1
|
Liu Y, Xu L, Dou Y, He Y. AXL: shapers of tumor progression and immunosuppressive microenvironments. Mol Cancer 2025; 24:11. [PMID: 39799359 PMCID: PMC11724481 DOI: 10.1186/s12943-024-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance. AXL is highly associated with tumor progression; however, previous studies on AXL have been limited to its impact on the biological behavior of cancer cells. An increasing body of research now demonstrates that AXL can influence the function and differentiation of immune cells, mediating immune suppression and thereby fostering tumor growth. A comprehensive analysis to identify and overcome the causes of immunosuppressive microenvironments represents a novel approach to conquering cancer. In this review, we focus on elucidating the role of AXL within the immunosuppressive microenvironments, discussing and analyzing the effects of AXL on tumor cells, T cells, macrophages, natural killer (NK) cells, fibroblasts, and other immune-stromal cells. We aim to clarify the contributions of AXL to the progression and drug resistance of cancer from its functional role in the immune microenvironment.
Collapse
Affiliation(s)
- Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Xu
- Department of Otolaryngology, Southwest Hospital, Army Medical University, Chongqing, 400000, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
3
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
4
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Babalola KT, Arora M, Ganugula R, Agarwal SK, Mohan C, Kumar MNVR. Leveraging Lymphatic System Targeting in Systemic Lupus Erythematosus for Improved Clinical Outcomes. Pharmacol Rev 2024; 76:228-250. [PMID: 38351070 PMCID: PMC10877736 DOI: 10.1124/pharmrev.123.000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
The role of advanced drug delivery strategies in drug repositioning and minimizing drug attrition rates, when applied early in drug discovery, is poised to increase the translational impact of various therapeutic strategies in disease prevention and treatment. In this context, drug delivery to the lymphatic system is gaining prominence not only to improve the systemic bioavailability of various pharmaceutical drugs but also to target certain specific diseases associated with the lymphatic system. Although the role of the lymphatic system in lupus is known, very little is done to target drugs to yield improved clinical benefits. In this review, we discuss recent advances in drug delivery strategies to treat lupus, the various routes of drug administration leading to improved lymph node bioavailability, and the available technologies applied in other areas that can be adapted to lupus treatment. Moreover, this review also presents some recent findings that demonstrate the promise of lymphatic targeting in a preclinical setting, offering renewed hope for certain pharmaceutical drugs that are limited by efficacy in their conventional dosage forms. These findings underscore the potential and feasibility of such lymphatic drug-targeting approaches to enhance therapeutic efficacy in lupus and minimize off-target effects of the pharmaceutical drugs. SIGNIFICANCE STATEMENT: The World Health Organization estimates that there are currently 5 million humans living with some form of lupus. With limited success in lupus drug discovery, turning to effective delivery strategies with existing drug molecules, as well as those in the early stage of discovery, could lead to better clinical outcomes. After all, effective delivery strategies have been proven to improve treatment outcomes.
Collapse
Affiliation(s)
- K T Babalola
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - S K Agarwal
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - C Mohan
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM) (K.T.B., M.A., R.G., M.N.V.R.K.), Division of Translational Science and Medicine, College of Community Health Sciences (K.T.B., M.A., R.G., M.N.V.R.K.), Alabama Life Research Institute (K.T.B., M.A., R.G., M.N.V.R.K.), and Department of Biological Sciences (M.A., R.G., M.N.V.R.K.), The University of Alabama, Tuscaloosa, Alabama; Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, Texas (S.K.A.); Department of Biomedical Engineering, University of Houston, Houston, Texas (C.M.); Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama (M.N.V.R.K.); and Center for Free Radical Biology (M.N.V.R.K.) and Nephrology Research and Training Center, Division of Nephrology, Department of Medicine (M.N.V.R.K.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
6
|
Li D, Huang Y, Wei M, Chen B, Lu Y. Overexpression of SOCS2 Inhibits EMT and M2 Macrophage Polarization in Cervical Cancer via IL-6/JAK2/STAT3 Pathway. Comb Chem High Throughput Screen 2024; 27:984-995. [PMID: 37594110 DOI: 10.2174/1386207326666230818092532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE SOCS2 is a member of the suppressor of cytokine signaling (SOCS) protein family associated with the occurrence and development of multiple cancers. This study revealed the expression and molecular mechanisms of SOCS2 in cervical cancer. METHODS In this study, RT-qPCR, Western Blot, and immunohistochemistry were used to detect the expression level of SOCS2 in cervical cancer tissues and tumor cells. We overexpressed SOCS2 in SiHa cells via lentivirus. In-vitro experiments were used to investigate the changes in cervical cancer cell proliferation, migration, and invasion ability before and after SOCS2 overexpression. Western Blot was used to detect the expression of IL-6/JAK2/STAT3 pathway and EMTrelated proteins. M0 macrophages were co-cultured with the tumor-conditioned medium. The effect of SOCS2 on macrophage polarization was examined by RT-qPCR. RESULTS SOCS2 expression level was significantly downregulated in cervical cancer tissues. SOCS2 was negatively correlated with CD163+M2 macrophages. Overexpression of SOCS2 inhibited the proliferation, migration, and invasion of cervical cancer cells. The expressions of Twist- 2, N-cadherin, and Vimentin were decreased, while the expression of E-cadherin was increased. Moreover, the expression of IL-6, p-JAK2, and p-STAT3 were decreased. After the addition of RhIL-6, the expression of E-cadherin protein in the LV-SOCS2 group was reversed. CM in the LV-SOCS2 group inhibited the polarization of M2 macrophages. CONCLUSION SOCS2 acts as a novel biological target and suppressor of cervical cancer through IL- 6/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Dan Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yandan Huang
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Min Wei
- Department of Gynecologic, Guangxi Medical University Affiliated National Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Bin Chen
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Yan Lu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|
7
|
Wu J, Pang X, Yang X, Zhang M, Chen B, Fan H, Wang H, Yu X, Tang Y, Liang X. M1 macrophages induce PD-L1 hi cell-led collective invasion in HPV-positive head and neck squamous cell carcinoma via TNF-α/CDK4/UPS14. J Immunother Cancer 2023; 11:e007670. [PMID: 38148114 PMCID: PMC10753854 DOI: 10.1136/jitc-2023-007670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Although the roles of PD-L1 in promoting tumor escape from immunosurveillance have been extensively addressed, its non-immune effects on tumor cells remain unclear. METHODS The spatial heterogeneity of PD-L1 staining in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) tissues was identified by immunohistochemistry. Three-dimensional (3D) specific cell-led invasion assay and 3D cancer spheroid model were used to investigate the roles of PD-L1hileader cells in collective invasion. The impact of M1 macrophages on specific PD-L1 expression in leader cells and its mechanisms were further studied. Finally, the effect of combination therapy of anti-PD-L1 and CDK4 inhibitor on HPV-positive tumors were evaluated on a mice model. RESULTS Here, we observed a distinctive marginal pattern of PD-L1 expression in HPV-positive HNSCC tissues. By mimicking this spatial pattern of PD-L1 expression in the 3D invasion assay, we found that PD-L1hi cells led the tumor collective invasion. M1 macrophages induced specific PD-L1 expression in leader cells, and depletion of macrophages in tumor-bearing mice abrogated PD-L1hileader cells and collective invasion. Mechanistically, TNF-α secreted by M1 macrophages markedly increased the abundance of PD-L1 via CDK4/ubiquitin-specific peptidase 14-mediated deubiquitination of PD-L1. We also found that suppression of CDK4 enhanced the efficacy of anti-PD-L1 therapy in an E6/E7 murine model. CONCLUSIONS Our study identified TNF-α/CDK4/ubiquitin-specific peptidase 14-mediated PD-L1 stability as a novel mechanism underlying M1 macrophage-induced PD-L1hileader cells and collective tumor invasion, and highlighted the potential of the combination therapy of anti-PD-L1 and CDK4 inhibitor for HPV-positive HNSCC.
