1
|
Kang W, Ye C, Yang Y, Lou YR, Zhao M, Wang Z, Gao Y. Identification of anoikis-related gene signatures and construction of the prognosis model in prostate cancer. Front Pharmacol 2024; 15:1383304. [PMID: 38957390 PMCID: PMC11217483 DOI: 10.3389/fphar.2024.1383304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Background One of the primary reasons for tumor invasion and metastasis is anoikis resistance. Biochemical recurrence (BCR) of prostate cancer (PCa) serves as a harbinger of its distant metastasis. However, the role of anoikis in PCa biochemical recurrence has not been fully elucidated. Methods Differential expression analysis was used to identify anoikis-related genes based on the TCGA and GeneCards databases. Prognostic models were constructed utilizing LASSO regression, univariate and multivariate Cox regression analyses. Moreover, Gene Expression Omnibus datasets (GSE70770 and GSE46602) were applied as validation cohorts. Gene Ontology, KEGG and GSVA were utilized to explore biological pathways and molecular mechanisms. Further, immune profiles were assessed using CIBERSORT, ssGSEA, and TIDE, while anti-cancer drugs sensitivity was analyzed by GDSC database. In addition, gene expressions in the model were examined using online databases (Human Protein Atlas and Tumor Immune Single-Cell Hub). Results 113 differentially expressed anoikis-related genes were found. Four genes (EEF1A2, RET, FOSL1, PCA3) were selected for constructing a prognostic model. Using the findings from the Cox regression analysis, we grouped patients into groups of high and low risk. The high-risk group exhibited a poorer prognosis, with a maximum AUC of 0.897. Moreover, larger percentage of immune infiltration of memory B cells, CD8 Tcells, neutrophils, and M1 macrophages were observed in the high-risk group than those in the low-risk group, whereas the percentage of activated mast cells and dendritic cells in the high-risk group were lower. An increased TIDE score was founded in the high-risk group, suggesting reduced effectiveness of ICI therapy. Additionally, the IC50 results for chemotherapy drugs indicated that the low-risk group was more sensitive to most of the drugs. Finally, the genes EEF1A2, RET, and FOSL1 were expressed in PCa cases based on HPA website. The TISCH database suggested that these four ARGs might contribute to the tumor microenvironment of PCa. Conclusion We created a risk model utilizing four ARGs that effectively predicts the risk of BCR in PCa patients. This study lays the groundwork for risk stratification and predicting survival outcomes in PCa patients with BCR.
Collapse
Affiliation(s)
- Wanying Kang
- School of Pharmacy, Fudan University, Shanghai, China
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Chen Ye
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yunyun Yang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Ru Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Mingyi Zhao
- Life Science and Biopharmaceutical College, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Wang
- Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Lemos G, Fernandes CMADS, Silva FH, Calmasini FB. The role of autophagy in prostate cancer and prostatic diseases: a new therapeutic strategy. Prostate Cancer Prostatic Dis 2024; 27:230-238. [PMID: 38297152 DOI: 10.1038/s41391-024-00793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Autophagy is a well-conserved catabolic process that plays a key role in cell homeostasis. In the prostate, defective autophagy has been implicated in the genesis and progression of several pathological conditions. AIM The present review explored the autophagy pathway in prostate-related dysfunctions, focusing on prostate cancer (PCa), benign prostatic hyperplasia (BPH) and prostatitis. RESULTS Impaired autophagy activity has been shown in animal models of BPH and prostatitis. Moreover, autophagy activation by specific and non-specific drugs improved both conditions in pre-clinical studies. Conversely, the efficacy of autophagy inducers in PCa remains controversial, depending on intrinsic PCa characteristics and stage of progression. Intriguingly, autophagy inhibitors have shown beneficial effects in PCa suppression or even to overcome chemotherapy resistance. However, there are still open questions regarding the upstream mechanisms by which autophagy is deregulated in the prostate and the exact role of autophagy in PCa. The lack of specificity and increased toxicity associated with the currently autophagy inhibitors limits its use clinically, reflecting in reduced number of clinical data. CONCLUSION New therapeutic strategies to treat prostatic diseases involving new autophagy modulators, combination therapy and new drug formulations should be explored. Understanding the autophagy signaling in each prostatic disease is crucial to determine the best pharmacological approach.
Collapse
Affiliation(s)
- Guilherme Lemos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, Sao Francisco University (USF), Bragança Paulista, SP, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Zou C, Li W, Zhang Y, Feng N, Chen S, Yan L, He Q, Wang K, Li W, Li Y, Wang Y, Xu B, Zhang D. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. SCIENCE ADVANCES 2024; 10:eadm7098. [PMID: 38569039 PMCID: PMC10990282 DOI: 10.1126/sciadv.adm7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Cheng Zou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Wenchao Li
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuanzhen Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ninghan Feng
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Saisai Chen
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lianlian Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
| | - Qinju He
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wenjun Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yingying Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yang Wang
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform (Ministry of Education), Basic Medicine Research and Innovation Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dingxiao Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
4
|
Campanelli G, Francois E, Parupathi P, Devarakonda LS, Yang C, Kumar A, Levenson AS. The Therapeutic Efficacy and Mechanism of Action of Gnetin C, a Natural Compound from the Melinjo Plant, in a Preclinical Mouse Model of Advanced Prostate Cancer. Cancers (Basel) 2024; 16:1344. [PMID: 38611022 PMCID: PMC11010822 DOI: 10.3390/cancers16071344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The metastasis-associated protein 1/protein kinase B (MTA1/AKT) signaling pathway has been shown to cooperate in promoting prostate tumor growth. Targeted interception strategies by plant-based polyphenols, specifically stilbenes, have shown great promise against MTA1-mediated prostate cancer progression. In this study, we employed a prostate-specific transgenic mouse model with MTA1 overexpression on the background of phosphatase and tensin homolog (Pten) null (R26MTA1; Ptenf/f) and PC3M prostate cancer cells which recapitulate altered molecular pathways in advanced prostate cancer. Mechanistically, the MTA1 knockdown or pharmacological inhibition of MTA1 by gnetin C (dimer resveratrol) in cultured PC3M cells resulted in the marked inactivation of mammalian target of rapamycin (mTOR) signaling. In vivo, mice tolerated a daily intraperitoneal treatment of gnetin C (7 mg/kg bw) for 12 weeks without any sign of toxicity. Treatment with gnetin C markedly reduced cell proliferation and angiogenesis and promoted apoptosis in mice with advanced prostate cancer. Further, in addition to decreasing MTA1 levels in prostate epithelial cells, gnetin C significantly reduced mTOR signaling activity in prostate tissues, including the activity of mTOR-target proteins: p70 ribosomal protein S6 kinase (S6K) and eukaryotic translational initiation factor 4E (elF4E)-binding protein 1 (4EBP1). Collectively, these findings established gnetin C as a new natural compound with anticancer properties against MTA1/AKT/mTOR-activated prostate cancer, with potential as monotherapy and as a possible adjunct to clinically approved mTOR pathway inhibitors in the future.
Collapse
Affiliation(s)
- Gisella Campanelli
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA; (G.C.); (C.Y.)
| | - Ekniel Francois
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (E.F.); (P.P.); (L.S.D.)
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (E.F.); (P.P.); (L.S.D.)
| | - Lakshmi Sirisha Devarakonda
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (E.F.); (P.P.); (L.S.D.)
| | - Ching Yang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA; (G.C.); (C.Y.)
| | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (E.F.); (P.P.); (L.S.D.)
| | - Anait S. Levenson
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA; (G.C.); (C.Y.)
| |
Collapse
|
5
|
Guo K, Liu C, Shi J, Lai C, Gao Z, Luo J, Li Z, Tang Z, Li K, Xu K. HMMR promotes prostate cancer proliferation and metastasis via AURKA/mTORC2/E2F1 positive feedback loop. Cell Death Dis 2023; 9:48. [PMID: 36750558 PMCID: PMC9905489 DOI: 10.1038/s41420-023-01341-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
Although dysregulated HMMR is linked to prostate cancer (PCa) prognosis, the precise mechanisms remain unclear. Here, we sought to elucidate the role of HMMR in PCa progression as well as underlying mechanism. Herein, we found that upregulation of HMMR frequently observed in PCa samples and was associated with poor prognosis. Additionally, HMMR significantly promoted PCa proliferation and metastasis through gain- and loss-of function approaches in vitro and in vivo. Mechanistically, HMMR may interact with AURKA and elevated AURKA protein level through inhibiting ubiquitination-mediated degradation, which subsequently activated mTORC2/AKT pathway to ensure the reinforcement of PCa progression. Moreover, upregulated E2F1 caused from sustained activation of mTORC2/AKT pathway in turn function as transcription factor to promote HMMR transcription, thereby forming a positive feedback loop to trigger PCa progression. Importantly, administration of the mTOR inhibitor partially antagonised HMMR-mediated PCa progression in vivo. In summary, we not only reveal a novel possible post-translation mechanism mediated by HMMR involved in AURKA regulation, but also describe a positive feedback loop that contributes to PCa deterioration, suggesting HMMR may serve as a potential promising therapeutic target in PCa.
Collapse
Affiliation(s)
- Kaixuan Guo
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Cheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Juanyi Shi
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XDepartment of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong P. R. China
| | - Cong Lai
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Ze Gao
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Jiawen Luo
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Zhuohang Li
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Zhuang Tang
- grid.12981.330000 0001 2360 039XDepartment of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong P. R. China ,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong P. R. China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P. R. China.
