1
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Mizumoto Y, Kyo S, Kiyono T, Takakura M, Nakamura M, Maida Y, Mori N, Bono Y, Sakurai H, Inoue M. Editor's Note: Activation of NF-κB Is a Novel Target of KRAS-induced Endometrial Carcinogenesis. Clin Cancer Res 2024; 30:1995. [PMID: 38690596 DOI: 10.1158/1078-0432.ccr-24-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
|
3
|
Nguyen HD, Lin CC. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Acta Biomater 2024; 177:203-215. [PMID: 38354874 PMCID: PMC10958777 DOI: 10.1016/j.actbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.
Collapse
Affiliation(s)
- Han D Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Ruan P, Wang S, Yang C, Huang X, Sun P, Tan A. m 6A mRNA methylation regulates the ERK/NF-κB/AKT signaling pathway through the PAPPA/IGFBP4 axis to promote proliferation and tumor formation in endometrial cancer. Cell Biol Toxicol 2023; 39:1611-1626. [PMID: 35971034 DOI: 10.1007/s10565-022-09751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
N6-methyladenosine (m6A) mRNA methylation has been considered a gene modulatory mechanism involved in disease progression and carcinogenesis. Herein, we aimed to explore the specific mechanism of m6A mRNA methylation in endometrial cancer. RT-qPCR was implemented to test the clinical correlation between m6A methylation and endometrial cancer. Bioinformatics analysis was performed to screen the genes related to endometrial cancer, and SRAMP was utilized for the prediction of m6A targets. Western blot assay and MeRIP-qPCR experiments were conducted to verify the effect of m6A methylation on the candidate genes and the signaling pathways involved in the occurrence of endometrial cancer. m6A-seq, RT-qPCR, and polysome profiling were used to confirm the mechanisms of m6A methylation in modulating related genes and pathways. The levels of m6A methylation, METTL3, and IGFBP4 were reduced in tumor tissues of patients with endometrial cancer, and SRAMP analysis confirmed that IGFBP4 and PAPPA had m6A methylation sites. Reduced m6A methylation promoted endometrial cancer cell progression and tumor formation in vivo. m6A methylation of RNA in endometrial cancer cells directly modulated IGFBP4 and PAPPA expression. m6A methylation regulated the PAPPA/IGFBP4 axis, thereby influencing endometrial cancer through the NF-κB and ERK signaling pathways. Knockdown of PAPPA or overexpression of IGFBP4 in endometrial cancer cells partially reduced disease progression caused by reduced m6A methylation. This research suggests that m6A mRNA methylation modulates the ERK/NF-κB/AKT signaling pathway through the PAPPA/IGFBP4 axis to induce cell proliferation and tumor formation in endometrial cancer. 1. METTL3 expressed modestly and m6A methylation of IGFBP4 and PAPPA mRNAs decreased in endometrial cancer; 2. YTHDF1-mediated IGFBP4 translation was reduced in HEC-1-A and AN3CA cells, and YTHDF2-mediated PAPPA mRNA degradation was blunted but its protein expression increased; 3. Increased PAPPA and reduced IGFBP4 activated IGF1-induced ERK, AKT, and NF-κB pathways by binding IGFR, thereby promoting cancer cell malignancy.
Collapse
Affiliation(s)
- Peng Ruan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Shujun Wang
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Chaoyi Yang
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Xiaohui Huang
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Pengxing Sun
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Aili Tan
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
5
|
Park YL, Kim HP, Ock CY, Min DW, Kang JK, Lim YJ, Song SH, Han SW, Kim TY. EMT-mediated regulation of CXCL1/5 for resistance to anti-EGFR therapy in colorectal cancer. Oncogene 2022; 41:2026-2038. [PMID: 35173310 DOI: 10.1038/s41388-021-01920-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 05/08/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The emergence of RAS/RAF mutant clone is the main feature of EGFR inhibitor resistance in KRAS wild-type colon cancer. However, its molecular mechanism is thought to be multifactorial, mainly due to cellular heterogeneity. In order to better understand the resistance mechanism in a single clone level, we successfully isolated nine cells with cetuximab-resistant (CR) clonality from in vitro system. All CR cells harbored either KRAS or BRAF mutations. Characteristically, these cells showed a higher EMT (Epithelial to mesenchymal transition) signature, showing increased EMT markers such as SNAI2. Moreover, the expression level of CXCL1/5, a secreted protein, was significantly higher in CR cells compared to the parental cells. In these CR cells, CXCL1/5 expression was coordinately regulated by SNAI2/NFKB and transactivated EGFR through CXCR/MMPI/EGF axis via autocrine singling. We also observed that combined cetuximab/MEK inhibitor not only showed growth inhibition but also reduced the secreted amounts of CXCL1/5. We further found that serum CXCL1/5 level was positively correlated with the presence of RAS/RAF mutation in colon cancer patients during cetuximab therapy, suggesting its role as a biomarker. These data indicated that the application of serum CXCL1/5 could be a potential serologic biomarker for predicting resistance to EGFR therapy in colorectal cancer.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea.