Collapse
Affiliation(s)
- Jiashun Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Bingjun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Huayang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| | - Xianghua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Yaling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
8
|
Souid M, Bday J, Souissi S, Ghedira R, Gabbouj S, Shini-Hadhri S, Toumi D, Bergaoui H, Zouari I, Faleh R, Zakhama A, Hassen E. Arginase is upregulated in healthy women infected by oncogenic HPV types. Biomarkers 2023; 28:628-636. [PMID: 37860844 DOI: 10.1080/1354750x.2023.2273226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The implication of arginase enzyme in Human Papillomavirus (HPV) infections has not been clearly elucidated. The present study investigates whether HPV infection is correlated with changes in plasmatic arginase activity and cervical ARG1 and ARG2 mRNA expression among infected women negative for intraepithelial lesions (NIL). MATERIEL AND METHODS The present study included 300 women. The plasmatic arginase activity was evaluated by a colorimetric assay. Cervical HPV was detected by real-time PCR. The circulating viral load and ARG1 and ARG2 mRNA expression quantification were performed by quantitative real-time PCR. RESULTS A significant increase in plasma arginase activity and ARG1 and ARG2 mRNA expression levels in cervical cells was observed among HPV-positive women compared to the HPV-negative group. The highest levels were significantly associated with oncogenic HPV, and increased arginase activity was associated with a high HPV circulating viral load. Moreover, the highest levels of arginase activity were observed in oncogenic HPV-positive inflammatory smears. DISCUSSION These data suggest that HPV could modulate arginase activity and expression, which may restrict arginine bioavailability and inhibit this amino acid's antiviral properties. CONCLUSION Our findings revealed that arginase activity and isoform gene expression were upregulated in women with HPV infection, particularly the oncogenic HPV types.
Collapse
Affiliation(s)
- Moufida Souid
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Jaweher Bday
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Sameh Souissi
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Randa Ghedira
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | - Sallouha Gabbouj
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | | | - Dhekra Toumi
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Haifa Bergaoui
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Ines Zouari
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Raja Faleh
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Abdelfatteh Zakhama
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | - Elham Hassen
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
9
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
10
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
11
|
Silva AJD, de Moura IA, da Gama MATM, Leal LRS, de Pinho SS, Espinoza BCF, dos Santos DL, Santos VEP, Sena MGAMD, Invenção MDCV, de Macêdo LS, de França Neto PL, de Freitas AC. Advancing Immunotherapies for HPV-Related Cancers: Exploring Novel Vaccine Strategies and the Influence of Tumor Microenvironment. Vaccines (Basel) 2023; 11:1354. [PMID: 37631922 PMCID: PMC10458729 DOI: 10.3390/vaccines11081354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
The understanding of the relationship between immunological responses and cancers, especially those related to HPV, has allowed for the study and development of therapeutic vaccines against these neoplasias. There is a growing number of studies about the composition and influence of the tumor microenvironment (TME) in the progression or establishment of the most varied types of cancer. Hence, it has been possible to structure immunotherapy approaches based on therapeutic vaccines that are even more specific and directed to components of TME and the immune response associated with tumors. Among these components are dendritic cells (DCs), which are the main professional antigen-presenting cells (APCs) already studied in therapy strategies for HPV-related cancers. On the other hand, tumor-associated macrophages are also potential targets since the profile present in tumor infiltrates, M1 or M2, influences the prognosis of some types of cancer. These two cell types can be targets for therapy or immunomodulation. In this context, our review aims to provide an overview of immunotherapy strategies for HPV-positive tumors, such as cervical and head and neck cancers, pointing to TME immune cells as promising targets for these approaches. This review also explores the potential of immunotherapy in cancer treatment, including checkpoint inhibitors, cytokine immunotherapies, immunotherapy vaccines, and cell therapies. Furthermore, it highlights the importance of understanding the TME and its effect on the design and achievement of immunotherapeutic methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (A.J.D.S.); (I.A.d.M.); (M.A.T.M.d.G.); (L.R.S.L.); (S.S.d.P.); (B.C.F.E.); (D.L.d.S.); (V.E.P.S.); (M.G.A.M.D.S.); (M.D.C.V.I.); (L.S.d.M.); (P.L.d.F.N.)
| |
Collapse
|
12
|
Vattai A, Kremer N, Meister S, Beyer S, Keilmann L, Buschmann C, Corradini S, Schmoeckel E, Kessler M, Mahner S, Jeschke U, Hertlein L, Kolben T. Increase of the T-reg-recruiting chemokine CCL22 expression in a progressive course of cervical dysplasia. J Cancer Res Clin Oncol 2023; 149:6613-6623. [PMID: 36792811 DOI: 10.1007/s00432-023-04638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE An increasing infiltration of FoxP3-positive T-regs is associated with a higher grade of cervical intraepithelial neoplasia. The T-reg-recruiting chemokine CCL22 is expressed in various tumour entities. Aim of our study was to investigate the role of CCL22 in the progression and regression of cervical intraepithelial neoplasias, especially in patients with intermediate cervical intraepithelial neoplasias (CIN II). Furthermore, our aim was to characterize the CCL22-producing cells and explore the role of innate immunity in the process of cells recruitment. METHODS CCL22 expression was analyzed immunohistochemically in 169 patient samples. The immunoreactive score as well as the median numbers of positive cells were calculated in each slide and correlated with the histological CIN grade and FoxP3 expression. Additionally, CD68/CCL22 as well as CD68/PPARγ and CD68/FoxP3 expression were examined by double immunofluorescence. Statistical analysis was performed by SPSS 26. RESULTS A significantly higher expression of epithelial CCL22 in CIN II with progression in comparison to CIN II with regression (p = 0.006) could be detected. CCL22 was correlated with FoxP3 (Spearman's Rho: 0.308; p < 0.01). In 88%, CCL22-positive cells were positive for CD68, and 71% of CD68-positive macrophages expressed PPARγ. Colocalization of CD68 and FoxP3 was detected in 12%. CONCLUSION We could demonstrate that increased expression of CCL22, mainly produced by macrophages, correlates with elevated potential of malignancy. CCL22 expression could act as a predictor for regression and progression in cervical intraepithelial neoplasia, and it may help in the decision process regarding surgical treatment versus watchful waiting strategy in order to prevent conisation-associated risks. Furthermore, our findings support the potential of CCL22-producing cells as a target for immune therapy in cervical cancer patients.
Collapse
Affiliation(s)
- Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany.
- Kinderwunsch Centrum Muenchen, 81241, Munich, Germany.
| | - Nadine Kremer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Lucia Keilmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Christina Buschmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156, Augsburg, Germany
| | - Linda Hertlein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
13
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
14
|
Li Y, Gao X, Huang Y, Zhu X, Chen Y, Xue L, Zhu Q, Wang B, Wu M. Tumor microenvironment promotes lymphatic metastasis of cervical cancer: its mechanisms and clinical implications. Front Oncol 2023; 13:1114042. [PMID: 37234990 PMCID: PMC10206119 DOI: 10.3389/fonc.2023.1114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although previous studies have shed light on the etiology of cervical cancer, metastasis of advanced cervical cancer remains the main reason for the poor outcome and high cancer-related mortality rate. Cervical cancer cells closely communicate with immune cells recruited to the tumor microenvironment (TME), such as lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. The crosstalk between tumors and immune cells has been clearly shown to foster metastatic dissemination. Therefore, unraveling the mechanisms of tumor metastasis is crucial to develop more effective therapies. In this review, we interpret several characteristics of the TME that promote the lymphatic metastasis of cervical cancer, such as immune suppression and premetastatic niche formation. Furthermore, we summarize the complex interactions between tumor cells and immune cells within the TME, as well as potential therapeutic strategies to target the TME.
