1
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Arechaga-Ocampo E. Epigenetics as a determinant of radiation response in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:145-190. [PMID: 38359968 DOI: 10.1016/bs.ircmb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Radiation therapy is a cornerstone of modern cancer treatment. Treatment is based on depositing focal radiation to the tumor to inhibit cell growth, proliferation and metastasis, and to promote the death of cancer cells. In addition, radiation also affects non-tumor cells in the tumor microenvironmental (TME). Radiation resistance of the tumor cells is the most common cause of treatment failure, allowing survival of cancer cell and subsequent tumor growing. Molecular radioresistance comprises genetic and epigenetic characteristics inherent in cancer cells, or characteristics acquired after exposure to radiation. Furthermore, cancer stem cells (CSCs) and non-tumor cells into the TME as stromal and immune cells have a role in promoting and maintaining radioresistant tumor phenotypes. Different regulatory molecules and pathways distinctive of radiation resistance include DNA repair, survival signaling and cell death pathways. Epigenetic mechanisms are one of the most relevant events that occur after radiotherapy to regulate the expression and function of key genes and proteins in the differential radiation-response. This article reviews recent data on the main molecular mechanisms and signaling pathways related to the biological response to radiotherapy in cancer; highlighting the epigenetic control exerted by DNA methylation, histone marks, chromatin remodeling and m6A RNA methylation on gene expression and activation of signaling pathways related to radiation therapy response.
Collapse
Affiliation(s)
- Elena Arechaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Mexico City, Mexico.
| |
Collapse
|
3
|
Patra S, Patil S, Das S, Bhutia SK. Epigenetic dysregulation in autophagy signaling as a driver of viral manifested oral carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166517. [DOI: 10.1016/j.bbadis.2022.166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
4
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:biomedicines10051088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|
5
|
Nobuchi T, Saito T, Kasamatsu A, Kawasaki K, Nozaki R, Kase Y, Iyoda M, Saito M, Uno T, Uzawa K. Assay for transposase-accessible chromatin with high-throughput sequencing reveals radioresistance-related genes in oral squamous cell carcinoma cells. Biochem Biophys Res Commun 2022; 597:115-121. [PMID: 35134609 DOI: 10.1016/j.bbrc.2022.01.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Radiotherapy is commonly used to treat oral squamous cell carcinoma (OSCC), and radioresistance is a critical factor resulting in poor outcomes. Several genes have been reported to be therapeutic targets for radioresistance; however, the involvement of chromatin accessibility in radioresistance has not been clarified in OSCC cells. Accordingly, in this study, we evaluated chromatin accessibility in radioresistant (HSC-3) and radiosensitive (KOSC-2) cells, identified from nine OSCC cell lines using clonogenic survival assays after irradiation. Chromatin accessibility in radioresistant OSCC cells was assessed using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Gene expression was evaluated by quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and immunoblot analysis. Viability was assessed by MTS assay. We found 1273 peaks (open chromatin regions by ATAC-seq) related to 8 Gy irradiation in HSC-3 but not KOSC-2 cells, among which 235 genes located around the chromatin open peaks were identified by ChIPpeakAnno analysis. Subsequently, 12 genes were selected as signal transduction-related genes by Gene Ontology analysis, and gene expression was confirmed by RT-qPCR. Among these genes, adenylate cyclase 2 (ADCY2) was significantly upregulated after treatment with irradiation in HSC-3 but not KOSC-2 cells. To further evaluate ADCY2 function in radioresistant cells, we performed ADCY2 knockdown by transfection of HSC-3 cells with small interfering RNA (siADCY2). Cell viability after irradiation was significantly decreased in siADCY2-transfected cells compared with that in control cells. These results suggested that ADCY2 expression was related to the open chromatin region in radioresistant OSCC cells and that ADCY2 may have therapeutic efficacy when used in combination with radiotherapy in patients with OSCC.
Collapse
Affiliation(s)
- Takafumi Nobuchi
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Kohei Kawasaki
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryunosuke Nozaki
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yutaro Kase
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Manabu Iyoda
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Masayoshi Saito
- Department of Radiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takashi Uno
- Department of Radiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
6
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
7
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
8
|
Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164:103399. [PMID: 34147646 DOI: 10.1016/j.critrevonc.2021.103399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of epigenetic changes most frequently studied nowadays, together with its relationship with oral carcinogenesis. A group of enzymes is responsible for methylation process, known as DNA methyltransferases (DNMT). Although essential during embryogenesis, DNA methylation pattern alterations, including global hypomethylation or gene promoter hypermethylation, can be respectively associated with chromosomal instability and tumor suppressor gene silencing. Higher expression of DNA methyltransferases is a common finding in oral cancer and may contribute to inactivation of important tumor suppressor genes, influencing development, progression, metastasis, and prognosis of the tumor. To control these alterations, inhibitor drugs have been developed as a way to regulate DNMT overexpression, and they are intended to be associated with ongoing chemo- and radiotherapy in oral cancer treatments. In this article, we aimed to highlight the current knowledge about DNA methylation in oral cancer, including main hyper/hypomethylated genes, DNMT expression and its inhibitor treatments.
Collapse
Affiliation(s)
| | - Filipe Ivan Daniel
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Filipe Modolo
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
9
|
Cabrera-Licona A, Pérez-Añorve IX, Flores-Fortis M, Moral-Hernández OD, González-de la Rosa CH, Suárez-Sánchez R, Chávez-Saldaña M, Aréchaga-Ocampo E. Deciphering the epigenetic network in cancer radioresistance. Radiother Oncol 2021; 159:48-59. [PMID: 33741468 DOI: 10.1016/j.radonc.2021.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Radiotherapy, in addition to surgery and systemic chemotherapy, remains the core of the current clinical management of cancer. Radioresistance is one of the major causes of disease progression and mortality in cancer; therefore, it is a significant challenge in the treatment of locally advanced, recurrent and metastatic cancer. Epigenetic mechanisms that control hallmarks of cancer have a key role in the development of radiation resistance of cancer cells. Recent advances in DNA methylation, histone modification, chromatin remodeling and non-coding RNAs identified in the control of signal transduction pathways in cancer and cancer stem cells have provided even greater promise in the improvement of understanding cancer radioresistance. Many epigenetic drugs that target epigenetic enzymes revert the radioresistant phenotypes decreasing the possibility that resistant cancer cells will develop refractory tumors to radiotherapy. Epigenetic profiles identified as regulators of DNA damage repair, hypoxia, cell survival, apoptosis and invasion are determinants in the development of tumor radioresistance; hence, they also are promising in personalized medicine to develop novel targeted therapies or biomarkers to follow-up the effectiveness of radiotherapy. Now, it is clear that radiotherapy can influence a complex epigenetic network for transcriptional reprogramming, enabling the cells to adapt and avoid the effect of radiotherapy. This review aims to highlight the epigenetic modifications identified in cancer radioresistance and to discuss approaches to disable epigenetic networks to increase the sensitivity and specificity of radiotherapy.
Collapse
Affiliation(s)
- Ariana Cabrera-Licona
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico; Posgrado en Ciencias Naturales e Ingenieria, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico
| | - Isidro X Pérez-Añorve
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico
| | - Mauricio Flores-Fortis
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico; Posgrado en Ciencias Naturales e Ingenieria, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico
| | - Oscar Del Moral-Hernández
- Laboratorio de Virologia y Epigenetica del Cancer, Facultad de Ciencias Quimico Biologicas, Universidad Autonoma de Guerrero, Chilpancingo, Mexico
| | | | - Rocio Suárez-Sánchez
- Laboratorio de Medicina Genomica, Departamento de Genetica, Instituto Nacional de Rehabilitacion LGII, Ciudad de Mexico, Mexico
| | - Margarita Chávez-Saldaña
- Laboratorio de Biologia de la Reproduccion, Instituto Nacional de Pediatria, Ciudad de Mexico, Mexico
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autonoma Metropolitana, Ciudad de Mexico, Mexico.
| |
Collapse
|
10
|
Hsu PJ, Yan K, Shi H, Izumchenko E, Agrawal N. Molecular biology of oral cavity squamous cell carcinoma. Oral Oncol 2020; 102:104552. [PMID: 31918173 DOI: 10.1016/j.oraloncology.2019.104552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/30/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Oral cavity squamous cell carcinoma (OCSCC) is a heterogeneous and complex disease that arises due to dysfunction of multiple molecular signaling pathways. Recent advances in high-throughput genetic sequencing technologies coupled with innovative analytical techniques have begun to characterize the molecular determinants driving OCSCC. An understanding of the key molecular signaling networks underlying the initiation and progression of is essential for informing treatment of the disease. In this chapter, we discuss recent findings of key genes altered in OCSCC and potential treatments targeting these genes.
