1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Fahim SA, ElZohairy YA, Moustafa RI. Favipiravir, an antiviral drug, in combination with tamoxifen exerts synergistic effect in tamoxifen-resistant breast cancer cells via hTERT inhibition. Sci Rep 2024; 14:1844. [PMID: 38246945 PMCID: PMC10800350 DOI: 10.1038/s41598-024-51977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Tamoxifen (TAM) is one of the most successful treatments for breast cancer; however, TAM resistance continues to be a significant barrier. TAM resistance has been reported to be associated with increased expression of human telomerase reverse transcriptase (hTERT). This enzyme shares structural similarity with RNA-dependent RNA polymerase (RdRp) enzyme of RNA viruses, suggesting that RdRp inhibitors may also inhibit hTERT. Favipiravir (FAV) is an antiviral drug that inhibits RdRp of RNA viruses. Thus, we propose that FAV may also elicit an antitumor effect by suppressing hTERT. This study aimed to investigate the effect of FAV and TAM on TAM-resistant breast cancer (TAMR-1). The cell viabilities were determined. The levels of CDK1/ hTERT, in addition to regulators of hTERT-targeted signaling pathways were measured. Apoptosis, migration, and cell cycle distribution were also determined. Our data revealed that the combination of TAM and FAV suppressed cell proliferation synergistically (CI < 1) and resulted in a significant change in cell migration and apoptosis. Indeed, this was associated with reduced levels of hTERT and CDK1 and shift in the cell cycle distribution. Our findings suggest that the TAM/FAV combination exhibits synergistic effects against TAMR-1 human breast cancer cells by targeting hTERT.
Collapse
Affiliation(s)
- Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, 6th of October, P.O. Box 12577, Giza, Egypt.
| | - Yehia A ElZohairy
- School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, P.O. Box 12577, Giza, Egypt
| | - Rehab I Moustafa
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- Microbiology Department, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, P.O. Box 12577, Giza, Egypt
| |
Collapse
|
3
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
4
|
Mohebifar H, Sabbaghian A, Farazmandfar T, Golalipour M. Construction and analysis of pseudogene-related ceRNA network in breast cancer. Sci Rep 2023; 13:21874. [PMID: 38072995 PMCID: PMC10711010 DOI: 10.1038/s41598-023-49110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women. The present study explored the potential role of pseudogenes in BC via construction and analysis of a competing endogenous RNA (ceRNA) network through a three-step process. First, we screened differentially expressed genes in nine BC datasets. Then the gene-pseudogenes pairs (nine hub genes) were selected according to the functional enrichment and correlation analysis. Second, the candidate hub genes and interacting miRNAs were used to construct the ceRNA network. Further analysis of the ceRNA network revealed a crucial ceRNA module with two genes-pseudogene pairs and two miRNAs. The in-depth analysis identified the GBP1/hsa-miR-30d-5p/GBP1P1 axis as a potential tumorigenic axis in BC patients. In the third step, the GBP1/hsa-miR-30d-5p/GBP1P1 axis expression level was assessed in 40 tumor/normal BC patients and MCF-7 cell lines. The expression of GBP1 and GBP1P1 was significantly higher in the tumor compared to the normal tissue. However, the expression of hsa-miR-30d-5p was lower in tumor samples. Then, we introduced the GBP1P1 pseudogene into the MCF-7 cell line to evaluate its effect on GBP1 and hsa-miR-30d-5p expression. As expected, the GBP1 level increased while the hsa-miR-30d-5p level decreased in the GBP1P1-overexprsssing cell line. In addition, the oncogenic properties of MCF-7 (cell viability, clonogenicity, and migration) were improved after GBP1P1 overexpression. In conclusion, we report a ceRNA network that may provide new insight into the role of pseudogenes in BC development.
Collapse
Affiliation(s)
- Hossein Mohebifar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Amir Sabbaghian
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Touraj Farazmandfar
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Shastkola Road, Falsafi Complex, Gorgān, 4934174611, Iran.
| |
Collapse
|
5
|
Assouline S, Gasiorek J, Bergeron J, Lambert C, Culjkovic-Kraljacic B, Cocolakis E, Zakaria C, Szlachtycz D, Yee K, Borden KLB. Molecular targeting of the UDP-glucuronosyltransferase enzymes in high-eukaryotic translation initiation factor 4E refractory/relapsed acute myeloid leukemia patients: a randomized phase II trial of vismodegib, ribavirin with or without decitabine. Haematologica 2023; 108:2946-2958. [PMID: 36951168 PMCID: PMC10620574 DOI: 10.3324/haematol.2023.282791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Drug resistance underpins poor outcomes in many malignancies including refractory and relapsed acute myeloid leukemia (R/R AML). Glucuronidation is a common mechanism of drug inactivation impacting many AML therapies, e.g., cytarabine, decitabine, azacytidine and venetoclax. In AML cells, the capacity for glucuronidation arises from increased production of the UDP-glucuronosyltransferase 1A (UGT1A) enzymes. UGT1A elevation was first observed in AML patients who relapsed after response to ribavirin, a drug used to target the eukaryotic translation initiation factor eIF4E, and subsequently in patients who relapsed on cytarabine. UGT1A elevation resulted from increased expression of the sonic-hedgehog transcription factor GLI1. Vismodegib inhibited GLI1, decreased UGT1A levels, reduced glucuronidation of ribavirin and cytarabine, and re-sensitized cells to these drugs. Here, we examined if UGT1A protein levels, and thus glucuronidation activity, were targetable in humans and if this corresponded to clinical response. We conducted a phase II trial using vismodegib with ribavirin, with or without decitabine, in largely heavily pre-treated patients with high-eIF4E AML. Pre-therapy molecular assessment of patients' blasts indicated highly elevated UGT1A levels relative to healthy volunteers. Among patients with partial response, blast response or prolonged stable disease, vismodegib reduced UGT1A levels, which corresponded to effective targeting of eIF4E by ribavirin. In all, our studies are the first to demonstrate that UGT1A protein, and thus glucuronidation, are targetable in humans. These studies pave the way for the development of therapies that impair glucuronidation, one of the most common drug deactivation modalities. Clinicaltrials.gov: NCT02073838.