| | - Hwang-Phill Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea.,IMBDx Inc, Seoul, Korea
| | - Chan-Young Ock
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wook Min
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jun Kyu Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yoo Joo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
6
|
Sacco A, Federico C, Todoerti K, Ziccheddu B, Palermo V, Giacomini A, Ravelli C, Maccarinelli F, Bianchi G, Belotti A, Ribolla R, Favasuli V, Revenko AS, Macleod AR, Willis B, Cai H, Hauser J, Rooney C, Willis SE, Martin PL, Staniszewska A, Ambrose H, Hanson L, Cattaneo C, Tucci A, Rossi G, Ronca R, Neri A, Mitola S, Bolli N, Presta M, Moschetta M, Ross S, Roccaro AM. Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood 2021; 138:1705-1720. [PMID: 34077955 PMCID: PMC9710471 DOI: 10.1182/blood.2020010572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM.
Collapse
Affiliation(s)
- Antonio Sacco
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Cinzia Federico
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Katia Todoerti
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bachisio Ziccheddu
- Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Palermo
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giada Bianchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Angelo Belotti
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Vanessa Favasuli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | | | - Joana Hauser
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Claire Rooney
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | | | - Helen Ambrose
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Lyndsey Hanson
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | | | | | - Giuseppe Rossi
- Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonino Neri
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Niccolò Bolli
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Sarah Ross
- Oncology R &D, AstraZeneca, Cambridge, United Kingdom; and
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
7
|
Liu MM, Liu T, Yeung S, Wang Z, Andresen B, Parsa C, Orlando R, Zhou B, Wu W, Li X, Zhang Y, Wang C, Huang Y. Inhibitory activity of medicinal mushroom Ganoderma lucidum on colorectal cancer by attenuating inflammation. PRECISION CLINICAL MEDICINE 2021; 4:231-245. [PMID: 35692861 PMCID: PMC8982591 DOI: 10.1093/pcmedi/pbab023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023] Open
Abstract
The medicinal mushroom Ganoderma lucidum (GL, Reishi or Lingzhi) exhibits an inhibitory effect on cancers. However, the underlying mechanism of the antitumor activity of GL is not fully understood. In this study, we characterized the gene networks regulated by a commercial product of GL containing a mixture of spores and fruiting bodies namely “GLSF”, in colorectal carcinoma. We found that in vitro co-administration of GLSF extract at non-toxic concentrations significantly potentiated growth inhibition and apoptosis induced by paclitaxel in CT26 and HCT-15 cells. GLSF inhibited NF-κB promoter activity in HEK-293 cells but did not affect the function of P-glycoprotein in K562/DOX cells. Furthermore, we found that when mice were fed a modified diet containing GLSF for 1 month prior to the CT26 tumor cell inoculation, GLSF alone or combined with Nab-paclitaxel markedly suppressed tumor growth and induced apoptosis. RNA-seq analysis of tumor tissues derived from GLSF-treated mice identified 53 differentially expressed genes compared to normal tissues. Many of the GLSF-down-regulated genes were involved in NF-κB-regulated inflammation pathways, such as IL-1β, IL-11 and Cox-2. Pathway enrichment analysis suggested that several inflammatory pathways involving leukocyte migration and adhesion were most affected by the treatment. Upstream analysis predicted activation of multiple tumor suppressors such as α-catenin and TP53 and inhibition of critical inflammatory mediators. “Cancer” was the major significantly inhibited biological effect of GLSF treatment. These results demonstrate that GLSF can improve the therapeutic outcome for colorectal cancer through a mechanism involving suppression of NF-κB-regulated inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Mandy M Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tiantian Liu
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Zhijun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA
| | - Bradley Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Cyrus Parsa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Pathology, Beverly Hospital, Montebello, California, CA 90640, USA
| | - Robert Orlando
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Pathology, Beverly Hospital, Montebello, California, CA 90640, USA
| | - Bingsen Zhou
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Wei Wu
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Xia Li
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Yilong Zhang
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
8
|
Lin CC, Kuo IY, Wu LT, Kuan WH, Liao SY, Jen J, Yang YE, Tang CW, Chen YR, Wang YC. Dysregulated Kras/YY1/ZNF322A/Shh transcriptional axis enhances neo-angiogenesis to promote lung cancer progression. Am J Cancer Res 2020; 10:10001-10015. [PMID: 32929330 PMCID: PMC7481419 DOI: 10.7150/thno.47491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of Kras mutation-driven ZNF322A transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis. Methods: Luciferase activity, RT-qPCR and ChIP-qPCR assays were used to examine transcription regulation in cell models. In vitro and in vivo angiogenesis assays were conducted. Immunohistochemistry, Kaplan-Meier method and multivariate Cox regression assays were performed to examine the clinical correlation in tumor specimens from lung cancer patients. Results: We validated that Yin Yang 1 (YY1) upregulated ZNF322A expression through targeting its promoter in the context of Kras mutation. Reconstitution experiments by knocking down YY1 under KrasG13V activation decreased KrasG13V-promoted cancer cell migration, proliferation and ZNF322A promoter activity. Knockdown of YY1 or ZNF322A attenuated angiogenesis in vitro and in vivo. Notably, we validated that ZNF322A upregulated the expression of sonic hedgehog (Shh) gene which encodes a secreted factor that activates pro-angiogenic responses in endothelial cells. Clinically, ZNF322A protein expression positively correlated with Shh and CD31, an endothelial cell marker, in 133 lung cancer patient samples determined using immunohistochemistry analysis. Notably, patients with concordantly high expression of ZNF322A, Shh and CD31 correlated with poor prognosis. Conclusions: These findings highlight the mechanism by which dysregulation of Kras/YY1/ZNF322/Shh transcriptional axis enhances neo-angiogenesis and cancer progression in lung cancer. Therapeutic strategies that target Kras/YY1/ZNF322A/Shh signaling axis may provide new insight on targeted therapy for lung cancer patients.
Collapse
|
9
|
Molecular Modifiers of Hormone Receptor Action: Decreased Androgen Receptor Expression in Mismatch Repair Deficient Endometrial Endometrioid Adenocarcinoma. Int J Gynecol Pathol 2019; 38:44-51. [PMID: 29210800 DOI: 10.1097/pgp.0000000000000465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endometrial endometrioid carcinoma is related to estrogen excess and expression of estrogen and progesterone receptors. Epidemiological evidence suggests that exposure to elevated androgens, as in polycystic ovarian syndrome, increases the risk of endometrial cancer. Factors impacting androgen receptor (AR) expression are not well studied. Mismatch repair (MMR) deficiency due to MLH1 gene methylation is one of the most common molecular alterations in endometrial cancer, occurring in 15% to 20% of cases. MLH1 methylation can be associated with decreased expression of other genes, so we examined the effect of MMR status on AR expression. As NF-κB is known to induce AR, this transcription factor was also examined. Three hundred forty-four unselected endometrial carcinomas were evaluated for DNA MMR. Loss of expression of MLH1 with MLH1 methylation was defined as MMR deficient, and positive expression of MMR proteins was defined as MMR intact. A case-control cohort of 96 grade 2 endometrioid carcinomas was studied from this set (47 MMR deficient, 49 MMR intact). Cases were matched for histotype, grade, and age. AR and NF-κB immunohistochemical expression were evaluated by 2 different scoring systems (CAP/ASCO and Allred) used for estrogen receptor. Despite higher levels of NF-κB, MMR deficiency was associated with a significantly lower mean percentage of AR expression. The MMR deficient group had more variable AR expression, with more cases scoring on the lower end of the spectrum. These findings have implications for clinical trials of AR antagonists in gynecologic cancers.