Collapse
Affiliation(s)
- Phillip J Hsu
- Medical Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - Kenneth Yan
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Evgeny Izumchenko
- Section of Hematology Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Lindell Jonsson E, Erngren I, Engskog M, Haglöf J, Arvidsson T, Hedeland M, Petterson C, Laurell G, Nestor M. Exploring Radiation Response in Two Head and Neck Squamous Carcinoma Cell Lines Through Metabolic Profiling. Front Oncol 2019; 9:825. [PMID: 31544064 PMCID: PMC6728927 DOI: 10.3389/fonc.2019.00825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common form of cancer worldwide. Radiotherapy, with or without surgery, represents the major approach to curative treatment. However, not all tumors are equally sensitive to irradiation. It is therefore of interest to apply newer system biology approaches (e.g., metabolic profiling) in squamous cancer cells with different radiosensitivities in order to provide new insights on the mechanisms of radiation response. In this study, two cultured HNSCC cell lines from the same donor, UM-SCC-74A and UM-SCC-74B, were first genotyped using Short Tandem Repeat (STR), and assessed for radiation response by the means of clonogenic survival and growth inhibition assays. Thereafter, cells were cultured, irradiated and collected for subsequent metabolic profiling analyses using liquid chromatography-mass spectrometry (LC-MS). STR verified the similarity of UM-SCC-74A and UM-SCC-74B cells, and three independent assays proved UM-SCC-74B to be clearly more radioresistant than UM-SCC-74A. The LC-MS metabolic profiling demonstrated significant differences in the intracellular metabolome of the two cell lines before irradiation, as well as significant alterations after irradiation. The most important differences between the two cell lines before irradiation were connected to nicotinic acid and nicotinamide metabolism and purine metabolism. In the more radiosensitive UM-SCC-74A cells, the most significant alterations after irradiation were linked to tryptophan metabolism. In the more radioresistant UM-SCC-74B cells, the major alterations after irradiation were connected to nicotinic acid and nicotinamide metabolism, purine metabolism, the methionine cycle as well as the serine, and glycine metabolism. The data suggest that the more radioresistant cell line UM-SCC-74B altered the metabolism to control redox-status, manage DNA-repair, and change DNA methylation after irradiation. This provides new insights on the mechanisms of radiation response, which may aid future identification of biomarkers associated with radioresistance of cancer cells.
Collapse
Affiliation(s)
| | - Ida Erngren
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mikael Engskog
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Jakob Haglöf
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Torbjörn Arvidsson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.,Medical Product Agency, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Curt Petterson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Xie F, Dong D, Du N, Guo L, Ni W, Yuan H, Zhang N, Jie J, Liu G, Tai G. An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy. Mol Med Rep 2019; 20:2990-3002. [PMID: 31432147 PMCID: PMC6755236 DOI: 10.3892/mmr.2019.10535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Gene expression and DNA methylation levels affect the outcomes of patients with cancer. The present study aimed to establish a multigene risk model for predicting the outcomes of patients with cervical cancer (CerC) treated with or without radiotherapy. RNA sequencing training data with matched DNA methylation profiles were downloaded from The Cancer Genome Atlas database. Patients were divided into radiotherapy and non‑radiotherapy groups according to the treatment strategy. Differently expressed and methylated genes between the two groups were identified, and 8 prognostic genes were identified using Cox regression analysis. The optimized risk model based on the 8‑gene signature was defined using the Cox's proportional hazards model. Kaplan‑Meier survival analysis indicated that patients with higher risk scores exhibited poorer survival compared with patients with lower risk scores (log‑rank test, P=3.22x10‑7). Validation using the GSE44001 gene set demonstrated that patients in the high‑risk group exhibited a shorter survival time comprared with the low‑risk group (log‑rank test, P=3.01x10‑3). The area under the receiver operating characteristic curve values for the training and validation sets were 0.951 and 0.929, respectively. Cox regression analyses indicated that recurrence and risk status were risk factors for poor outcomes in patients with CerC treated with or without radiotherapy. The present study defined that the 8‑gene signature was an independent risk factor for the prognosis of patients with CerC. The 8‑gene prognostic model had predictive power for CerC prognosis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Na Du
- Department of Infections, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liang Guo
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Nannan Zhang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiang Jie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guomu Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Jagadeeshan S, Prasad M, Ortiz-Cuaran S, Gregoire V, Saintigny P, Elkabets M. Adaptive Responses to Monotherapy in Head and Neck Cancer: Interventions for Rationale-Based Therapeutic Combinations. Trends Cancer 2019; 5:365-390. [PMID: 31208698 DOI: 10.1016/j.trecan.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
Abstract
Most Phase II and III clinical trials in head and neck cancer (HNC) combine two or more treatment modalities, which are based, in part, on knowledge of the molecular mechanisms of innate and acquired resistance to monotherapy. In this review, we describe the range of tumor-cell autonomously derived (intrinsic) and tumor-microenvironment-derived (extrinsic) acquired-resistance mechanisms to various FDA-approved monotherapies for HNC. Specifically, we describe how tumor cells and the tumor microenvironment (TME) respond to radiation, chemotherapy, targeted therapy (cetuximab), and immunotherapies [programmed cell death 1 (PD-1) inhibitors] and adapt to the selective pressure of these monotherapies. Due to the diversity of adaptive responses to monotherapy, monitoring the response to treatment in patients is critical to understand the path that leads to resistance and to guide the optimal therapeutic drug combinations in the clinical setting. We envisage that applying such a rationale-based therapeutic strategy will improve treatment efficacy in HNC patients.
Collapse
Affiliation(s)
- Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France
| | - Vincent Gregoire
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Department of Radiation Therapy, Centre Léon Bérard, Lyon 69008, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69008, France; Department of Medical Oncology, Centre Léon Bérard, Lyon 69008, France
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
14
|
Ma J, Li R, Wang J. Characterization of a prognostic four‑gene methylation signature associated with radiotherapy for head and neck squamous cell carcinoma. Mol Med Rep 2019; 20:622-632. [PMID: 31180552 PMCID: PMC6579992 DOI: 10.3892/mmr.2019.10294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/15/2019] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains one of the most common malignancies associated with poor prognosis. DNA methylation has emerged as an important mechanism underlying the radio-resistance of tumors. Prognostic biomarkers based on radiotherapy-related aberrant DNA methylation are limited. Methylation profiles of 388 patients with HNSCC were acquired from The Cancer Genome Atlas (TCGA) portal. Genes with differentially methylated CpG sites (DMGs) were screened between patients with a favorable and poor prognosis with or without radiotherapy. A weight gene co-methylation network was constructed using a Weighted Gene Co-expression Network Analysis (WGCNA) package. A lasso Cox-PH model was used to identify the optimal panel of genes with the ability to predict survival in these patients. Prognostic performance of the multi-gene methylation signature was assessed in a training set and confirmed in a validation set. A total of 976 DMGs were observed between favorable and poor prognostic samples. Four DMG-enriched co-methylation modules were identified. A four-gene methylation signature was determined by the lasso Cox-PH model that consisted of ZNF10, TMPRSS12, ERGIC2, and RNF215. The risk score based on the four-gene signature was able to divide the training or validation set into two risk groups with significantly different overall survival. Thus, the present study revealed a radiotherapy-related four-gene methylation signature to predict survival outcomes of patients with HNSCC, providing candidate therapeutic targets for novel therapy against HNSCC. However, substantial validation experiments are required.