Collapse
Affiliation(s)
- Sarit Assouline
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2.
| | - Jadwiga Gasiorek
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Julie Bergeron
- CEMTL installation Maisonneuve Rosemont, 5415 boul. de l'Assomption, Montreal H1T 2M4
| | - Caroline Lambert
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec
| | - Eftihia Cocolakis
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - Chadi Zakaria
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - David Szlachtycz
- Jewish General Hospital and McGill University 3755 Cote Ste Catherine, Montreal, Quebec H3T1E2
| | - Karen Yee
- Princess Margaret Cancer Centre, Division of Medical Oncology and Hematology, Toronto, Ontario
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec.
| |
Collapse
|
6
|
Zha HL, Chen W, Shi W, Liao YY. Inhibition of Eukaryotic Initiating Factor eIF4E Overcomes Abemaciclib Resistance in Gastric Cancer. Curr Med Sci 2023; 43:927-934. [PMID: 37752406 DOI: 10.1007/s11596-023-2789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/18/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Aberrant activating mutations in cyclin-dependent kinases 4 and 6 (CDK4/6) are common in various cancers, including gastroesophageal malignancies. Although CDK4/6 inhibitors, such as abemaciclib and palbociclib, have been approved for breast cancer treatment, their effectiveness as a monotherapy remains limited for gastroesophageal tumors. The present study explored the underlying mechanism of abemaciclib resistance. METHODS Abemaciclib-resistant gastric cancer cell lines were generated, and the phospho-eukaryotic translation initiation factor 4E (p-eIF4E) and eIF4E expression was compared between resistant and parental cell lines. In order to analyze the role of eIF4E in cell resistance, siRNA knockdown was employed. The effectiveness of ribavirin alone and its combination with abemaciclib was evaluated in the gastric cancer xenograft mouse model. RESULTS The upregulation of eIF4E was a common feature in gastric cancer cells exposed to prolonged abemaciclib treatment. Gastric cancer cells with increased eIF4E levels exhibited a better response to eIF4E inhibition, especially those that were resistant to abemaciclib. Ribavirin, which is an approved anti-viral drug, significantly improved the efficacy of abemaciclib, both in vitro and in vivo, by inhibiting eIF4E. Importantly, ribavirin effectively suppressed the abemaciclib-resistant gastric cancer growth in mice without causing toxicity. CONCLUSION These findings suggest that targeting eIF4E can enhance the abemaciclib treatment for gastric cancer, proposing the potential combination therapy of CDK4/6 inhibitors with ribavirin for advanced gastric cancer.