Collapse
Affiliation(s)
- Yuting Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaofan Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yingying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Bo Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
15
|
Lin G, Li J. Circulating HPV DNA in HPV-associated cancers. Clin Chim Acta 2023; 542:117269. [PMID: 36841427 DOI: 10.1016/j.cca.2023.117269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Human papillomavirus (HPV) infections are the primary cause of almost all cervical cancers, anal cancers, and a variable proportion of other anogenital tumors, as well as head and neck cancers. Circulating HPV DNA (cHPV-DNA) is emerging as a biomarker with extensive potential in the management of HPV-driven malignancies. There has been a rapid advancement in the development of techniques for analyzing cHPV-DNA for the detection, characterization, and monitoring of HPV-associated cancers. As clinical evidence accumulates, it is becoming evident that cHPV-DNA can be used as a diagnostic tool. By conducting clinical trials assessing the clinical utility of cHPV-DNA, the full potential of cHPV-DNA for the screening, diagnosis, and treatment of HPV-related malignancies can be corroborated. In this review, we examine the current landscape of applications for cHPV-DNA liquid biopsies throughout the cancer care continuum, highlighting future opportunities for research and integration into clinical practice.
Collapse
Affiliation(s)
- Guigao Lin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
| |
Collapse
|
16
|
Yang X, Liu X, Li J, Zhang P, Li H, Chen G, Zhang W, Wang T, Frazer I, Ni G. Caerin 1.1/1.9 Enhances Antitumour Immunity by Activating the IFN-α Response Signalling Pathway of Tumour Macrophages. Cancers (Basel) 2022; 14:cancers14235785. [PMID: 36497272 PMCID: PMC9738106 DOI: 10.3390/cancers14235785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Macrophages are one of the essential components of the tumour microenvironment (TME) of many cancers and show complex heterogeneity and functions. More recent research has been focusing on the characterisation of tumour-associated macrophages (TAMs). Previously, our study demonstrated that caerin 1.1/1.9 peptides significantly improve the therapeutic efficacy of combined specific immunotherapy and immune checkpoint blockade in a murine transplantable tumour model (TC-1). In this study, the mice inoculated with TC-1 tumour were immunised differently. The TAMs were isolated using flow cytometry and characterised by cytokine ELISA. The survival rates of mice with different treatments containing caerin 1.1/19 were assessed comparatively, including those with/without macrophage depletion. The single-cell RNA sequencing (scRNA-seq) data of previous studies were integrated to further reveal the functions of TAMs with the treatments containing caerin 1.1/1.9. As a comparison, the TAMs of stage I and II cervical cancer patients were analysed using scRNA-seq analysis. We demonstrate that caerin induced tumour clearance is associated with infiltration of tumours by IL-12 secreting Ly6C+F4/80+ macrophages exhibiting enhanced IFN-α response signalling, renders animals resistant to further tumour challenge, which is lost after macrophage depletion. Our results indicate that caerin 1.1/1.9 treatment has great potential in improving current immunotherapy efficacy.
Collapse
Affiliation(s)
- Xiaodan Yang
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaosong Liu
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Junjie Li
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Pingping Zhang
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Hejie Li
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Guoqiang Chen
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
| | - Wei Zhang
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Tianfang Wang
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD 4558, Australia
| | - Ian Frazer
- Faculty of Medicine, University of Queensland Diamantina Institute, Translational Research Institute, the University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence: (I.F.); (G.N.)
| | - Guoying Ni
- The First Affiliated Hospital, Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou 510080, China
- Cancer Research Institute, First People’s Hospital of Foshan, Foshan 528000, China
- Correspondence: (I.F.); (G.N.)
| |
Collapse
|
17
|
Nanomodulation and nanotherapeutics of tumor-microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Shiri Aghbash P, Shirvaliloo M, Khalo Abass Kasho A, Alinezhad F, Nauwynck H, Bannazadeh Baghi H. Cluster of differentiation frequency on antigen presenting-cells: The next step to cervical cancer prognosis? Int Immunopharmacol 2022; 108:108896. [DOI: 10.1016/j.intimp.2022.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
19
|
Vieira GV, Somera dos Santos F, Lepique AP, da Fonseca CK, Innocentini LMAR, Braz-Silva PH, Quintana SM, Sales KU. Proteases and HPV-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14133038. [PMID: 35804810 PMCID: PMC9264903 DOI: 10.3390/cancers14133038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Human papillomavirus (HPV) infection is a sexually transmitted disease with high prevalence worldwide. Although most HPV infections do not lead to cancer, some HPV types are correlated with the majority of cervical cancers, and with some anogenital and oropharyngeal cancers. Moreover, enzymes known as proteases play an essential role in the pathogenic process in HPV-induced carcinogenesis. This review highlights the role of proteases and recent epidemiological data regarding HPV-dependent carcinogenesis. Abstract Persistent infection with Human papillomavirus (HPV) is the main etiologic factor for pre-malignant and malignant cervical lesions. Moreover, HPV is also associated with oropharynx and other anogenital carcinomas. Cancer-causing HPV viruses classified as group 1 carcinogens include 12 HPV types, with HPV 16 and 18 being the most prevalent. High-risk HPVs express two oncoproteins, E6 and E7, the products of which are responsible for the inhibition of p53 and pRB proteins, respectively, in human keratinocytes and cellular immortalization. p53 and pRB are pleiotropic proteins that regulate the activity of several signaling pathways and gene expression. Among the important factors that are augmented in HPV-mediated carcinogenesis, proteases not only control processes involved in cellular carcinogenesis but also control the microenvironment. For instance, genetic polymorphisms of matrix metalloproteinase 1 (MMP-1) are associated with carcinoma invasiveness. Similarly, the serine protease inhibitors hepatocyte growth factor activator inhibitor-1 (HAI-1) and -2 (HAI-2) have been identified as prognostic markers for HPV-dependent cervical carcinomas. This review highlights the most crucial mechanisms involved in HPV-dependent carcinogenesis, and includes a section on the proteolytic cascades that are important for the progression of this disease and their impact on patient health, treatment, and survival.