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China. .,Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
6
|
Hagan M, Shenkar R, Srinath A, Romanos SG, Stadnik A, Kahn ML, Marchuk DA, Girard R, Awad IA. Rapamycin in Cerebral Cavernous Malformations: What Doses to Test in Mice and Humans. ACS Pharmacol Transl Sci 2022; 5:266-277. [PMID: 35592432 PMCID: PMC9112291 DOI: 10.1021/acsptsci.2c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/29/2022]
Abstract
Cerebral cavernous malformations (CCMs) are hemorrhagic neurovascular lesions that affect more than 1 million people in the United States. Rapamycin inhibits CCM development and bleeding in murine models. The appropriate dosage to modify disease phenotype remains unknown. Current approved indications by the U.S. Food and Drug Administration and clinicaltrials.gov were queried for rapamycin human dosing for various indications. A systematic literature search was conducted on PubMed to investigate mouse dosimetry of rapamycin. In humans, low daily doses of <2 mg/day or trough level targets <15 ng/mL were typically used for benign indications akin to CCM disease, with relatively low complication rates. Higher oral doses in humans, used for organ rejection, result in higher complication rates. Oral dosing in mice, between 2 and 4 mg/kg/day, achieved blood trough levels in the 5-15 ng/mL range, a concentration likely to be targeted in human studies to treat CCM. Preclinical studies are needed utilizing dosing strategies which achieve blood levels corresponding to likely human dosimetry.
Collapse
Affiliation(s)
- Matthew
J. Hagan
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Robert Shenkar
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Abhinav Srinath
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Sharbel G. Romanos
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Agnieszka Stadnik
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Mark L. Kahn
- Department
of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Douglas A. Marchuk
- Department
of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Romuald Girard
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| | - Issam A. Awad
- Neurovascular
Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Gasmi A, Roubaud G, Dariane C, Barret E, Beauval JB, Brureau L, Créhange G, Fiard G, Fromont G, Gauthé M, Ruffion A, Renard-Penna R, Sargos P, Rouprêt M, Ploussard G, Mathieu R. Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. J Clin Med 2021; 11:jcm11010160. [PMID: 35011901 PMCID: PMC8745410 DOI: 10.3390/jcm11010160] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Deregulation of the PI3K-Akt-mTOR pathway plays a critical role in the development and progression of many cancers. In prostate cancer, evidence suggests that it is mainly driven by PTEN loss of function. For many years, the development of selective Akt inhibitors has been challenging. In recent phase II and III clinical trials, Ipatasertib and Capivasertib associated with androgen deprivation therapies showed promising outcomes in patients with metastatic castration-resistant prostate cancer and PTEN-loss. Ongoing trials are currently assessing several Akt inhibitors in prostate cancer with different combinations, at different stages of the disease.
Collapse
Affiliation(s)
- Anis Gasmi
- Department of Urology, University of Rennes, 35000 Rennes, France;
- Correspondence:
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
| | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, AP-HP, Paris University, 75005 Paris, France;
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, 75005 Paris, France;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, 31000 Toulouse, France; (J.-B.B.); (G.P.)
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, 97110 Pointe-à-Pitre, France;
| | - Gilles Créhange
- Department of Urology, University Hospital, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Gaëlle Fiard
- Department of Radiation Oncology, Curie Institute, 75005 Paris, France;
| | - Gaëlle Fromont
- Department of Pathology, CHRU Tours, 37000 Tours, France;
| | - Mathieu Gauthé
- Department of Nuclear Medicine, Scintep, 38000 Grenoble, France;
| | - Alain Ruffion
- Service d’Urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69000 Lyon, France;
- Equipe 2, Centre d’Innovation en Cancérologie de Lyon (EA 3738 CICLY), Faculté de Médecine Lyon Sud, Université Lyon 1, 69000 Lyon, France
| | - Raphaële Renard-Penna
- Department of Radiology, Sorbonne University, AP-HP, Pitie-Salpetriere Hospital, 75013 Paris, France;
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, 33000 Bordeaux, France;
| | - Morgan Rouprêt
- Department of Urology, Sorbonne University, GRC 5 Predictive Onco-Uro, AP-HP, Urology, Pitie-Salpetriere Hospital, 75013 Paris, France;
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hôpital, Quint Fonsegrives, 31000 Toulouse, France; (J.-B.B.); (G.P.)
| | - Romain Mathieu
- Department of Urology, University of Rennes, 35000 Rennes, France;
- IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Inserm, EHESP, 35000 Rennes, France
| |
Collapse
|
8
|
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci 2021; 22:11088. [PMID: 34681745 PMCID: PMC8538152 DOI: 10.3390/ijms222011088] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression. However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive through adaptive responses, relies more on alternative activated pathways, and is less dependent on AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent. Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic and ongoing clinical trials are discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany; (T.P.); (J.K.)
| |
Collapse
|
9
|
Myint ZW, Allison DB, Ellis CS. A Case Report of Metastatic Castration-Resistant Prostate Cancer Harboring a PTEN Loss. Front Oncol 2021; 11:731002. [PMID: 34631559 PMCID: PMC8495426 DOI: 10.3389/fonc.2021.731002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The treatment landscape of metastatic castration-resistant prostate cancer (mCRPC) has dramatically improved over the last decade; however, patients with visceral metastases are still faced with poor outcomes. Phosphatase and tensin homolog (PTEN) loss is observed in 40%–60% of mCRPC patients and is also associated with a poor prognosis. Several PI3K/AKT/mTOR pathway inhibitors have been studied, with disappointing anti-tumor activity. Here, we present a case of a patient with heavily treated mCRPC who had a modest tumor response to concurrent carboplatin, abiraterone acetate/prednisone, and liver-directed radiation therapy. We discuss the potential rationale supporting the use of this combination therapy and its safety in mCRPC. While the underlying basic mechanism of our patient’s anti-tumor response remains uncertain, we suggest that further prospective studies are warranted to evaluate whether this combination therapy is effective in this population of patients with pre-treated mCRPC and PTEN loss.
Collapse
Affiliation(s)
- Zin W Myint
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, United States.,Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Urology, University of Kentucky, Lexington, KY, United States.,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, United States
| | - Carleton S Ellis
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Pharmacy, University of Kentucky, Lexington KY, United States
| |
Collapse
|
10
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
11
|
Kemp Bohan PM, Chick RC, O'Shea AE, Vreeland TJ, Hickerson AT, Cindass JL, Ensley DC, Hale D, Clifton GT, Sohn VY, Thompson IM, Peoples GE, Liss MA. Phase I Trial of Encapsulated Rapamycin in Patients with Prostate Cancer Under Active Surveillance to Prevent Progression. Cancer Prev Res (Phila) 2021; 14:551-562. [PMID: 33514567 DOI: 10.1158/1940-6207.capr-20-0383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
No approved medical therapies prevent progression of low-grade prostate cancer. Rapamycin inhibits cell proliferation and augments immune responses, producing an antitumor effect. Encapsulated rapamycin (eRapa) incorporates rapamycin into a pH-sensitive polymer, ensuring consistent dosing. Here, we present results from a phase I trial evaluating the safety and tolerability of eRapa in patients with prostate cancer. Patients with Gleason ≤7 (3+4) disease (low and intermediate risk) under active surveillance were enrolled in a 3+3 study with three eRapa dosing cohorts (cohort 1, 0.5 mg/week; cohort 2, 1 mg/week; and cohort 3, 0.5 mg/day). Patients were treated for 3 months and followed for an additional 3 months to assess safety, pharmacokinetics, quality of life (QoL), immune response, and disease progression. Fourteen patients (cohort 1, n = 3; cohort 2, n = 3; and cohort 3, n = 8) were enrolled. In cohort 3, one dose-limiting toxicity (DLT; neutropenia) and two non-DLT grade 1-2 adverse events (AE) occurred that resulted in patient withdrawal. All AEs in cohorts 1 and 2 were grade 1. Peak serum rapamycin concentration was 7.1 ng/mL after a 1 mg dose. Stable trough levels (∼2 ng/mL) developed after 48-72 hours. Daily dosing mildly worsened QoL, although QoL recovered after treatment cessation in all categories, except fatigue. Weekly dosing increased naïve T-cell populations. Daily dosing increased central memory cell populations and exhaustion markers. No disease progression was observed. In conclusion, treatment with eRapa was safe and well-tolerated. Daily dosing produced higher frequencies of lower grade toxicities and transient worsening of QoL, while weekly dosing impacted immune response. Future studies will verify clinical benefit and long-term tolerability.Prevention Relevance: There is an unmet medical need for a well-tolerated treatment capable of delaying progression of newly diagnosed low-grade prostate cancer. This treatment would potentially obviate the need for future surgical intervention and improve the perception of active surveillance as a more acceptable option among this patient population.