Collapse
Affiliation(s)
- Jiabao Ma
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Rui Li
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Hoey C, Ray J, Jeon J, Huang X, Taeb S, Ylanko J, Andrews DW, Boutros PC, Liu SK. miRNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation. Mol Oncol 2018; 12:1324-1341. [PMID: 29845714 PMCID: PMC6068351 DOI: 10.1002/1878-0261.12328] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/09/2023] Open
Abstract
Recurrence of high-grade prostate cancer after radiotherapy is a significant clinical problem, resulting in increased morbidity and reduced patient survival. The molecular mechanisms of radiation resistance are being elucidated through the study of microRNA (miR) that negatively regulate gene expression. We performed bioinformatics analyses of The Cancer Genome Atlas (TCGA) dataset to evaluate the association between miR-106a and its putative target lipopolysaccharide-induced TNF-α factor (LITAF) in prostate cancer. We characterized the function of miR-106a through in vitro and in vivo experiments and employed transcriptomic analysis, western blotting, and 3'UTR luciferase assays to establish LITAF as a bona fide target of miR-106a. Using our well-characterized radiation-resistant cell lines, we identified that miR-106a was overexpressed in radiation-resistant cells compared to parental cells. In the TCGA, miR-106a was significantly elevated in high-grade human prostate tumors relative to intermediate- and low-grade specimens. An inverse correlation was seen with its target, LITAF. Furthermore, high miR-106a and low LITAF expression predict for biochemical recurrence at 5 years after radical prostatectomy. miR-106a overexpression conferred radioresistance by increasing proliferation and reducing senescence, and this was phenocopied by knockdown of LITAF. For the first time, we describe a role for miRNA in upregulating ATM expression. LITAF, not previously attributed to radiation response, mediates this interaction. This route of cancer radioresistance can be overcome using the specific ATM kinase inhibitor, KU-55933. Our research provides the first report of miR-106a and LITAF in prostate cancer radiation resistance and high-grade disease, and presents a viable therapeutic strategy that may ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Christianne Hoey
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoCanada
| | - Jessica Ray
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoCanada
| | - Jouhyun Jeon
- Ontario Institute for Cancer ResearchUniversity Health NetworkTorontoCanada
| | - Xiaoyong Huang
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | - Samira Taeb
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | - Jarkko Ylanko
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | - David W. Andrews
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoCanada
| | - Paul C. Boutros
- Department of Medical BiophysicsUniversity of TorontoCanada
- Ontario Institute for Cancer ResearchUniversity Health NetworkTorontoCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoCanada
| | - Stanley K. Liu
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoCanada
- Department of Radiation OncologyUniversity of TorontoCanada
| |
Collapse
|
16
|
Wen G, Wang H, Zhong Z. Associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2018; 97:e9971. [PMID: 29538221 PMCID: PMC5882397 DOI: 10.1097/md.0000000000009971] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oral tumor is a heterogeneous group of tumors, in which it has several different histopathological and molecular features. Recently, genetic and epigenetic alterations are often detected in the development of oral cancer. Gene promoter hypermethylation leads to the silencing of cancer related genes without changes of genes sequence. To clarify the effect of RAS association domain family protein 1a (RASSF1A), retinoic acid receptor beta (RARβ), and E-cadherin (CDH1) promoter hypermethylation on the risk of oral cancer, we performed this meta-analysis. METHODS PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure (CNKI) databases were retrieved to identify eligible articles. Stata 12.0 software was used to analyze extracted data of the included articles. Odds ratios (ORs) with the corresponding 95% confidence interval (95% CI) were calculated to evaluate the associations of RASSF1A, RARβ, and CDH1 promoter hypermethylation with oral cancer risk. RESULTS Around 23 literatures with 29 studies were included in the final meta-analysis, in which 12 studies were about RASSF1A promoter methylation, 4 studies were about RARβ promoter methylation, and 13 studies were about CDH1 promoter methylation. Overall, the results of this meta-analysis showed that there were significant associations between RASSF1A, RARβ, and CDH1 promoter hypermethylation and oral cancer risk (RASSF1A, OR = 11.8, 95% CI = 6.14-22.66; RARβ, OR = 20.35, 95% CI = 5.64-73.39; CDH1, OR = 13.46, 95% CI = 5.31-34.17). In addition, we found that RASSF1A promoter hypermethylation exerted higher frequency in the tongue tumor than other site tumor in mouth (RASSF1A, tongue tumor vs other site tumor in mouth, unmethylation vs methylation, OR = 0.65, 95%CI = 0.44-0.98). CONCLUSION RASSF1A, RARβ, and CDH1 promoter hypermethylation might significantly increase the risk of oral cancer.
Collapse
Affiliation(s)
- Guohong Wen
- School of Public Health and Management, Chongqing Medical University, Chongqing
- Medical Records and Statistics Room of Nanchong Central Hospital
| | - Huadong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing
- Oral and Maxillofacial Surgery of Nanchong Central Hospital, NanChong City, SiChuan Province, China
| | - Zhaohui Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing
| |
Collapse
|
17
|
Current Insights into Oral Cancer Epigenetics. Int J Mol Sci 2018; 19:ijms19030670. [PMID: 29495520 PMCID: PMC5877531 DOI: 10.3390/ijms19030670] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Epigenetic modifications have emerged into one of the cancer hallmarks, replacing the concept of malignant pathologies as being solely genetic-based conditions. The epigenetic landscape is responsible for normal development but also for the heterogeneity among tissues in terms of gene expression patterns. Dysregulation in these mechanisms has been associated with disease stage, and increased attention is now granted to cancer in order to take advantage of these modifications in terms of novel therapeutic strategies or diagnosis/prognosis tools. Oral cancer has also been subjected to epigenetic analysis with numerous studies revealing that the development and progression of this malignancy are partially induced by an altered epigenetic substrate together with genetic alterations and prolonged exposure to environmental risk factors. The present review summarizes the most important epigenetic modifications associated with oral cancer and also their potential to be used as new therapeutic targets.
Collapse
|
18
|
Misawa K, Mochizuki D, Imai A, Mima M, Misawa Y, Mineta H. Analysis of Site-Specific Methylation of Tumor-Related Genes in Head and Neck Cancer: Potential Utility as Biomarkers for Prognosis. Cancers (Basel) 2018; 10:cancers10010027. [PMID: 29361757 PMCID: PMC5789377 DOI: 10.3390/cancers10010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Clarifying the epigenetic regulation of tumor-related genes (TRGs) can provide insights into the mechanisms of tumorigenesis and the risk for disease recurrence in HPV-negative head and neck cancers, originating in the hypopharynx, larynx, and oral cavity. We analyzed the methylation status of the promoters of 30 TRGs in 178 HPV-negative head and neck cancer patients using a quantitative methylation-specific PCR. Promoter methylation was correlated with various clinical characteristics and patient survival. The mean number of methylated TRGs was 14.2 (range, 2-25). In the multivariate Cox proportional hazards analysis, the methylation of COL1A2 and VEGFR1 was associated with poor survival for hypopharyngeal cancer, with hazard ratios: 3.19; p = 0.009 and 3.07; p = 0.014, respectively. The methylation of p16 and COL1A2 were independent prognostic factors for poor survival in laryngeal cancer (hazard ratio: 4.55; p = 0.013 and 3.12; p = 0.035, respectively). In patients with oral cancer, the methylation of TAC1 and SSTR1 best correlated with poor survival (hazard ratio: 4.29; p = 0.005 and 5.38; p = 0.029, respectively). Our findings suggest that methylation status of TRGs could serve as important site-specific biomarkers for prediction of clinical outcomes in patients with HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| |
Collapse
|
19
|
D'Souza W, Saranath D. OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. ACTA ACUST UNITED AC 2017; 21:689-703. [DOI: 10.1089/omi.2017.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
20
|
Prognostic potential of KLOTHO and SFRP1 promoter methylation in head and neck squamous cell carcinoma. J Appl Genet 2017; 58:459-465. [PMID: 28812223 DOI: 10.1007/s13353-017-0404-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
Hypermethylation in the CpG island promoter regions of tumor suppressors is known to play a significant role in the development of HNSCC and the detection of which can aid the classification and prognosis of HNSCC. This study aims to profile the methylation patterns in a panel of key genes including CDKN2A, CDKN2B, KLOTHO (KL), RASSF1A, RARB, SLIT2, and SFRP1, in a group of HNSCC samples from Saudi Arabia. The extent of methylation in these genes is determined using the MethyLight assay and correlated with known clinicopathological parameters in our samples of 156 formalin-fixed and paraffin-embedded HNSCC tissues. SLIT2 methylation had the highest frequency (64.6%), followed by RASSF1A (41.3%), RARB (40.7%), SFRP1 (34.9), KL (30.7%), CKDN2B (29.6%), and CKDN2A (29.1%). KL and SFRP1 methylation were more predominant in nasopharyngeal tumors (P = 0.001 and P = 0.031 respectively). Kaplan Meier analysis showed that patients with moderately differentiated tumors who display SFRP1 methylation have significantly worse overall survival in comparison with other samples. In contrast, better clinical outcomes were seen in patients with KL methylation. In conclusion, our findings suggest that the detection of frequent methylation in SFRP1 and KL genes' promoters could serve as prognostic biomarkers for HNSCC.