Collapse
Affiliation(s)
- Huo-Long Zha
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Shi
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Ying-Ying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
7
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Istomine R, Al-Aubodah TA, Alvarez F, Smith JA, Wagner C, Piccirillo CA. The eIF4EBP-eIF4E axis regulates CD4 + T cell differentiation through modulation of T cell activation and metabolism. iScience 2023; 26:106683. [PMID: 37187701 PMCID: PMC10176268 DOI: 10.1016/j.isci.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
CD4+ T cells are critical for adaptive immunity, differentiating into distinct effector and regulatory subsets. Although the transcriptional programs underlying their differentiation are known, recent research has highlighted the importance of mRNA translation in determining protein abundance. We previously conducted genome-wide analysis of translation in CD4+ T cells revealing distinct translational signatures distinguishing these subsets, identifying eIF4E as a central differentially translated transcript. As eIF4E is vital for eukaryotic translation, we examined how altered eIF4E activity affected T cell function using mice lacking eIF4E-binding proteins (BP-/-). BP-/- effector T cells showed elevated Th1 responses ex vivo and upon viral challenge with enhanced Th1 differentiation observed in vitro. This was accompanied by increased TCR activation and elevated glycolytic activity. This study highlights how regulating T cell-intrinsic eIF4E activity can influence T cell activation and differentiation, suggesting the eIF4EBP-eIF4E axis as a potential therapeutic target for controlling aberrant T cell responses.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Jacob A. Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
9
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
10
|
Ekaterina Z, Daria S, Lyubov G, Ekaterina M, Varvara M, Diana G, Andrey M, Ekaterina L. Synthetic 1,2,4-triazole-3-carboxamides Induce Cell Cycle Arrest and Apoptosis in Leukemia Cells. Curr Pharm Des 2023; 29:3478-3487. [PMID: 38083885 DOI: 10.2174/0113816128275084231202153602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND A number of studies demonstrate the efficacy of ribavirin against various cancer types in in vitro and in vivo models. However, ribavirin induces the development of multiple side effects, suggesting a high demand for ribavirin analogues with improved therapeutic indexes. OBJECTIVE This study was focused on the analysis of ribavirin, its aglycon 1,2,4-triazole-3-carboxamide, and several of its derivatives activities in blood cancer cells in vitro. METHODS Four 1,2,4-triazole-3-carboxamide derivatives were designed and synthesized. Antiproliferative effects were evaluated in chronic myeloid leukemia cells К562 and acute lymphoblastic leukemia cells CCRF-SB as well as in the cells of whole blood mononuclear fraction of healthy volunteers by cell counting using the trypan blue exclusion method. Cell cycle distribution and apoptosis under the influence of the compounds were analyzed by flow cytometry with PI staining, and then apoptosis data were confirmed by Western blot analysis for PARP1 and caspase-3 cleavage. RESULTS We demonstrated the significant antiproliferative effect of 5-(tetrahydropyran-2-yl)-1,2,4-triazole-3- carboxamide and 1-(tetrahydropyran-2-yl)-1,2,4-triazol-3-carboxamide in leukemia cell lines in vitro in comparison to non-transformed monocytes, providing the rationale for further studies of 1,2,4-triazole-3-carboxamide derivatives as anti-leukemia drugs. CONCLUSION These results implied that the 1,2,4-triazole-3-carboxamide derivatives exhibited their antiproliferative activities by induction of cell cycle arrest. Consequently, 5-(tetrahydropyran-2-yl)-1,2,4-triazole-3-carboxamide and 1-(tetrahydrofuran-2-yl)-1,2,4-triazol-3-carboxamide may present antimetabolites with potential anticancer efficacy.
Collapse
Affiliation(s)
- Zhidkova Ekaterina
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Stepanycheva Daria
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow 119571, Russia
| | - Grebenkina Lyubov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow 119571, Russia
| | - Mikhina Ekaterina
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow 119571, Russia
| | - Maksimova Varvara
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Grigoreva Diana
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
| | - Matveev Andrey
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow 119571, Russia
| | - Lesovaya Ekaterina
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol'tnaya St., Ryazan 390026, Russia
- Laboratory of Single Cell Biology, Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
11
|
Borden KL. Cancer cells hijack RNA processing to rewrite the message. Biochem Soc Trans 2022; 50:1447-1456. [PMID: 36282006 PMCID: PMC9704515 DOI: 10.1042/bst20220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Typically, cancer is thought to arise due to DNA mutations, dysregulated transcription and/or aberrant signalling. Recently, it has become clear that dysregulated mRNA processing, mRNA export and translation also contribute to malignancy. RNA processing events result in major modifications to the physical nature of mRNAs such as the addition of the methyl-7-guanosine cap, the removal of introns and the addition of polyA tails. mRNA processing is a critical determinant for the protein-coding capacity of mRNAs since these physical changes impact the efficiency by which a given transcript can be exported to the cytoplasm and translated into protein. While many of these mRNA metabolism steps were considered constitutive housekeeping activities, they are now known to be highly regulated with combinatorial and multiplicative impacts i.e. one event will influence the capacity to undergo others. Furthermore, alternative splicing and/or cleavage and polyadenylation can produce transcripts with alternative messages and new functionalities. The coordinated processing of groups of functionally related RNAs can potently re-wire signalling pathways, modulate survival pathways and even re-structure the cell. As postulated by the RNA regulon model, combinatorial regulation of these groups is achieved by the presence of shared cis-acting elements (known as USER codes) which recruit machinery for processing, export or translation. In all, dysregulated RNA metabolism in cancer gives rise to an altered proteome that in turn elicits biological responses related to malignancy. Studies of these events in cancer revealed new mechanisms underpinning malignancies and unearthed novel therapeutic opportunities. In all, cancer cells coopt RNA processing, export and translation to support their oncogenic activity.
Collapse
Affiliation(s)
- Katherine L.B. Borden
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
12
|
Way H, Roh J, Venteicher B, Chandra S, Thomas AA. Synthesis of ribavirin 1,2,3- and 1,2,4-triazolyl analogs with changes at the amide and cytotoxicity in breast cancer cell lines. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:38-64. [PMID: 35929908 DOI: 10.1080/15257770.2022.2107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We report the synthesis and cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells of novel 1,2,3- and 1,2,4-triazolyl analogs of ribavirin. We modified ribavirin's carboxamide moiety to test the effects of lipophilic groups. 1-β-D-Ribofuranosyl-1H-1,2,3-triazoles were prepared using Click Chemistry, whereas an unprecedented application of a prior 1,2,4-triazole ring synthesis was used for 1-β-D-ribofuranosyl-1H-1,2,4-triazole analogs. Though cytotoxicity was mediocre and there was no correlation with lipophilicity, we discovered that a structurally similar concentrative nucleoside transporter 2 (CNT2) inhibitor was modestly cytotoxic (MCF-7 IC50 of 42 µM). These syntheses could be used to efficiently investigate variation in the nucleobase.
