1
|
Zhang Y, Zhu Y, Wang S, Feng YC, Li H. Erythropoietin receptor is a risk factor for prognosis: A potential biomarker in lung adenocarcinoma. Pathol Res Pract 2023; 251:154891. [PMID: 37844485 DOI: 10.1016/j.prp.2023.154891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Lung cancer has the highest mortality rate of all cancers, and LUAD's survival rate is particularly poor. Erythropoietin receptor (EPOR) can be detected in lung adenocarcinoma (LUAD), however, the expression levels and prognostic value of EPOR in LUAD are still unclear. In our study, clinicopathological data of 92 LUAD patients between January 2008 and June 2016, multiple bioinformatics databases and immunohistochemistry were used to explore the EPOR expression, the mutant genes affecting EPOR expression, and the correlation of EPOR expression with oxidative stress - related genes, prognosis, immune microenvironment. All statistical analyses were performed in the R version 4.1.1. The study found that EPOR expression might be down-regulated at the mRNA levels and significantly up-regulated at the protein levels in LUAD, which indicates that the mRNA and protein levels of EPOR are inconsistent. The muTarget showed that the expression of EPOR was significantly different between the mutant group and the wild group of 15 genes, including DDX60L and C1orf168. Importantly, we found that EPOR was associated with VEGF and HIF family members, and had significant positive correlation with oxidative stress - related genes such as CCS, EPX and TXNRD2. This suggests that EPOR may be involved in the regulation of oxidative stress. The Kaplan-Meier Plotter and PrognoScan databases consistently concluded that EPOR was associated with prognosis in LUAD patients. Our clinicopathological data showed that high EPOR expression was associated with poorer overall survival (29.5 vs 46 months) and had a good predictive ability for 4-year and 5-year survival probability. EPOR is expected to be a potential new prognostic marker for LUAD.
Collapse
Affiliation(s)
- Yajing Zhang
- Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China; Xinjiang Key Laboratory of Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Yousen Zhu
- Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Senyu Wang
- Xinjiang Key Laboratory of Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Yang Chun Feng
- Xinjiang Key Laboratory of Oncology, Tumor Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.
| | - Hui Li
- Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
2
|
Zhang Y, Wang S, Han S, Feng Y. Pan-Cancer Analysis Based on EPOR Expression With Potential Value in Prognosis and Tumor Immunity in 33 Tumors. Front Oncol 2022; 12:844794. [PMID: 35359375 PMCID: PMC8963997 DOI: 10.3389/fonc.2022.844794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Erythropoietin receptor (EPOR), a member of the cytokine class I receptor family, mediates erythropoietin (EPO)-induced erythroblast proliferation and differentiation, but its significance goes beyond that. The expression and prognosis of EPOR in cancer remain unclear. Methods This study intended to perform a pan-cancer analysis of EPOR by bioinformatics methods. Several databases such as GTEx, TCGA, CCLE, and others were used to explore the overall situation of EPOR expression, and the correlation of EPOR expression with prognosis, microRNAs (miRNAs), immune infiltration, tumor microenvironment, immune checkpoint genes, chemokines, tumor mutation burden (TMB), microsatellite instability (MSI), methyltransferases, and DNA mismatch repair (MMR) genes in 33 tumors was analyzed. In addition, we compared the promoter methylation levels of EPOR in cancer tissues with those in normal tissues and performed protein-protein interaction network, gene-disease network, and genetic alteration analyses of EPOR, and finally enrichment analysis of EPOR-interacting proteins, co-expressed genes, and differentially expressed genes. Results The TCGA database showed that EPOR expression was upregulated in BLCA, CHOL, HNSC, KIRC, LIHC, STAD, and THCA and downregulated in LUAD and LUSC. After combining the GTEx database, EPOR expression was found to be downregulated in 18 cancer tissues and upregulated in 6 cancer tissues. The CCLE database showed that EPOR expression was highest in LAML cell lines and lowest in HNSC cell lines. Survival analysis showed that high EPOR expression was positively correlated with OS in LUAD and PAAD and negatively correlated with OS in COAD, KIRC, and MESO. Moreover, EPOR had a good prognostic ability for COAD, LUAD, MESO, and PAAD and also influenced progression-free survival, disease-specific survival, disease-free survival, and progression-free interval in specific tumors. Further, EPOR was found to play a non-negligible role in tumor immunity, and a correlation of EPOR with miRNAs, TMB, MSI, and MMR genes and methyltransferases was confirmed to some extent. In addition, the enrichment analysis revealed that EPOR is involved in multiple cancer-related pathways. Conclusion The general situation of EPOR expression in cancer provided a valuable clinical reference. EPOR may be target gene of hsa-miR-575, etc. A pan-cancer analysis of panoramic schema revealed that EPOR not only may play an important role in mediating EPO-induced erythroblast proliferation and differentiation but also has potential value in tumor immunity and is expected to be a prognostic marker for specific cancers.
