 0.05). Notably, 2 of 8 mice showed complete regression of disease. PET/CT avidity for 124I uptake in s.c. and peritoneal tumors was visible starting at day 7 following the first i.t. dose of CF33-hNIS-antiPDL1. We show that CF33-hNIS-antiPDL1 can help detect and kill both s.c. and peritoneal tumors following s.c. i.t. treatment.
Collapse
|
2
|
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20:55. [PMID: 33761944 PMCID: PMC7987750 DOI: 10.1186/s12943-021-01346-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As a complement to the clinical development of new anticancer molecules, innovations in therapeutic vectorization aim at solving issues related to tumor specificity and associated toxicities. Nanomedicine is a rapidly evolving field that offers various solutions to increase clinical efficacy and safety. MAIN: Here are presented the recent advances for different types of nanovectors of chemical and biological nature, to identify the best suited for translational research projects. These nanovectors include different types of chemically engineered nanoparticles that now come in many different flavors of 'smart' drug delivery systems. Alternatives with enhanced biocompatibility and a better adaptability to new types of therapeutic molecules are the cell-derived extracellular vesicles and micro-organism-derived oncolytic viruses, virus-like particles and bacterial minicells. In the first part of the review, we describe their main physical, chemical and biological properties and their potential for personalized modifications. The second part focuses on presenting the recent literature on the use of the different families of nanovectors to deliver anticancer molecules for chemotherapy, radiotherapy, nucleic acid-based therapy, modulation of the tumor microenvironment and immunotherapy. CONCLUSION This review will help the readers to better appreciate the complexity of available nanovectors and to identify the most fitting "type" for efficient and specific delivery of diverse anticancer therapies.
Collapse
Affiliation(s)
- Tina Briolay
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | - Morgane Fouet
- Université de Nantes, Inserm, CRCINA, F-44000, Nantes, France
| | | | | | | |
Collapse
|
3
|
Zafar S, Basnet S, Launonen IM, Quixabeira DCA, Santos J, Hemminki O, Malmstedt M, Cervera-Carrascon V, Aronen P, Kalliokoski R, Havunen R, Rannikko A, Mirtti T, Matikainen M, Kanerva A, Hemminki A. Oncolytic Adenovirus Type 3 Coding for CD40L Facilitates Dendritic Cell Therapy of Prostate Cancer in Humanized Mice and Patient Samples. Hum Gene Ther 2021; 32:192-202. [PMID: 33050725 PMCID: PMC10112462 DOI: 10.1089/hum.2020.222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based vaccines have shown some degree of success for the treatment of prostate cancer (PC). However, the highly immunosuppressive tumor microenvironment leads to DC dysfunction, which has limited the effectiveness of these vaccines. We hypothesized that use of a fully serotype 3 oncolytic adenovirus (Ad3-hTERT-CMV-hCD40L; TILT-234) could stimulate DCs in the prostate tumor microenvironment by expressing CD40L. Activated DCs would then activate cytotoxic T cells against the tumor, resulting in therapeutic immune responses. Oncolytic cell killing due to cancer cell-specific virus replication adds to antitumor effects but also enhances the immunological effect by releasing tumor epitopes for sampling by DC, in the presence of danger signals. In this study, we evaluated the companion effect of Ad3-hTERT-CMV-hCD40L and DC-therapy in a humanized mouse model and PC histocultures. Treatment with Ad3-hTERT-CMV-hCD40L and DC resulted in enhanced antitumor responses in vivo. Treatment of established histocultures with Ad3-hTERT-CMV-hCD40L induced DC maturation and notable increase in proinflammatory cytokines. In conclusion, Ad3-hTERT-CMV-hCD40L is able to modulate an immunosuppressive prostate tumor microenvironment and improve the effectiveness of DC vaccination in PC models and patient histocultures, setting the stage for clinical translation.
Collapse
Affiliation(s)
- Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Inga-Maria Launonen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Dafne Carolina Alves Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Joao Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,Division of Urology, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada.,Department of Urology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Pasi Aronen
- Biostatistics Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Antti Rannikko
- Department of Urology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | | | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
4
|
Species D Adenoviruses as Oncolytic Viral Vectors. Viruses 2020; 12:v12121399. [PMID: 33291224 PMCID: PMC7762200 DOI: 10.3390/v12121399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Oncolytic adenoviruses (Ad) have shown promising results in the therapeutic treatment of cancer. Ad type 5 (Ad5) is the most extensively utilized Ad type. However, several limitations exist to using Ad5 as an oncolytic virus, including high levels of anti-Ad5 neutralizing antibodies in the population, binding of the Ad5 hexon to blood coagulation factor X leading to liver sequestration and toxicity, and reduced expression of the primary receptor CAR on many tumors. Here, we use in vitro methods to explore the oncolytic potential of four alternative Ad types (Ad26, 28, 45, and 48) belonging to the species D Ad subgroup and developed replication-competent species D Ads expressing the human sodium iodide symporter protein (hNIS) for combination radiovirotherapy. We evaluated the species D Ad vectors transduction, replication, cytotoxicity, and gene expression in six different cancer cell lines. Species D Ads showed the greatest transduction and cytotoxic killing in the SKBR3 breast cancer cells, followed by 293, A549, and HepG2 cells, however the cytotoxicity was less than the wild type Ad5 virus. In contrast, species D Ads showed limited transduction and cytotoxicity in the Hela and SKOV3 cancer cell lines. These species D Ad vectors also successfully expressed the hNIS gene during infection leading to increased iodide uptake in multiple cancer cell lines. These results, the low seroprevalence of anti-species D antibodies, and the lack of binding to blood coagulation FX, support further exploration of species D Ads as alternative oncolytic adenoviruses against multiple types of cancer.