Collapse
Affiliation(s)
- Hannah Way
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Joshua Roh
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Brooklynn Venteicher
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| |
Collapse
|
13
|
Culjkovic-Kraljacic B, Borden KLB. Subcellular Fractionation Suitable for Studies of RNA and Protein Trafficking. Methods Mol Biol 2022; 2502:91-104. [PMID: 35412233 DOI: 10.1007/978-1-0716-2337-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nuclear pore complex is the major conduit for trafficking between the nucleus and cytoplasm. Nuclear import and export of both proteins and RNAs represent important functional steps for many biological processes. One of the major means to study NPC activity and the nuclear and cytoplasmic distribution of proteins and RNAs is through biochemical fractionation. Here, we describe detailed methods to generate high quality nuclear and cytoplasmic fractions simultaneously capturing RNA and proteins which can be used subsequently for a wide array of biochemical characterizations including proteomics and next generation sequencings.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
14
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
15
|
Lehman SL, Wilson ED, Camphausen K, Tofilon PJ. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. Int J Mol Sci 2021; 22:ijms221910664. [PMID: 34639005 PMCID: PMC8508945 DOI: 10.3390/ijms221910664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Towards improving the efficacy of radiotherapy, one approach is to target the molecules and processes mediating cellular radioresponse. Along these lines, translational control of gene expression has been established as a fundamental component of cellular radioresponse, which suggests that the molecules participating in this process (i.e., the translational machinery) can serve as determinants of radiosensitivity. Moreover, the proteins comprising the translational machinery are often overexpressed in tumor cells suggesting the potential for tumor specific radiosensitization. Studies to date have shown that inhibiting proteins involved in translation initiation, the rate-limiting step in translation, specifically the three members of the eIF4F cap binding complex eIF4E, eIF4G, and eIF4A as well as the cap binding regulatory kinases mTOR and Mnk1/2, results in the radiosensitization of tumor cells. Because ribosomes are required for translation initiation, inhibiting ribosome biogenesis also appears to be a strategy for radiosensitization. In general, the radiosensitization induced by targeting the translation initiation machinery involves inhibition of DNA repair, which appears to be the consequence of a reduced expression of proteins critical to radioresponse. The availability of clinically relevant inhibitors of this component of the translational machinery suggests opportunities to extend this approach to radiosensitization to patient care.
Collapse
|
16
|
PE38-based gene therapy of HER2-positive breast cancer stem cells via VHH-redirected polyamidoamine dendrimers. Sci Rep 2021; 11:15517. [PMID: 34330942 PMCID: PMC8324773 DOI: 10.1038/s41598-021-93972-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Breast cancer stem cells (BCSCs) resist conventional treatments and cause tumor recurrence. Almost 25% of breast cancers overexpress human epidermal growth factor receptor-2 (HER2). Here we developed a novel multi-targeted nanosystem to specifically eradicate HER2+ BCSCs. Plasmids containing CXCR1 promoter, PE38 toxin, and 5′UTR of the basic fibroblast growth factor-2 (bFGF 5'UTR) were constructed. Polyamidoamine (PAMAM) dendrimers functionalized with anti-HER2 VHHs were used for plasmid delivery. Stem cell proportion of MDA-MB-231, MDA-MB-231/HER2+ and MCF-10A were evaluated by mammosphere formation assay. Hanging drop technique was used to produce spheroids. The uptake, gene expression, and killing efficacy of the multi-targeted nanosystem were evaluated in both monolayer and spheroid culture. MDA-MB-231/HER2+ had higher ability to form mammosphere compared to MCF-10A. Our multi-targeted nanosystem efficiently inhibited the mammosphere formation of MDA-MB-231 and MDA-MB-231/HER2+ cells, while it was unable to prevent the mammosphere formation of MCF-10A. In the hanging drop culture, MDA-MB-231/HER+ generated compact well-rounded spheroids, while MCF-10A failed to form compact cellular masses. The multi-targeted nanosystem showed much better uptake, higher PE38 expression, and subsequent cell death in MDA-MB-231/HER2+ compared to MCF-10A. However, the efficacy of our targeted toxin gene therapy was lower in MDA-MB-231/HER2+ spheroids compared with that in the monolayer culture. the combination of the cell surface, transcriptional, and translational targeting increased the stringency of the treatment.