Collapse
|
10
|
Placental Ras Regulates Inflammation Associated with Maternal Obesity. Mediators Inflamm 2018; 2018:3645386. [PMID: 30402038 PMCID: PMC6196914 DOI: 10.1155/2018/3645386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Heightened placental inflammation and dysfunction are commonly associated in pregnant obese women compared to their pregnant lean counterparts. The small GTPase superfamily members known as the rat sarcoma viral oncogene homolog (Ras) proteins, in particular, the K-Ras and H-Ras isoforms, have been implicated to regulate inflammation. The aims were to determine the placental Ras expression and activity with maternal obesity and its role in regulating placental inflammation. Human placenta was obtained at term Caesarean section from lean and obese pregnant women to determine the effect of maternal obesity on Ras protein expression and activity. To determine the effect of Ras on inflammation induced by bacterial endotoxin LPS and proinflammatory cytokines TNF-α or IL-1β, the chemical inhibitor lonafarnib (total Ras inhibitor) and siRNA (siKRAS and siHRAS) were used. Total Ras protein expression together with combined K-Ras and H-Ras activity was significantly increased in the placenta of obese pregnant women and when stimulated with LPS, IL-1β, or TNF-α. Lonafarnib significantly suppressed LPS-, IL-1β-, or TNF-α-induced IL-6, IL-8, MCP-1, and GRO-α expression and secretion in placental tissue. Primary trophoblast cells transfected with siKRAS or siHRAS demonstrated only K-Ras silencing significantly decreased IL-1β-, TNF-α-, or LPS-induced IL-6, IL-8, and MCP-1 expression and secretion. Furthermore, siKRAS significantly reduced downstream ERK-1/2 activation induced by LPS. In trophoblast cells, ERK-1/2 signalling is required for IL-6, IL-8, MCP-1, and GRO-α secretion. These studies implicate a role for K-Ras in regulating inflammation in human placenta. Suppressing overactive placental K-Ras function may prevent adverse fetal outcomes complicated by maternal obesity.
Collapse
|
11
|
Wei X, Zhou J, Hong L, Xu Z, Zhao H, Wu X, Chen J. Hint1 expression inhibits proliferation and promotes radiosensitivity of human SGC7901 gastric cancer cells. Oncol Lett 2018; 16:2135-2142. [PMID: 30008911 PMCID: PMC6036515 DOI: 10.3892/ol.2018.8900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer is a prevalent, malignant tumor that frequently escapes treatment. Histidine triad nucleotide-binding protein 1 (Hint1) is a haploinsufficient tumor suppressor gene which contributes to intercellular communication, helps to regulate cell proliferation and survival, and is frequently underexpressed in gastric cancer. To examine the involvement of Hint1 in gastric cancer, small interfering RNA was used to knock down Hint1 expression in the human gastric cancer cell line SGC-7901. The data revealed that Hint1 inhibited cell proliferation, reduced radiation-induced DNA damage repair and caused G1 phase arrest, which increased the radiosensitivity of gastric cancer cells. Further mechanistic studies revealed a novel function of Hint1, whereby it acted as a negative regulator of extracellular signal-regulated kinase. These results demonstrated the critical function of Hint1 in the biology of human gastric cancer. Acting as a tumor growth suppressor and a radiosensitive agent, this protein is a potential biomarker and may be an attractive target for specific therapeutic interventions against gastric cancer.
Collapse
Affiliation(s)
- Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Lingzhi Hong
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Huanyu Zhao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiaomin Wu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
12
|
Abstract
Abnormally activated RAS proteins are the main oncogenic driver that governs the functioning of major signaling pathways involved in the initiation and development of human malignancies. Mutations in RAS genes and or its regulators, most frequent in human cancers, are the main force for incessant RAS activation and associated pathological conditions including cancer. In general, RAS is the main upstream regulator of the highly conserved signaling mechanisms associated with a plethora of important cellular activities vital for normal homeostasis. Mutated or the oncogenic RAS aberrantly activates a web of interconnected signaling pathways including RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase), phosphoinositide-3 kinase (PI3K)/AKT (protein kinase B), protein kinase C (PKC) and ral guanine nucleotide dissociation stimulator (RALGDS), etc., leading to uncontrolled transcriptional expression and reprogramming in the functioning of a range of nuclear and cytosolic effectors critically associated with the hallmarks of carcinogenesis. This review highlights the recent literature on how oncogenic RAS negatively use its signaling web in deregulating the expression and functioning of various effector molecules in the pathogenesis of human malignancies.