Collapse
Affiliation(s)
| | - Robert C Chick
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | - Anne E O'Shea
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | - Timothy J Vreeland
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | | | - Jessica L Cindass
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | - Daniel C Ensley
- Department of Urology, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | - Diane Hale
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | - Guy T Clifton
- Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, Texas
| | - Vance Y Sohn
- Department of Surgery, Madigan Army Medical Center, Joint Base Lewis-McChord, Washington
| | - Ian M Thompson
- Department of Urology, UT Health-San Antonio, San Antonio, Texas.,CHRISTUS Santa Rosa Medical Center, San Antonio, Texas
| | | | - Michael A Liss
- Department of Urology, UT Health-San Antonio, San Antonio, Texas
| |
Collapse
|
12
|
Metabolic regulation of prostate cancer heterogeneity and plasticity. Semin Cancer Biol 2020; 82:94-119. [PMID: 33290846 DOI: 10.1016/j.semcancer.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Metabolic reprogramming is one of the main hallmarks of cancer cells. It refers to the metabolic adaptations of tumor cells in response to nutrient deficiency, microenvironmental insults, and anti-cancer therapies. Metabolic transformation during tumor development plays a critical role in the continued tumor growth and progression and is driven by a complex interplay between the tumor mutational landscape, epigenetic modifications, and microenvironmental influences. Understanding the tumor metabolic vulnerabilities might open novel diagnostic and therapeutic approaches with the potential to improve the efficacy of current tumor treatments. Prostate cancer is a highly heterogeneous disease harboring different mutations and tumor cell phenotypes. While the increase of intra-tumor genetic and epigenetic heterogeneity is associated with tumor progression, less is known about metabolic regulation of prostate cancer cell heterogeneity and plasticity. This review summarizes the central metabolic adaptations in prostate tumors, state-of-the-art technologies for metabolic analysis, and the perspectives for metabolic targeting and diagnostic implications.
Collapse
|
13
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
14
|
Liu Y, Horn JL, Banda K, Goodman AZ, Lim Y, Jana S, Arora S, Germanos AA, Wen L, Hardin WR, Yang YC, Coleman IM, Tharakan RG, Cai EY, Uo T, Pillai SPS, Corey E, Morrissey C, Chen Y, Carver BS, Plymate SR, Beronja S, Nelson PS, Hsieh AC. The androgen receptor regulates a druggable translational regulon in advanced prostate cancer. Sci Transl Med 2020; 11:11/503/eaaw4993. [PMID: 31366581 DOI: 10.1126/scitranslmed.aaw4993] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
The androgen receptor (AR) is a driver of cellular differentiation and prostate cancer development. An extensive body of work has linked these normal and aberrant cellular processes to mRNA transcription; however, the extent to which AR regulates posttranscriptional gene regulation remains unknown. Here, we demonstrate that AR uses the translation machinery to shape the cellular proteome. We show that AR is a negative regulator of protein synthesis and identify an unexpected relationship between AR and the process of translation initiation in vivo. This is mediated through direct transcriptional control of the translation inhibitor 4EBP1. We demonstrate that lowering AR abundance increases the assembly of the eIF4F translation initiation complex, which drives enhanced tumor cell proliferation. Furthermore, we uncover a network of pro-proliferation mRNAs characterized by a guanine-rich cis-regulatory element that is particularly sensitive to eIF4F hyperactivity. Using both genetic and pharmacologic methods, we demonstrate that dissociation of the eIF4F complex reverses the proliferation program, resulting in decreased tumor growth and improved survival in preclinical models. Our findings reveal a druggable nexus that functionally links the processes of mRNA transcription and translation initiation in an emerging class of lethal AR-deficient prostate cancer.
Collapse
Affiliation(s)
- Yuzhen Liu
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jessie L Horn
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kalyan Banda
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Asha Z Goodman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yiting Lim
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sujata Jana
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexandre A Germanos
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lexiaochuan Wen
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - William R Hardin
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yu C Yang
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ilsa M Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robin G Tharakan
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Elise Y Cai
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Takuma Uo
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98104, USA
| | - Smitha P S Pillai
- Comparative Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98915, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98915, USA
| | - Yu Chen
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brett S Carver
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen R Plymate
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98104, USA
| | - Slobodan Beronja
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrew C Hsieh
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. .,Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Scheinberg T, Kench J, Stockler M, Mahon KL, Sebastian L, Stricker P, Joshua AM, Woo H, Thanigasalam R, Ahmadi N, Centenera MM, Butler LM, Horvath LG. Pharmacodynamics effects of CDK4/6 inhibitor LEE011 (ribociclib) in high-risk, localised prostate cancer: a study protocol for a randomised controlled phase II trial (LEEP study: LEE011 in high-risk, localised Prostate cancer). BMJ Open 2020; 10:e033667. [PMID: 31988233 PMCID: PMC7045211 DOI: 10.1136/bmjopen-2019-033667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Despite the development of new therapies for advanced prostate cancer, it remains the most common cause of cancer and the second leading cause of cancer death in men. It is critical to develop novel agents for the treatment of prostate cancer, particularly those that target aspects of androgen receptor (AR) signalling or prostate biology other than inhibition of androgen synthesis or AR binding. Neoadjuvant pharmacodynamic studies allow for a rational approach to the decisions regarding which targeted therapies should progress to phase II/III trials. CDK4/6 inhibitors have evidence of efficacy in breast cancer, and have been shown to have activity in preclinical models of hormone sensitive and castrate resistant prostate cancer. The LEEP trial aims to assess the pharmacodynamic effects of LEE011 (ribociclib), an orally bioavailable and highly selective CDK4/6 inhibitor, in men undergoing radical prostatectomy for high-risk, localised prostate cancer. METHODS AND ANALYSIS The multicentre randomised, controlled 4:1 two-arm, phase II, open label pharmacodynamic study will recruit 47 men with high risk, localised prostate cancer who are planned to undergo radical prostatectomy. Participants who are randomised to receive the study treatment will be treated with LEE011 400 mg daily for 21 days for one cycle. The primary endpoint is the frequency of a 50% reduction in Ki-67 proliferation index from the pretreatment prostate biopsy compared to that present in prostate cancer tissue from radical prostatectomy. Secondary and tertiary endpoints include pharmacodynamic assessment of CDK4/6 cell cycle progression via E2F levels, apoptotic cell death by cleaved caspase-3, changes in serum and tumour levels of Prostate Specific Antigen (PSA), pathological regression, safety via incidence of adverse events and exploratory biomarker analysis. ETHICS AND DISSEMINATION The protocol was approved by a central ethics review committee (St Vincent's Hospital HREC) for all participating sites (HREC/17/SVH/294). Results will be disseminated in peer-reviewed journals and at scientific conferences. DRUG SUPPLY Novartis. PROTOCOL VERSION 2.0, 30 May 2019 TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ACTRN12618000354280).
Collapse
Affiliation(s)
- Tahlia Scheinberg
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - James Kench
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Anatomical Pathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Martin Stockler
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Concord Cancer Centre, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Kate L Mahon
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lucille Sebastian
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Phillip Stricker
- Cancer Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Urology, St Vincent's Clinic, Darlinghurst, NSW, Australia
| | - Anthony M Joshua
- Cancer Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Medical Oncology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - H Woo
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Urology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Ruban Thanigasalam
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Urology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Urology, Concord Repatriation General Hospital, Concord, NSW, Australia
| | - Nariman Ahmadi
- Urology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Margaret M Centenera
- Prostate Cancer Research Group, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Butler
- Prostate Cancer Research Group, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa G Horvath
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Research, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Peters SA, Petersson C, Blaukat A, Halle JP, Dolgos H. Prediction of active human dose: learnings from 20 years of Merck KGaA experience, illustrated by case studies. Drug Discov Today 2020; 25:909-919. [PMID: 31981792 DOI: 10.1016/j.drudis.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
High-quality dose predictions based on a good understanding of target engagement is one of the main translational goals in drug development. Here, we systematically evaluate active human dose predictions for 15 Merck KGaA/EMD Serono assets spanning several modalities and therapeutic areas. Using case studies, we illustrate the value of adhering to the translational best practices of having an exposure-response relationship in an appropriate animal model; having validated, translatable pharmacodynamic (PD) biomarkers measurable in Phase I populations in the right tissue; having a deeper understanding of biology; and capturing uncertainties in predictions. Given the gap in publications on the subject, we believe that the learnings from this unique diverse data set, which are generic to the industry, will trigger actions to improve future predictions.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, Translational Medicine, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | - Carl Petersson
- Drug Metabolism and Disposition, Discovery Technology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Joern-Peter Halle
- Translational Innovation Platform Immuno Oncology, Biopharma, Global R&D, Merck Healthcare, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Hugues Dolgos
- Biopharmacy Center of Excellence, Servier RD, Suresnes, 92150, France
| |
Collapse
|
17
|
Barata PC, Magi-Galluzzi C, Gupta R, Dreicer R, Klein EA, Garcia JA. Association of mTOR Pathway Markers and Clinical Outcomes in Patients with Intermediate-/High-risk Prostate Cancer: Long-Term Analysis. Clin Genitourin Cancer 2019; 17:366-372. [PMID: 31262501 DOI: 10.1016/j.clgc.2019.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR) pathway is up-regulated in prostate cancer (PCa). We evaluated the tumor tissue expression of downstream mTOR targets in patients with intermediate- and high-risk (IR/HR) PCa and their ability to predict outcome after radical prostatectomy (RP). PATIENTS AND METHODS Immunohistochemical (IHC) analysis using antibodies against PTEN, mTOR, p-mTOR, pAKT, pS6, and Ki-67 was performed on a tissue microarray constructed from formalin-fixed paraffin-embedded RP specimens. The marker expression was analyzed to determine their predictability for biochemical recurrence (BCR). RESULTS Tumor tissue from 217 patients (86 IR/131 HR) was analyzed. The most frequent markers were p-mTOR, which was expressed in most cases (85%), whereas PTEN and pS6 were detected in 53% and 40% of the cases, respectively. Overexpression of PTEN (P = .02) and pS6 (P < .001) was associated with HR features. With a median follow up of 13.5 years, 39% (77/196) of patients developed BCR after RP, more frequently (31%) in patients with HR disease (P < .001). Overexpression of pS6 (P = .036), Ki67% (P = .024), and lack of expression of mTOR (P = .021) were associated with BCR. The 5- and 10-year survival rate was 81% and 66%, respectively. CONCLUSIONS Protein expression of downstream mTOR molecules was significantly associated with outcome of patients with IR and HR PCa. Markers of the mTOR pathway could be incorporated in clinical studies evaluating inhibitors of the signaling pathway for treatment selection in men with PCa.