Collapse
|
17
|
Pellegrini M. Accurate prediction of breast cancer survival through coherent voting networks with gene expression profiling. Sci Rep 2021; 11:14645. [PMID: 34282236 PMCID: PMC8289832 DOI: 10.1038/s41598-021-94243-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
For a patient affected by breast cancer, after tumor removal, it is necessary to decide which adjuvant therapy is able to prevent tumor relapse and formation of metastases. A prediction of the outcome of adjuvant therapy tailored for the patient is hard, due to the heterogeneous nature of the disease. We devised a methodology for predicting 5-years survival based on the new machine learning paradigm of coherent voting networks, with improved accuracy over state-of-the-art prediction methods. The 'coherent voting communities' metaphor provides a certificate justifying the survival prediction for an individual patient, thus facilitating its acceptability in practice, in the vein of explainable Artificial Intelligence. The method we propose is quite flexible and applicable to other types of cancer.
Collapse
Affiliation(s)
- Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, 56124, Pisa, Italy.
| |
Collapse
|
18
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
19
|
Romagnoli A, Maracci C, D’Agostino M, Teana AL, Marino DD. Targeting mTOR and eIF4E: a feasible scenario in ovarian cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:596-606. [PMID: 35582305 PMCID: PMC9094073 DOI: 10.20517/cdr.2021.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor stability and high toxicity in vivo. This minireview explores the possibility of targeting mTOR and eIF4E proteins, thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies and specific inhibitors that have been shown to have an effect on other kinds of cancers.
Collapse
Affiliation(s)
- Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona 60131, Italy
| | - Cristina Maracci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Mattia D’Agostino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona 60131, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|
20
|
Huq S, Kannapadi NV, Casaos J, Lott T, Felder R, Serra R, Gorelick NL, Ruiz-Cardozo MA, Ding AS, Cecia A, Medikonda R, Ehresman J, Brem H, Skuli N, Tyler BM. Preclinical efficacy of ribavirin in SHH and group 3 medulloblastoma. J Neurosurg Pediatr 2021; 27:482-488. [PMID: 33545678 DOI: 10.3171/2020.8.peds20561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma. METHODS Multiple in vitro assays were performed using human ONS-76 (a primitive SHH model) and D425 (an aggressive group 3 model) cells. The impacts of ribavirin on cellular growth, death, migration, and invasion were quantified using proliferation and Cell Counting Kit-8 (CCK-8) assays, flow cytometry with annexin V (AnnV) staining, scratch wound assays, and Matrigel invasion chambers, respectively. Survival following daily ribavirin treatment (100 mg/kg) was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. RESULTS Compared to controls, ribavirin treatment led to a significant reduction in medulloblastoma cell growth (ONS-76 proliferation assay, p = 0.0001; D425 CCK-8 assay, p < 0.0001) and a significant increase in cell death (flow cytometry for AnnV, ONS-76, p = 0.0010; D425, p = 0.0284). In ONS-76 cells, compared to controls, ribavirin significantly decreased cell migration and invasion (Matrigel invasion chamber assay, p = 0.0012). In vivo, ribavirin significantly extended survival in an aggressive group 3 medulloblastoma mouse model compared to vehicle-treated controls (p = 0.0004). CONCLUSIONS The authors demonstrate that ribavirin, a clinically used drug known to inhibit eIF4E and EZH2, has significant antitumor effects in multiple preclinical models of medulloblastoma, including an aggressive group 3 animal model. Ribavirin may represent a promising targeted therapeutic in medulloblastoma.
Collapse
|
21
|
The Nuclear Pore Complex and mRNA Export in Cancer. Cancers (Basel) 2020; 13:cancers13010042. [PMID: 33375634 PMCID: PMC7796397 DOI: 10.3390/cancers13010042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Export of mRNAs from the nucleus to the cytoplasm is a key regulatory step in the expression of proteins. mRNAs are transported through the nuclear pore complex (NPC). Export of mRNAs responds to a variety of cellular stimuli and stresses. Revelations of the specific effects elicited by NPC components and associated co-factors provides a molecular basis for the export of selected RNAs, independent of bulk mRNA export. Aberrant RNA export has been observed in primary human cancer specimens. These cargo RNAs encode factors involved in nearly all facets of malignancy. Indeed, the NPC components involved in RNA export as well as the RNA export machinery can be found to be dysregulated, mutated, or impacted by chromosomal translocations in cancer. The basic mechanisms associated with RNA export with relation to export machinery and relevant NPC components are described. Therapeutic strategies targeting this machinery in clinical trials is also discussed. These findings firmly position RNA export as a targetable feature of cancer along with transcription and translation.
Collapse
|
22
|
Hao P, Yu J, Ward R, Liu Y, Hao Q, An S, Xu T. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal 2020; 18:175. [PMID: 33148274 PMCID: PMC7640403 DOI: 10.1186/s12964-020-00607-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaojiao Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingming South Road, Kunming, 650500, China
| | - Richard Ward
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Yin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiao Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
23
|
Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc Natl Acad Sci U S A 2020; 117:25560-25570. [PMID: 32989144 DOI: 10.1073/pnas.1912772117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulated global mRNA translation is an emerging feature of cancer cells. Oncogenic transformation in colorectal cancer (CRC) is driven by mutations in APC, KRAS, SMAD4, and TP53, known as the adenoma-carcinoma sequence (ACS). Here we introduce each of these driver mutations into intestinal organoids to show that they are modulators of global translational capacity in intestinal epithelial cells. Increased global translation resulting from loss of Apc expression was potentiated by the presence of oncogenic Kras G12D Knockdown of Smad4 further enhanced global translation efficiency and was associated with a lower 4E-BP1-to-eIF4E ratio. Quadruple mutant cells with additional P53 loss displayed the highest global translational capacity, paralleled by high proliferation and growth rates, indicating that the proteome is heavily geared toward cell division. Transcriptional reprogramming facilitating global translation included elevated ribogenesis and activation of mTORC1 signaling. Accordingly, interfering with the mTORC1/4E-BP/eIF4E axis inhibited the growth potential endowed by accumulation of multiple drivers. In conclusion, the ACS is characterized by a strongly altered global translational landscape in epithelial cells, exposing a therapeutic potential for direct targeting of the translational apparatus.