Collapse
|
5
|
Pelin A, Wang J, Bell J, Le Boeuf F. The importance of imaging strategies for pre-clinical and clinical in vivo distribution of oncolytic viruses. Oncolytic Virother 2018; 7:25-35. [PMID: 29637059 PMCID: PMC5880516 DOI: 10.2147/ov.s137159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses (OVs) are an emergent and unique therapy for cancer patients. Similar to chemo- and radiation therapy, OV can lyse (kill) cancer cell directly. In general, the advantages of OVs over other treatments are primarily: a higher safety profile (as shown by less adverse effects), ability to replicate, transgene(s) delivery, and stimulation of a host’s immune system against cancer. The latter has prompted successful use of OVs with other immunotherapeutic strategies in a synergistic manner. In spite of extended testing in pre-clinical and clinical setting, using biologically derived therapeutics like virus always raises potential concerns about safety (replication at non-intended locations) and bio-availability of the product. Recent advent in in vivo imaging techniques dramatically improves the convenience of use, quality of pictures, and amount of information acquired. Easy assessing of safety/localization of the biotherapeutics like OVs became a new potential weapon in the physician’s arsenal to improve treatment outcome. Given that OVs are typically replicating, in vivo imaging can also track virus replication and persistence as well as precisely mapping tumor tissues presence. This review discusses the importance of imaging in vivo in evaluating OV efficacy, as well as currently available tools and techniques.
Collapse
Affiliation(s)
- Adrian Pelin
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada
| | - Jiahu Wang
- Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada.,Genvira Biosciences, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - John Bell
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada
| | - Fabrice Le Boeuf
- Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada
| |
Collapse
|
6
|
Aguirre-Hernández C, Maya-Pineda H, Millán JS, Man YKS, Lu YJ, Halldén G. Sensitisation to mitoxantrone-induced apoptosis by the oncolytic adenovirus Ad∆∆ through Bcl-2-dependent attenuation of autophagy. Oncogenesis 2018; 7:6. [PMID: 29362360 PMCID: PMC5833340 DOI: 10.1038/s41389-017-0020-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023] Open
Abstract
Anti-apoptotic Bcl-2 is frequently activated in human malignant cells to promote cell survival and inhibit cell death. Replication-selective oncolytic adenoviruses deleted in the functional Bcl-2 homologue E1B19K potently synergise with apoptosis-inducing chemotherapeutic drugs, including mitoxantrone for prostate cancer. Here, we demonstrate that our previously generated oncolytic mutant Ad∆∆ (E1B19K- and E1ACR2-deleted) caused potent synergistic apoptotic cell death in both drug-sensitive 22Rv1, and drug-insensitive PC3 and PC3M prostate cancer cells. The synergistic cell killing was dependent on Bcl-2 expression and was prevented by Bcl-2 knockdown, which led to activation of the autophagy pathway. Mitoxantrone-induced autophagy, which was decreased in combination with Ad∆∆-infection resulting in increased apoptosis. Expression of the viral E1A12S protein alone mimicked the synergistic effects with Ad∆∆ in combination with mitoxantrone while intact wild-type virus (Ad5) had no effect. Early and late-stage inhibition of autophagy by Atg7 knockdown and chloroquine respectively, promoted apoptotic cell killing with mitoxantrone similar to Ad∆∆. These findings revealed currently unexplored actions of E1B19K-deleted oncolytic adenoviruses and the central role of Bcl-2 in the synergistic cell killing. This study suggests that cancers with functional Bcl-2 expression may be selectively re-sensitised to drugs by Ad∆∆.
Collapse
Affiliation(s)
- Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Héctor Maya-Pineda
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julia San Millán
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Y K Stella Man
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Cai Z, Lv H, Cao W, Zhou C, Liu Q, Li H, Zhou F. Targeting strategies of adenovirus‑mediated gene therapy and virotherapy for prostate cancer (Review). Mol Med Rep 2017; 16:6443-6458. [PMID: 28901490 PMCID: PMC5865813 DOI: 10.3892/mmr.2017.7487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) poses a high risk to older men and it is the second most common type of male malignant tumor in western developed countries. Additionally, there is a lack of effective therapies for PCa at advanced stages. Novel treatment strategies such as adenovirus-mediated gene therapy and virotherapy involve the expression of a specific therapeutic gene to induce death in cancer cells, however, wild-type adenoviruses are also able to infect normal human cells, which leads to undesirable toxicity. Various PCa-targeting strategies in adenovirus-mediated therapy have been developed to improve tumor-targeting effects and human safety. The present review summarizes the relevant knowledge regarding available adenoviruses and PCa-targeting strategies. In addition, future directions in this area are also discussed. In conclusion, although they remain in the early stages of basic research, adenovirus-mediated gene therapy and virotherapy are expected to become important therapies for tumors in the future due to their potential targeting strategies.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Haidi Lv
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Cao
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Chuan Zhou
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiangzhao Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hui Li
- Department of Neurosurgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Fenghai Zhou
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
8
|
Abstract
Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Katrina Sweeney
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| |
Collapse
|
9
|
Abstract
Introduction: Oncolytic viruses are experimental cancer therapies being translated to the clinic. They are unique in their ability to amplify within the body, therefore requiring careful monitoring of viral replication and biodistribution. Traditional monitoring strategies fail to recapitulate the dynamic nature of oncolytic virotherapy. Consequently, clinically relevant, noninvasive, high resolution strategies are needed to effectively track virotherapy in real time. Areas covered: The expression of the sodium iodide symporter (NIS) reporter gene is tightly coupled to viral genome replication and mediates radioisotope concentration, allowing noninvasive molecular nuclear imaging of active viral infection with high resolution. This provides insight into replication kinetics, biodistribution, the impact of vector design, administration, and dosing on therapeutic outcomes, and highlights the heterogeneity of spatial distribution and temporal evolution of infection. NIS-mediated imaging in clinical trials confirms the feasibility of this technology to noninvasively and longitudinally observe oncolytic virus infection, replication, and distribution. Expert opinion: NIS-mediated imaging provides detailed functional and molecular information on the evolution of oncolytic virus infection in living animals. The use of NIS reporter gene imaging has rapidly advanced to provide unparalleled insight into the spatial and temporal context of oncolytic infection which will be integral to optimization of oncolytic treatment strategies.