Collapse
Affiliation(s)
- Pedro C Barata
- Department of Medicine and Oncology, Tulane University, New Orleans, LA
| | - Cristina Magi-Galluzzi
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Ruby Gupta
- Department of Solid Tumor Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Robert Dreicer
- Department of Medicine and Oncology, University of Virginia School of Medicine, Charlottesville, VA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Jorge A Garcia
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH; Department of Solid Tumor Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
18
|
Koshkin VS, Mir MC, Barata P, Gul A, Gupta R, Stephenson AJ, Kaouk J, Berglund R, Magi-Galluzzi C, Klein EA, Dreicer R, Garcia JA. Randomized phase II trial of neoadjuvant everolimus in patients with high-risk localized prostate cancer. Invest New Drugs 2019; 37:559-566. [PMID: 31037562 DOI: 10.1007/s10637-019-00778-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
Abstract
Background Despite definitive local therapy, patients with high-risk prostate cancer have a significant risk for local and distant failure. To date, no systemic therapy given prior to surgery has been shown to improve outcomes. The phosphatidilinositol 3-kinase/AKT/mTOR pathway is commonly dysregulated in men with prostate cancer. We sought to determine the clinical efficacy and safety of the mTOR/TORC1 inhibitor everolimus in men with high-risk prostate cancer undergoing radical prostatectomy. Methods This is a randomized phase II study of everolimus at two different doses (5 and 10 mg daily) given orally for 8 weeks before radical prostatectomy in men with high-risk prostate cancer. The primary endpoint was the pathologic response (histologic P0, margin status, extraprostatic extension) and surgical outcomes. Secondary endpoints included changes in serum PSA level and treatment effects on levels of expression of mTOR, p4EBP1, pS6 and pAKT. Results Seventeen patients were enrolled: nine at 10 mg dose and eight at 5 mg dose. No pathologic complete responses were observed and the majority of patients (88%) had an increase in their PSA values leading to this study being terminated early due to lack of clinical efficacy. Treatment-related adverse events were similar to those previously reported with the use of everolimus in other solid tumors and no additional surgical complications were observed. A significant decrease in the expression of p4EBP1 was noted in prostatectomy samples following treatment. Conclusions Neoadjuvant everolimus given at 5 mg or 10 mg daily for 8 weeks prior to radical prostatectomy did not impact pathologic responses and surgical outcomes of patients with high-risk prostate cancer. Trial registration NCT00526591 .
Collapse
Affiliation(s)
- Vadim S Koshkin
- University of California San Francisco, San Francisco, CA, USA
| | - Maria C Mir
- Instituto Valenciano Oncologia, Valencia, Spain
| | | | - Anita Gul
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Ruby Gupta
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Andrew J Stephenson
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Jihad Kaouk
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Ryan Berglund
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | | | - Eric A Klein
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | | | - Jorge A Garcia
- Department of Solid Tumor Oncology and Urology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA.
| |
Collapse
|
19
|
Svatek RS, Ji N, de Leon E, Mukherjee NZ, Kabra A, Hurez V, Nicolas M, Michalek JE, Javors M, Wheeler K, Sharp ZD, Livi CB, Shu ZJ, Henkes D, Curiel TJ. Rapamycin Prevents Surgery-Induced Immune Dysfunction in Patients with Bladder Cancer. Cancer Immunol Res 2019; 7:466-475. [PMID: 30563829 PMCID: PMC6926429 DOI: 10.1158/2326-6066.cir-18-0336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) integrates environmental inputs to regulate cellular growth and metabolism in tumors. However, mTOR also regulates T-cell differentiation and activation, rendering applications of mTOR inhibitors toward treating cancer complex. Preclinical data support distinct biphasic effects of rapamycin, with higher doses directly suppressing tumor cell growth and lower doses enhancing T-cell immunity. To address the translational relevance of these findings, the effects of the mTOR complex 1 (mTORC1) inhibitor, rapamycin, on tumor and T cells were monitored in patients undergoing cystectomy for bladder cancer. MB49 syngeneic murine bladder cancer models were tested to gain mechanistic insights. Surgery-induced T-cell exhaustion in humans and mice and was associated with increased pulmonary metastasis and decreased PD-L1 antibody efficacy in mouse bladder cancer. At 3 mg orally daily, rapamycin concentrations were 2-fold higher in bladder tissues than in blood. Rapamycin significantly inhibited tumor mTORC1, shown by decreased rpS6 phosphorylation in treated versus control patients (P = 0.008). Rapamycin reduced surgery-induced T-cell exhaustion in patients, evidenced by a significant decrease in the prevalence of dysfunctional programmed death-1 (PD-1)-expressing T cells. Grade 3 to 4 adverse event rates were similar between groups, but rapamycin-treated patients had a higher rate of wound complications versus controls. In conclusion, surgery promoted bladder cancer metastasis and decreased the efficacy of postoperative bladder cancer immunotherapy. Low-dose (3 mg daily) oral rapamycin has favorable pharmacodynamic and immune modulating activity in surgical patients and has the potential to decrease surgery-induced immune dysfunction.
Collapse
Affiliation(s)
- Robert S Svatek
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas.
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Niannian Ji
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Essel de Leon
- Department of Pathology, UT Health San Antonio, San Antonio, Texas
| | - Neelam Z Mukherjee
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Aashish Kabra
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Vincent Hurez
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
| | - Marlo Nicolas
- Department of Pathology, UT Health San Antonio, San Antonio, Texas
| | - Joel E Michalek
- Department of Epidemiology and Biostatistics, UT Health San Antonio, San Antonio, Texas
| | - Martin Javors
- Department of Psychiatry, UT Health San Antonio, San Antonio, Texas
| | - Karen Wheeler
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Z Dave Sharp
- The Population Science and Prevention (PSP) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio
| | - Carolina B Livi
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
- Agilent Technologies, Santa Clara, California
| | - Zhen-Ju Shu
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - David Henkes
- Department of Pathology, CHRISTUS Santa Rosa Medical Center, San Antonio, Texas
| | - Tyler J Curiel
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas.
- Division of Hematology/Medical Oncology at the UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
20
|
Tian T, Li X, Zhang J. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci 2019; 20:ijms20030755. [PMID: 30754640 PMCID: PMC6387042 DOI: 10.3390/ijms20030755] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) pathway plays a crucial role in regulation of cell survival, metabolism, growth and protein synthesis in response to upstream signals in both normal physiological and pathological conditions, especially in cancer. Aberrant mTOR signaling resulting from genetic alterations from different levels of the signal cascade is commonly observed in various types of cancers. Upon hyperactivation, mTOR signaling promotes cell proliferation and metabolism that contribute to tumor initiation and progression. In addition, mTOR also negatively regulates autophagy via different ways. We discuss mTOR signaling and its key upstream and downstream factors, the specific genetic changes in the mTOR pathway and the inhibitors of mTOR applied as therapeutic strategies in eight solid tumors. Although monotherapy and combination therapy with mTOR inhibitors have been extensively applied in preclinical and clinical trials in various cancer types, innovative therapies with better efficacy and less drug resistance are still in great need, and new biomarkers and deep sequencing technologies will facilitate these mTOR targeting drugs benefit the cancer patients in personalized therapy.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Xiaoyi Li
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
21
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
22
|
Yasumizu Y, Hongo H, Kosaka T, Mikami S, Nishimoto K, Kikuchi E, Oya M. PKM2 under hypoxic environment causes resistance to mTOR inhibitor in human castration resistant prostate cancer. Oncotarget 2018; 9:27698-27707. [PMID: 29963230 PMCID: PMC6021245 DOI: 10.18632/oncotarget.25498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 05/07/2018] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to explore the efficacy of mTOR inhibitor for castration-resistant prostate cancer (CRPC) under hypoxia. Although under normoxia C4-2AT6, it is a CRPC cell line, expressed elevated pAkt, pS6 and Pyruvate kinase M2 (PKM2) accompanied by elevated HIF-1a expression, 5% hypoxic condition further induced expression of these proteins. These results indicate hypoxic environment elevated PI3K/Akt/mTOR pathway in aggressive prostate cancer. However, C4-2AT6 cells treated with mTOR inhibitor under hypoxia less decreased compared to cells treated with the same dose drugs under normoxia. Western blot analysis showed mTOR inhibitor: RAD001 not only inhibited pS6, but also increased the expression of PKM2 in a dose and time dependent manner. Pyruvate kinase acts on glycolysis. PKM2, which is frequently express in tumor cells, is one isoform of pyruvate kinase. PKM2 is reported to act as a transcription factor. In the present study overexpression of PKM2 in C4-2AT6 induced resistance to RAD001 under normoxia. To evaluate the therapeutic effect of targeting PKM2, we inhibited PKM2 in C4-2AT6 under hypoxia using si-PKM2. The number of C4-2AT6 under chronic hypoxia exposed to siPKM2 significantly decreased compared to intact C4-2AT6 under chronic hypoxia. Furthermore, si-PKM2 improved resistance to mTOR inhibitor in C4-2AT6. When examined using clinical samples, high PKM2 expression was correlated with a high Gleason score and poor PSA free survival. These results suggested that up-regulation of PKM2 is one possibility of resistance to mTOR inhibitor in CRPC. And it is possible that PKM2 is a useful therapeutic target of CRPC.