Collapse
|
24
|
Mangione W, Falls Z, Chopra G, Samudrala R. cando.py: Open Source Software for Predictive Bioanalytics of Large Scale Drug-Protein-Disease Data. J Chem Inf Model 2020; 60:4131-4136. [PMID: 32515949 PMCID: PMC8098009 DOI: 10.1021/acs.jcim.0c00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional drug discovery methods focus on optimizing the efficacy of a drug against a single biological target of interest for a specific disease. However, evidence supports the multitarget theory, i.e., drugs work by exerting their therapeutic effects via interaction with multiple biological targets, which have multiple phenotypic effects. Analytics of drug-protein interactions on a large proteomic scale provides insight into disease systems while also allowing for prediction of putative therapeutics against specific indications. We present a Python package for analysis of drug-proteome and drug-disease relationships implementing the Computational Analysis of Novel Drug Opportunities (CANDO) platform. The CANDO package allows for rapid drug similarity assessment, most notably via an in-house interaction scoring protocol where billions of drug-protein interactions are rapidly scored and the similarity of drug-proteome interaction signatures is calculated. The package also implements a variety of benchmarking protocols for shotgun drug discovery and repurposing, i.e., to determine how every known drug is related to every other in the context of the indications/diseases for which they are approved. Drug predictions are generated through consensus scoring of the most similar compounds to drugs known to treat a particular indication. Support for comparing and ranking novel chemical entities, as well as machine learning modules for both benchmarking and putative drug candidate prediction is also available. The CANDO Python package is available on GitHub at https://github.com/ram-compbio/CANDO, through the Conda Python package installer, and at http://compbio.org/software/.
Collapse
Affiliation(s)
- William Mangione
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| | - Zackary Falls
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| | - Gaurav Chopra
- Department of Chemistry, Purdue Institute for Drug Discovery, Integrated Data Science Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ram Samudrala
- Department of Biomedical Informatics, University at Buffalo, Buffalo, New York 14120, United States
| |
Collapse
|
25
|
Impact of Eukaryotic Translation Initiation Factors on Breast Cancer: Still Much to Investigate. Cancers (Basel) 2020; 12:cancers12071984. [PMID: 32708122 PMCID: PMC7409344 DOI: 10.3390/cancers12071984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Breast carcinoma (BC) remains one of the most serious health problems. It is a heterogeneous entity, and mainly classified according to receptor status for estrogen (ER), progesterone (PR) and egf (HER2/Neu), as well as the proliferation marker ki67. Gene expression in eukaryotes is regulated at the level of both gene transcription and translation, where eukaryotic initiation factors (eIFs) are key regulators of protein biosynthesis. Aberrant translation results in an altered cellular proteome, and this clearly effects cell growth supporting tumorigenesis. The relationship between various eIFs and BC entities, as well as the related regulatory mechanisms, has meanwhile become a focus of scientific interest. Here, we give an overview on the current research state of eIF function, focusing on BC.
Collapse
|
26
|
Inhibition of eIF4E signaling by ribavirin selectively targets lung cancer and angiogenesis. Biochem Biophys Res Commun 2020; 529:519-525. [PMID: 32736668 DOI: 10.1016/j.bbrc.2020.05.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022]
Abstract
Although the introduction of immune- and targeted-therapy has improved the clinical response and outcomes, lung cancer remains a therapeutic challenge. Developing new therapeutics is necessary to improve the treatment of lung cancer. Here, we show that ribavirin, a clinically available anti-viral drug, is an attractive candidate for lung cancer treatment. We show that ribavirin is active against a panel of lung cancer cell lines regardless of molecular and cellular heterogeneity. Notably, the effective concentrations of ribavirin are clinically achievable, display minimal toxicity to normal cells and synergistic effect with paclitaxel. Its potent efficacy and synergism with chemotherapy on cancer cell, and minimal toxicity on normal cells are observed in lung xenograft mouse model. Ribavirin is also an angiogenesis inhibitor as it inhibits capillary network formation, growth and survival of human lung tumor-associated endothelial cell (HLT-EC). The mechanism studies demonstrate that ribavirin acts on lung cancer cells via suppressing eIF4E and mTOR signaling, leading to the subsequent inhibition of eIF4E-mediated protein translation. Our work suggests that ribavirin has advantage than many anti-cancer agents by targeting both tumor cells and angiogenesis. Our work also highlights the therapeutic potential of ribavirin for the treatment of lung cancer.