Collapse
|
21
|
Yu G, Li C, Xie W, Wang Z, Gao H, Cao L, Hao L, Zhang Y. Long non-coding RNA C5orf66-AS1 is downregulated in pituitary null cell adenomas and is associated with their invasiveness. Oncol Rep 2017; 38:1140-1148. [PMID: 28656268 PMCID: PMC5562005 DOI: 10.3892/or.2017.5739] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
Pituitary null cell adenoma is a challenging clinical condition, and its pathogenesis remains to be elucidated. We performed this study to determine the roles of C5orf66-AS1, NORAD, and TINCR in the pathogenesis and invasion of pituitary null cell adenomas. Expression of the three long non-coding RNAs in pituitary null cell adenoma tissues of 11 patients and normal pituitary tissues from four donors was examined by performing quantitative reverse transcription-polymerase chain reaction. We found that C5orf66-AS1 expression was lower in pituitary null cell adenoma tissues than in normal pituitary tissues. Moreover, C5orf66-AS1 expression level was significantly lower in invasive pituitary null cell adenomas than in non-invasive ones. After transfection of C5orf66-AS1 into pituitary adenoma cells, assessment of cell viability and invasion suggested that overexpressed C5orf66-AS1 inhibited cell viability and cell invasion. In silico algorithms predicted several cis- and trans-acting target genes of C5orf66-AS1, including PITX1 and SCGB3A1. In addition, expression of some of the predicted target genes was determined using microarray data of another cohort with pituitary null cell adenomas. It showed that some of these target genes were differentially expressed between pituitary null cell adenoma tissues and normal pituitary tissues as well as between invasive and non-invasive tumors. Co-expression analysis in RNA sequencing data showed that PAQR7 was the most correlated gene of C5orf66-AS1 and that several predicted trans-acting target genes, including SCGB3A1, were highly correlated with C5orf66-AS1. NORAD and TINCR expression was not statistically significant in the complete cohort; however, a negative correlation was observed between NORAD expression and maximum tumor diameter in some subgroups. These results indicate that C5orf66-AS1 suppresses the development and invasion of pituitary null cell adenomas. However, our results do not provide enough statistical evidence to support the roles of NORAD and TINCR in the development and invasion of pituitary null cell adenomas.
Collapse
Affiliation(s)
- Guoqiang Yu
- Medical Center, Tsinghua University, Haidian, Beijing 100084, P.R. China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Zhuang Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Lihua Cao
- Genome Wisdom Inc., Haidian, Beijing 100195, P.R. China
| | - Lingtong Hao
- Genome Wisdom Inc., Haidian, Beijing 100195, P.R. China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
22
|
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral neoplasm, accounting for over 90% of all oral malignancies and 38% of head and neck tumors. Worldwide, OSCC is the eighth most common human cancer, with more than 500,000 new cases being diagnosed every year with a fairly onerous prognosis, encouraging further research on factors that might modify disease outcome. Genetic and/or environmental risk factors associated with the development of oral cancer have been sufficiently understood (smoking, alcohol, betel, diet, living habits, etc.). Knowledge of the genetic basis in oral carcinogenesis is still a challenging task. To improve the diagnosis and prevention, a previously unknown type of chromatin modification, known as epigenetic, which is defined as heritable DNA changes that are not encoded in the sequence itself and which are reversible and increasingly appear to serve fundamental roles in cell differentiation and development are studied. Tumors shed their DNA into the blood and epigenetic changes that occur early during tumorigenesis, sometimes even in premalignant lesions, can provide valuable biomarkers. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNAs). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies.
Collapse
Affiliation(s)
- K N Hema
- Department of Oral and Maxillofacial Pathology, V.S. Dental College and Hospital, Bengaluru, Karnataka, India
| | - T Smitha
- Department of Oral and Maxillofacial Pathology, V.S. Dental College and Hospital, Bengaluru, Karnataka, India
| | - H S Sheethal
- Department of Oral and Maxillofacial Pathology, V.S. Dental College and Hospital, Bengaluru, Karnataka, India
| | - S Angeline Mirnalini
- Department of Oral and Maxillofacial Pathology, V.S. Dental College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
23
|
Guo W, Dong Z, Cui J, Guo Y, Shen S, Guo X, Kuang G. Aberrant hypermethylation of RASSF2 in tumors and peripheral blood DNA as a biomarker for malignant progression and poor prognosis of esophageal squamous cell carcinoma. Clin Exp Metastasis 2016; 33:73-85. [PMID: 26482475 DOI: 10.1007/s10585-015-9759-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/11/2015] [Indexed: 12/18/2022]
Abstract
As a tumor suppressor gene, RAS-association domain family 2 (RASSF2) is inactivated by promoter hypermethylation in different tumor cell lines and primary tumors. However, the role of RASSF2 in esophageal squamous cell carcinoma (ESCC) has remained uninvestigated. The aims of this study were to determine the role and methylation status of RASSF2 in esophageal cancer cell lines, ESCC tissues and white blood cells, and to evaluate the potential prognostic role of RASSF2 in ESCC. In the present study, we found frequent silencing of RASSF2 and up-regulation of the gene by 5-Aza-dC treatment in esophageal cancer cell lines. Aberrant methylation of the CpG sites close to the transcription start site induced silencing of RASSF2 expression and in vitro methylation of RASSF2 led to a significant decrease in luciferase activity. The results were further verified in clinical specimens and aberrant methylation of the CpG sites close to the transcription start site of RASSF2 was found in ESCC tumor tissues and peripheral white blood cells. Furthermore, RASSF2 hypermethylation was associated with lower level of RASSF2 expression. ESCC patients in stage III and IV, with negative expression or hypermethylation of the CpG sites close to the transcription start of RASSF2 demonstrated poor patient survival. Taken together, our results suggest that RASSF2 may function as a tumor suppressor gene that is inactivated through hypermethylation of CpG sites close to the transcription start site in ESCC and its expression or methylation may have prognostic implications for ESCC patients.
Collapse
|
24
|
Chen X, Liu L, Mims J, Punska EC, Williams KE, Zhao W, Arcaro KF, Tsang AW, Zhou X, Furdui CM. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors. Epigenetics 2016; 10:545-61. [PMID: 25961636 DOI: 10.1080/15592294.2015.1048953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC.