Collapse
Affiliation(s)
- Yajing Zhang
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.,Xinjiang Key Laboratory of Oncology, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Senyu Wang
- Xinjiang Key Laboratory of Oncology, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.,Clinical Laboratory Center, The Second Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Songtao Han
- Xinjiang Key Laboratory of Oncology, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.,Clinical Laboratory Center, Hospital of Traditional Chinese Medicine Affiliated to Xinjiang Medical University, Xinjiang, China
| | - Yangchun Feng
- Clinical Laboratory Center, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China.,Xinjiang Key Laboratory of Oncology, Cancer Hospital Affiliated to Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
3
|
Rauner M, Murray M, Thiele S, Watts D, Neumann D, Gabet Y, Hofbauer LC, Wielockx B. Epo/EpoR signaling in osteoprogenitor cells is essential for bone homeostasis and Epo-induced bone loss. Bone Res 2021; 9:42. [PMID: 34518518 PMCID: PMC8437981 DOI: 10.1038/s41413-021-00157-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 11/09/2022] Open
Abstract
High erythropoietin (Epo) levels are detrimental to bone health in adult organisms. Adult mice receiving high doses of Epo lose bone mass due to suppressed bone formation and increased bone resorption. In humans, high serum Epo levels are linked to fractures in elderly men. Our earlier studies indicated that Epo modulates osteoblast activity; however, direct evidence that Epo acts via its receptor (EpoR) on osteoblasts in vivo is still missing. Here, we created mice lacking EpoR in osteoprogenitor cells to specifically address this gap. Deletion of EpoR in osteoprogenitors (EpoR:Osx-cre, cKO) starting at 5 weeks of age did not alter red blood cell parameters but increased vertebral bone volume by 25% in 12-week-old female mice. This was associated with low bone turnover. Histological (osteoblast number, bone formation rate) and serum (P1NP, osteocalcin) bone formation parameters were all reduced, as were the number of osteoclasts and TRAP serum level. Differentiation of osteoblast precursors isolated from cKO versus control mice resulted in lower expression of osteoblast marker genes including Runx2, Alp, and Col1a1 on day 21, whereas the mineralization capacity was similar. Moreover, the RANKL/OPG ratio, which determines the osteoclast-supporting potential of osteoblasts, was substantially decreased by 50%. Similarly, coculturing cKO osteoblasts with control or cKO osteoclast precursors produced significantly fewer osteoclasts than coculture with control osteoblasts. Finally, exposing female mice to Epo pumps (10 U·d−1) for 4 weeks resulted in trabecular bone loss (−25%) and increased osteoclast numbers (1.7-fold) in control mice only, not in cKO mice. Our data show that EpoR in osteoprogenitors is essential in regulating osteoblast function and osteoblast-mediated osteoclastogenesis via the RANKL/OPG axis. Thus, osteogenic Epo/EpoR signaling controls bone mass maintenance and contributes to Epo-induced bone loss.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Marta Murray
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Deepika Watts