Collapse
Affiliation(s)
- Yota Yasumizu
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Hongo
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
mTOR inhibitors for treatment of low-risk prostate cancer. Med Hypotheses 2018; 117:63-68. [PMID: 30077200 DOI: 10.1016/j.mehy.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
Abstract
Prostate cancer incidence increases with age; along with many other cancers, it could be considered a disease of aging. Prostate cancer screening has led to a significant proportion of men diagnosed with low-grade, low-stage prostate cancer who are now more likely to choose an active surveillance strategy rather than definitive treatments. Definitive treatment, such as surgery and radiation therapy, is useful for high-grade disease; however, because of the low long-term risk of progression of a low-grade disease and side effects of surgery and radiation, these treatments are less commonly used for low-grade disease. While five alpha reductase inhibitors have been shown to reduce the risk of cancer detection on subsequent biopsies for men on active surveillance, no medications have been proven to prevent progression to high-grade disease. mTOR pathways have long been known to influence prostate cancer and are targets in various prostate cancer patient populations. Low-dose mTOR inhibition with rapamycin has shown promise in pre-clinical models of prostate cancer and appear to affect cellular senescence and immunomodulation in the aging population. We hypothesize that low-dose mTOR inhibition could reduce progression of low-grade prostate cancer patients, allowing them to remain on active surveillance.
Collapse
|
24
|
Graham L, Banda K, Torres A, Carver BS, Chen Y, Pisano K, Shelkey G, Curley T, Scher HI, Lotan TL, Hsieh AC, Rathkopf DE. A phase II study of the dual mTOR inhibitor MLN0128 in patients with metastatic castration resistant prostate cancer. Invest New Drugs 2018; 36:458-467. [PMID: 29508246 PMCID: PMC6050986 DOI: 10.1007/s10637-018-0578-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Background MLN0128 is a first-in-class, dual mTOR inhibitor with potential to outperform standard rapalogs through inhibition of TORC1 and TORC2. This phase II study was designed to assess antitumor activity of MLN0128 in metastatic castration-resistant prostate cancer (mCRPC). Methods Eligible patients had mCRPC previously treated with abiraterone acetate and/or enzalutamide. Five patients started MLN0128 at 5 mg once daily, subsequently dose reduced to 4 mg because of toxicity. Four subsequent patients started MLN0128 at 4 mg daily. Primary endpoint was progression-free survival at 6 months. Results Nine patients were enrolled and median time on treatment was 11 weeks (range: 3-30). Best response was stable disease. All patients had a rise in PSA on treatment, with a median 159% increase from baseline (range: 12-620%). Median baseline circulating tumor cell count was 1 cell/mL (range: 0-40); none had a decrease in cell count posttreatment. Grade ≤ 2 adverse events included fatigue, anorexia, and rash. The most common serious adverse events were grade 3 dyspnea and maculopapular rash. Eight patients discontinued treatment early because of radiographic progression (n = 1), grade 3 toxicity (n = 5), or investigator discretion (n = 2). Four patients had immediate PSA decline following drug discontinuation, suggesting MLN0128 could cause compensatory increase of androgen receptor (AR) activity. Correlative studies of pretreatment and posttreatment biopsy specimens revealed limited inhibition of AKT phosphorylation, 4EBP1 phosphorylation, and eIF4E activity. Conclusions Clinical efficacy of MLN0128 in mCRPC was limited likely due to dose reductions secondary to toxicity, PSA kinetics suggesting AR activation resulting from mTOR inhibition, and poor inhibition of mTOR signaling targets.
Collapse
Affiliation(s)
- Laura Graham
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- School of Medicine and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Kalyan Banda
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- School of Medicine and Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Alba Torres
- Departments of Pathology and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Brett S Carver
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Urology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Katie Pisano
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Greg Shelkey
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tracy Curley
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tamara L Lotan
- Departments of Pathology and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
- School of Medicine and Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Dana E Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Tee SS, Suster I, Truong S, Jeong S, Eskandari R, DiGialleonardo V, Alvarez JA, Aldeborgh HN, Keshari KR. Targeted AKT Inhibition in Prostate Cancer Cells and Spheroids Reduces Aerobic Glycolysis and Generation of Hyperpolarized [1- 13C] Lactate. Mol Cancer Res 2018; 16:453-460. [PMID: 29330287 PMCID: PMC6662159 DOI: 10.1158/1541-7786.mcr-17-0458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is frequently mutated in prostate cancer. Specific AKT inhibitors are now in advanced clinical trials, and this study investigates the effect of MK2206, a non-ATP-competitive inhibitor, on the cellular metabolism of prostate cancer cells. We observed a reduction in cell motility and aerobic glycolysis in prostate cancer cells with treatment. These changes were not accompanied by a reduction in the ratio of high-energy phosphates or a change in total protein levels of enzymes and transporters involved in glycolysis. However, a decreased ratio of NAD+/NADH was observed, motivating the use of hyperpolarized magnetic resonance spectroscopy (HP-MRS) to detect treatment response. Spectroscopic experiments were performed on tumor spheroids, 3D structures that self-organize in the presence of an extracellular matrix. Treated spheroids showed decreased lactate production with on-target inhibition confirmed using IHC, demonstrating that HP-MRS can be used to probe treatment response in prostate cancer spheroids and can provide a biomarker for treatment response. Mol Cancer Res; 16(3); 453-60. ©2018 AACR.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Izabela Suster
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Sangmoo Jeong
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roozbeh Eskandari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Valentina DiGialleonardo
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Hannah N Aldeborgh
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
26
|
Stelloo S, Sanders J, Nevedomskaya E, de Jong J, Peters D, van Leenders GJLH, Jenster G, Bergman AM, Zwart W. mTOR pathway activation is a favorable prognostic factor in human prostate adenocarcinoma. Oncotarget 2017; 7:32916-24. [PMID: 27096957 PMCID: PMC5078062 DOI: 10.18632/oncotarget.8767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/28/2016] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer patients with localized disease are treated with curative intent. However, the disease will recur in approximately 30% of patients with a high incidence of morbidity and mortality. Prognostic biomarkers are needed to identify patients with high risk of relapse. mTOR pathway activation is reported in prostate cancer, but clinical trials testing efficacy of mTOR inhibitors were unsuccessful. To explain this clinical observation, we studied the expression and prognostic impact of mTOR-S2448 phosphorylation in localized prostate carcinomas. mTOR-S2448 phosphorylation is indicative for an activated mTOR pathway in prostate cancer. Surprisingly, the mTOR signaling pathway is activated specifically in prostate cancer patients with a favorable outcome. Since tumors from poor-outcome patients have low levels of mTOR-S2448 phosphorylation, this may explain why mTOR inhibitors proved unsuccessful in prostate cancer trials.