Collapse
Key Words
- 5-Aza, 5-aza-2′deoxycitidine
- AKT, Protein kinase B
- AraC, Cytosine arabinoside
- CCNA1, Cyclin A1
- CCND2, Cyclin D2
- CDK4, Cyclin-dependent kinase 4
- CDKN1A, Cyclin-dependent kinase inhibitor 1A (p21, Cip1)
- DNA methylation
- DNMT, DNA methyltransferase
- EIF2AK2, Eukaryotic translation initiation factor 2-αkinase 2
- FASN, Fatty acid synthase
- GSK-3, Glycogen synthase kinase 3
- Gene expression
- HM450, HumanMethylation450
- HNSCC, Head and neck squamous cell cancer
- Head and neck squamous cell cancer (HNSCC)
- IGFBP3, Insulin-like growth factor-binding protein 3
- ILK, Integrin linked kinase
- IPA, Ingenuity pathway analysis
- IRF1, Interferon regulatory factor 1
- KLF4, Kruppel-like factor 4
- KRT19, Keratin 19, LIPG, Endothelial lipase
- LXR, Liver X receptor
- MGMT, O6-methylguanine DNA methyltransferase
- NFATC2, Nuclear factor of activated t-cells cytoplasmic 2
- PCNA, Proliferating cell nuclear antigen
- PTEN, Phosphatase and tensin homolog
- RXR, Retinoid X receptor
- Radiation resistance
- SAM, S-Adenosylmethionine
- SOCS3, Suppressor of cytokine signaling 3
- STAT1, Signal transducers and activators of transcription 1
- TCGA, The Cancer Genome Atlas
- The Cancer Genome Atlas (TCGA)
- VHL, Von Hippel–Lindau tumor suppressor
- dmCpG, differentially methylated CpG
- hTERT, human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Xiaofei Chen
- a Section on Molecular Medicine; Department of Internal Medicine; Wake Forest School of Medicine ; Winston-Salem , NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo W, Dong Z, Guo Y, Shen S, Guo X, Kuang G, Yang Z. Decreased expression and frequent promoter hypermethylation of RASSF2 and RASSF6 correlate with malignant progression and poor prognosis of gastric cardia adenocarcinoma. Mol Carcinog 2015; 55:1655-1666. [PMID: 26456015 DOI: 10.1002/mc.22416] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022]
Abstract
The RAS-association domain family (RASSF) consists of 10 members, and several members act as tumor suppressor genes and epigenetically inactivated in different tumor types. The present study investigated the role and methylation status of RASSF2, RASSF3, RASSF4, and RASSF6 in the pathogenesis and prognosis of GCA. Quantitative real-time RT-PCR, Western blot, and immunohistochemistry (IHC) methods were used respectively to detect the expression of RASSF2, RASSF3, RASSF4, and RASSF6 in 135 GCA cases and BS-MSP method was used to clarify the methylation status of these four genes. Decreased mRNA and protein expression of RASSF2, RASSF3, RASSF4, and RASSF6 were detected in GCA tumor tissues. Aberrant CpG island methylation of RASSF2, RASSF4, and RASSF6 were detected in GCA tumor tissues and were inversely correlated with the expression levels of these genes. Both of RASSF2 and RASSF6 expression and methylation were associated with TNM stage, depth of invasion, LN metastasis, distant metastasis or recurrence, and UGIC family history. GCA patients with simultaneous negative protein expression of RASSF2 and RASSF6 or with simultaneous methylation of both genes demonstrated poor patient survival. These results suggest that down-regulation of RASSF2, RASSF3, RASSF4, and RASSF6 is a tumor-specific phenomenon and the inactivation of RASSF2 and RASSF6 may be associated with tumor progression. Inactivation of RASSF2, RASSF4, and RASSF6 through CpG island methylation may play important roles in GCA carcinogenesis. A combination of RASSF2 and RASSF6 expression or hypermethylation may serve as useful prognostic biomarker for GCA. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Supeng Shen
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xin Guo
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gang Kuang
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhibin Yang
- Laboratory of Pathology, Hebei Cancer Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
26
|
D'Souza W, Saranath D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol 2015; 51:1061-8. [PMID: 26421863 DOI: 10.1016/j.oraloncology.2015.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023]
Abstract
Oral cancer is a high incidence cancer which is of major public health concern in India being the most common cancer in males and fifth most common cancer in females in India, contributing to 26% of the global oral cancer burden. The major risk factors of oral cancer are tobacco, alcohol and high risk Human Papilloma Virus type 16/18. However, only 3-12% of the high risk individuals with dysplasia develop oral cancer. Thus, individual genomic variants representing the genomic constitution and epigenetic alterations play a critical role in the development of oral cancer. Extensive epigenetic studies on the molecular lesions including oncogenes, tumor suppressor genes, genes associated with apoptosis, DNA damage repair have been reported. The current review highlights epigenetic regulation with a focus on molecular biomarkers and epidrug therapy in oral cancer. Epigenetic regulation by hypermethylation, histone modifications and specific microRNAs are often associated with early events and advanced stages in oral cancer, and thus indicate epidrug therapy for intervention. The presence of epigenetic marks in oral lesions, cancers and tumor associated mucosa emphasizes indications as biomarkers and epidrugs with therapeutic potential for better patient management.
Collapse
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai 400056, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai 400056, India.
| |
Collapse
|
27
|
Grawenda AM, O'Neill E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 2015; 113:372-81. [PMID: 26158424 PMCID: PMC4522630 DOI: 10.1038/bjc.2015.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
The high frequency of RASSF1A methylation has been noted in a vast number of patients in a broad spectrum of malignancies, suggesting that RASSF1A inactivation is associated with cancer pathogenesis. However, whether this recurrent incidence of RASSF1A hypermethylation in human malignancies and its association with more aggressive tumour phenotype is a frequent event across different cancer types has not yet been discussed. In this review, we interrogated existing evidence for association of RASSF1A hypermethylation with clinicopathological characteristics that can indicate more invasive lesions.
Collapse
Affiliation(s)
- A M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| | - E O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Abstract
Oral squamous cell carcinoma (OSCC) is a multistep process which is modulated by several endogenous and environmental factors. Epigenetic changes have been found to be equally responsible for OSCC as genetic changes. A plethora of genes showing hypermethylation have been discovered in OSCC. Since these changes are reversible, a lot of emphasis is on using the natural compounds for their ability to cause demethylation which could lead to reactivation of the inactivated tumor suppressor genes. This review encompasses the promoter hypermethylation of tumor suppressor genes in OSCC and its possible reversal using natural compounds. In addition, new compounds which could be screened for their demethylating ability have also been proposed.
Collapse
|
29
|
Abstract
Head and neck cancers are characterized by both genetic and epigenetic aberrations. In treating head and neck cancers, ionizing radiation (IR) is an essential modality in either definitive or adjuvant setting. However, radiation-resistant head and neck cancers are not uncommon. The major biological determinator for IR resistance was previously considered at genetic level because DNA is the major target of irradiation damage. However, in head and neck cancers, recent evidence demonstrated epigenetic disturbance after IR, implicating its role in IR resistance. Hence, this chapter intends to establish an in vitro model for investigating DNA methylation changes in IR-resistant head and neck cancer cells. Bisulfite pyrosequencing is the main methodology it introduced.
Collapse
|
30
|
Quantitative methodology is critical for assessing DNA methylation and impacts on correlation with patient outcome. Clin Epigenetics 2014; 6:22. [PMID: 25859283 PMCID: PMC4391486 DOI: 10.1186/1868-7083-6-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/17/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DNA hypermethylation is reported as a frequent event and prognostic marker in head and neck squamous cell carcinomas (HNSCC). Methylation has been commonly assessed with non-quantitative methodologies, such as methylation-specific PCR (MSP). We investigated previously reported hypermethylated genes with quantitative methodology in oral tongue squamous cell carcinomas (OTSCC). RESULTS The methylation status of 12 genes in 115 OTSCC samples was assessed by one or more of three quantitative analyses: methylation sensitive high resolution melting (MS-HRM), sensitive-melting analysis after real time-methylation specific PCR (SMART-MSP), and bisulfite pyrosequencing. In contrast to much of the literature, either no or infrequent locus-specific methylation was identified by MS-HRM for DAPK1, RASSF1A, MGMT, MLH1, APC, CDH1, CDH13, BRCA1, ERCC1, and ATM. The most frequently methylated loci were RUNX3 (18/108 methylated) and ABO (22/107 methylated). Interrogation of the Cancer Genome Atlas (TCGA) HNSCC cohort confirmed the frequency of significant methylation for the loci investigated. Heterogeneous methylation of RUNX3 (18/108) and ABO (22/107) detected by MS-HRM, conferred significantly worse survival (P = 0.01, and P = 0.03). However, following quantification of methylation levels using pyrosequencing, only four tumors had significant quantities (>15%) of RUNX3 methylation which correlated with a worse patient outcome (P <0.001), while the prognostic significance of ABO hypermethylation was lost. RUNX3 methylation was not prognostic for the TCGA cohort (P = 0.76). CONCLUSIONS We demonstrated the critical need for quantification of methylation levels and its impact on correlative analyses. In OTSCC, we found little evidence of significant or frequent hypermethylation of many loci reported to be commonly methylated. It is likely that previous reports have overestimated the frequency of significant methylation events as a consequence of the use of non-quantitative methodology.