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Shujaa Edin HY, Al-Haj NA, Rasedee A, Banu Alitheen N, Abdul Kadir A, Wun How C, Sulaiman Rahman H, Al-Shwyeh HA. Recombinant human Erythropoietin enhanced the cytotoxic effects of tamoxifen toward the spheroid MCF-7 breast cancer cells. Saudi J Biol Sci 2021; 28:5214-5220. [PMID: 34466099 PMCID: PMC8381065 DOI: 10.1016/j.sjbs.2021.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Erythropoietin (EPO) is widely used to treat anemia in patients undergoing chemotherapy for cancers. The main objective of this study was to investigate the effect of rHuEPO on the response of spheroid breast cancer, MCF-7, cells to tamoxifen treatment. The MCF-7 spheroids were treated with 10 mg/mL tamoxifen in combination with either 0, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The viability of the MCF-7 cells was determined using the annexin-V, cell cycle, caspases activation and acridine orange/propidium iodide staining. rHuEPO-tamoxifen combination significantly (p greater than 0.05) increased the number of spheroid MCF-7 cells entering early apoptotic phase after 12 h and late apoptotic phase after 24 h of treatment; primarily the result of the antiproliferative effect tamoxifen. Tamoxifen alone significantly (p < 0.05) increased the caspase-3 and −9 activities in the spheroid MCF-7 cells by 200 to 550% of the control. Combination rHuEPO and tamoxifen produced much lesser effect on the caspase-8 activity. The rHuEPO in the combination treatment had concentration-dependently caused decrease in the caspase activities. rHuEPO-tamoxifen combination markedly increased MCF-7 cells entering the SubG0/G1 phase of the cell cycle by more than 500% of the control, while decreasing those entering the G2 + M and S phases by 50%. After 72 h, the combination treatment produced greater (p < 0.05) change in the SubG0/G1 phase than tamoxifen treatment alone. Morphologically, spheroid MCF-7 cells subjected to combination rHuEPO-tamoxifen treatment showed nuclear condensation and margination, cytoplasmic blebbing, necrosis, and early and late apoptosis. Thus, the study showed that rHuEPO-tamoxifen combination induced apoptosis in the spheroid MCF-7 cells. The apoptotic effect of the rHuEPO-tamoxifen combination treatment on the MCF-7 cells was greater than that produced by tamoxifen alone. The rHuEPO-tamoxifen treatment enhanced the caspase-independent apoptotic effects of tamoxifen on the spheroid MCF-7 cells.
Collapse
Key Words
- CC, correlation coefficient
- CV, coefficient of variance
- DG, geometrical mean of diameter
- ECRB, Eppendorf A-4-62 centrifuge rotor 1 MTP buckets
- ESBR, The Eppendorf swing-bucket rotor with tubes rack
- HD, Hanging drop
- Hanging drop
- MCF-7, GMD, geometrical mean diameter
- MCF-7, human breast cell line
- OLT, Overlay technique
- Overlay technique
- Recombinant human erythropoietin
- S, surface area
- Spheroids
- TAM Tamoxifen ULAT, ultra-low adhesive plate
- Tamoxifen
- Ultra-low adhesive plate
- poly-HEMA, Poly 2-hydroxyethyl methacrylate
- rHuEPO, Recombinant human erythropoietin
Collapse
Affiliation(s)
| | - Nagi A Al-Haj
- Faculty of Medicine and Health Sciences, Sana'a University, Yemen
| | - Abdullah Rasedee
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | | | | | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Hussah Abdullah Al-Shwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia
| |
Collapse
|
5
|
Badowska-Kozakiewicz AM, Budzik MP, Liszcz A, Sobieraj MT, Czerw AI, Sobol M, Patera J, Deptała A. Clinicopathological factors associated with novel prognostic markers for patients with triple negative breast cancer. Arch Med Sci 2019; 15:1433-1442. [PMID: 31749871 PMCID: PMC6855147 DOI: 10.5114/aoms.2018.79568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is characterized by a worse prognosis than other breast cancer subtypes. TNBC is defined by lack of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. The aim of this analysis was to evaluate the relationship between immunohistochemical expression