Collapse
Affiliation(s)
- Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Fernanda Somera dos Santos
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Ana Paula Lepique
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Lara Maria Alencar Ramos Innocentini
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil;
- Laboratory of Virology, Institute of Tropical Medicine of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Silvana Maria Quintana
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
20
|
Ojha PS, Maste MM, Tubachi S, Patil VS. Human papillomavirus and cervical cancer: an insight highlighting pathogenesis and targeting strategies. Virusdisease 2022; 33:132-154. [DOI: 10.1007/s13337-022-00768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
|
21
|
Liang X, Luo M, Shao B, Yang JY, Tong A, Wang RB, Liu YT, Jun R, Liu T, Yi T, Zhao X, Wei YQ, Wei XW. Phosphatidylserine released from apoptotic cells in tumor induces M2-like macrophage polarization through the PSR-STAT3-JMJD3 axis. Cancer Commun (Lond) 2022; 42:205-222. [PMID: 35191227 PMCID: PMC8923121 DOI: 10.1002/cac2.12272] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background Understanding how the tumor microenvironment is shaped by various factors is important for the development of new therapeutic strategies. Tumor cells often undergo spontaneous apoptotic cell death in tumor microenvironment, these apoptotic cells are histologically co‐localized with immunosuppressive macrophages. However, the mechanism by which tumor cell apoptosis modulates macrophage polarization is not fully understood. In this study, we aimed to explore the tumor promoting effects of apoptotic tumor cells and the signal pathways involved. Methods Apoptotic cells and macrophages in tumors were detected by immunohistochemical staining. Morphological analysis was performed with Giemsa staining. Lipids generated from apoptotic cells were detected by liquid chromatography‐mass spectrometry. Phosphatidylserine‐containing liposomes were prepared to mimic apoptotic cells. The expression of protein was determined by real‐time PCR, immunohistochemistry enzyme‐linked immunosorbent assay and Western blotting. Mouse malignant ascites and subcutaneous tumor models were designed for in vivo analysis. Transgenic mice with specific genes knocked out and inhibitors specific to certain proteins were used for the mechanistic studies. Results The location and the number of apoptotic cells were correlated with that of macrophages in several types of carcinomas. Phosphatidylserine, a lipid molecule generated in apoptotic cells, induced polarization and accumulation of M2‐like macrophages in vivo and in vitro. Moreover, sustained administration of phosphoserine promoted tumor growth in the malignant ascites and subcutaneous tumor models. Further analyses suggested that phosphoserine induced a M2‐like phenotype in macrophages, which was related to the activation of phosphoserine receptors including T‐cell immunoglobin mucin 4 (TIM4) and the FAK‐SRC‐STAT3 signaling pathway as well as elevated the expression of the histone demethylase Jumonji domain‐containing protein 3 (JMJD3). Administration of specific inhibitors of these pathways could reduce tumor progression. Conclusions This study suggest that apoptotic cell‐generated phosphoserine might be a notable signal for immunosuppressive macrophages in tumors, and the related pathways might be potential therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.,Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bin Shao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jing-Yun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - An Tong
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Rui-Bo Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yan-Tong Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ren Jun
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ting Liu
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
22
|
Downregulation of LNMAS orchestrates partial EMT and immune escape from macrophage phagocytosis to promote lymph node metastasis of cervical cancer. Oncogene 2022; 41:1931-1943. [PMID: 35152264 PMCID: PMC8956512 DOI: 10.1038/s41388-022-02202-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/29/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential step to drive the metastatic cascade to lymph nodes (LNs) in cervical cancer cells. However, few of them metastasize successfully partially due to increased susceptibility to immunosurveillance conferred by EMT. The precise mechanisms of cancer cells orchestrate EMT and immune evasion remain largely unexplored. In this study, we identified a lncRNA termed lymph node metastasis associated suppressor (LNMAS), which was downregulated in LN-positive cervical cancer patients and correlated with LN metastasis and prognosis. Functionally, LNMAS suppressed cervical cancer cells metastasis in vitro and in vivo. Mechanistically, LNMAS exerts its metastasis suppressive activity by competitively interacting with HMGB1 and abrogating the chromatin accessibility of TWIST1 and STC1, inhibiting TWIST1-mediated partial EMT and STC1-dependent immune escape from macrophage phagocytosis. We further demonstrated that the CpG sites in the promoter region of LNMAS was hypermethylated and contributed to the downregulation of LNMAS. Taken together, our results reveal the essential role of LNMAS in the LN metastasis of cervical cancer and provide mechanistic insights into the regulation of LNMAS in EMT and immune evasion.
Collapse
|
23
|
Zayats R, Murooka TT, McKinnon LR. HPV and the Risk of HIV Acquisition in Women. Front Cell Infect Microbiol 2022; 12:814948. [PMID: 35223546 PMCID: PMC8867608 DOI: 10.3389/fcimb.2022.814948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
The risk of HIV acquisition is low on a per-contact basis but increased by transmission co-factors such as other sexually transmitted infections (STIs). Human papillomavirus (HPV) is a prevalent STI that most individuals will acquire HPV in their lifetime. Current HPV vaccines can prevent newly acquired infections, but are largely ineffective against established HPV, complicating worldwide eradication efforts. In addition to being the causative agent of cervical cancer, accumulating evidence suggests that HPV infection and/or accompanying cervical inflammation increase the risk of HIV infection in men and women. The fact that immunological features observed during HPV infection overlap with cellular and molecular pathways known to enhance HIV susceptibility underscore the potential interplay between these two viral infections that fuel their mutual spread. Here we review current insights into how HPV infection and the generation of anti-HPV immunity contribute to higher HIV transmission rates, and the impact of HPV on mucosal inflammation, immune cell trafficking, and epithelial barrier function.
Collapse
Affiliation(s)
- Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Thomas T. Murooka, ; Lyle R. McKinnon,
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- *Correspondence: Thomas T. Murooka, ; Lyle R. McKinnon,
| |
Collapse
|
24
|
Souid M, Ghedira R, Souissi S, Bouzgarrou N, Gabbouj S, Shini-Hadhri S, Rhim MS, Boukadida A, Toumi D, Faleh R, Bouaouina N, Zakhama A, Hassen E. Arginase is involved in cervical lesions progression and severity. Immunobiology 2022; 227:152189. [DOI: 10.1016/j.imbio.2022.152189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 11/15/2022]
|
25
|
Vanajothi R, Srikanth N, Vijayakumar R, Palanisamy M, Bhavaniramya S, Premkumar K. HPV-mediated Cervical Cancer: A Systematic review on Immunological Basis, Molecular Biology and Immune evasion mechanisms. Curr Drug Targets 2021; 23:782-801. [PMID: 34939539 DOI: 10.2174/1389450123666211221160632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human papillomavirus (HPV), one of the most frequently transmitted viruses globally, causing several malignancies including cervical cancer. AIM Owing to their unique pathogenicity HPV viruses can persist in the host organism for a longer duration than other virus types, to complete their lifecycle. During its association with the host, HPV causes various pathological conditions affecting the immune system by evading the host immune- mechanisms leading to the progression of various diseases, including cancer. METHOD To date, ~ 150 serotypes were identified, and certain high-risk HPV types are known to be associated with genital warts and cervical cancer. As of now, two prophylactic vaccines are in use for the treatment of HPV infection, however, no effective antiviral drug is available for HPV-associated disease/infections. Numerous clinical and laboratory studies are being investigated to formulate an effective and specific vaccine again HPV infections and associated diseases. RESULT As the immunological basis of HPV infection and associated disease progress persist indistinctly, deeper insights on immune evasion mechanism and molecular biology of disease would aid in developing an effective vaccine. CONCLUSION Thus this review focuses, aiming a systematic review on the immunological aspects of HPV-associated cervical cancer by uncovering immune evasion strategies adapted by HPV.
Collapse
Affiliation(s)
- Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| | - Natarajan Srikanth
- Department of Integrative Biology, Vellore Institute of Technology, Vellore. India
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Manikandan Palanisamy
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952. Saudi Arabia
| | - Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu. India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli-620024. India
| |
Collapse
|
26
|
Natural killer cell-derived extracellular vesicle significantly enhanced adoptive T cell therapy against solid tumors via versatilely immunomodulatory coordination. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol 2021; 14:181. [PMID: 34717710 PMCID: PMC8557603 DOI: 10.1186/s13045-021-01198-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Gynecological and breast cancers are a group of heterogeneous malignant tumors. Although existing treatment strategies have ameliorated the clinical outcomes of patients, the overall survival rate of advanced diseases remains unsatisfactory. Increasing evidence has indicated that the development and prognosis of tumors are closely related to the tumor microenvironment (TME), which restricts the immune response and provokes malignant progression. Tumor-associated macrophages (TAMs) are the main component of TME and act as a key regulator in tumor metastasis, immunosuppression and therapeutic resistance. Several preclinical trials have studied potential drugs that target TAMs to achieve potent anticancer therapy. This review focuses on the various functions of TAMs and how they influence the carcinogenesis of gynecological and breast cancers through regulating cancer cell proliferation, tumor angiogenesis and tumor-related immunosuppression. Besides, we also discuss the potential application of disabling TAMs signaling as a part of cancer therapeutic strategies, as well as CAR macrophages, TAMs-based vaccines and TAMs nanobiotechnology. These research advances support that targeting TAMs combined with conventional therapy might be used as effective therapeutics for gynecological and breast cancers in the future.