Collapse
Affiliation(s)
- Suzan Stelloo
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen de Jong
- Division of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dennis Peters
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geert J L H van Leenders
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Netto GJ, Eich ML, Varambally S. Prostate Cancer: An Update on Molecular Pathology with Clinical Implications. EUR UROL SUPPL 2017. [DOI: 10.1016/j.eursup.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
28
|
Wang Z, Jia G, Li Y, Liu J, Luo J, Zhang J, Xu G, Chen G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 2017; 8:22563-22580. [PMID: 28186966 PMCID: PMC5410245 DOI: 10.18632/oncotarget.15124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors in men. The etiology and pathogenesis of PCa remain unclear. P21-activated kinase 1 (PAK1) is a member of a family of serine/threonine kinases and regulates cell growth and contributes to tumor invasion and metastasis. However, the association of PAK1 with PCa tumorigenesis and in particular with cell autophagy remains unknown. We found that the positive expression of PAK1 was significantly increased in PCa patients compared with BPH patients (P < 0.05). The expression of PAK1, p-PAK1 and LC3B1 in DU145 was increased by the activator of mTOR MYH1485. The expression of PAK1, p-PAK1, mTOR and Beclin1 decreased in PAK1-shRNA expressing DU145 cell. Knocking down of PAK1 inhibited DU145 cell growth, invasion and migration in vitro, and inhibited tumor growth in vivo. Our study demonstrated that PAK1 is upregulated in PCa and regulated by the mTOR signaling pathway and contributes to tumor autophagy. Thus, PAK1 may be a potential tumor marker and therapeutic target of PCa.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Guojin Jia
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Yan Li
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jikai Liu
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jinfang Luo
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Jihong Zhang
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| |
Collapse
|
29
|
Armstrong AJ, Halabi S, Healy P, Alumkal JJ, Winters C, Kephart J, Bitting RL, Hobbs C, Soleau CF, Beer TM, Slottke R, Mundy K, Yu EY, George DJ. Phase II trial of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer. Eur J Cancer 2017; 81:228-236. [PMID: 28502694 DOI: 10.1016/j.ejca.2017.02.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/14/2017] [Accepted: 02/27/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Phosphatidylinositol-3-kinase (PI3K) and androgen receptor pathway activation is common in metastatic castration resistant prostate cancer (mCRPC). Buparlisib is an oral, pan-class I PI3 kinase inhibitor. METHODS This was a multisite single arm phase II trial of buparlisib 100 mg ± enzalutamide daily in men with mCRPC whose disease progressed on or who were not candidates for docetaxel. The primary end-point was the rate of radiographic/clinical progression-free survival (PFS) at 6 months. RESULTS Thirty men were accrued: 67% post-docetaxel; median prostate specific antigen (PSA) was 70 ng/dl, 83% had ≥4 prior therapies for mCRPC; 43% received concurrent enzalutamide. The final 6 month PFS rate was estimated to be 10% (95% confidence interval 2.5-23.6%). Median PFS was 1.9 months and was 3.5 months with concurrent enzalutamide. Median overall survival was 10.6 months. Concurrent enzalutamide led to a five-fold reduction in buparlisib concentrations. PSA declines were observed in 23%; no patients achieved a ≥50% decline, and no radiographic responses were observed. Severe adverse events occurred in four men including respiratory infection and multi-organ failure, urinary tract obstruction, confusion and one seizure in the setting of a new central nervous system (CNS) metastasis. Grade III adverse events were seen in 43% of patients; common toxicities included grade I-II weight loss, diarrhoea, nausea, fatigue, anorexia, rash, hyperglycemia and anxiety/mood disorders. CONCLUSIONS Buparlisib did not demonstrate significant activity in men with mCRPC, suggesting that PI3K inhibition is not sufficient to reverse resistant mCRPC progression. Future studies of PI3K pathway inhibitors with concurrent enzalutamide should develop optimal dosing and focus on selected patients more likely to benefit.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Duke University Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Division of Medical Oncology, The Duke Cancer Institute, Durham, NC, USA.
| | - Susan Halabi
- Duke University Department of Biostatistics, USA
| | | | - Joshi J Alumkal
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Carolyn Winters
- Duke University Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Division of Medical Oncology, The Duke Cancer Institute, Durham, NC, USA
| | - Julie Kephart
- Duke University Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Division of Medical Oncology, The Duke Cancer Institute, Durham, NC, USA
| | | | - Carey Hobbs
- Duke University Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Division of Medical Oncology, The Duke Cancer Institute, Durham, NC, USA
| | | | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Rachel Slottke
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kelly Mundy
- Duke University Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Division of Medical Oncology, The Duke Cancer Institute, Durham, NC, USA
| | - Evan Y Yu
- University of Washington, Seattle, WA, USA
| | - Daniel J George
- Duke University Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Division of Medical Oncology, The Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
30
|
Festuccia C. Investigational serine/threonine kinase inhibitors against prostate cancer metastases. Expert Opin Investig Drugs 2016; 26:25-34. [PMID: 27892725 DOI: 10.1080/13543784.2016.1266337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) is used as first therapeutic approach in prostate cancer (PCa) although castration resistant disease (CRPC) develops with high frequency. CRPC is the consequence of lack of apoptotic responses to ADT. Alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy were used in CRPC. Serine/threonine protein kinases (STKs) regulate different molecular pathways of normal and neoplastic cells and participate to development of CRPC as well as to the progression towards a bone metastatic disease (mCRPC). Areas covered: The present review provide data on STK expression and activity in the development of CRPC as well as summarize recent reports of different strategies to block STK activity for the control of PCa progression. Expert Opinion: Inhibitors for different STKs have been developed but clinical trials in PCa are comparatively rare and few exhibit satisfactory 'drug-like' properties. It is, however, necessary to intensify, when possible, the number of clinical trials with these drugs in order to insert new therapies or combinations with standard hormone- and chemo-therapies in the treatment guidelines of the mPCA.
Collapse
Affiliation(s)
- Claudio Festuccia
- a Department of Biotechnological and Applied Clinical Sciences , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
31
|
Kumar SS, Pacey S. The role of chemotherapy and new targeted agents in the management of primary prostate cancer. JOURNAL OF CLINICAL UROLOGY 2016; 9:30-37. [PMID: 28344814 PMCID: PMC5356176 DOI: 10.1177/2051415816685211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 12/17/2022]
Abstract
While early treatment of primary prostate cancer is very effective, the incidence of primary prostate cancer continues to rise and therefore the detection of men with high-risk non-metastatic prostate cancer and their subsequent management is becoming increasingly important. There continues to be no molecularly-targeted or chemotherapeutic options with proven, statistically significant survival benefit in this setting. However, there are indications that further risk stratification using molecular features could potentially help distinguish indolent from aggressive prostate cancer, ultimately providing biological markers that could guide a more personalised approach to therapy selection.
Collapse
Affiliation(s)
| | - Simon Pacey
- Department of Oncology, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
32
|
Malaquin N, Martinez A, Rodier F. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 2016; 82:39-49. [PMID: 27235851 DOI: 10.1016/j.exger.2016.05.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022]
Abstract
Cellular senescence is historically associated with cancer suppression and aging. Recently, the reach of the senescence genetic program has been extended to include the ability of senescent cells to actively participate in tissue remodelling during many physiological processes, including placental biology, embryonic patterning, wound healing, and tissue stress responses caused by cancer therapy. Besides growth arrest, a significant feature of senescent cells is their ability to modify their immediate microenvironment using a senescence-associated (SA) secretome, commonly termed the SA secretory phenotype (SASP). Among others, the SASP contains growth factors, cytokines, and extracellular proteases that modulate the majority of both the beneficial and detrimental microenvironmental phenotypes caused by senescent cells. The SASP is thus becoming an obvious pharmaceutical target to manipulate SA effects. Herein, we review known signalling pathways underlying the SASP, including the DNA damage response (DDR), stress kinases, inflammasome, alarmin, inflammation- and cell survival-related transcription factors, miRNAs, RNA stability, autophagy, chromatin components, and metabolic regulators. We also describe the SASP as a temporally regulated dynamic sub-program of senescence that can be divided into a rapid DDR-associated phase, an early self-amplification phase, and a late "mature" phase, the late phase currently being the most widely studied SASP signature. Finally, we discuss how deciphering the signalling pathways regulating the SASP reveal targets that can be manipulated to harness the SA effects to benefit therapies for cancer and other age-related pathologies.
Collapse
Affiliation(s)
| | | | - Francis Rodier
- CRCHUM et Institut du cancer de Montréal, Montreal, QC, Canada; Université de Montréal, Département de radiologie, radio-oncologie et médecine nucléaire, Montreal, QC, Canada.
| |
Collapse
|
33
|
Dal Pra A, Locke JA, Borst G, Supiot S, Bristow RG. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer. Front Oncol 2016; 6:24. [PMID: 26909338 PMCID: PMC4754414 DOI: 10.3389/fonc.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa.
Collapse
Affiliation(s)
- Alan Dal Pra
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A Locke
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gerben Borst
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephane Supiot
- Integrated Center of Oncology (ICO) René Gauducheau , Nantes , France
| | - Robert G Bristow
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Ahmad A, Jafar A, Alshatti Y. PI3K/MEK pathway-targeted therapy in non-small cell lung carcinoma. COGENT MEDICINE 2015. [DOI: 10.1080/2331205x.2015.1114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ali Ahmad
- Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Ali Jafar
- Department of Surgical & Interventional Sciences, University College London (UCL), London, UK
- Division of Surgical and Interventional Sciences, Royal Free Hospital, London, UK
| | - Yaqoub Alshatti
- Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
35
|
Marous M, Bièche I, Paoletti X, Alt M, Razak A, Stathis A, Kamal M, Le Tourneau C. Designs of preoperative biomarkers trials in oncology: a systematic review of the literature. Ann Oncol 2015; 26:2419-28. [DOI: 10.1093/annonc/mdv378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/19/2015] [Indexed: 01/06/2023] Open
|
36
|
Abstract
A wide array of molecular markers and genomic signatures, reviewed in this article, may soon be used as adjuncts to currently established screening strategies, prognostic parameters, and early detection markers. Markers of genetic susceptibility to PCA, recurrent epigenetic and genetic alterations, including ETS gene fusions, PTEN alterations, and urine-based early detection marker PCA3, are discussed. Impact of recent genome-wide assessment on our understanding of key pathways of PCA development and progression and their potential clinical implications are highlighted.