of novel prognostic markers (erythropoietin (EPO) and erythropoietin receptor (EPO-R)) and clinicopathological features of TNBC and non-TNBC patients. MATERIAL AND METHODS Our analysis was conducted on a group of 162 patients with breast carcinoma with lymph node metastasis (111 TNBC and 51 non-TNBC). All statistical analyses were performed with SPSS software v 12.0. RESULTS Histopathologic subtyping of the 111 triple negative breast cancers identified 89.1% invasive ductal carcinomas of no special type and 10.9% other special types of cancers. TNBC more often presented EPO-R and EPO expression (36%; 37.8%) than non-TNBC (23.5%; 29.4%). Non-TNBC subgroup showed statistically significant correlation only between Ki-67 expression and histological grade (G1-G3) (p < 0.001), while TNBC subgroup demonstrated significant correlation between Ki-67 expression and histological grade (G1-G3) and tumor size (pT1-pT4) as well (p = 0.002; p = 0.042), between the EPO-R expression and histological grade (G1-G3) (p < 0.001). CONCLUSIONS The relationship between the expression of EPO-R and histological malignancy grade in triple negative breast cancer, suggests that the present EPO-R expression in TNBC may constitute an additional prognostic factor.
Collapse
Affiliation(s)
| | - Michał P. Budzik
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Liszcz
- Students’ Scientific Organization at the Medical University of Warsaw, Warsaw, Poland
| | - Maciej T. Sobieraj
- Students’ Scientific Organization at the Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra I. Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health – NIH, Warsaw, Poland
| | - Maria Sobol
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Patera
- Department of Pathomorphology, Military Institute of Health Services, Warsaw, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Chan KK, Matchett KB, Coulter JA, Yuen HF, McCrudden CM, Zhang SD, Irwin GW, Davidson MA, Rülicke T, Schober S, Hengst L, Jaekel H, Platt-Higgins A, Rudland PS, Mills KI, Maxwell P, El-Tanani M, Lappin TR. Erythropoietin drives breast cancer progression by activation of its receptor EPOR. Oncotarget 2018; 8:38251-38263. [PMID: 28418910 PMCID: PMC5503530 DOI: 10.18632/oncotarget.16368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths. Anemia is common in breast cancer patients and can be treated with blood transfusions or with recombinant erythropoietin (EPO) to stimulate red blood cell production. Clinical studies have indicated decreased survival in some groups of cancer patients treated with EPO. Numerous tumor cells express the EPO receptor (EPOR), posing a risk that EPO treatment would enhance tumor growth, but the mechanisms involved in breast tumor progression are poorly understood. Here, we have examined the functional role of the EPO-EPOR axis in pre-clinical models of breast cancer. EPO induced the activation of PI3K/AKT and MAPK pathways in human breast cancer cell lines. EPOR knockdown abrogated human tumor cell growth, induced apoptosis through Bim, reduced invasiveness, and caused downregulation of MYC expression. EPO-induced MYC expression is mediated through the PI3K/AKT and MAPK pathways, and overexpression of MYC partially rescued loss of cell proliferation caused by EPOR downregulation. In a xenotransplantation model, designed to simulate recombinant EPO therapy in breast cancer patients, knockdown of EPOR markedly reduced tumor growth. Thus, our experiments in vitro and in vivo demonstrate that functional EPOR signaling is essential for the tumor-promoting effects of EPO and underline the importance of the EPO-EPOR axis in breast tumor progression.