Collapse
|
31
|
Marcinkiewicz KM, Gudas LJ. Altered histone mark deposition and DNA methylation at homeobox genes in human oral squamous cell carcinoma. J Cell Physiol 2014; 229:1405-16. [PMID: 24519855 DOI: 10.1002/jcp.24577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/16/2014] [Indexed: 01/03/2023]
Abstract
We recently reported a role of polycomb repressive complex 2 (PRC2) and PRC2 trimethylation of histone 3 lysine 27 (H3K27me3) in the regulation of homeobox (HOX) (Marcinkiewicz and Gudas, 2013, Exp Cell Res) gene transcript levels in human oral keratinocytes (OKF6-TERT1R) and tongue squamous cell carcinoma (SCC) cells. Here, we assessed both the levels of various histone modifications at a subset of homeobox genes and genome wide DNA methylation patterns in OKF6-TERT1R and SCC-9 cells by using ERRBS (enhanced reduced representation bisulfite sequencing). We detected the H3K9me3 mark at HOXB7, HOXC10, HOXC13, and HOXD8 at levels higher in OKF6-TERT1R than in SCC-9 cells; at IRX1 and SIX2 the H3K9me3 levels were conversely higher in SCC-9 than in OKF6-TERT1R. The H3K79me3 mark was detectable only at IRX1 in OKF6-TERT1R and at IRX4 in SCC-9 cells. The levels of H3K4me3 and H3K36me3 marks correlate with the transcript levels of the assessed homeobox genes in both OKF6-TERT1R and SCC-9. We detected generally lower CpG methylation levels on DNA in SCC-9 cells at annotated genomic regions which were differentially methylated between OKF6-TERT1R and SCC-9 cells; however, some genomic regions, including the HOX gene clusters, showed DNA methylation at higher levels in SCC-9 than OKF6-TERT1R. Thus, both altered histone modification patterns and changes in DNA methylation are associated with dysregulation of homeobox gene expression in human oral cavity SCC cells, and this dysregulation potentially plays a role in the neoplastic phenotype of oral keratinocytes.
Collapse
Affiliation(s)
- Katarzyna M Marcinkiewicz
- Department of Pharmacology, Weill Cornell Medical College and Weill Graduate School of Biomedical Sciences of Cornell University, New York, New York
| | | |
Collapse
|
32
|
Noorlag R, van Kempen PMW, Moelans CB, de Jong R, Blok LER, Koole R, Grolman W, van Diest PJ, van Es RJJ, Willems SM. Promoter hypermethylation using 24-gene array in early head and neck cancer: better outcome in oral than in oropharyngeal cancer. Epigenetics 2014; 9:1220-7. [PMID: 25147921 DOI: 10.4161/epi.29785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.
Collapse
Affiliation(s)
- Rob Noorlag
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Pauline M W van Kempen
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Cathy B Moelans
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Rick de Jong
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Laura E R Blok
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Ronald Koole
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Robert J J van Es
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Stefan M Willems
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands
| |
Collapse
|
33
|
Smits KM, Melotte V, Niessen HE, Dubois L, Oberije C, Troost EG, Starmans MH, Boutros PC, Vooijs M, van Engeland M, Lambin P. Epigenetics in radiotherapy: Where are we heading? Radiother Oncol 2014; 111:168-77. [DOI: 10.1016/j.radonc.2014.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 03/17/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022]
|
34
|
p16INK4A and p14ARF gene promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell carcinoma: a review. DISEASE MARKERS 2014; 2014:260549. [PMID: 24803719 PMCID: PMC3997957 DOI: 10.1155/2014/260549] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/17/2014] [Indexed: 12/18/2022]
Abstract
Head and neck squamous cell carcinoma is a heterogeneous group of tumors with each subtype having a distinct histopathological and molecular profile. Most tumors share, to some extent, the same multistep carcinogenic pathways, which include a wide variety of genetic and epigenetic changes. Epigenetic alterations represent all changes in gene expression patterns that do not alter the actual DNA sequence. Recently, it has become clear that silencing of cancer related genes is not exclusively a result of genetic changes such as mutations or deletions, but it can also be regulated on epigenetic level, mostly by means of gene promoter hypermethylation. Results from recent studies have demonstrated that DNA methylation patterns contain tumor-type-specific signatures, which could serve as biomarkers for clinical outcome in the near future. The topic of this review discusses gene promoter hypermethylation in oral and oropharyngeal squamous cell carcinoma (OSCC). The main objective is to analyse the available data on gene promoter hypermethylation of the cell cycle regulatory proteins p16INK4A and p14ARF and to investigate their clinical significance as novel biomarkers in OSCC. Hypermethylation of both genes seems to possess predictive properties for several clinicopathological outcomes. We conclude that the methylation status of p16INK4A is definitely a promising candidate biomarker for predicting clinical outcome of OSCC, especially for recurrence-free survival.
Collapse
|
35
|
Kuo IY, Wu CC, Chang JM, Huang YL, Lin CH, Yan JJ, Sheu BS, Lu PJ, Chang WL, Lai WW, Wang YC. Low SOX17 expression is a prognostic factor and drives transcriptional dysregulation and esophageal cancer progression. Int J Cancer 2014; 135:563-73. [PMID: 24407731 DOI: 10.1002/ijc.28695] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- I-Ying Kuo
- Institute of Basic Medical Sciences College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Ching-Chi Wu
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Jia-Ming Chang
- Institute of Clinical Medicine College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
- Department of Surgery; Chia-Yi Christian Hospital; Chiayi Taiwan Republic of China
| | - Yu-Lin Huang
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Chien-Hsun Lin
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Jing-Jou Yan
- Department of Pathology; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Bor-Shyang Sheu
- Department of Internal Medicine; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Pei-Jung Lu
- Institute of Clinical Medicine College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| | - Wei-Lun Chang
- Department of Internal Medicine; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Wu-Wei Lai
- Department of Surgery; National Cheng Kung University Hospital; Tainan Taiwan Republic of China
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
- Department of Pharmacology College of Medicine; National Cheng Kung University; Tainan Taiwan Republic of China
| |
Collapse
|
36
|
RASSF2 hypermethylation is present and related to shorter survival in squamous cervical cancer. Mod Pathol 2013; 26:1111-22. [PMID: 23542458 DOI: 10.1038/modpathol.2013.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 12/20/2022]
Abstract
Ras association (RalGDS/AF-6) domain family member 2 (RASSF2) is a gene involved in the progression of several human cancers, including breast, colorectal and lung cancer. The aims of this study were to determine the hypermethylation of the gene in squamous cervical cancer and precursor lesions, along with that of RASSF1 and the recently described EPB41L3, and to analyze the potential prognostic role of these genes. Methylation-specific PCR and bisulfite sequencing were used to analyze the methylation status of RASSF2 and EPB41L3 gene in 60 squamous cervical cancer, 76 cervical intraepithelial neoplasias grade III, 16 grade II, 14 grade I and 13 cases of normal tissue adjacent to cervical intraepithelial neoplasia. RASSF2 expression was evaluated by immunohistochemistry and the re-expression of RASSF2 and EPB41L3 was analyzed by quantitative reverse-transcription PCR in HeLa, SiHa, C33A and A431 cell lines treated with 5-aza-2'-deoxycytidine and/or trichostatin. RASSF1 hypermethylation and human papillomavirus type were also analyzed in all the cases by methylation-specific PCR and reverse line blot, respectively. RASSF2 hypermethylation was predominant in squamous cervical cancer (60.9%) compared with cervical intraepithelial neoplasias (4.2%) and was associated with a lower level of RASSF2 expression and vascular invasion in squamous cervical cancer. EPB41L3 and RASSF1 hypermethylations were also more frequent in cancer than in precursor lesions. Patients with RASSF2 hypermethylation had shorter survival time, independent of tumor stage (hazard ratio: 6.0; 95% confidence interval: 1.5-24.5). Finally, the expressions of RASSF2 and EPB41L3 were restored in several cell lines treated with 5-aza-2'-deoxycytidine. Taken together, our results suggest that RASSF2 potentially functions as a new tumor-suppressor gene that is inactivated through hypermethylation in cervical cancer and is related to the bad prognosis of these patients.
Collapse
|
37
|
Abstract
Dysregulation of gene expression is a frequent occurrence in oral squamous cell carcinoma (OSCC). However, accumulating evidence suggests that in contrast to genetics, epigenetic modifications consisting of aberrant DNA methylation, histone modifications and altered expression of miRNAs induce OSCC tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. The unifying theme among these three epigenetic mechanisms remains the same, which is aberrant regulation of gene expression. In this article, we provide a comprehensive review of the impact of epigenetics on oral tumorigenesis with a systematic report on aberrant DNA methylation, histone modifications and miRNA regulation in the pathogenesis of OSCC. We provide insights into recent studies on the prospect of biomarkers for early detection and indication of disease recurrence, and novel treatment modalities.