Collapse
Affiliation(s)
- Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
van Schaik TA, Chen KS, Shah K. Therapy-Induced Tumor Cell Death: Friend or Foe of Immunotherapy? Front Oncol 2021; 11:678562. [PMID: 34141622 PMCID: PMC8204251 DOI: 10.3389/fonc.2021.678562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatory treatments using surgery, radiotherapy and/or chemotherapy together with immunotherapy have shown encouraging results for specific subsets of tumors, but a significant proportion of tumors remains unsusceptible. Some of these inconsistencies are thought to be the consequence of an immunosuppressive tumor microenvironment (TME) caused by therapy-induced tumor cell death (TCD). An increased understanding of the molecular mechanisms governing TCD has provided valuable insights in specific signaling cascades activated by treatment and the subsequent effects on the TME. Depending on the treatment variables of conventional chemo-, radio- and immunotherapy and the genetic composition of the tumor cells, particular cell death pathways are activated. Consequently, TCD can either have tolerogenic or immunogenic effects on the local environment and thereby affect the post-treatment anti-tumor response of immune cells. Thus, identification of these events can provide new rationales to increase the efficacy of conventional therapies combined with immunotherapies. In this review, we sought to provide an overview of the molecular mechanisms initiated by conventional therapies and the impact of treatment-induced TCD on the TME. We also provide some perspectives on how we can circumvent tolerogenic effects by adequate treatment selection and manipulation of key signaling cascades.
Collapse
Affiliation(s)
- Thijs A van Schaik
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kok-Siong Chen
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging (CSTI), Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
29
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
30
|
Embregts CWE, Begeman L, Voesenek CJ, Martina BEE, Koopmans MPG, Kuiken T, GeurtsvanKessel CH. Street RABV Induces the Cholinergic Anti-inflammatory Pathway in Human Monocyte-Derived Macrophages by Binding to nAChr α7. Front Immunol 2021; 12:622516. [PMID: 33679766 PMCID: PMC7933221 DOI: 10.3389/fimmu.2021.622516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection via a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression. This study was undertaken to characterize the interactions between RABV and human monocyte-derived macrophages (MDMs). We showed that street RABV does not replicate in human MDMs. Using a recombinant trimeric RABV glycoprotein (rRABV-tG) we showed binding to the nicotinic acetylcholine receptor alpha 7 (nAChr α7) on MDMs, and confirmed the specificity using the nAChr α7 antagonist alpha-bungarotoxin (α-BTX). We found that this binding induced the cholinergic anti-inflammatory pathway (CAP), characterized by a significant decrease in tumor necrosis factor α (TNF-α) upon LPS challenge. Using confocal microscopy we found that induction of the CAP is associated with significant cytoplasmic retention of nuclear factor κB (NF-κB). Co-cultures of human MDMs exposed to street RABV and autologous T cells further revealed that the observed suppression of MDMs might affect their function as T cell activators as well, as we found a significant decrease in proliferation of CD8+ T cells and an increased production of the anti-inflammatory cytokine IL-10. Lastly, using flow cytometric analysis we observed a significant increase in expression of the M2-c surface marker CD163, hinting that street RABV might be able to affect macrophage polarization. Taken together, these results show that street RABV is capable of inducing an anti-inflammatory state in human macrophages, possibly affecting T cell functioning.
Collapse
Affiliation(s)
| | - Lineke Begeman
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | | | | | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
31
|
Herranz S, Través PG, Luque A, Hortelano S. Role of the tumor suppressor ARF in macrophage polarization: Enhancement of the M2 phenotype in ARF-deficient mice. Oncoimmunology 2021; 1:1227-1238. [PMID: 23243586 PMCID: PMC3518495 DOI: 10.4161/onci.21207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf−/− macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf−/− peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf−/− as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf−/− macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages.
Collapse
Affiliation(s)
- Sandra Herranz
- Unidad de Inflamación y Cáncer; Área de Biología Celular y Desarrollo; Centro Nacional de Microbiología; Instituto de Salud Carlos III; Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Guth AM, Hafeman SD, Dow SW. Depletion of phagocytic myeloid cells triggers spontaneous T cell- and NK cell-dependent antitumor activity. Oncoimmunology 2021; 1:1248-1257. [PMID: 23243588 PMCID: PMC3518497 DOI: 10.4161/onci.21317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Depletion of tumor associated macrophages and inhibition of tumor angiogenesis have been invoked as the principle mechanisms underlying the antitumor activity of liposomal clodronate (LC). However, previous studies have not examined the effects of LC on systemic antitumor immunity. Here, we used mouse tumor models to elucidate the role of T and NK cells in the antitumor activity elicited by the systemic administration of LC. Strikingly, we found that the antitumor activity of LC is completely abolished in immunodeficient Rag1−/− mice. Moreover, both Cd4−/− and Cd8−/− mice as well as mice depleted of NK cells manifested a significant impaired ability to control tumor growth following LC administration. Treatment with LC did not result in an overall increase in T- or NK-cell numbers in tumors or lymphoid organs, nor was tumor infiltration with T or NK cells altered. However, T and NK cells isolated from the spleen of LC-treated mice exhibited significant increased tumor-specific secretion of interferon γ and interleukin 17 and greater cytolytic activity. We concluded that the antitumor effects of LC are largely dependent on the generation of systemic T-cell and NK- cell activity, most likely owing to the depletion of immune suppressive myeloid cell populations in lymphoid tissues. These findings suggest that the systemic administration of LC may constitute an effective means for non-specifically augmenting the antitumor activity of T and NK cells.
Collapse
Affiliation(s)
- Amanda M Guth
- Animal Cancer Center; Dept of Clinical Sciences; Colorado State University; Ft. Collins, CO USA
| | | | | |
Collapse
|
33
|
Chetty A, Omondi MA, Butters C, Smith KA, Katawa G, Ritter M, Layland L, Horsnell W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. Front Immunol 2020; 11:577516. [PMID: 33329545 PMCID: PMC7719634 DOI: 10.3389/fimmu.2020.577516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
A growing body of knowledge exists on the influence of helminth infections on allergies and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the bystander effects of helminth infections on the female genital mucosa and reproductive health is understudied but important considering the high prevalence of helminth exposure and sexually transmitted infections in low- and middle-income countries (LMICs). In this review, we explore current knowledge about the direct and systemic effects of helminth infections on unrelated diseases. We summarize host disease-controlling immunity of important sexually transmitted infections and introduce the limited knowledge of how helminths infections directly cause pathology to female reproductive tract (FRT), alter susceptibility to sexually transmitted infections and reproduction. We also review work by others on type 2 immunity in the FRT and hypothesize how these insights may guide future work to help understand how helminths alter FRT health.