Collapse
Affiliation(s)
- Ka Kui Chan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK.,Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region 999077
| | - Kyle B Matchett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | | | - Hiu-Fung Yuen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Shu-Dong Zhang
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, BT47 6SB, UK
| | - Gareth W Irwin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Matthew A Davidson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Sophie Schober
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna A-1210, Austria
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Heidelinde Jaekel
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria
| | - Angela Platt-Higgins
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Philip S Rudland
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Belfast Health & Social Care Trust, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Mohamed El-Tanani
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK.,Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK
| | - Terence R Lappin
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
7
|
Ilkovičová L, Trošt N, Szentpéteriová E, Solár P, Komel R, Debeljak N. Overexpression of the erythropoietin receptor in RAMA 37 breast cancer cells alters cell growth and sensitivity to tamoxifen. Int J Oncol 2017; 51:737-746. [PMID: 28714517 DOI: 10.3892/ijo.2017.4061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) is the main regulator of erythropoiesis, and its receptor (EPOR) is expressed in various tissues, including tumors. Expression of EPOR in breast cancer tissue has been shown to correlate with expression of the estrogen receptor (ER). However, EPOR promotes proliferation in an EPO-independent manner. In patients with breast cancer, EPOR is associated with impaired tamoxifen response in ER-positive tumors, but not in ER-negative tumors. Furthermore, a positive correlation between EPOR/ER status and increased local cancer recurrence has been demonstrated, and EPOR expression is associated with G-protein coupled ER (GPER). Herein, we assessed the effects of EPOR on cell physiology and tamoxifen response in the absence of EPO stimulation using two cell lines that differ only in their EPOR expression status: RAMA 37 cells (low EPOR expression) and RAMA 37-28 cells (high EPOR expression). Alterations in cell growth, morphology, response to tamoxifen cytotoxicity, and EPOR-activated signal transduction were observed. RAMA 37 cells showed higher proliferation capacity without tamoxifen treatment, while RAMA 37-28 cells were more resistant to tamoxifen and proliferated more rapidly in the presence of tamoxifen. EPOR overexpression induced cell-morphology changes upon tamoxifen treatment, which resulted in the production of cell protrusions and subsequent cell death. Short-term treatment with tamoxifen (6 h) prompted RAMA 37 cells to acquired longer protrusions than RAMA 37-28 cells, which indicated a pre-apoptotic stage. Furthermore, prolonged treatment with tamoxifen (72 h) caused a greater reduction in RAMA 37 cell numbers, which indicated a higher rate of cell death. RAMA 37-28 cells showed prolonged activation of AKT signaling. We propose sustained AKT phosphorylation in EPOR-overexpressing cells as a mechanism that can lead to EPOR-induced tamoxifen resistance.
Collapse
Affiliation(s)
- Lenka Ilkovičová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Nina Trošt
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Erika Szentpéteriová
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Peter Solár
- Department of Cell Biology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Ke S, Chen S, Dong Z, Hong CS, Zhang Q, Tang L, Yang P, Zhai J, Yan H, Shen F, Zhuang Z, Wen W, Wang H. Erythrocytosis in hepatocellular carcinoma portends poor prognosis by respiratory dysfunction secondary to mitochondrial DNA mutations. Hepatology 2017; 65:134-151. [PMID: 27774607 PMCID: PMC7971278 DOI: 10.1002/hep.28889] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/26/2016] [Accepted: 09/22/2016] [Indexed: 12/07/2022]
Abstract
UNLABELLED Erythrocytosis is a common paraneoplastic syndrome associated with hepatocellular carcinoma. Although increased erythropoietin (EPO) is found in these patients, the clinical significance and molecular mechanisms underlying this observation are unclear. We demonstrate an inverse relationship between EPO production and overall prognosis in our cohort of 664 patients as well as in data from The Cancer Genome Atlas. In the subset of hepatocellular carcinoma patients with erythrocytosis, we identified somatic mutations of mitochondrial DNA, resulting in impairment of respiratory metabolism, which sequentially led to depletion of α-ketoglutarate, stabilization of hypoxia inducible factor-α, and expression of target genes such as EPO. Cell lines and patient-derived xenograft models were used to demonstrate that EPO promoted cancer stem cell self-renewal and expansion in an autocrine/paracrine manner through enhanced Janus kinase/signal transducer and activator of transcription signaling both in vitro and in vivo. Furthermore, to explore the therapeutic targeting of EPO-induced tumor changes, we found that blocking EPO signaling with soluble EPO receptor extracellular domain Fc fusion protein could inhibit tumor growth both in vitro and in vivo. CONCLUSION These findings suggest clinical and therapeutic implications for erythrocytosis in hepatocellular carcinoma. There is an underlying link between mitochondrial function and hypoxia inducible factor alpha signaling, revealing a mechanism of erythrocytosis in a subset of hepatocellular carcinoma patients who may benefit from treatment involving EPO signaling interference. (Hepatology 2017;65:134-151).