Collapse
Affiliation(s)
- Amber Miller
- a Mayo Clinic, Department of Molecular Medicine , Rochester , MN 55905 , USA.,b Mayo Graduate School, Center for Clinical and Translational Science , Rochester , MN 55905 , USA
| | - Stephen J Russell
- a Mayo Clinic, Department of Molecular Medicine , Rochester , MN 55905 , USA.,c Mayo Clinic, Division of Hematology , Rochester , MN 55905 , USA
| |
Collapse
|
10
|
Molecular imaging of oncolytic viral therapy. MOLECULAR THERAPY-ONCOLYTICS 2015; 1:14007. [PMID: 27119098 PMCID: PMC4782985 DOI: 10.1038/mto.2014.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/09/2014] [Indexed: 01/25/2023]
Abstract
Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.
Collapse
|
11
|
Tsang JJ, Atkins HL. The ex vivo purge of cancer cells using oncolytic viruses: recent advances and clinical implications. Oncolytic Virother 2015; 4:13-23. [PMID: 27512666 PMCID: PMC4918373 DOI: 10.2147/ov.s45525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hematological malignancies are treated with intensive high-dose chemotherapy, with or without radiation. This is followed by hematopoietic stem cell (HSC) transplantation (HSCT) to rescue or reconstitute hematopoiesis damaged by the anticancer therapy. Autologous HSC grafts may contain cancer cells and purging could further improve treatment outcomes. Similarly, allogeneic HSCT may be improved by selectively purging alloreactive effector cells from the graft rather than wholesale immune cell depletion. Viral agents that selectively replicate in specific cell populations are being studied in experimental models of cancer and immunological diseases and have potential applications in the context of HSC graft engineering. This review describes preclinical studies involving oncolytic virus strains of adenovirus, herpes simplex virus type 1, myxoma virus, and reovirus as ex vivo purging agents for HSC grafts, as well as in vitro and in vivo experimental studies using oncolytic coxsackievirus, measles virus, parvovirus, vaccinia virus, and vesicular stomatitis virus to eradicate hematopoietic malignancies. Alternative ex vivo oncolytic virus strategies are also outlined that aim to reduce the risk of relapse following autologous HSCT and mitigate morbidity and mortality due to graft-versus-host disease in allogeneic HSCT.
Collapse
Affiliation(s)
- Jovian J Tsang
- Department of Biochemistry, University of Ottawa, ON, Canada; Cancer Therapeutics, Ottawa Hospital Research Institute, ON, Canada
| | - Harold L Atkins
- Cancer Therapeutics, Ottawa Hospital Research Institute, ON, Canada; Blood and Marrow Transplant Program, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
12
|
Micali S, Bulotta S, Puppin C, Territo A, Navarra M, Bianchi G, Damante G, Filetti S, Russo D. Sodium iodide symporter (NIS) in extrathyroidal malignancies: focus on breast and urological cancer. BMC Cancer 2014; 14:303. [PMID: 24884806 PMCID: PMC4019362 DOI: 10.1186/1471-2407-14-303] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/17/2014] [Indexed: 12/15/2022] Open
Abstract
Background Expression and function of sodium iodide symporter (NIS) is requisite for efficient iodide transport in thyrocytes, and its presence in cancer cells allows the use of radioiodine as a diagnostic and therapeutic tool in thyroid neoplasia. Discovery of NIS expression in extrathyroidal tissues, including transformed cells, has opened a novel field of research regarding NIS-expressing extrathyroidal neoplasia. Indeed, expression of NIS may be used as a biomarker for diagnostic, prognostic, and therapeutic purposes. Moreover, stimulation of endogenous NIS expression may permit the radioiodine treatment of extrathyroidal lesions by concentrating this radioisotope. Results This review describes recent findings in NIS research in extrathyroidal malignancies, focusing on breast and urological cancer, emphasizing the most relevant developments that may have clinical impact. Conclusions Given the recent progress in the study of NIS regulation as molecular basis for new therapeutic approaches in extrathyroidal cancers, particular attention is given to studies regarding the relationship between NIS and clinical-pathological aspects of the tumors and the regulation of NIS expression in the experimental models.