Collapse
|
37
|
Yamamoto Y, De Velasco MA, Kura Y, Nozawa M, Hatanaka Y, Oki T, Ozeki T, Shimizu N, Minami T, Yoshimura K, Yoshikawa K, Nishio K, Uemura H. Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer. J Transl Med 2015; 13:150. [PMID: 25953027 PMCID: PMC4438623 DOI: 10.1186/s12967-015-0509-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
Background Despite recent advances in the treatment for advanced prostate cancer, outcomes remain poor. This lack of efficacy has prompted the development of alternative treatment strategies. In the present study we investigate the effects of the multikinase inhibitor sorafenib in a genetically engineered mouse model of prostate cancer and explore the rational combination with the mTOR inhibitor everolimus. Methods Conditional prostate specific PTEN-deficient knockout mice were utilized to determine the pharmacodynamic and chemopreventive effects of sorafenib. This mouse model was also used to examine the therapeutic efficacy of sorafenib alone or in combination with everolimus. Preclinical efficacy was assessed by comparing the reduction of tumor burden, proliferation, angiogenesis and the induction of apoptosis. Molecular responses were assessed by immunohistochemical, TUNEL and western blot assays. Results Pharmacodynamic analysis revealed that a single dose of sorafenib decreased activation of the PI3K/AKT/mTOR signaling axis at doses of 30–60 mg/kg, but activated JAK/STAT3 signaling. Levels of cleaved casapase-3 increased in a dose dependent manner. Chemoprevention studies showed that chronic sorafenib administration was capable of inhibiting tumor progression through the reduction of cancer cell proliferation, angiogenesis and the induction of apoptosis. In intervention models of established castration-naïve and castration-resistant prostate cancer, treatment with sorafenib provided modest but statistically insignificant reduction in tumor burden. However, sorafenib significantly inhibited cancer cell proliferation and MVD but had minimal effects on the induction of apoptosis. Interestingly, the administration of sorafenib increased the expression levels of the androgen receptor, p-GSK3β and p-ERK1/2 in castration-resistant prostate cancers. In both intervention models, combination therapy demonstrated a clear tendency of enhanced antitumor effects over monotherapy. Notably, the treatment combination of sorafenib and everolimus overcame therapeutic escape from single agent therapy in castration-resistant prostate cancers. Conclusions In summary, we provide insights into the molecular responses of sorafenib therapy in a clinically relevant model of prostate cancer and present preclinical evidence for the development of targeted treatment strategies based on the use of multikinase inhibitors in combination with mTOR inhibitors for the treatment of advanced prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0509-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Marco A De Velasco
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan. .,Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, 589-8511, Japan.
| | - Yurie Kura
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Masahiro Nozawa
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Yuji Hatanaka
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Takashi Oki
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Takayuki Ozeki
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Nobutaka Shimizu
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Takafumi Minami
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Kazuhiro Yoshimura
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| | - Kazuhiro Yoshikawa
- Promoting Center for Clinical Research, Aichi Medical University, School of Medicine, Nagakute, Aichi, 480-1195, Japan.
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, 589-8511, Japan.
| | - Hirotsugu Uemura
- Department of Urology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, 589-8511, Japan.
| |
Collapse
|
38
|
Abstract
In recent years, the clinical development of targeted therapies has been advanced by a greater understanding of tumor biology and genomics. Nonetheless, drug development remains a slow and costly process. An additional challenge is that targeted therapies may benefit only a subset of patients treated-typically those patients whose tumors are dependent on the target of interest. Thus, there is a growing need for the incorporation of both predictive and pharmacodynamic (PD) biomarkers in drug development. Predictive biomarkers are important to help guide patient selection, while PD biomarkers can provide information on the pharmacologic effects of a drug on its target. PD studies may provide insights into proof of mechanism (i.e., Does the agent hit its intended target?) and proof of concept (i.e., Does hitting the drug target result in the desired biologic effect?). PD studies may also provide information on the optimal biologic dosing or scheduling of a targeted agent. Herein, we review PD endpoints in the context of targeted drug development in non-small cell lung cancer, highlighting some of the key challenges encountered to date. In doing so, we discuss recent experiences with repeat tumor biopsies, surrogate tissue analysis, alternative clinical trial designs (e.g., window-of-opportunity trials), circulating biomarkers, and mechanism-based toxicity assessments. The application of such technologies and biomarkers in early clinical trials may facilitate rational drug development, while enhancing our understanding of why certain targeted therapies succeed or fail. See all articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- Justin F Gainor
- Authors' Affiliations: Department of Medicine, Massachusetts General Hospital Cancer Center; and Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dan L Longo
- Authors' Affiliations: Department of Medicine, Massachusetts General Hospital Cancer Center; and Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bruce A Chabner
- Authors' Affiliations: Department of Medicine, Massachusetts General Hospital Cancer Center; and Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
39
|
Neal JW, Gainor JF, Shaw AT. Developing biomarker-specific end points in lung cancer clinical trials. Nat Rev Clin Oncol 2014; 12:135-46. [PMID: 25533947 DOI: 10.1038/nrclinonc.2014.222] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In cancer-drug development, a number of different end points have been used to establish efficacy and support regulatory approval, such as overall survival, progression-free survival (PFS), and radiographic response rate. However, these traditional end points have important limitations. For example, in lung cancer clinical trials, evaluating overall survival end points is a protracted process and these end points are most reliable when crossover to the investigational therapy is not permitted. Furthermore, although radiographic surrogate end points, such as PFS and response rate, generally correlate with clinical benefit in the setting of cytotoxic chemotherapy and molecular targeted therapies, novel immunotherapies might have atypical response kinetics, which confounds radiographic interpretation. In this Review, we discuss the need to develop alternative or surrogate end points for lung cancer clinical trials, and focus on several new biomarkers that could serve as surrogate end points, including functional imaging biomarkers, circulating factors (tumour proteins, DNA, and cells), and pharmacodynamic tumour markers. By enabling the size, duration, and complexity of cancer trials to be reduced, biomarker end points hold the promise to accelerate drug development and improve patient outcomes.
Collapse
Affiliation(s)
- Joel W Neal
- Department of Medicine, Division of Oncology, Stanford Cancer Institute and Stanford University School of Medicine, Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | - Justin F Gainor
- Division of Hematology-Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| | - Alice T Shaw
- Division of Hematology-Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
40
|
Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 2014; 16:378-86. [PMID: 24759575 PMCID: PMC4023363 DOI: 10.4103/1008-682x.122876] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors.
Collapse
Affiliation(s)
| | - Andrew C Hsieh
- Division of Hematology/Oncology and Department of Internal Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol 2014; 141:671-89. [PMID: 25146530 DOI: 10.1007/s00432-014-1803-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/08/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE PTEN is an essential tumour suppressor gene which encodes a phosphatase protein that antagonises the PI3K/Akt/mTOR antiapoptotic pathway. Impairment of this tumour suppressor pathway potentially becomes a causal factor for development of malignancies. This review aims to assess current understanding of mechanisms of dysfunction involving the PI3K/PTEN/Akt/mTOR pathway linked to tumorigenesis and evaluate the evidence for targeted therapy directed at this signalling axis. METHODS Relevant articles in scientific databases were identified using a combination of search terms, including "malignancies", "targeted therapy", "PTEN", and "combination therapy". These databases included Medline, Embase, Cochrane Review, Pubmed, and Scopus. RESULTS PI3K/PTEN expression is frequently deregulated in a majority of malignancies through genetic, epigenetic, and post-transcriptional modifications. This contributes to the upregulation of the PI3K/Akt/mTOR pathway which has been the focus of intense clinical studies. Targeted agents aimed at this pathway offer a novel treatment approach in a variety of haematologic malignancies and solid tumours. Compared to single-agent use, greater response rates were obtained in combination regimens, supporting further investigation of suitable drug combinations in a broad spectrum of malignancies. CONCLUSION Activation of the PI3K/PTEN/Akt/mTOR pathway is implicated both in the pathogenesis of malignancies and development of resistance to anticancer therapies. Therefore, PI3K/Akt/mTOR inhibitors are a promising therapeutic option, in association with systemic cytotoxic and biological therapies, to enable sustained clinical outcomes in cancer treatment. Therapeutic strategies could be tailored according to appropriate biomarkers and patient-specific mutation profiles to maximise benefit of combination therapies.