Collapse
|
27
|
Huq S, Casaos J, Serra R, Peters M, Xia Y, Ding AS, Ehresman J, Kedda JN, Morales M, Gorelick NL, Zhao T, Ishida W, Perdomo-Pantoja A, Cecia A, Ji C, Suk I, Sidransky D, Brait M, Brem H, Skuli N, Tyler B. Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma. Mol Cancer Ther 2020; 19:1797-1808. [PMID: 32606016 DOI: 10.1158/1535-7163.mct-19-0572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/09/2019] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma with a proclivity for systemic dissemination, leading many patients to present with advanced stage disease and fail available treatments. There is a notable lack of targeted therapies for NPC, despite working knowledge of multiple proteins with integral roles in NPC cancer biology. These proteins include EZH2, Snail, eIF4E, and IMPDH, which are all overexpressed in NPC and correlated with poor prognosis. These proteins are known to be modulated by ribavirin, an FDA-approved hepatitis C antiviral that has recently been repurposed as a promising therapeutic in several solid and hematologic malignancies. Here, we investigated the potential of ribavirin as a targeted anticancer agent in five human NPC cell lines. Using cellular growth assays, flow cytometry, BrdU cell proliferation assays, scratch wound assays, and invasion assays, we show in vitro that ribavirin decreases NPC cellular proliferation, migration, and invasion and promotes cell-cycle arrest and cell death. Modulation of EZH2, Snail, eIF4E, IMPDH, mTOR, and cyclin D1 were observed in Western blots and enzymatic activity assays in response to ribavirin treatment. As monotherapy, ribavirin reduced flank tumor growth in multiple NPC xenograft models in vivo Most importantly, we demonstrate that ribavirin enhanced the effects of radiotherapy, a central component of NPC treatment, both in vitro and in vivo Our work suggests that NPC responds to ribavirin-mediated EZH2, Snail, eIF4E, IMPDH, and mTOR changes and positions ribavirin for clinical evaluation as a potential addition to our NPC treatment armamentarium.
Collapse
Affiliation(s)
- Sakibul Huq
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua Casaos
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Riccardo Serra
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Peters
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuanxuan Xia
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andy S Ding
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jayanidhi N Kedda
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manuel Morales
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noah L Gorelick
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tianna Zhao
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wataru Ishida
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander Perdomo-Pantoja
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arba Cecia
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chenchen Ji
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariana Brait
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Biomedical Engineering, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicolas Skuli
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betty Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
28
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
29
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
30
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2020; 68:279-290. [PMID: 32437876 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
31
|
Prutkov AN, Chudinov MV, Matveev AV, Grebenkina LE, Akimov MG, Berezovskaya YV. 5-alkylvinyl-1,2,4-triazole nucleosides: Synthesis and biological evaluation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:943-963. [PMID: 32126895 DOI: 10.1080/15257770.2020.1723624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Some 5-substituted ribavirin analogues have a high antiviral and anticancer activity, but their mechanisms of action are obviously not the same as their parent compound. The SAR studies performed on 3 (5)-substituted 1,2,4-triazole nucleosides have shown a high dependency between the structure of the 3 (5)-substituent and the level of antiviral/anticancer activity. The most active substances of the row contain coplanar with the 1,2,4-triazole ring aromatic substituent which is connected by a rigid ethynyl bond. However, the compounds with the trans-vinyl linker also had antiviral activity. We decided to study the antitumor activity of ribavirin analogues with alkyl/aryl vinyl substituents in the 5th position of the 1,2,4-triazole ring. Protected nucleoside analogues with various 5-alkylvinyl substituents were obtained by Horner-Wadsworth-Emmons reaction from the common precursor and converted to the nucleosides. Arylvinyl nucleosides were synthesised according the reported procedures. All compounds did not show significant antiproliferative activity on several tumour cell lines. Coplanar aromatic motif in the 5-substituent for the anticancer activity manifestation was confirmed.
Collapse
Affiliation(s)
- Alexander N Prutkov
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Mikhail V Chudinov
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Andrey V Matveev
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Lyubov E Grebenkina
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Mikhail G Akimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia V Berezovskaya
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
32
|
Sabat N, Migianu-Griffoni E, Tudela T, Lecouvey M, Kellouche S, Carreiras F, Gallier F, Uziel J, Lubin-Germain N. Synthesis and antitumor activities investigation of a C-nucleoside analogue of ribavirin. Eur J Med Chem 2019; 188:112009. [PMID: 31883488 DOI: 10.1016/j.ejmech.2019.112009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 02/05/2023]
Abstract
SRO-91 is a non-natural ribofuranosyl-1,2,3-triazole C-nucleoside obtained by a synthetic sequence involving a C-alkynyl glycosylation mediated by metallic indium and a Huisgen cycloaddition for the construction of the triazole. Its structure is close to the one of ribavirin, a drug presenting a broad-spectrum against viral infections. SRO-91 antitumor activities were investigated on 9 strains of tumor cells and IC50 of the order of 1 μM were obtained on A431 epidermoid carcinoma cells and B16F10 skin melanoma cells. In addition, studies of ovarian tumor cell inhibitions show an interesting activity in regard to the need for new drugs for this pathology. Finally, cytotoxicity and mouse toxicity studies reveal a favorable therapeutic index for SRO-91.