Collapse
Affiliation(s)
- Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - William Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
34
|
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell 2020; 80:384-395. [PMID: 32997964 PMCID: PMC7655528 DOI: 10.1016/j.molcel.2020.09.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/01/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
Abstract
Metabolism reprogramming is critical for both cancer progression and effective immune responses in the tumor microenvironment. Amino acid metabolism in different cells and their cross-talk shape tumor immunity and therapy efficacy in patients with cancer. In this review, we focus on multiple amino acids and their transporters, solute carrier (SLC) members. We discuss their involvement in regulation of immune responses in the tumor microenvironment and assess their associations with cancer immunotherapy, chemotherapy, and radiation therapy, and we review their potential as targets for cancer therapy. We stress the necessity to understand individual amino acids and their transporters in different cell subsets, the molecular intersection between amino acid metabolism, and effective T cell immunity and its relevance in cancer therapies.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Wang Q, Schmoeckel E, Kost BP, Kuhn C, Vattai A, Vilsmaier T, Mahner S, Mayr D, Jeschke U, Heidegger HH. Higher CCL22+ Cell Infiltration is Associated with Poor Prognosis in Cervical Cancer Patients. Cancers (Basel) 2019; 11:cancers11122004. [PMID: 31842422 PMCID: PMC6966573 DOI: 10.3390/cancers11122004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
The chemokine CCL22 recruits regulatory T (T-reg) cells into tumor tissues and is expressed in many human tumors. However, the prognostic role of CCL22 in cervical cancer (CC) has not been determined. This study retrospectively analyzed the clinical significance of the expression of CCL22 and FOXP3 in 230 cervical cancer patients. Immunohistochemical staining analyses of CCL22 and FOXP3 were performed with a tissue microarray. Double immunofluorescence staining, cell coculture, and ELISA were used to determine CCL22 expressing cells and mechanisms. The higher number of infiltrating CCL22+ cells (CCL22high) group was associated with lymph node metastasis (p = 0.004), Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stages (p = 0.010), therapeutic strategies (p = 0.007), and survival status (p = 0.002). The number of infiltrating CCL22+ cells was positively correlated with that of infiltrating FOXP3+ cells (r = 0.210, p = 0.001). The CCL22high group had a lower overall survival rate (OS), compared to the CCL22low group (p = 0.001). However, no significant differences in progression free survival (PFS) were noted between the two groups. CCL22high was an independent predictor of shorter OS (HR, 4.985; p = 0.0001). The OS of the combination group CCL22highFOXP3high was significantly lower than that of the combination group CCL22lowFOXP3low regardless of the FIGO stage and disease subtype. CCL22highFOXP3high was an independent indictor of shorter OS (HR, 5.284; p = 0.009). The PFS of group CCL22highFOXP3high was significantly lower than that of group CCL22lowFOXP3low in cervical adenocarcinoma, but CCL22highFOXP3high was not an independent indicator (HR, 3.018; p = 0.068). CCL22 was primarily expressed in M2-like macrophages in CC and induced by cervical cancer cells. The findings of our study indicate that cervical cancer patients with elevated CCL22+ infiltrating cells require more aggressive treatment. Moreover, the results provide a basis for subsequent, comprehensive studies to advance the design of immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Qun Wang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, 80377 Munich, Germany; (E.S.); (D.M.)
| | - Bernd P. Kost
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| | - Doris Mayr
- Department of Pathology, LMU Munich, 80377 Munich, Germany; (E.S.); (D.M.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
- Correspondence:
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80377 Munich, Germany; (Q.W.); (B.P.K.); (C.K.); (A.V.); (T.V.); (S.M.); (H.H.H.)
| |
Collapse
|
36
|
Guo Y, Feng Y, Cui X, Wang Q, Pan X. Autophagy inhibition induces the repolarisation of tumour-associated macrophages and enhances chemosensitivity of laryngeal cancer cells to cisplatin in mice. Cancer Immunol Immunother 2019; 68:1909-1920. [DOI: 10.1007/s00262-019-02415-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
|
37
|
Subbarayan RS, Arnold L, Gomez JP, Thomas SM. The role of the innate and adaptive immune response in HPV-associated oropharyngeal squamous cell carcinoma. Laryngoscope Investig Otolaryngol 2019; 4:508-512. [PMID: 31637294 PMCID: PMC6793605 DOI: 10.1002/lio2.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
Abstract
Human papilloma virus (HPV) has been implicated in the development of oropharyngeal squamous cell carcinoma (OPSCC) and is directly attributed to its increasing incidence. The immune microenvironment surrounding HPV‐associated OPSCC tumors is complex and plays a critical role in the carcinogenic process. The neoplastic mechanism includes cells of the innate immunity such as macrophages, and dendritic cells as well as cells of the adaptive immune process such as CD8+ T‐cells. The intricate interactions between these two arms of the immune system allow for a pro‐inflammatory and pro‐tumorigenic environment. Intensive efforts are underway to gain a greater understanding of the mechanisms involved in the immune system's role in tumor development. This study seeks to summarize the current knowledge pertaining to role of the innate and adaptive immune response in HPV‐associated OPSCC. Level of Evidence 3a
Collapse
Affiliation(s)
| | - Levi Arnold
- Department of Otolaryngology University of Kansas Medical Center Kansas City Kansas U.S.A.,Department of Anatomy & Cell Biology University of Kansas Medical Center Kansas City Kansas U.S.A
| | - Juan Pineda Gomez
- Department of Otolaryngology University of Kansas Medical Center Kansas City Kansas U.S.A
| | - Sufi Mary Thomas
- Department of Otolaryngology University of Kansas Medical Center Kansas City Kansas U.S.A.,Department of Anatomy & Cell Biology University of Kansas Medical Center Kansas City Kansas U.S.A.,Department of Cancer Biology University of Kansas Medical Center Kansas City Kansas U.S.A
| |
Collapse
|
38
|
Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front Oncol 2019; 9:682. [PMID: 31428574 PMCID: PMC6688195 DOI: 10.3389/fonc.2019.00682] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with human papillomavirus (HPV) initiates ~5% of all human cancers, and particularly cervical and oropharyngeal cancers. HPV vaccines prevent HPV infection, but do not eliminate existing HPV infections. Papillomaviruses induce hyperproliferation of epithelial cells. In this review we discuss how hyperproliferation renders epithelial cells less sensitive to immune attack, and impacts upon the efficiency of the local immune system. These observations have significance for the design of therapeutic HPV cancer immunotherapies.
Collapse
Affiliation(s)
- Chenhao Zhou
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian Hector Frazer
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
The Host-Microbe Interplay in Human Papillomavirus-Induced Carcinogenesis. Microorganisms 2019; 7:microorganisms7070199. [PMID: 31337018 PMCID: PMC6680694 DOI: 10.3390/microorganisms7070199] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Every year nearly half a million new cases of cervix cancer are diagnosed worldwide, making this malignancy the fourth commonest cancer in women. In 2018, more than 270,000 women died of cervix cancer globally with 85% of them being from developing countries. The majority of these cancers are caused by the infection with carcinogenic strains of human papillomavirus (HPV), which is also causally implicated in the development of other malignancies, including cancer of the anus, penis cancer and head and neck cancer. HPV is by far the most common sexually transmitted infection worldwide, however, most infected people do not develop cancer and do not even have a persistent infection. The development of highly effective HPV vaccines against most common high-risk HPV strains is a great medical achievement of the 21st century that could prevent up to 90% of cervix cancers. In this article, we review the current understanding of the balanced virus-host interaction that can lead to either virus elimination or the establishment of persistent infection and ultimately malignant transformation. We also highlight the influence of certain factors inherent to the host, including the immune status, genetic variants and the coexistence of other microbe infections and microbiome composition in the dynamic of HPV infection induced carcinogenesis.
Collapse
|
40
|
The Formation and Therapeutic Update of Tumor-Associated Macrophages in Cervical Cancer. Int J Mol Sci 2019; 20:ijms20133310. [PMID: 31284453 PMCID: PMC6651300 DOI: 10.3390/ijms20133310] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Both clinicopathological and experimental studies have suggested that tumor-associated macrophages (TAMs) play a key role in cervical cancer progression and are associated with poor prognosis in the respects of tumor cell proliferation, invasion, angiogenesis, and immunosuppression. Therefore, having a clear understanding of TAMs is essential in treating this disease. In this review, we will discuss the origins and categories of macrophages, the molecules responsible for forming and reeducating TAMs in cervical cancer (CC), the biomarkers of macrophages and the therapy development targeting TAMs in CC research.
Collapse
|
41
|
Myers KV, Amend SR, Pienta KJ. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment. Mol Cancer 2019; 18:94. [PMID: 31088471 PMCID: PMC6515593 DOI: 10.1186/s12943-019-1022-2] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages are an abundant cell type in the tumor microenvironment. These macrophages serve as a promising target for treatment of cancer due to their roles in promoting cancer progression and simultaneous immunosuppression. The TAM receptors (Tyro3, Axl and MerTK) are promising therapeutic targets on tumor-associated macrophages. The TAM receptors are a family of receptor tyrosine kinases with shared ligands Gas6 and Protein S that skew macrophage polarization towards a pro-tumor M2-like phenotype. In macrophages, the TAM receptors also promote apoptotic cell clearance, a tumor-promoting process called efferocytosis. The TAM receptors bind the "eat-me" signal phosphatidylserine on apoptotic cell membranes using Gas6 and Protein S as bridging ligands. Post-efferocytosis, macrophages are further polarized to a pro-tumor M2-like phenotype and secrete increased levels of immunosuppressive cytokines. Since M2 polarization and efferocytosis are tumor-promoting processes, the TAM receptors on macrophages serve as exciting targets for cancer therapy. Current TAM receptor-directed therapies in preclinical development and clinical trials may have anti-cancer effects though impacting macrophage phenotype and function in addition to the cancer cells.