Collapse
Affiliation(s)
- Shizhong Ke
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Chen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zihui Dong
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Christopher S. Hong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD,Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Qi Zhang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Liang Tang
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Second Military Medical University, Shanghai, China
| | - Jian Zhai
- Department of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital Second Military Medical University, Shanghai, China
| | - Hexin Yan
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital Second Military Medical University, Shanghai, China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Wen Wen
- National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Center for Liver Cancer Second Military Medical University, Shanghai, China,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China,Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Debeljak N, Solár P, Sytkowski AJ. Erythropoietin and cancer: the unintended consequences of anemia correction. Front Immunol 2014; 5:563. [PMID: 25426117 PMCID: PMC4227521 DOI: 10.3389/fimmu.2014.00563] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients.
Collapse
Affiliation(s)
- Nataša Debeljak
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana , Ljubljana , Slovenia
| | - Peter Solár
- Department of Cell and Molecular Biology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Šafárik University , Košice , Slovakia
| | - Arthur J Sytkowski
- Oncology Therapeutic Area, Quintiles Transnational , Arlington, MA , USA
| |
Collapse
|
10
|
EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation. Biochem Biophys Res Commun 2014; 445:163-9. [PMID: 24502950 DOI: 10.1016/j.bbrc.2014.01.165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα(+)) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.
Collapse
|
11
|
Ferracin M, Bassi C, Pedriali M, Pagotto S, D'Abundo L, Zagatti B, Corrà F, Musa G, Callegari E, Lupini L, Volpato S, Querzoli P, Negrini M. miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Mol Cancer 2013; 12:130. [PMID: 24165569 PMCID: PMC4176119 DOI: 10.1186/1476-4598-12-130] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/23/2023] Open
Abstract
Background The microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables. Methods MiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR. Results We identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer - as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs). Conclusions Taken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.
Collapse
Affiliation(s)
- Manuela Ferracin
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Trošt N, Hevir N, Rižner TL, Debeljak N. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines. Int J Mol Med 2013; 31:717-25. [PMID: 23314808 DOI: 10.3892/ijmm.2013.1231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/29/2012] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways or to evade their inhibition. Therefore, breast cancer classification upon ESR, PGR and human epidermal growth factor receptor 2 (HER2) may not be sufficient for the selection of suitable treatment protocol. The expression of EPOR, GPER and EPHB4 may be considered as additional classification factors.