Collapse
Affiliation(s)
| | | | | | - Angelo Territo
- Department of Urology, University of Modena and Reggio Emilia, Via Largo del Pozzo, 71, Modena 41100, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Liu YP, Wang J, Avanzato VA, Bakkum-Gamez JN, Russell SJ, Bell JC, Peng KW. Oncolytic vaccinia virotherapy for endometrial cancer. Gynecol Oncol 2014; 132:722-9. [PMID: 24434058 PMCID: PMC3977925 DOI: 10.1016/j.ygyno.2014.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Oncolytic virotherapy is a promising modality in endometrial cancer (EC) therapy. In this study, we compared the efficacy of the Copenhagen and Wyeth strains of oncolytic vaccinia virus (VV) incorporating the human thyroidal sodium iodide symporter (hNIS) as a reporter gene (VVNIS-C and VVNIS-W) in EC. METHODS Infectivity of VVNIS-C and VVNIS-W in type I (HEC1A, Ishikawa, KLE, RL95-2, and AN3 CA) and type II (ARK-1, ARK-2, and SPEC-2) human EC cell lines was evaluated. Athymic mice with ARK-2 or AN3 CA xenografts were treated with one intravenous dose of VVNIS-C or VVNIS-W. Tumor regression and in vivo infectivity were monitored via NIS expression using SPECT-CT imaging. RESULTS All EC cell lines except KLE were susceptible to infection and killing by VVNIS-C and VVNIS-W in vitro. VVNIS-C had higher infectivity and oncolytic activity than VVNIS-W in all cell lines, most notably in AN3 CA. Intravenous VVNIS-C was more effective at controlling AN3 CA xenograft growth than VVNIS-W, while both VVNIS-C and VVNIS-W ceased tumor growth and induced tumor regression in 100% of mice bearing ARK-2 xenografts. CONCLUSION Overall, VVNIS-C has more potent oncolytic viral activity than VVSIN-W in EC. VV appears to be most active in type II EC. Novel therapies are needed for the highly lethal type II EC histologies and further development of a VV clinical trial in type II EC is warranted.
Collapse
Affiliation(s)
- Yu-Ping Liu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jiahu Wang
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON KlY 4E9, Canada
| | - Victoria A Avanzato
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Pennsylvania State University, State College, PA, USA
| | | | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON KlY 4E9, Canada
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Hemminki A. Oncolytic immunotherapy: where are we clinically? SCIENTIFICA 2014; 2014:862925. [PMID: 24551478 PMCID: PMC3914551 DOI: 10.1155/2014/862925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Following a century of preclinical and clinical work, oncolytic viruses are now proving themselves in randomized phase 3 trials. Interestingly, human data indicates that these agents have potent immunostimulatory activity, raising the possibility that the key consequence of oncolysis might be induction of antitumor immunity, especially in the context of viruses harboring immunostimulatory transgenes. While safety and efficacy of many types of oncolytic viruses, including adenovirus, herpes, reo, and vaccinia seem promising, few mechanisms of action studies have been performed with human substrates. Thus, the relative contribution of "pure" oncolysis, the immune response resulting from oncolysis, and the added benefit of adding a transgene remain poorly understood. Here, the available clinical data on oncolytic viruses is reviewed, with emphasis on immunological aspects.
Collapse
Affiliation(s)
- Akseli Hemminki
- Cancer Gene Therapy Group, Haartman Institute, University of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
- TILT Biotherapeutics Ltd., P. Hesperiankatu 37A22, 00260 Helsinki, Finland
- *Akseli Hemminki:
| |
Collapse
|
15
|
Dmitriev IP, Kashentseva EA, Kim KH, Matthews QL, Krieger SS, Parry JJ, Nguyen KN, Akers WJ, Achilefu S, Rogers BE, Alvarez RD, Curiel DT. Monitoring of biodistribution and persistence of conditionally replicative adenovirus in a murine model of ovarian cancer using capsid-incorporated mCherry and expression of human somatostatin receptor subtype 2 gene. Mol Imaging 2014; 13:7290.2014.00024. [PMID: 25249483 DOI: 10.2310/7290.2014.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR) subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.
Collapse
|
16
|
Li H, Nakashima H, Decklever TD, Nace RA, Russell SJ. HSV-NIS, an oncolytic herpes simplex virus type 1 encoding human sodium iodide symporter for preclinical prostate cancer radiovirotherapy. Cancer Gene Ther 2013; 20:478-85. [PMID: 23868101 PMCID: PMC3747331 DOI: 10.1038/cgt.2013.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/14/2013] [Indexed: 12/15/2022]
Abstract
Several clinical trials have shown that oncolytic herpes simplex virus type 1 (oHSV-1) can be safely administered to patients. However, virus replication in tumor tissue has generally not been monitored in these oHSV clinical trials, and the data suggest that its oncolytic potency needs to be improved. To facilitate noninvasive monitoring of the in vivo spread of an oHSV and to increase its antitumor efficacy, the gene coding for human sodium iodide symporter (NIS) was incorporated into a recombinant oHSV genome and the corresponding virus (oHSV-NIS) rescued in our laboratory. Our data demonstrate that a human prostate cancer cell line, LNCap, efficiently concentrates radioactive iodine after the cells have been infected in vitro or in vivo. In vivo replication of oHSV-NIS in tumors was noninvasively monitored by computed tomography/single-photon emission computed tomography imaging of the biodistribution of pertechnetate and was confirmed. LNCap xenografts in nude mice were eradicated by intratumoral administration of oHSV-NIS. Systemic administration of oHSV-NIS prolonged the survival of tumor-bearing mice, and the therapeutic effect was further enhanced by administration of 131I after the intratumoral spread of the virus had peaked. oHSV-NIS has the potential to substantially enhance the outcomes of standard therapy for patients with prostate cancer.