Collapse
Affiliation(s)
- Kayla V. Myers
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Sarah R. Amend
- 0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Kenneth J. Pienta
- 0000 0001 2171 9311grid.21107.35Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35The James Buchanan Brady Urological Institute, Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD USA ,0000 0001 2171 9311grid.21107.35Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
42
|
Yang L, Sun J, Liu Q, Zhu R, Yang Q, Hua J, Zheng L, Li K, Wang S, Li A. Synergetic Functional Nanocomposites Enhance Immunotherapy in Solid Tumors by Remodeling the Immunoenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802012. [PMID: 31016114 PMCID: PMC6469336 DOI: 10.1002/advs.201802012] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/23/2019] [Indexed: 05/06/2023]
Abstract
Checkpoint blockade immunotherapy has demonstrated significant clinical success in various malignant tumors. However, the therapeutic response is limited due to the immunosuppressive tumor microenvironment (ITM). In this study, a functional nanomaterial, layered double hydroxides (LDHs), carrying specific functional miR155 is developed to modulate ITM by synergistically repolarizing tumor associated macrophages (TAMs) to M1 subtype. LDH nanoparticles loaded with miR155 (LDH@155) exhibit superior ability in cellular uptake by murine macrophages, miR escape into the cytoplasm and TAMs specific delivery when introtumoral administration. Meanwhile, upon exposure to LDH@155, TAMs are significantly skewed to M1 subtype, which markedly inhibits myeloid-derived suppressor cells (MDSCs) formation and stimulates T-lymphocytes to secrete more interferon-γ (IFN-γ) cytokines in vitro. Introtumoral administration of LDH@155 reduces the percentage of TAMs and MDSCs in the tumor and elevates CD4+ and CD8+ T cell infiltration and activation, which can promote therapeutic efficiency of α-PD-1 antibody immunotherapy. Furthermore, it is found that LDH@155 significantly decreases the expression level of phosphorylated STAT3 and ERK1/2 and activates NF-κB expression in TAMs, indicating that the STAT3, ERK1/2, and NF-κB signaling pathways may involve in LDH@155-induced macrophage polarization. Overall, the results suggest that LDH@155 nanoparticles may, in the future, function as a promising agent for cancer combinational immunotherapy.
Collapse
Affiliation(s)
- Linnan Yang
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Jing Sun
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Qiang Liu
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Qiannan Yang
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Jiahui Hua
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Longpo Zheng
- Shanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200092P. R. China
| | - Kun Li
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Shilong Wang
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| | - Ang Li
- Research Center for Translational Medicine at East HospitalShanghai First Maternity and Infant Health HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092P. R. China
| |
Collapse
|
43
|
Silveira CRF, Cipelli M, Manzine C, Rabelo-Santos SH, Zeferino LC, Rodríguez Rodríguez G, de Assis JB, Hebster S, Bernadinelli I, Laginha F, Boccardo E, Villa LL, Termini L, Lepique AP. Swainsonine, an alpha-mannosidase inhibitor, may worsen cervical cancer progression through the increase in myeloid derived suppressor cells population. PLoS One 2019; 14:e0213184. [PMID: 30840689 PMCID: PMC6402676 DOI: 10.1371/journal.pone.0213184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer, caused by high oncogenic risk Human Papillomavirus (HPV) infection, continues to be a public health problem, mainly in developing countries. Using peptide phage display as a tool to identify potential molecular targets in HPV associated tumors, we identified α-mannosidase, among other enriched sequences. This enzyme is expressed in both tumor and inflammatory compartment of the tumor microenvironment. Several studies in experimental models have shown that its inhibition by swainsonine (SW) led to inhibition of tumor growth and metastasis directly and indirectly, through activation of macrophages and NK cells, promoting anti-tumor activity. Therefore, the aim of this work was to test if swainsonine treatment could modulate anti-tumor immune responses and therefore interfere in HPV associated tumor growth. Validation of our biopanning results showed that cervical tumors, both tumor cells and leukocytes, expressed α-mannosidase. Ex vivo experiments with tumor associated macrophages showed that SW could partially modulate macrophage phenotype, decreasing CCL2 secretion and impairing IL-10 and IL-6 upregulation, which prompted us to proceed to in vivo tests. However, in vivo, SW treatment increased tumor growth. Investigation of the mechanisms leading to this result showed that SW treatment significantly induced the accumulation of myeloid derived suppressor cells in the spleen of tumor bearing mice, which inhibited T cell activation. Our results suggested that SW contributes to cervical cancer progression by favoring proliferation and accumulation of myeloid cells in the spleen, thus exacerbating these tumors systemic effects on the immune system, therefore facilitating tumor growth.
Collapse
Affiliation(s)
- Caio Raony Farina Silveira
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Marcella Cipelli
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Carolina Manzine
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Silvia Helena Rabelo-Santos
- Faculdade de Farmácia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| | - Luiz Carlos Zeferino
- Universidade Estadual de Campinas, Departamento de Ginecologia e Obstetrícia, Campinas, Brazil
| | - Gretel Rodríguez Rodríguez
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Josiane Betim de Assis
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
| | - Suellen Hebster
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Microbiologia, São Paulo, Brazil
| | | | | | - Enrique Boccardo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Microbiologia, São Paulo, Brazil
| | - Luisa Lina Villa
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Lara Termini
- Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
44
|
Stone SC, Rossetti RAM, Alvarez KLF, Carvalho JP, Margarido PFR, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP, Lepique AP. Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol 2019; 105:1041-1054. [PMID: 30811636 DOI: 10.1002/jlb.3a0718-274rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer continues to be a public health problem in developing countries. Previous studies have shown that cervical cancer cells display markers of aerobic glycolysis, indicating that these tumors are likely to secrete lactate. Mostly, lactate is recognized as a molecule capable of suppressing immune responses, through inhibition of T cells, Mϕs, and dendritic cells. We and others have previously shown that Mϕs are frequent cells infiltrating cervical cancers with the ability to inhibit antitumor immune responses and promote tumor growth through angiogenesis. Here, we have tested the hypothesis that lactate, secreted by cervical cancer cells, can modulate Mϕ phenotype. First, we showed higher lactate plasma concentrations in patients with increasing cervical lesion grades, with maximum concentration in the plasma of cancer patients, which supported our hypothesis. We then inhibited lactate production in tumor cell spheroids established from cervical cancer derived cell lines, using the lactate dehydrogenase inhibitor, oxamate, prior to co-culture with monocytes. Lactate mediated part of the crosstalk between tumor cells and Mϕs, promoting secretion of IL-1β, IL-10, IL-6, and up-regulation of hypoxia induced factor-1α expression, and down-regulation of p65-NFκB phosphorylation in Mϕs. We also showed that Mϕs from co-cultures treated with oxamate were better inducers of T cell activation. Of note, experiments performed with inhibition of the monocarboxylate transporters rendered similar results. Our data confirms the hypothesis that lactate, secreted by cervical tumor cells, influences the phenotype of tumor Mϕs, promoting a suppressive phenotype.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Coculture Techniques
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation
- Glycolysis/drug effects
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- L-Lactate Dehydrogenase/antagonists & inhibitors
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Lactic Acid/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Middle Aged
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasm Grading
- Oxidative Phosphorylation/drug effects
- Phenotype
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Simone Cardozo Stone
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Jesus Paula Carvalho
- Department of Oncologic Gynecology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | | | - Edmund Chada Baracat
- Department of Oncologic Gynecology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maricy Tacla
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Kaori Yokochi
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
| | - Noely Paula Lorenzi
- Division of Obstetrics and Gynecology, Hospital Universitário, Universidade de São Paulo, São Paulo, Brazil
- Department of Gynecology, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Experimental Combined Immunotherapy of Tumours with Major Histocompatibility Complex Class I Downregulation. Int J Mol Sci 2018; 19:ijms19113693. [PMID: 30469401 PMCID: PMC6274939 DOI: 10.3390/ijms19113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022] Open
Abstract
Combined immunotherapy constitutes a novel, advanced strategy in cancer treatment. In this study, we investigated immunotherapy in the mouse TC-1/A9 model of human papillomavirus type 16 (HPV16)-associated tumors characterized by major histocompatibility complex class I (MHC-I) downregulation. We found that the induction of a significant anti-tumor response required a combination of DNA vaccination with the administration of an adjuvant, either the synthetic oligodeoxynucleotide ODN1826, carrying immunostimulatory CpG motifs, or α-galactosylceramide (α-GalCer). The most profound anti-tumor effect was achieved when these adjuvants were applied in a mix with a one-week delay relative to DNA immunization. Combined immunotherapy induced tumor infiltration with various subsets of immune cells contributing to tumor regression, of which cluster of differentiation (CD) 8⁺ T cells were the predominant subpopulation. In contrast, the numbers of tumor-associated macrophages (TAMs) were not markedly increased after immunotherapy but in vivo and in vitro results showed that they could be repolarized to an anti-tumor M1 phenotype. A blockade of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) immune checkpoint had a negligible effect on anti-tumor immunity and TAMs repolarization. Our results demonstrate a benefit of combined immunotherapy comprising the activation of both adaptive and innate immunity in the treatment of tumors with reduced MHC-I expression.