Collapse
|
13
|
Yeramian A, García V, Bergadà L, Domingo M, Santacana M, Valls J, Martinez-Alonso M, Carceller JA, Cussac AL, Dolcet X, Matias-Guiu X. Bioluminescence Imaging to Monitor the Effects of the Hsp90 Inhibitor NVP-AUY922 on NF-κB Pathway in Endometrial Cancer. Mol Imaging Biol 2017; 18:545-56. [PMID: 26604096 DOI: 10.1007/s11307-015-0907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE In this study, we first aimed to evaluate the effects in vitro and in vivo, of the Hsp90 inhibitor NVP-AUY922, in endometrial cancer (EC). We also aimed to track nuclear factor kappa B (NF-κB) signalling, a key pathway involved in endometrial carcinogenesis and to check whether NVP-AUY922 treatment modulates it both in vitro and in vivo. PROCEDURES I n vitro effects of NVP-AUY922 on EC cell growth and the signalling pathways were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic assays, Western Blot and luciferase assay. NVP-AUY922 effect on Ishikawa (IK) xenograft growth was evaluated in vivo, and NF-κB activity was monitored using bioluminescence imaging. RESULTS NVP-AUY922 inhibited the growth of three endometrial cell lines tested in vitro. In vivo, NVP-AUY922 reduced tumour growth of 47 % (p = 0.042) compared to control condition. Moreover, the bioluminescence signal of the tumours harbouring IK NF-κB-LUC cells was significantly reduced in NVP-AUY922-treated animals compared to untreated ones. CONCLUSIONS NVP-AUY922 reduced EC tumour growth and NF-κB signalling both in vitro and in vivo. As therapeutic resistance of EC remains a challenge for oncologists nowadays, we think that NVP-AUY922 represents a valid alternative to conventional chemotherapy, and we believe that this approach for assessing and tracking the activation of NF-κB pathway may be of therapeutic benefit.
Collapse
Affiliation(s)
- Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain.
| | - Virginia García
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Laura Bergadà
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Mónica Domingo
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Joan Valls
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Montserrat Martinez-Alonso
- Biostatistics Unit, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - José-Antonio Carceller
- Department of Radiation Oncology, Hospital Universitari Arnau de Vilanova, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Antonio Llombart Cussac
- Department of Oncology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB-Lleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, Dept de Ciències Mèdiques Bàsiques, Institut de Recerca Biomedica de Lleida, Univeristy of Lleida, IRBLleida, Avenida Rovira Roure, No. 80, 25198, Lleida, Spain
| |
Collapse
|
14
|
Hai ping P, Feng bo T, Li L, Nan hui Y, Hong Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch Biochem Biophys 2016; 604:20-6. [DOI: 10.1016/j.abb.2016.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022]
|
15
|
Zhang J, Song H, Lu Y, Chen H, Jiang S, Li L. Effects of estradiol on VEGF and bFGF by Akt in endometrial cancer cells are mediated through the NF-κB pathway. Oncol Rep 2016; 36:705-14. [DOI: 10.3892/or.2016.4888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/02/2016] [Indexed: 11/06/2022] Open
|
16
|
K-Ras stabilization by estrogen via PKCδ is involved in endometrial tumorigenesis. Oncotarget 2016; 6:21328-40. [PMID: 26015399 PMCID: PMC4673268 DOI: 10.18632/oncotarget.4049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Estrogens are considered as a major risk factor of endometrial cancer. In this study, we identified a mechanism of tumorigenesis in which K-Ras protein is stabilized via estrogen signaling through the ER-α36 receptor. PKCδ was shown to stabilize K-Ras specifically via estrogen signaling. Estrogens stabilize K-Ras via inhibition of polyubiquitylation-dependent proteasomal degradation. Estrogen-induced cellular transformation was abolished by either K-Ras or PKCδ knockdown. The role of PKCδ in estrogen-induced tumorigenesis was confirmed in a mouse xenograft model by reduction of tumors after treatment with rottlerin, a PKCδ inhibitor. Finally, levels of PKCδ correlated with that of Ras in human endometrial tumor tissues. Stabilization of K-Ras by estrogen signaling involving PKCδ up-regulation provides a potential therapeutic approach for treatment of endometrial cancer.