Collapse
Affiliation(s)
- Nina Trošt
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
13
|
Zhang C, Duan X, Xu L, Ye J, Zhao J, Liu Y. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 2012; 136:739-48. [PMID: 23117856 DOI: 10.1007/s10549-012-2316-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022]
Abstract
Resistance to trastuzumab is a major issue in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Several potential resistance mechanisms have been investigated, but the results are controversial and no conclusion has been reached. Erythropoietin receptor (EPOR) may function in cell growth, and expressed in various cancer cells. Because the downstream signaling pathways for EPOR and HER2 partially overlapped, we hypothesized that EPOR may play a role in the inhibition effect of trastuzumab and resistance to trastuzumab. Here, we detected the expression of EPOR mRNA and protein in HER2-positive breast cancer cell lines and tissues. EPOR expressed in SKBR3, MDA-MB-453, and UACC-812 cell lines, but not in BT474. Of the 55 HER2-positive cancer tissues, EPOR was positive in 42 samples and highly expressed (H-score ≥ 25) in 24 by immunohistochemistry. The difference between EPOR expression and Ki67 index was significant (P = 0.033), and EPOR expression also positively correlated with higher pathological stage (Spearman correlation coefficient = 0.359; P = 0.007). Exogenous EPO antagonized trastuzumab-induced inhibition of cell proliferation in HER2/EPOR dual-positive breast cancer cells. We then exposed SKBR3 cells to trastuzumab for 4 months to obtain trastuzumab-resistant SKBR3 cell line, which demonstrated higher phosphorylated EPOR level, higher EPO expression and more extracellular secretion than non-resistant parental SKBR3 cells. Downregulation EPOR expression using short hairpin RNA resensitized trastuzumab-resistant cells to this drug, and SKBR3 cells with EPOR downregulation demonstrated attenuated trastuzumab resistance after the same resistance induction. EPOR downregulation plus trastuzumab produced a synergetic action in the inhibition of cell proliferation and invasion in SKBR3 and MDA-MB-453 cell lines. Therefore, EPOR expression may be involved in tumor progression and proliferation in HER2-positive breast cancer. EPO/EPOR contributes to the mechanism of trastuzumab resistance in SKBR3 cell lines, and EPOR downregulation can reverse the resistance to trastuzumab and increase the inhibition effect of this drug.
Collapse
Affiliation(s)
- Chi Zhang
- Peking University First Hospital Breast Disease Centre, Xishiku Street 8#, Xicheng District, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
15
|
Contrasting effect of recombinant human erythropoietin on breast cancer cell response to cisplatin induced cytotoxicity. Radiol Oncol 2012; 46:213-25. [PMID: 23077460 PMCID: PMC3472952 DOI: 10.2478/v10019-012-0037-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/18/2012] [Indexed: 12/11/2022] Open
Abstract
Background Human recombinant erythropoietin (rHuEpo) that is used for the treatment of the chemotherapy-induced anaemia in cancer patients was shown to cause detrimental effects on the course of disease due to increased adverse events inflicting patient’s survival, potentially related to rHuEpo-induced cancer progression. In this study, we elucidate the effect of rHuEpo administration on breast cancer cell proliferation and gene expression after cisplatin (cDDP) induced cytotoxicity. Materials and methods Two breast carcinoma models, MCF-7 and MDA-MB-231 cell lines, were used differing in oestrogen (ER) and progesterone (PR) receptors and p53 status. Cells were cultured with or without rHuEpo for 24 h or 9 weeks and their growth characteristics after cDDP treatment were assessed together with expression of genes involved in the p53-signaling pathway. Results Short-term exposure of breast cancer cells to rHuEpo lowers their proliferation and reduces cDDP cytotoxic potency. In contrast, long-term exposure of MCF-7 cells to rHuEpo increases proliferation and predisposes MCF-7 cells to cDDP cytotoxicity, but has no effect on MDA-MB-231 cells. MDA-MB-231 cells show altered level of ERK phosphorylation, indicating involvement of MAPK signalling pathway. Gene expression analysis of p53-dependent genes and bcl-2 gene family members confirmed differences between long and short-term rHuEpo effects, indicating the most prominent changes in BCL2 and BAD expression. Conclusions Proliferation and survival characteristics of MCF-7 cells are reversely modulated by the length of the rHuEpo exposure. On the other hand, MDA-MB-231 cells are almost irresponsive to long-term rHuEpo, supposedly due to the mutated p53 and ER(+)/PR(−) status. The p53 and ER/PR status may predict tumour response on rHuEpo and cDDP treatment.