Collapse
Affiliation(s)
- H Li
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
17
|
Grünwald GK, Vetter A, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Wagner E, Göke B, Holm PS, Ogris M, Spitzweg C. Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J Nucl Med 2013; 54:1450-7. [PMID: 23843567 DOI: 10.2967/jnumed.112.115493] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Currently, major limitations for the clinical application of adenovirus-mediated gene therapy are high prevalence of neutralizing antibodies, widespread expression of the coxsackie-adenovirus receptor (CAR), and adenovirus sequestration by the liver. In the current study, we used the sodium iodide symporter (NIS) as a theranostic gene to investigate whether coating of adenovirus with synthetic dendrimers could be useful to overcome these hurdles in order to develop adenoviral vectors for combination of systemic oncolytic virotherapy and NIS-mediated radiotherapy. METHODS We coated replication-deficient (Ad5-CMV/NIS) (CMV is cytomegalovirus) and replication-selective (Ad5-E1/AFP-E3/NIS) adenovirus serotype 5 carrying the hNIS gene with poly(amidoamine) dendrimers generation 5 (PAMAM-G5) in order to investigate transduction efficacy and altered tropism of these coated virus particles by (123)I scintigraphy and to evaluate their therapeutic potential for systemic radiovirotherapy in a liver cancer xenograft mouse model. RESULTS After dendrimer coating, Ad5-CMV/NIS demonstrated partial protection from neutralizing antibodies and enhanced transduction efficacy in CAR-negative cells in vitro. In vivo (123)I scintigraphy of nude mice revealed significantly reduced levels of hepatic transgene expression after intravenous injection of dendrimer-coated Ad5-CMV/NIS (dcAd5-CMV/NIS). Evasion from liver accumulation resulted in significantly reduced liver toxicity and increased transduction efficiency of dcAd5-CMV/NIS in hepatoma xenografts. After PAMAM-G5 coating of the replication-selective Ad5-E1/AFP-E3/NIS, a significantly enhanced oncolytic effect was observed after intravenous application (virotherapy) that was further increased by additional treatment with a therapeutic dose of (131)I (radiovirotherapy) and was associated with markedly improved survival. CONCLUSION These results demonstrate efficient liver detargeting and tumor retargeting of adenoviral vectors after coating with synthetic dendrimers, thereby representing a promising innovative strategy for systemic NIS gene therapy. Moreover, our study-based on the function of NIS as a theranostic gene allowing the noninvasive imaging of NIS expression by (123)I scintigraphy-provides detailed characterization of in vivo vector biodistribution and localization, level, and duration of transgene expression, essential prerequisites for exact planning and monitoring of clinical gene therapy trials that aim to individualize the NIS gene therapy concept.
Collapse
Affiliation(s)
- Geoffrey K Grünwald
- Department of Internal Medicine II-Campus Grosshadern, University Hospital of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cerullo V, Koski A, Vähä-Koskela M, Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2013; 115:265-318. [PMID: 23021247 DOI: 10.1016/b978-0-12-398342-8.00008-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenovirus is one of the most commonly used vectors for gene therapy and two products have already been approved for treatment of cancer in China (Gendicine(R) and Oncorine(R)). An intriguing aspect of oncolytic adenoviruses is that by their very nature they potently stimulate multiple arms of the immune system. Thus, combined tumor killing via oncolysis and inherent immunostimulatory properties in fact make these viruses in situ tumor vaccines. When further engineered to express cytokines, chemokines, tumor-associated antigens, or other immunomodulatory elements, they have been shown in various preclinical models to induce antigen-specific effector and memory responses, resulting both in full therapeutic cures and even induction of life-long tumor immunity. Here, we review the state of the art of oncolytic adenovirus, in the context of their capability to stimulate innate and adaptive arms of the immune system and finally how we can modify these viruses to direct the immune response toward cancer.
Collapse
Affiliation(s)
- Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
19
|
Haddad D, Zanzonico PB, Carlin S, Chen CH, Chen NG, Zhang Q, Yu YA, Longo V, Mojica K, Aguilar RJ, Szalay AA, Fong Y. A vaccinia virus encoding the human sodium iodide symporter facilitates long-term image monitoring of virotherapy and targeted radiotherapy of pancreatic cancer. J Nucl Med 2012; 53:1933-42. [PMID: 23139088 DOI: 10.2967/jnumed.112.105056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED To assess therapeutic response and potential toxicity of oncolytic virotherapy, a noninvasive, deep-tissue imaging modality is needed. This study aimed to assess the feasibility, parameters, and determining factors of serial imaging and long-term monitoring of virotherapy and the therapeutic response of pancreatic cancer xenografts treated with a vaccinia virus carrying the human sodium iodide symporter GLV-1h153. METHODS Pancreatic cancer xenografts (PANC-1) in nude mice were treated systemically or intratumorally with GLV-1h153 and serially imaged using (124)I PET at 1, 2, 3, and 5 wk after viral injection. Signal intensity was compared with tumor therapeutic response and optical imaging, and tumors were histologically analyzed for morphology and the presence of virus. Autoradiography was performed using technetium-pertechnetate and γ-scintigraphy to assess determining factors for radiouptake in tumors. Finally, the enhanced therapeutic effect of combination therapy with GLV-1h153 and systemic radioiodine was assessed. RESULTS GLV-1h153 successfully facilitated serial long-term imaging of virotherapy, with PET signal intensity correlating to tumor response. GLV-1h153 colonization of tumors mediated radioiodine uptake at potentially therapeutic doses. Successful radiouptake required the presence of virus, adequate blood flow, and viable tissue, whereas loss of signal intensity was linked to tumor death and necrosis. Finally, combining systemically administered GLV-1h153 and (131)I led to enhanced tumor kill when compared with virus or (131)I alone (P < 0.01). CONCLUSION GLV-1h153 is a promising oncolytic agent for the treatment, long-term imaging, and monitoring of therapeutic response in a xenograft model of pancreatic cancer. GLV-1h153 provided insight into tumor biologic activity and facilitated enhanced tumor kill when combined with systemic targeted radiotherapy. These results warrant further investigation into parameters and potential synergistic effects of combination therapy.