Collapse
|
17
|
Bousquet MS, Ma JJ, Ratnayake R, Havre PA, Yao J, Dang NH, Paul VJ, Carney TJ, Dang LH, Luesch H. Multidimensional Screening Platform for Simultaneously Targeting Oncogenic KRAS and Hypoxia-Inducible Factors Pathways in Colorectal Cancer. ACS Chem Biol 2016; 11:1322-31. [PMID: 26938486 DOI: 10.1021/acschembio.5b00860] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colorectal cancer (CRC) is a genetic disease, due to progressive accumulation of mutations in oncogenes and tumor suppressor genes. Large scale genomic sequencing projects revealed >100 mutations in any individual CRC. Many of these mutations are likely passenger mutations, and fewer are driver mutations. Of these, activating mutations in RAS proteins are essential for cancer initiation, progression, and/or resistance to therapy. There has been significant interest in developing drugs targeting mutated cancer gene products or downstream signaling pathways. Due to the number of mutations involved and inherent redundancy in intracellular signaling, drugs targeting one mutation or pathway have been either ineffective or led to rapid resistance. We have devised a strategy whereby multiple cancer pathways may be simultaneously targeted for drug discovery. For proof-of-concept, we targeted the oncogenic KRAS and HIF pathways, since oncogenic KRAS has been shown to be required for cancer initiation and progression, and HIF-1α and HIF-2α are induced by the majority of mutated oncogenes and tumor suppressor genes in CRC. We have generated isogenic cell lines defective in either oncogenic KRAS or both HIF-1α and HIF-2α and subjected them to multiplex genomic, siRNA, and high-throughput small molecule screening. We have identified potential drug targets and compounds for preclinical and clinical development. Screening of our marine natural product library led to the rediscovery of the microtubule agent dolastatin 10 and the class I histone deacetylase (HDAC) inhibitor largazole to inhibit oncogenic KRAS and HIF pathways. Largazole was further validated as an antiangiogenic agent in a HIF-dependent manner in human cells and in vivo in zebrafish using a genetic model with activated HIF. Our general strategy, coupling functional genomics with drug susceptibility or chemical-genetic interaction screens, enables the identification of potential drug targets and candidates with requisite selectivity. Molecules prioritized in this manner can easily be validated in suitable zebrafish models due to the genetic tractability of the system. Our multidimensional platform with cellular and organismal components can be extended to larger scale multiplex screens that include other mutations and pathways.
Collapse
Affiliation(s)
- Michelle S. Bousquet
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| | - Jia Jia Ma
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| | | | | | | | | | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Thomas J. Carney
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
- Lee Kong
Chian School of Medicine, Nanyang Technological University, 59 Nanyang
Drive, 636921, Singapore
| | | | - Hendrik Luesch
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| |
Collapse
|
18
|
Gu D, Schlotman KE, Xie J. Deciphering the role of hedgehog signaling in pancreatic cancer. J Biomed Res 2016; 30:353-360. [PMID: 27346466 PMCID: PMC5044707 DOI: 10.7555/jbr.30.20150107] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/11/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.
Collapse
Affiliation(s)
- Dongsheng Gu
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Kelly E Schlotman
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
19
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
20
|
Li J, Lei H, Xu Y, Tao ZZ. miR-512-5p suppresses tumor growth by targeting hTERT in telomerase positive head and neck squamous cell carcinoma in vitro and in vivo. PLoS One 2015; 10:e0135265. [PMID: 26258591 PMCID: PMC4530866 DOI: 10.1371/journal.pone.0135265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/20/2015] [Indexed: 12/14/2022] Open
Abstract
Telomerase activation has very important implications for head and neck squamous cell carcinoma (HNSCC), but the regulatory mechanisms of telomerase in HNSCC remain unclear. In our present study, we found that miR-512-5P was markedly downregulated in telomerase-positive HNSCC cell lines. Both in vitro and in vivo assays revealed that miR-512-5P mimic attenuated HNSCC cell proliferation, and tumor growth in nude mice, which exerts its tumor suppressor function through elevated apoptosis, inhibition of the telomerase activity, decrease of telomere-binding proteins and shortening of telomere length by human telomerase reverse transcriptase (hTERT) downregulation. Furthermore, the dual-luciferase reporter gene assay results demonstrated that hTERT was a direct target of miR-512-5P. We conclude that the frequently miR-512-5P overexpression can regulate hTERT and function as a tumor suppressor in HNSCC. Therefore, miR-512-5P may serve as a potential therapeutic agent for miR-based HNSCC therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Han Lei