Collapse
|
46
|
Evrard D, Szturz P, Tijeras-Raballand A, Astorgues-Xerri L, Abitbol C, Paradis V, Raymond E, Albert S, Barry B, Faivre S. Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncol 2018; 88:29-38. [PMID: 30616794 DOI: 10.1016/j.oraloncology.2018.10.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
The microenvironment of solid tumors has become a promising target for future therapies modulating immune cells. Patients with advanced head and neck cancer, which still portends a poor outcome, are particularly in need of innovative approaches. In oral squamous cell carcinoma, high density of tumor-associated macrophages (TAMs) appears consistently associated with poor prognosis, whereas data are currently limited for other head and neck sites. Several approaches to block TAMs have been investigated, including TAMs inactivation by means of the colony stimulating factor 1 (CSF-1)/CSF-1 receptor (CSF-1R) inhibitors or strategies to reprogram TAMs from M2 protumoral phenotype toward M1 antitumoral phenotype. This review focuses on both prognostic and therapeutic aspects related to TAMs in head and neck carcinomas.
Collapse
Affiliation(s)
- Diane Evrard
- Head and Neck Surgery Department, Hôpital Bichat, Paris, France
| | - Petr Szturz
- Oncology Department, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | - Chloé Abitbol
- Head and Neck Surgery Department, Hôpital Bichat, Paris, France
| | | | - Eric Raymond
- Medical Oncology Department, Groupe Hospitalier Paris---St Joseph, Paris, France
| | | | - Béatrix Barry
- Head and Neck Surgery Department, Hôpital Bichat, Paris, France
| | - Sandrine Faivre
- Medical Oncology Department, Hôpitaux Universitaires Paris Nord Val de Seine (HUPVNS) & Université Paris 7, Paris, France.
| |
Collapse
|
47
|
Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo) 2018; 73:e549s. [PMID: 30328949 PMCID: PMC6157093 DOI: 10.6061/clinics/2018/e549s] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Most human papillomavirus infections are readily cleared by the host immune response. However, in some individuals, human papillomavirus can establish a persistent infection. The persistence of high-risk human papillomavirus infection is the major risk factor for cervical cancer development. These viruses have developed mechanisms to evade the host immune system, which is an important step in persistence and, ultimately, in tumor development. Several cell types, receptors, transcription factors and inflammatory mediators involved in the antiviral immune response are viral targets and contribute to tumorigenesis. These targets include antigen-presenting cells, macrophages, natural killer cells, Toll-like receptors, nuclear factor kappa B and several cytokines and chemokines, such as interleukins, interferon and tumor necrosis factor. In the present review, we address both the main innate immune response mechanisms involved in HPV infection clearance and the viral strategies that promote viral persistence and may contribute to cancer development. Finally, we discuss the possibility of exploiting this knowledge to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Rafaella Almeida Lima Nunes
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Gabriela Ávila Fernandes Silva
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Luisa Lina Villa
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Lara Termini
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- *Corresponding author. E-mail:
| |
Collapse
|
48
|
Araldi RP, Sant’Ana TA, Módolo DG, de Melo TC, Spadacci-Morena DD, de Cassia Stocco R, Cerutti JM, de Souza EB. The human papillomavirus (HPV)-related cancer biology: An overview. Biomed Pharmacother 2018; 106:1537-1556. [DOI: 10.1016/j.biopha.2018.06.149] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
|
49
|
Ao C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. INFECTION GENETICS AND EVOLUTION 2018; 65:406-413. [PMID: 30172014 DOI: 10.1016/j.meegid.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent in the world. It can cause condyloma acuminatum, anogenital malignancies, and head and neck cancers. The host immune responses to HPV involve multiple cell types that have regulatory functions, and HPV-mediated changes to regulatory T cells (Tregs) in both the local lesion tissues and the circulatory system of patients have received considerable attention. The role of Tregs in HPV infections ranges from suppression of effector T cell (Teff) responses to protection of tissues from immune-mediated injury in different anatomic subsites. In this review, we explore the influence of Tregs in the immunopathology of HPV-related diseases and therapies targeting Tregs as novel approaches against HPV.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Barros MR, de Melo CML, Barros MLCMGR, de Cássia Pereira de Lima R, de Freitas AC, Venuti A. Activities of stromal and immune cells in HPV-related cancers. J Exp Clin Cancer Res 2018; 37:137. [PMID: 29976244 PMCID: PMC6034319 DOI: 10.1186/s13046-018-0802-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system is composed of immune as well as non-immune cells. As this system is a well-established component of human papillomavirus- (HPV)-related carcinogenesis, high risk human papillomavirus (hrHPV) prevents its routes and mechanisms in order to cause the persistence of infection. Among these mechanisms are those originated from stromal cells, which include the cancer-associated fibroblasts (CAFs), the myeloid-derived suppressor cells (MDSCs) and the host infected cells themselves, i.e. the keratinocytes. These types of cells play central role since they modulate immune cells activities to create a prosperous milieu for cancer development, and the knowledge how such interactions occur are essential for prognostic assessment and development of preventive and therapeutic approaches. Nevertheless, the precise mechanisms are not completely understood, and this lack of knowledge precluded the development of entirely efficient immunotherapeutic strategies for HPV-associated tumors. As a result, an intense work for attaining how host immune response works, and developing of effective therapies has been applied in the last decade. Based on this, this review aims to discuss the major mechanisms of immune and non-immune cells modulated by hrHPV and the potential and existing immunotherapies involving such mechanisms in HPV-related cancers. It is noticed that the combination of immunotherapies has been demonstrated to be essential for obtaining better results, especially because the possibility of increasing the modulating capacity of the HPV-tumor microenvironment has been shown to be central in strengthening the host immune system.
Collapse
Affiliation(s)
- Marconi Rego Barros
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis (LAIA), Department of Antibiotics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Artur de Sá, s/n, Recife, PE CEP-50740-525 Brazil
| | | | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Aldo Venuti
- HPV-Unit, Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|