Collapse
Affiliation(s)
- Dana Haddad
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Adenovirus-mediated sensitization to the cytotoxic drugs docetaxel and mitoxantrone is dependent on regulatory domains in the E1ACR1 gene-region. PLoS One 2012; 7:e46617. [PMID: 23056370 PMCID: PMC3463540 DOI: 10.1371/journal.pone.0046617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022] Open
Abstract
Oncolytic adenoviruses have shown promising efficacy in clinical trials targeting prostate cancers that frequently develop resistance to all current therapies. The replication-selective mutants AdΔΔ and dl922–947, defective in pRb-binding, have been demonstrated to synergise with the current standard of care, mitoxantrone and docetaxel, in prostate cancer models. While expression of the early viral E1A gene is essential for the enhanced cell killing, the specific E1A-regions required for the effects are unknown. Here, we demonstrate that replicating mutants deleted in small E1A-domains, binding pRb (dl1108), p300/CBP (dl1104) and p400/TRRAP or p21 (dl1102) sensitize human prostate cancer cells (PC-3, DU145, 22Rv1) to mitoxantrone and docetaxel. Through generation of non-replicating mutants, we demonstrate that the small E1A12S protein is sufficient to potently sensitize all prostate cancer cells to the drugs even in the absence of viral replication and the E1A transactivating domain, conserved region (CR) 3. Furthermore, the p300/CBP-binding domain in E1ACR1 is essential for drug-sensitisation in the absence (AdE1A1104) but not in the presence of the E1ACR3 (dl1104) domain. AdE1A1104 also failed to increase apoptosis and accumulation of cells in G2/M. All E1AΔCR2 mutants (AdE1A1108, dl922–947) and AdE1A1102 or dl1102 enhance cell killing to the same degree as wild type virus. In PC-3 xenografts in vivo the dl1102 mutant significantly prolongs time to tumor progression that is further enhanced in combination with docetaxel. Neither dl1102 nor dl1104 replicates in normal human epithelial cells (NHBE). These findings suggest that additional E1A-deletions might be included when developing more potent replication-selective oncolytic viruses, such as the AdΔCR2-mutants, to further enhance potency through synergistic cell killing in combination with current chemotherapeutics.
Collapse
|
21
|
Kogai T, Brent GA. The sodium iodide symporter (NIS): regulation and approaches to targeting for cancer therapeutics. Pharmacol Ther 2012; 135:355-70. [PMID: 22750642 DOI: 10.1016/j.pharmthera.2012.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023]
Abstract
Expression of the sodium iodide symporter (NIS) is required for efficient iodide uptake in thyroid and lactating breast. Since most differentiated thyroid cancer expresses NIS, β-emitting radioactive iodide is routinely utilized to target remnant thyroid cancer and metastasis after total thyroidectomy. Stimulation of NIS expression by high levels of thyroid-stimulating hormone is necessary to achieve radioiodide uptake into thyroid cancer that is sufficient for therapy. The majority of breast cancer also expresses NIS, but at a low level insufficient for radioiodine therapy. Retinoic acid is a potent NIS inducer in some breast cancer cells. NIS is also modestly expressed in some non-thyroidal tissues, including salivary glands, lacrimal glands and stomach. Selective induction of iodide uptake is required to target tumors with radioiodide. Iodide uptake in mammalian cells is dependent on the level of NIS gene expression, but also successful translocation of NIS to the cell membrane and correct insertion. The regulatory mechanisms of NIS expression and membrane insertion are regulated by signal transduction pathways that differ by tissue. Differential regulation of NIS confers selective induction of functional NIS in thyroid cancer cells, as well as some breast cancer cells, leading to more efficient radioiodide therapy for thyroid cancer and a new strategy for breast cancer therapy. The potential for systemic radioiodide treatment of a range of other cancers, that do not express endogenous NIS, has been demonstrated in models with tumor-selective introduction of exogenous NIS.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
22
|
Jiang G, Zhang K, Jiang AJ, Xu D, Xin Y, Wei ZP, Zheng JN, Liu YQ. A conditionally replicating adenovirus carrying interleukin-24 sensitizes melanoma cells to radiotherapy via apoptosis. Mol Oncol 2012; 6:383-91. [PMID: 22673233 DOI: 10.1016/j.molonc.2012.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 12/11/2022] Open
Abstract
Combinatorial therapy is the current trend of the development of novel cancer treatments due to the high heterogenous nature of solid tumors. In this study, we investigated the effects of the combined use of a conditionally replicating adenovirus carrying IL-24 (ZD55-IL-24) and radiotherapy on the proliferation and apoptosis of melanoma A375 cells in vitro and in vivo. Compared with either agent used alone, ZD55-IL-24 combined with radiotherapy significantly inhibited cell proliferation, accompanied with increased apoptosis. Radiotherapy did not affect the expression of IL-24 and E1A of ZD55-IL-24-treated cells, but increased the expression of Bax, promoted the activation of caspase-3, while decreasing Bcl-2 levels. Thus, this synergistic effect of ZD55-IL-24 in combination with radiotherapy provides a novel strategy for the development of melanoma therapies, and is a promising approach for further clinical development.