- Hubei key laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yong Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ze-zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- * E-mail:
| |
Collapse
|
21
|
Zhou X, Li H, Chai Y, Liu Z. Leptin Inhibits the Apoptosis of Endometrial Carcinoma Cells Through Activation of the Nuclear Factor κB-inducing Kinase/IκB Kinase Pathway. Int J Gynecol Cancer 2015; 25:770-8. [PMID: 25811593 DOI: 10.1097/igc.0000000000000440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Leptin has recently been shown to affect cancer proliferation and invasion through multiple pathways. In the current study, we investigated the role of leptin in endometrial carcinoma (EC) apoptosis and the underlying mechanisms of action. METHODS Immunoprecipitation was used to characterize leptin receptor expression in EC lines. The levels of nuclear factor κB-inducing kinase (NIK)/IκB kinase (IKK) signaling proteins were analyzed using Western blot. In addition, Western blot and immunohistochemical analyses were used to detect the hierarchy of these proteins in EC tissues. Quantitative cancer cell apoptosis assay was performed using flow cytometry after incubation of cells with Annexin-V/fluorescein/propidium iodide, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide or staining of cancer cell DNA fragments with propidium iodide. RESULTS Leptin induced a decrease in apoptosis in Ishikawa and HEC-1A EC cells, partly through nuclear factor κB activation via phosphorylation in the IKK/NIK pathway. Inhibition of IKK or NIK partly neutralized this suppression of apoptosis. Expression levels of leptin receptors (Ob-Rs) and IKK/NIK signaling proteins were higher in poorly and moderately differentiated than in well-differentiated EC tissues, and higher Ob-Rs expression was observed in clinical stages II and III, compared with stage I EC (P = 0.012). High serum leptin concentration displayed mild correlation (r = 0.23, P = 0.035) with degree of EC differentiation. CONCLUSIONS Leptin inhibits EC apoptosis partly through activation of the NIK/IKK pathway in vitro. Ob-Rb overexpression seems to facilitate EC progression.
Collapse
Affiliation(s)
- Xi Zhou
- *Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; and †Department of Obstetrics and Gynecology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | |
Collapse
|
22
|
Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling. Anticancer Drugs 2014; 25:270-81. [PMID: 24296733 DOI: 10.1097/cad.0000000000000054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter.
Collapse
|
23
|
Zhang J, Wu H, Li P, Zhao Y, Liu M, Tang H. NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells. J Transl Med 2014; 12:155. [PMID: 24885472 PMCID: PMC4084577 DOI: 10.1186/1479-5876-12-155] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/20/2014] [Indexed: 02/08/2023] Open
Abstract
Background Nuclear factor-κB (NF-κB) induces a variety of biological processes through transcriptional gene control whose products are components in various signaling pathways. MicroRNAs are a small endogenous non-coding RNAs that regulate gene expression and are involved in tumorigenesis. Using human cervical cancer cell lines, this study aimed to investigate whether NF-κB could regulate miR-130a expression and the functions and targets of miR-130a. Methods We used the HeLa and C33A cervical cancer cell lines that were transfected with NF-κB or miR-130a overexpression plasmids to evaluate their effects on cell growth. We utilized bioinformatics, a fluorescent reporter assay, qRT-PCR and Western blotting to identify downstream target genes. Results In HeLa and C33A cells, NF-κB and miR-130a overexpression promoted cell growth, but genetic knockdowns suppressed growth. TNF-α was identified as a target of miR-130a by binding in a 3’-untranslated region (3’UTR) EGFP reporter assay and by Western blot analysis. Furthermore, low TNF-α concentrations stimulated NF-κB activity and then induced miR-130a expression, and TNF-α overexpression rescued the effects of miR-130a on cervical cancer cells. Conclusions Our findings indicate that TNF-α can activate NF-κB activity, which can reduce miR-130a expression, and that miR-130a targets and downregulates TNF-α expression. Hence, we shed light on the negative feedback regulation of NF-κB/miR-130a/TNF-α/NF-κB in cervical cancer and may provide insight into the carcinogenesis of cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Tang
- Tianjin Life Science Research Center and School of Basic Medical Sciences, Tianjin Medical University, No, 22 Qi-Xiang-Tai Road, Tianjin 300070, China.
| |
Collapse
|
24
|
Saldanha SN, Tollefsbol TO. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis. J Cell Physiol 2014; 229:393-406. [PMID: 24105793 DOI: 10.1002/jcp.24466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell, and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review.