Collapse
Affiliation(s)
- Jacqueline A Gasche
- Division of Gastroenterology, Department of Internal Medicine, Charles A Sammons Cancer Center & Baylor Research Institute, Baylor University Medical Center, 3500 Gaston Avenue, Suite 250 Hoblitzelle, Dallas, TX 75246, USA
| | | |
Collapse
|
38
|
Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett 2013; 338:193-203. [PMID: 23597702 DOI: 10.1016/j.canlet.2013.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is one of the most commonly deregulated pathways in human cancers. PI3K comprises a catalytic (p110α) and regulatory subunit (p85), and p110α is encoded by the PIK3CA gene. Here, we summarize the known genetic alterations, including amplifications and mutations, of the PIK3CA oncogene in oral cancer. We discuss in detail PIK3CA mutations and their mutual exclusivity with pathway genes in addition to the incidence of PIK3CA mutations in relation to ethnicity. We describe the constitutive activation of PI3K signaling, oncogenicity, and the genetic deregulation of the PIK3CA gene and its association with oral cancer disease stage. We emphasize the importance of therapeutically targeting the genetically deregulated PIK3CA oncogene and its signaling. We also discuss the implications of targeting Akt and/or mTOR, which are the downstream effectors of PI3K that may possibly pave the way for molecular therapeutic targets for PIK3CA-driven oral carcinogenesis. Furthermore, this critical review provides a complete picture of the PIK3CA oncogene and its deregulation in oral cancer, which may facilitate early diagnosis and improve prognosis through personalized molecular targeted therapy in oral cancer.
Collapse
|
39
|
Lin HY, Huang TT, Lee MS, Hung SK, Lin RI, Tseng CE, Chang SM, Chiou WY, Hsu FC, Hsu WL, Liu DW, Su YC, Li SC, Chan MWY. Unexpected close surgical margin in resected buccal cancer: very close margin and DAPK promoter hypermethylation predict poor clinical outcomes. Oral Oncol 2012; 49:336-44. [PMID: 23245584 DOI: 10.1016/j.oraloncology.2012.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 01/31/2023]
Abstract
OBJECTIVES In resected buccal cancer patients, an unexpected close surgical margin has been observed to correlate with poor clinical outcomes. However, close surgical margin alone does not independently guide post-operative therapies, revealing a clinical debate. Hence, the present study intended to explore epigenetic-based bio-predictors for further stratifying this debating patient population. MATERIALS AND METHODS Between 2000 and 2008, we retrospectively recruited 44 resected buccal cancer patients with a close surgical margin of ≤5 mm. All patients had post-operative radiotherapy. Genomic DNA was extracted from tumor-enrich areas that contained cancer cells of >70%. Methylation-specific PCR was performed to detect promoter methylation of four tumor suppressor genes, including RASSF1A, DAPK, IRF8, and SFRP1. Post-irradiation locoregional control was defined as the primary end point. RESULTS There were 40 males and 4 females, with a median age of 53.5 years (range, 32-82 years). Multivariate analysis identified two independent predictors for locoregional recurrence: very close margin of ≤1 mm (HR: 4.96; 95% CI, 1.63-15.09; P=0.018) and promoter hypermethylation of DAPK (HR: 2.83; 95% CI, 1.05-7.63; P=0.042). The highest risk of locoregional recurrence was observed in patients with both of the two factors (HR, 8.05; 95% CI, 2.56-25.82; P=0.002) when compared with patients with none. Shorter disease-free survival, but not overall survival, was also observed. CONCLUSION More aggressive managements should be considered in resected buccal cancer patients with both very close margin and DAPK promoter hypermethylation rather than post-operative observation or radiotherapy alone.
Collapse
Affiliation(s)
- Hon-Yi Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
DNA hypermethylation biomarkers to predict response to cisplatin treatment, radiotherapy or chemoradiation: the present state of art. Cell Oncol (Dordr) 2012; 35:231-41. [DOI: 10.1007/s13402-012-0091-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 12/20/2022] Open
|
41
|
Role of phosphatidylinositol-3-kinase pathway in head and neck squamous cell carcinoma. JOURNAL OF ONCOLOGY 2012; 2012:450179. [PMID: 22666248 PMCID: PMC3362130 DOI: 10.1155/2012/450179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/14/2012] [Indexed: 01/04/2023]
Abstract
Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field.
Collapse
|
42
|
Poage GM, Butler RA, Houseman EA, McClean MD, Nelson HH, Christensen BC, Marsit CJ, Kelsey KT. Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer. Cancer Res 2012; 72:2728-37. [PMID: 22507853 DOI: 10.1158/0008-5472.can-11-4121-t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Panels of prognostic biomarkers selected using candidate approaches often do not validate in independent populations, so additional strategies are needed to identify reliable classifiers. In this study, we used an array-based approach to measure DNA methylation and applied a novel method for grouping CpG dinucleotides according to well-characterized genomic sequence features. A hypermethylation profile among 13 CpG loci, characterized by polycomb group target genes, mammalian interspersed repeats, and transcription factor-binding sites (PcG/MIR/TFBS), was associated with reduced survival (HR, 3.98; P = 0.001) in patients with head and neck squamous cell carcinoma. This association was driven by CpGs associated with the TAP1 and ALDH3A1 genes, findings that were validated in an independent patient group (HR, 2.86; P = 0.04). Together, the data not only elucidate new potential targets for therapeutic intervention in head and neck cancer but also may aid in the identification of poor prognosis patients who may require more aggressive treatment regimens.
Collapse
Affiliation(s)
- Graham M Poage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Mascolo M, Siano M, Ilardi G, Russo D, Merolla F, De Rosa G, Staibano S. Epigenetic disregulation in oral cancer. Int J Mol Sci 2012; 13:2331-2353. [PMID: 22408457 PMCID: PMC3292026 DOI: 10.3390/ijms13022331] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 01/10/2023] Open
Abstract
Squamous cell carcinoma of the oral region (OSCC) is one of the most common and highly aggressive malignancies worldwide, despite the fact that significant results have been achieved during the last decades in its detection, prevention and treatment. Although many efforts have been made to define the molecular signatures that identify the clinical outcome of oral cancers, OSCC still lacks reliable prognostic molecular markers. Scientific evidence indicates that transition from normal epithelium to pre-malignancy, and finally to oral carcinoma, depends on the accumulation of genetic and epigenetic alterations in a multistep process. Unlike genetic alterations, epigenetic changes are heritable and potentially reversible. The most common examples of such changes are DNA methylation, histone modification, and small non-coding RNAs. Although several epigenetic changes have been currently linked to OSCC initiation and progression, they have been only partially characterized. Over the last decade, it has been demonstrated that especially aberrant DNA methylation plays a critical role in oral cancer. The major goal of the present paper is to review the recent literature about the epigenetic modifications contribution in early and later phases of OSCC malignant transformation; in particular we point out the current evidence of epigenetic marks as novel markers for early diagnosis and prognosis as well as potential therapeutic targets in oral cancer.