Collapse
Affiliation(s)
- Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rojas JJ, Thorne SH. Theranostic potential of oncolytic vaccinia virus. Theranostics 2012; 2:363-73. [PMID: 22509200 PMCID: PMC3326721 DOI: 10.7150/thno.3724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed.
Collapse
|
24
|
Rajecki M, Sarparanta M, Hakkarainen T, Tenhunen M, Diaconu I, Kuhmonen V, Kairemo K, Kanerva A, Airaksinen AJ, Hemminki A. SPECT/CT imaging of hNIS-expression after intravenous delivery of an oncolytic adenovirus and 131I. PLoS One 2012; 7:e32871. [PMID: 22412937 PMCID: PMC3296755 DOI: 10.1371/journal.pone.0032871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Oncolytic adenoviruses can be engineered for better tumor selectivity, gene delivery and be armed for imaging and concentrating radionuclides into tumors for synergistic oncolysis. We constructed Ad5/3-hTERT-hNIS where replication is controlled by hTERT-promoter. Ad5/3-hTERT-hNIS expresses hNIS for imaging of transgene expression and for treatment of infected tumors by radioiodine. Ad5/3-hTERT-hNIS efficiently killed prostate cancer cells and induced iodine uptake in vitro and in vivo after intratumoral virus administration. Survival of mice treated with intravenous Ad5/3-hTERT-hNIS significantly prolonged survival over mock or radioiodine only but the combination of virus with radioiodine was not more effective than virus alone. Temporal and spatial changes in hNIS-expression during therapy were detected with SPECT, demonstrating feasibility of evaluation of the combination therapy with hNIS-expressing adenoviruses and radioiodide.
Collapse
Affiliation(s)
- Maria Rajecki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, Haartman Institute, Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Mirkka Sarparanta
- Laboratory of Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Tanja Hakkarainen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, Haartman Institute, Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Tenhunen
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Iulia Diaconu
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, Haartman Institute, Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Venla Kuhmonen
- Laboratory of Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Kalevi Kairemo
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
- International Comprehensive Cancer Center Docrates, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, Haartman Institute, Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Anu J. Airaksinen
- Laboratory of Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program, Haartman Institute, Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
25
|
Diaconu I, Cerullo V, Hirvinen MLM, Escutenaire S, Ugolini M, Pesonen SK, Bramante S, Parviainen S, Kanerva A, Loskog ASI, Eliopoulos AG, Pesonen S, Hemminki A. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res 2012; 72:2327-38. [PMID: 22396493 DOI: 10.1158/0008-5472.can-11-2975] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic adenovirus is an attractive platform for immunotherapy because virus replication is highly immunogenic and not subject to tolerance. Although oncolysis releases tumor epitopes and provides costimulatory danger signals, arming the virus with immunostimulatory molecules can further improve efficacy. CD40 ligand (CD40L, CD154) induces apoptosis of tumor cells and triggers several immune mechanisms, including a T-helper type 1 (T(H)1) response, which leads to activation of cytotoxic T cells and reduction of immunosuppression. In this study, we constructed a novel oncolytic adenovirus, Ad5/3-hTERT-E1A-hCD40L, which features a chimeric Ad5/3 capsid for enhanced tumor transduction, a human telomerase reverse transcriptase (hTERT) promoter for tumor selectivity, and human CD40L for increased efficacy. Ad5/3-hTERT-E1A-hCD40L significantly inhibited tumor growth in vivo via oncolytic and apoptotic effects, and (Ad5/3-hTERT-E1A-hCD40L)-mediated oncolysis resulted in enhanced calreticulin exposure and HMGB1 and ATP release, which were suggestive of immunogenicity. In two syngeneic mouse models, murine CD40L induced recruitment and activation of antigen-presenting cells, leading to increased interleukin-12 production in splenocytes. This effect was associated with induction of the T(H)1 cytokines IFN-γ, RANTES, and TNF-α. Tumors treated with Ad5/3-CMV-mCD40L also displayed an enhanced presence of macrophages and cytotoxic CD8(+) T cells but not B cells. Together, our findings show that adenoviruses coding for CD40L mediate multiple antitumor effects including oncolysis, apoptosis, induction of T-cell responses, and upregulation of T(H)1 cytokines.