Collapse
Affiliation(s)
- Sabita N Saldanha
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Biological Sciences, Alabama State University, Montgomery, Alabama
| | | |
Collapse
|
25
|
Faloppa CC, Baiocchi G, Cunha IW, Fregnani JHTG, Osorio CABT, Fukazawa EM, Kumagai LY, Badiglian-Filho L, Pinto GLS, Soares FA. NF-κB and COX-2 expression in nonmalignant endometrial lesions and cancer. Am J Clin Pathol 2014; 141:196-203. [PMID: 24436266 DOI: 10.1309/ajcpv7u7pghoweqg] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To examine the immunohistochemical expression of cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) in benign endometrial polyps (EPs), endometrial hyperplasia (EH), endometrial intraepithelial neoplasia (EIN), and endometrioid endometrial cancer (EC). METHODS The immunohistochemical expression of COX-2 and NF-κB was performed using an Aperio Scanscope XT automated system in 218 patients with endometrioid EC and 107 patients with nonmalignant endometrial lesions: 53 with benign EPs, 37 with EH, and 17 with EIN. RESULTS COX-2 and NF-κB p50 expression were significantly lower in EC compared with nonmalignant lesions. We observed significant decreased NF-κB p65 expression in EC vs EPs (P < .001) and EH (P = .014) as well as in EIN vs. EPs (P = .01). For patients with EC, COX-2 correlated positively with NF-κB p65 and NF-κB p50 (P < .001). Grade 3 tumors had a higher mean expression of NF-κB p65 (P = .03). NF-κB p50, NF-κB p65, and COX-2 expression had no impact on survival. CONCLUSIONS We conclude that COX-2 and NF-κB expression are lower in EC compared with nonmalignant endometrial lesions. COX-2 and NF-κB expression have no prognostic value in EC.
Collapse
Affiliation(s)
| | - Glauco Baiocchi
- Departments of Gynecologic Oncology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | | | | | - Elza Mieko Fukazawa
- Departments of Gynecologic Oncology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | - Lillian Yuri Kumagai
- Departments of Gynecologic Oncology, AC Camargo Cancer Hospital, São Paulo, Brazil
| | | | | | | |
Collapse
|
26
|
Feng F, Wu Y, Zhang S, Liu Y, Qin L, Wu Y, Yan Z, Wu W. Macrophages facilitate coal tar pitch extract-induced tumorigenic transformation of human bronchial epithelial cells mediated by NF-κB. PLoS One 2012; 7:e51690. [PMID: 23227270 PMCID: PMC3515562 DOI: 10.1371/journal.pone.0051690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Chronic respiratory inflammation has been associated with lung cancer. Tumor-associated macrophages (TAMs) play a critical role in the formation of inflammation microenvironment. We sought to characterize the role of TAMs in coal tar pitch extract (CTPE)-induced tumorigenic transformation of human bronchial epithelial cells and the underlying mechanisms. METHODS The expression of TAMs-specific CD68 in lung cancer tissues and paired adjacent tissues from cancer patients was determined using immunostaining. Co-culture of human bronchial epithelial cells (BEAS-2B) and macrophage-like THP-1 cells were conducted to evaluate the promotive effect of macrophages on CTPE-induced tumorigenic transformation of BEAS-2B cells. BEAS-2B cells were first treated with 2.4 µg/mL CTPE for 72 hours. After removal of CTPE, the cells were continuously cultured either with or without THP-1 cells and passaged using trypsin-EDTA. Alterations of cell cycle, karyotype, colony formation in soft agar and tumor xenograft growth in nude mice of BEAS-2B cells at passages 10, 20 and 30, indicative of tumorigenecity, were determined, respectively. In addition, mRNA and protein levels of NF-κB in BEAS-2B cells were measured with RT-PCR and western blot, respectively. B(a)P was used as the positive control. RESULTS The over-expression of TAMs-specific CD68 around lung tumor tissues was detected and associated with lung cancer progression. The tumorigenic alterations of BEAS-2B cells including increase in cell growth rate, number of cells with aneuploidy, clonogenicity in soft agar, and tumor size in nude mice in vivo occurred at passage 10, becoming significant at passages 20 and 30 of the co-culture following CTPE removal in compared to BEAS-2B cells alone. In addition, the expression levels of NF-κB in BEAS-2B cells were positively correlated to the malignancy of BEAS-2B cells under different conditions of treatment. CONCLUSION The presence of macrophages facilitated CTPE-induced tumorigenic transformation of BEAS-2B cells, which may be mediated by NF-κB.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kakehashi A, Tago Y, Yoshida M, Sokuza Y, Wei M, Fukushima S, Wanibuchi H. Hormonally Active Doses of Isoflavone Aglycones Promote Mammary and Endometrial Carcinogenesis and Alter the Molecular Tumor Environment in Donryu Rats. Toxicol Sci 2012; 126:39-51. [DOI: 10.1093/toxsci/kfs016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|