Collapse
Affiliation(s)
- Massimo Mascolo
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
| | - Maria Siano
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
| | - Gennaro Ilardi
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
| | - Daniela Russo
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
| | - Francesco Merolla
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
| | - Gaetano De Rosa
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
- Centro di Riferimento Oncologico di Basilicata (C.R.O.B.) Oncology Research Center of Basilicata, Rionero in Vulture, Potenza 85028, Italy
| | - Stefania Staibano
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples “Federico II”, Naples 80131, Italy; E-Mails: (M.M.); (M.S.); (G.I.); (D.R.); (F.M.); (G.D.R.)
| |
Collapse
|
44
|
Nagata S, Hamada T, Yamada N, Yokoyama S, Kitamoto S, Kanmura Y, Nomura M, Kamikawa Y, Yonezawa S, Sugihara K. Aberrant DNA methylation of tumor-related genes in oral rinse: a noninvasive method for detection of oral squamous cell carcinoma. Cancer 2012; 118:4298-308. [PMID: 22252571 DOI: 10.1002/cncr.27417] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND The early detection of oral squamous cell carcinoma (OSCC) is important, and a screening test with high sensitivity and specificity is urgently needed. Therefore, in this study, the authors investigated the methylation status of tumor-related genes with the objective of establishing a noninvasive method for the detection of OSCC. METHODS Oral rinse samples were obtained from 34 patients with OSCC and from 24 healthy individuals (controls). The methylation status of 13 genes was determined by using methylation-specific polymerase chain reaction analysis and was quantified using a microchip electrophoresis system. Promoter methylation in each participant was screened by receiver operating characteristic analysis, and the utility of each gene's methylation status, alone and in combination with other genes, was evaluated as a tool for oral cancer detection. RESULTS Eight of the 13 genes had significantly higher levels of DNA methylation in samples from patients with OSCC than in controls. The genes E-cadherin (ECAD), transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2), retinoic acid receptor beta (RARβ), and O-6 methylguanine DNA methyltransferase (MGMT) had high sensitivity (>75%) and specificity for the detection of oral cancer. OSCC was detected with 100% sensitivity and 87.5% specificity using a combination of ECAD, TMEFF2, RARβ, and MGMT and with 97.1% sensitivity and 91.7% specificity using a combination of ECAD, TMEFF2, and MGMT. CONCLUSIONS The aberrant methylation of a combination of marker genes present in oral rinse samples was used to detect OSCC with >90% sensitivity and specificity. The detection of methylated marker genes from oral rinse samples has great potential for the noninvasive detection of OSCC.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Maxillofacial Diagnostic and Surgical Science, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Murugan AK, Munirajan AK, Tsuchida N. Ras oncogenes in oral cancer: the past 20 years. Oral Oncol 2012; 48:383-92. [PMID: 22240207 DOI: 10.1016/j.oraloncology.2011.12.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022]
Abstract
Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | |
Collapse
|
46
|
García MPS, García-García A. Epigenome and DNA methylation in oral squamous cell carcinoma. Methods Mol Biol 2012; 863:207-19. [PMID: 22359295 DOI: 10.1007/978-1-61779-612-8_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetics studies and defines inherited changes in gene expression that are not encoded in the DNA sequence. The most studied epigenetic change in mammalian DNA is cytosine methylation in CpG dinucleotide areas. The other main group in epigenetic changes includes the posttranslational modifications of histones, mainly phosphorylation, deacetylation changes, and in the ubiquitinylation status. Oral squamous cell carcinoma is the most common malignancy of the oral cavity, and epigenetic changes are very common, as described in this chapter. Alterations in the DNA methylation status resulting from exposure to environmental stress agents have been documented even before birth. Although many epigenetic markers are potentially reversible, the mechanism still remains unclear and many epigenetic changes persist across cell lines and the life of the organism.
Collapse
|
47
|
Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, Xiao L, Liu X, Wang R, Li X, Wu M, Li G. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer 2011; 10:124. [PMID: 21962230 PMCID: PMC3193026 DOI: 10.1186/1476-4598-10-124] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/30/2011] [Indexed: 01/21/2023] Open
Abstract
Background Perturbation of DNA methylation is frequent in cancers and has emerged as an important mechanism involved in tumorigenesis. To determine how DNA methylation is modified in the genome of primary glioma, we used Methyl-DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays to identify differentially DNA methylation sequences between primary glioma and normal brain tissue samples. Methods MeDIP-chip technology was used to investigate the whole-genome differential methylation patterns in glioma and normal brain tissues. Subsequently, the promoter methylation status of eight candidate genes was validated in 40 glioma samples and 4 cell lines by Sequenom's MassARRAY system. Then, the epigenetically regulated expression of these genes and the potential mechanisms were examined by chromatin immunoprecipitation and quantitative real-time PCR. Results A total of 524 hypermethylated and 104 hypomethylated regions were identified in glioma. Among them, 216 hypermethylated and 60 hypomethylated regions were mapped to the promoters of known genes related to a variety of important cellular processes. Eight promoter-hypermethylated genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and SST) were confirmed in primary glioma and cell lines. Aberrant promoter methylation and changed histone modifications were associated with their reduced expression in glioma. In addition, we found loss of heterozygosity (LOH) at the miR-185 locus located in the 22q11.2 in glioma and induction of miR-185 over-expression reduced global DNA methylation and induced the expression of the promoter-hypermethylated genes in glioma cells by directly targeting the DNA methyltransferases 1. Conclusion These comprehensive data may provide new insights into the epigenetic pathogenesis of human gliomas.
Collapse
Affiliation(s)
- Zuping Zhang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Central South University, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bondurant AE, Huang Z, Whitaker RS, Simel LR, Berchuck A, Murphy SK. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol Oncol 2011; 123:581-7. [PMID: 21955482 DOI: 10.1016/j.ygyno.2011.08.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Detection of cell free tumor-specific DNA methylation has been proposed as a potentially useful noninvasive mechanism to detect malignancies, including ovarian cancer, and to monitor response to treatment. However, there are few easily implemented quantitative approaches available for DNA methylation analysis. Our objectives were to develop an absolute quantitative method for detection of DNA methylation using RASSF1A, a known target of promoter methylation in ovarian cancer, and test the ability to detect RASSF1A methylation in tumors and serum specimens of women with ovarian cancer. METHODS Bisulfite modified DNAs were subjected to real time PCR using nondiscriminatory PCR primers and a probe with sequence containing a single CpG site, theoretically able to capture the methylation status of that CpG for every allele within a given specimen. Input DNA was normalized to ACTB levels detected simultaneously by assay multiplexing. Methylation levels were established by comparison to results obtained from universally methylated DNA. RESULTS The assay was able to detect one methylated RASSF1A allele in 100,000 unmethylated alleles. RASSF1A was methylated in 54 of 106 (51%) invasive serous ovarian cancers analyzed and methylation status was concordant in 20/20 matched preoperative serum-tumor pairs. Serial serum specimens taken over the course of treatment for 8 of 9 patients showed fluctuations in RASSF1A methylation concomitant with disease status. CONCLUSIONS This novel assay provides a real-time PCR-based method for absolute quantitation of DNA methylation. Our results support feasibility of monitoring RASSF1A methylation from serum samples taken over the course of treatment from women with ovarian cancer.
Collapse
Affiliation(s)
- Amy E Bondurant
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27708, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Role of DNA methylation in head and neck cancer. Clin Epigenetics 2011; 2:123-50. [PMID: 22704334 PMCID: PMC3365391 DOI: 10.1007/s13148-011-0045-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/14/2011] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC.
Collapse
|
50
|
Mutational analysis of HRAS and KRAS genes in oral carcinoma cell lines. Odontology 2011; 100:149-55. [PMID: 21607592 DOI: 10.1007/s10266-011-0032-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/13/2011] [Indexed: 12/31/2022]
Abstract
RAS overexpression and its active mutations are involved in malignant tumorigenesis. However, the mutation rates in oral carcinoma cells differ between populations. In the present study, genomic DNA of oral carcinoma cells (HOC313, TSU, HSC2, HSC3, KOSC2, KOSC3, SCCKN, OSC19, Ca9.22, and Ho1u1 cells) or normal gingival fibroblasts (GF12 cells) derived from a Japanese population were amplified by polymerase chain reaction using primer sets, spanning HRAS and KRAS exons. Nucleotide substitutions were analyzed by single strand conformation polymorphism. In contrast to no substitutions in KRAS, nine different substitutions were detected in HRAS. Of the nine, six substitutions were located at intron 1 (HSC2 and HSC3 cells) or intron 2 (HSC3, SCCKN and Ca9.22 cells), and one each of exon 1 (all cells), exon 2 (HOC313, TSU, HSC2 and HSC3 cells) and the 5' upstream region (all cells). Substitutions at exons 1 and 2 did not affect the amino acid sequence; the exon 1 substitution was positioned at the 5' untranslated region, which may be a single nucleotide polymorphism (SNP) sequence because all the cells were isolated from a Japanese population, and the mutations at exon 2 was a silent mutation. A substitution at the 5' upstream region was an SNP. These data demonstrate that SNPs and point mutations observed in HRAS do not change the amino acid sequence, and suggest that the mutations affecting the amino acid sequence may be a rare event in oral carcinomas of the Japanese population.
Collapse
|