Collapse
Affiliation(s)
- Iulia Diaconu
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajecki M, Kangasmäki A, Laasonen L, Escutenaire S, Hakkarainen T, Haukka J, Ristimäki A, Kairemo K, Kangasniemi L, Kiljunen T, Joensuu T, Pesonen S, Hemminki A. Sodium iodide symporter SPECT imaging of a patient treated with oncolytic adenovirus Ad5/3-Δ24-hNIS. Mol Ther 2011; 19:629-31. [PMID: 21455206 DOI: 10.1038/mt.2011.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Barton KN, Stricker H, Elshaikh MA, Pegg J, Cheng J, Zhang Y, Karvelis KC, Lu M, Movsas B, Freytag SO. Feasibility of adenovirus-mediated hNIS gene transfer and 131I radioiodine therapy as a definitive treatment for localized prostate cancer. Mol Ther 2011; 19:1353-9. [PMID: 21587209 PMCID: PMC3129572 DOI: 10.1038/mt.2011.89] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/12/2011] [Indexed: 02/08/2023] Open
Abstract
We have developed a replication-competent adenovirus (Ad5-yCD/mutTK(SR39)rep-hNIS) armed with two suicide genes and the human sodium iodide symporter (hNIS) gene. In this context, hNIS can be used as a reporter gene in conjunction with nuclear imaging and as a potentially therapeutic gene when combined with (131)I radioiodine therapy. Here, we quantified the volume and magnitude of hNIS gene expression in the human prostate following injection of a high Ad5-yCD/mutTK(SR39)rep-hNIS dose using a standardized injection algorithm, and estimated the radiation dose that would be delivered to the prostate had men been administered (131)I with curative intent. Six men with clinically localized prostate cancer received an intraprostatic injection of Ad5-yCD/mutTK(SR39)rep-hNIS under transrectal ultrasound guidance. All men received 2 × 0.5 ml deposits (5 × 10(11) vp/deposit) in each of the four base and midgland sextants and 2 × 0.25 ml deposits (2.5 × 10(11) vp/deposit) in each of the two apex sextants for a total of 12 deposits (5 × 10(12) vp) in 5 ml. On multiple days after the adenovirus injection, men were administered sodium pertechnetate (Na(99m)TcO(4)) and hNIS gene expression in the prostate was quantified by single photon emission computed tomography (SPECT). hNIS gene expression was detected in the prostate of six of six (100%) men. On average, 45% (range 18-83%) of the prostate volume was covered with gene expression. Had men been administered 200 mCi (131)I, we estimate that the mean absorbed dose to the prostate would be 7.2 ± 4.8 Gy (range 2.1-13.3 Gy), well below that needed to sterilize the prostate. We discuss the obstacles that must be overcome before adenovirus-mediated hNIS gene transfer and (131)I radioiodine therapy can be used as a definitive treatment for localized prostate cancer.
Collapse
Affiliation(s)
- Kenneth N Barton
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202-3450, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Richard-Fiardo P, Franken PR, Harrington KJ, Vassaux G, Cambien B. The use of molecular imaging of gene expression by radiotracers in gene therapy. Expert Opin Biol Ther 2011; 11:1273-85. [DOI: 10.1517/14712598.2011.588596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Hemminki O, Bauerschmitz G, Hemmi S, Lavilla-Alonso S, Diaconu I, Guse K, Koski A, Desmond RA, Lappalainen M, Kanerva A, Cerullo V, Pesonen S, Hemminki A. Oncolytic adenovirus based on serotype 3. Cancer Gene Ther 2010; 18:288-96. [PMID: 21183947 DOI: 10.1038/cgt.2010.79] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncolytic adenoviruses have been safe in clinical trials but the efficacy has been mostly limited. All published trials have been performed with serotype 5 based viruses. The expression level of the Ad5 receptor CAR may be variable in advanced tumors. In contrast, the Ad3 receptor remains unclear, but is known to be abundantly expressed in most tumors. Therefore, we hypothesized that a fully serotype 3 oncolytic adenovirus might be useful for treating cancer. Patients exposed to adenoviruses develop high titers of serotype-specific neutralizing antibodies, which might compromise re-administration. Thus, having different serotype oncolytic viruses available might facilitate repeated dosing in humans. Ad3-hTERT-E1A is a fully serotype 3 oncolytic adenovirus controlled by the promoter of the catalytic domain of human telomerase. It was effective in vitro on cell lines representing seven major cancer types, although low toxicity was seen in non-malignant cells. In vivo, the virus had anti-tumor efficacy in three different animal models. Although in vitro oncolysis mediated by Ad3-hTERT-E1A and wild-type Ad3 occurred more slowly than with Ad5 or Ad5/3 (Ad3 fiber knob in Ad5) based viruses, in vivo the virus was at least as potent as controls. Anti-tumor efficacy was retained in presence of neutralizing anti-Ad5 antibodies whereas Ad5 based controls were blocked. In summary, we report generation of a non-Ad5 based oncolytic adenovirus, which might be useful for testing in cancer patients, especially in the context of high anti-Ad5 neutralizing antibodies.
Collapse
Affiliation(s)
- O Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Haartman Institute and Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang B, Wang Y, Pang X. Enhanced radiosensitivity of EC109 cells by inhibition of HDAC1 expression. Med Oncol 2010; 29:340-8. [PMID: 20464640 DOI: 10.1007/s12032-010-9559-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 12/18/2022]
Abstract
Histone deacetylase (HDAC) activity plays the role of deacetylation of histone and non-histone proteins, which can alter gene expression patterns and cell behavior potentially associated with malignant transformation. Aberrant expression of HDAC1 has been found in various types of cancers, which indicated that it might be a target for cancer therapy. In this study, overexpression of HDAC1 was found in esophageal cancer samples by real-time RT-PCR, compared with adjacent non-cancerous tissues. To further verify the possibility of anticancer treatment by silencing the increased HDAC1 in esophageal carcinoma cells, HDAC1 expression was knockdown using plasmid-based RNA interference (RNAi). Results showed the HDAC1 expression was efficiently inhibited and the acetylation of histone H3 was significantly increased by RNAi in EC109 cells. Increased apoptotic cell death was observed when HDAC1 expression was knockdown, which indicated that cells were more sensitive to radiation. Moreover, the results also showed DNA was more easily broken by radiation in EC109 cells when HDAC1 expression was knockdown, as measured by γH2AX foci and single-cell electrophoresis. Our data suggested that targeting the increased HDAC1 expression might be feasible for esophageal cancer therapy.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, 400038 Chongqing, China
| | | | | |
Collapse
|