Collapse
|
16
|
Wagner KU, Schmidt JW. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer. J Carcinog 2011; 10:32. [PMID: 22279417 PMCID: PMC3262999 DOI: 10.4103/1477-3163.90677] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Since its discovery as “just another kinase” more than twenty years ago, the family of JAK tyrosine kinases and their respective Signal Transducers and Activators of Transcription (STATs) has been a center of attention in the areas of signal transduction, development, and cancer. The subsequent designation of JAKs as Janus kinases after the mythical two-faced Roman God of the doorways accurately portrays the analogous and sometimes contrasting molecular and biological characteristics of these tyrosine kinases. The two “faces” of JAKs are their structurally similar kinase and pseudo-kinase domains. As essential parts of various transmembrane receptor complexes, these tyrosine kinases function at cellular gateways and relay signals from growth factors to their respective intracellular targets. The multifaceted nature of JAKs becomes evident from their ability to activate specific STATs during distinct phases of normal mammary gland development. Studies in breast cancer cells and genetically engineered mouse models also show that JAK/STAT signaling possesses a "two-faced" role during breast cancer initiation and progression. This review will highlight recent findings about important biological functions of JAKs and STATs during normal mammogenesis, with particular emphasis on the Jak2/Stat5 pathway as well as Jak1/2/Stat3 signaling complexes. In addition, we will discuss how the importance of these signaling networks changes during carcinogenesis. With JAK inhibitors currently under development to treat myeloproliferative disorders, determining the essential functions of JAKs at particular stages of disease initiation and progression is of critical importance to predict the efficacy of these agents for targeted therapies against breast cancer.
Collapse
Affiliation(s)
- Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, DRC2, Rm. 5033, Omaha, NE, USA
| | | |
Collapse
|
17
|
Szenajch J, Wcislo G, Jeong JY, Szczylik C, Feldman L. The role of erythropoietin and its receptor in growth, survival and therapeutic response of human tumor cells From clinic to bench - a critical review. Biochim Biophys Acta Rev Cancer 2010; 1806:82-95. [PMID: 20406667 DOI: 10.1016/j.bbcan.2010.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 04/11/2010] [Indexed: 12/27/2022]
Abstract
Recombinant human erythropoietin (rhEPO) has been used clinically to alleviate cancer- and chemotherapy-related anemia. However, recent clinical trials have reported that rhEPO also may adversely impact disease progression and survival. The expression of functional EPO receptors (EPOR) has been demonstrated in many human cancer cells where, at least in vitro, rhEPO can stimulate cell growth and survival and may induce resistance to selected therapies. Responses to rhEPO measured by alterations in tumor cell growth or survival, activation of signaling pathways or modulation of sensitivity to anticancer agents are variable. Both methodological and inherent biological issues underlie the differential cell responses, including reported difficulties in EPOR protein detection, potential involvement of EPOR isoforms or of cytoplasmic EPOR, possible differential structure and/or binding affinities of hematopoietic versus non-hematopoietic cell EPOR, possible aberrant regulation of EPOR activity, and a functional EPO/EPOR autocrine/paracrine loop. The modulation by rhEPO of tumor cell response to anticancer agents is coincident with modulation of multiple signaling pathways, BCL-2 family proteins, caspases and NFkB. The molecular interplay of pro-survival and pro-death signals, triggered by EPO and/or by anticancer agents, is multifactorial and tightly coordinated. Expression microarray analysis may prove critical for deciphering this potentially novel network and its broad spectrum of genes and proteins.
Collapse
Affiliation(s)
- Jolanta Szenajch
- Laboratory for Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | |
Collapse
|