Collapse
|
42
|
De Velasco MA, Tanaka M, Yamamoto Y, Hatanaka Y, Koike H, Nishio K, Yoshikawa K, Uemura H. Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer. Carcinogenesis 2014; 35:2142-53. [PMID: 24986896 PMCID: PMC4146423 DOI: 10.1093/carcin/bgu143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transformation to castration-resistant prostate cancer drives cell plasticity that promotes intra-tumor heterogeneity and contributes to therapeutic resistance. Castration-resistant prostate cancer is an incurable heterogeneous disease that is characterized by a complex multistep process involving different cellular and biochemical changes brought on by genetic and epigenetic alterations. These changes lead to the activation or overexpression of key survival pathways that also serve as potential therapeutic targets. Despite promising preclinical results, molecular targeted therapies aimed at such signaling pathways have so far been dismal. In the present study, we used a PTEN-deficient mouse model of prostate cancer to show that plasticity in castration-resistant tumors promotes therapeutic escape. Unlike castration-naïve tumors which depend on androgen receptor and PI3K/AKT signal activation for growth and survival, castration-resistant tumors undergo phenotypic plasticity leading to increased intratumoral heterogeneity. These tumors attain highly heterogeneous phenotypes that are characterized by cancer cells relying on alternate signal transduction pathways for growth and survival, such as mitogen-activated protein kinase and janus kinase/signal transducer and activator of transcription, and losing their dependence on PI3K signaling. These features thus enabled castration-resistant tumors to become insensitive to the therapeutic effects of PI3K/AKT targeted therapy. Overall, our findings provide evidence that androgen deprivation drives phenotypic plasticity in prostate cancer cells and implicate it as a crucial contributor to therapeutic resistance in castration-resistant prostate cancer. Therefore, incorporating intratumoral heterogeneity in a dynamic tumor model as a part of preclinical efficacy determination could improve prediction for response and provide better rationale for the development of more effective therapies.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Urology and Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan,
| | - Motoyoshi Tanaka
- Department of Urology, Iga City General Hospital, Iga, Mie 518-0823, Japan and
| | | | | | | | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuhiro Yoshikawa
- Promoting Center for Clinical Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | |
Collapse
|
43
|
Bitting RL, Healy P, Creel PA, Turnbull J, Morris K, Wood SY, Hurwitz HI, Starr MD, Nixon AB, Armstrong AJ, George DJ. A phase Ib study of combined VEGFR and mTOR inhibition with vatalanib and everolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 2013; 12:241-50. [PMID: 24685058 DOI: 10.1016/j.clgc.2013.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/01/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Vatalanib is an oral vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI), whereas everolimus inhibits mammalian target of rapamycin (mTOR). Combination therapy with VEGFR and mTOR inhibitors has not been well tolerated to date but may have efficacy in renal cell carcinoma (RCC). PATIENTS AND METHODS A phase Ib study of vatalanib and everolimus was performed in patients with advanced solid tumors to determine the maximum tolerated dose (MTD), safety, and tolerability of the combination. A dose-expansion cohort of 20 patients with metastatic RCC was studied to further define toxicity and preliminary efficacy in patients with RCC. RESULTS We evaluated 32 patients over 3 dose levels and a dose-expansion cohort. The most common toxicities of any grade were proteinuria, fatigue, hypertriglyceridemia, nausea, and vomiting. Dose-limiting toxicities (DLTs) included severe hypertension, diarrhea, neutropenia, mucositis, and fatigue. The MTD for the combination was vatalanib 1000 mg daily and everolimus 5 mg daily. In all patients, median overall survival (OS) was 16.3 months. In patients with RCC, median progression-free survival (PFS) was 5.8 months, and OS was 16.5 months. OS was significantly better in treatment-naive patients (25.1 months) compared with patients who had received previous vascular endothelial growth factor (VEGF)-targeted therapy (6.3 months). Seven of 24 (29.2%) evaluable patients demonstrated a partial response, and an additional 15 patients exhibited stable disease. Long-term tolerability (> 1 year) was demonstrated in 19% of patients. CONCLUSION Relevant doses of vatalanib and everolimus were achieved in combination, with expected toxicities. A substantial number of patients with RCC achieved an objective response in the treatment-naive setting, with prolonged tolerability and survival. Further comparative phase II/III studies of specifically targeted VEGF and mTOR inhibitor combinations may be warranted in patients with RCC.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Patrick Healy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC
| | - Patricia A Creel
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - James Turnbull
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Karla Morris
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Sarah Yenser Wood
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Herbert I Hurwitz
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC; Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Mark D Starr
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Andrew B Nixon
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC; Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Andrew J Armstrong
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC; Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC; Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Daniel J George
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC; Duke Cancer Institute, Duke University Medical Center, Durham, NC.
| |
Collapse
|
44
|
Tai W, Chen Z, Barve A, Peng Z, Cheng K. A novel rapamycin-polymer conjugate based on a new poly(ethylene glycol) multiblock copolymer. Pharm Res 2013; 31:706-19. [PMID: 24072263 DOI: 10.1007/s11095-013-1192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Rapamycin has demonstrated potent anti-tumor activity in preclinical and clinical studies. However, the clinical development of its formulations was hampered due to its poor solubility and undesirable distribution in vivo. Chemical modification of rapamycin presents an opportunity for overcoming the obstacles and improving its therapeutic index. The objective of this study is to develop a drug-polymer conjugate to increase the solubility and cellular uptake of rapamycin. METHODS We developed the rapamycin-polymer conjugate using a novel, linear, poly(ethylene glycol) (PEG) based multiblock copolymer. Cytotoxicity and cellular uptake of the rapamycin-polymer conjugate were evaluated in various cancer cells. RESULTS The rapamycin-polymer conjugate provides enhanced solubility in water compared with free rapamycin and shows profound activity against a panel of human cancer cell lines. The rapamycin-polymer conjugate also presents high drug loading capacity (wt% ~ 26%) when GlyGlyGly is used as a linker. Cellular uptake of the conjugate was confirmed by confocal microscopic examination of PC-3 cells that were cultured in the presence of FITC-labled polymer (FITC-polymer). CONCLUSION This study suggests that the rapamycin-polymer conjugate is a novel anti-cancer agent that may provide an attractive strategy for treatment of a wide variety of tumors.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, Missouri, 64108, USA
| | | | | | | | | |
Collapse
|
45
|
Eigl B, Gleave M, Chi K. The Future of Systemic Therapies for Localised Prostate Cancer. Clin Oncol (R Coll Radiol) 2013; 25:506-13. [DOI: 10.1016/j.clon.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/15/2013] [Accepted: 04/10/2013] [Indexed: 01/16/2023]
|
46
|
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key signaling pathway that has been linked to both tumorigenesis and resistance to therapy in prostate cancer and other solid tumors. Given the significance of the PI3K/Akt/mTOR pathway in integrating cell survival signals and the high prevalence of activating PI3K/Akt/mTOR pathway alterations in prostate cancer, inhibitors of this pathway have great potential for clinical benefit. Here, we review the role of the PI3K/Akt/mTOR pathway in prostate cancer and discuss the potential use of pathway inhibitors as single agents or in combination in the evolving treatment landscape of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, North Carolina 27710, USA
| | | |
Collapse
|
47
|
Kim W, Febbo PG. The current and future role of sequence-based analysis in prostate cancer treatment. Per Med 2013; 10:257-273. [PMID: 29768744 DOI: 10.2217/pme.13.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prostate cancer is the most commonly diagnosed, nondermatologic malignancy in US men. Localized disease can be managed through active surveillance or curative, locally directed therapies, but 30% of men treated with surgery or radiation will need additional (often systemic) treatment for relapsed disease. While spectacular advances in medical treatment of advanced prostate cancer have improved the quality and duration of patients' lives, metastatic prostate cancer remains an incurable, lethal disease that requires additional therapies and better treatment strategies. The advent of ultra-high-throughput sequencing technology provides an opportunity to comprehensively assess the constellation of genetic and molecular events underlying each patient's tumor, and promises to enhance our ability to deliver specifically tailored personalized treatment to men with prostate cancer. The known biological and clinical heterogeneity of prostate cancer presents both opportunities and challenges to the application and utilization of sequence-based analysis to guide prostate cancer treatment.
Collapse
Affiliation(s)
- Won Kim
- University of California, 1600 Divisadero Street, A717, Box 1711, San Francisco, CA 94115, USA
| | - Phillip G Febbo
- University of California, 1600 Divisadero Street, A717, Box 1711, San Francisco, CA 94115, USA.
| |
Collapse
|
48
|
Clinical applications of recent molecular advances in urologic malignancies: no longer chasing a "mirage"? Adv Anat Pathol 2013; 20:175-203. [PMID: 23574774 DOI: 10.1097/pap.0b013e3182863f80] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As our understanding of the molecular events leading to the development and progression of genitourologic malignancies, new markers of detection, prognostication, and therapy prediction can be exploited in the management of these prevalent tumors. The current review discusses the recent advances in prostate, bladder, renal, and testicular neoplasms that are pertinent to the anatomic pathologist.
Collapse
|
49
|
PTEN in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
50
|
Dysregulation of mammalian target of rapamycin pathway in plasmacytoid variant of urothelial carcinoma of the urinary bladder. Hum Pathol 2012; 44:612-22. [PMID: 23084634 DOI: 10.1016/j.humpath.2012.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022]
Abstract
Plasmacytoid urothelial carcinoma is a rare but aggressive variant of bladder cancer with no clear therapeutic guidelines. Dysregulation of the mammalian target of rapamycin (mTOR) pathway has been linked to oncogenesis in conventional bladder cancer. Several antineoplastic agents targeting mTOR pathway are currently available. This study assesses mTOR pathway status as well as c-myc and p27 expression. We retrieved 19 archival cases of plasmacytoid urothelial carcinoma from two institutions. Whole tissue sections were evaluated for immunoexpression of phosphatase and tensin homolog (PTEN), phosphorylated mTOR, phosphorylated protein kinase B (AKT), phosphorylated S6, c-myc, and p27. We evaluated intensity (0 to 3+) and extent (0%-100%) of expression for all markers. An H score was calculated as the sum of products of intensity and extent for each marker and used during analysis. In addition, PTEN loss was defined as absence of expression in >10% of tumor cells. We encountered PTEN loss in 28%. Higher H score for nuclear phosphorylated AKT and a lower H score for phosphorylated S6 was encountered in muscle invasive tumors compared to non-muscle invasive tumors (P = .007 and P = .009, respectively). Although a trend for negative prognostic impact on overall survival for higher phosphorylated mTOR expression was noted (P = .051), markers expression levels failed to predict survival in our cohort. We found dysregulation of mTOR pathway members in urinary bladder plasmacytoid urothelial carcinoma, suggesting that the use of mTOR pathway inhibitors might be beneficial for patients with this aggressive tumor.
Collapse
|