Collapse
Affiliation(s)
- Nazarii Sabat
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise, France
| | - Evelyne Migianu-Griffoni
- Université; Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, 74, rue Marcel, Cachin, F-93017, Bobigny, France
| | - Tiffany Tudela
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Marc Lecouvey
- Université; Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structure, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), CNRS UMR 7244, 74, rue Marcel, Cachin, F-93017, Bobigny, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Florian Gallier
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise, France
| | - Jacques Uziel
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise, France
| | - Nadège Lubin-Germain
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise, France.
| |
Collapse
|
33
|
Zhang HH, Li R, Li YJ, Yu XX, Sun QN, Li AY, Kong Y. eIF4E‑related miR‑320a and miR‑340‑5p inhibit endometrial carcinoma cell metastatic capability by preventing TGF‑β1‑induced epithelial‑mesenchymal transition. Oncol Rep 2019; 43:447-460. [PMID: 31894279 PMCID: PMC6967095 DOI: 10.3892/or.2019.7437] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer (EC) is a common form of cancer in women. Metastasis is the main cause of EC treatment failure. Eukaryotic translation initiation factor 4E (eIF4E) is an oncogene that is overexpressed in a variety of malignancies and their distant metastases. The present study analyzed microarray data from the Oncomine database and revealed that high eIF4E expression was associated with poor prognosis and high pathological grade of EC. The expression of eIF4E was higher in EC tissues compared with in adjacent normal tissues. In addition, microRNA (miR)-320a and miR-340-5p expression levels were downregulated in EC tissues compared with those in adjacent normal tissues, which suggested that these microRNAs may serve as EC tumor suppressor genes. miR-320a and miR-340-5p could bind to the 3′-UTR of eIF4E mRNA, thus downregulating the expression of eIF4E and phosphorylated (p)-eIF4E in EC cells. Overexpression of miR-320a or miR-340-5p effectively suppressed HEC-1A cell migration and invasion. The downregulation of eIF4E and p-eIF4E following miR-320a or miR-340-5p transfection reduced the invasiveness and metastatic capability of EC cells in a manner associated with decreased expression of matrix metallopeptidase (MMP)-3 and MMP-9. In addition, one of the effects of transforming growth factor β1 (TGF-β1), which is to induce the phosphorylation of eIF4E, was suppressed by miR-320a and miR-340-5p overexpression. These two microRNAs also attenuated the features of TGF-β1-induced epithelial-mesenchymal transition (EMT). In conclusion, the results of the present study demonstrated that eIF4E was upregulated in EC, whereas miR-320a and miR-340-5p were downregulated in EC compared with adjacent normal tissues. In vitro, miR-320a and miR-340-5p inhibited the migratory capability of EC cells by downregulating MMP-3 and MMP-9 and prevented TGF-β1-induced EMT through p-eIF4E.
Collapse
Affiliation(s)
- Han-Han Zhang
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ran Li
- Department of Oncology, Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xin-Xin Yu
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qian-Nan Sun
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ao-Ying Li
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ying Kong
- Core Laboratory Glycobiol and Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
34
|
Wambecke A, Laurent-Issartel C, Leroy-Dudal J, Giffard F, Cosson F, Lubin-Germain N, Uziel J, Kellouche S, Carreiras F. Evaluation of the potential of a new ribavirin analog impairing the dissemination of ovarian cancer cells. PLoS One 2019; 14:e0225860. [PMID: 31825993 PMCID: PMC6905583 DOI: 10.1371/journal.pone.0225860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancers are insidious pathologies that give a poor prognosis due to their late discovery and the increasing emergence of chemoresistance. Development of small pharmacological anticancer molecules remains a major challenge. Ribavirin, usually used in the treatment of hepatitis C virus infections and more recently few cancers, has been a suggestion. However, Ribavirin has many side-effects, suggesting that the synthesis of analogs might be more appropriate. We have investigated the effect of a Ribavirin analog, SRO-91, on cancer cell behavioral characteristics considered as some of the hallmarks of cancer. Two human ovarian adenocarcinoma cell lines (SKOV3 and IGROV1) and normal cells (mesothelial and fibroblasts) have been used to compare the effects of SRO-91 with those of Ribavirin on cell behavior underlying tumor cell dissemination. SRO-91, like Ribavirin, inhibits proliferation, migration, clonogenicity and spheroids formation of cancer cells. Unlike Ribavirin, SRO-91 is preferentially toxic to cancer compared with normal cells. An in vitro physiologically relevant model showed that SRO-91, like Ribavirin or cisplatin, inhibits cancer cell implantation onto peritoneal mesothelium. In conclusion, SRO-91 analog effects on tumor dissemination and its safety regarding non-cancerous (normal) cells are encouraging findings a promising drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Anaïs Wambecke
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, France
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Esplanade de la Paix, Caen, France
| | - Carine Laurent-Issartel
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, France
| | - Florence Giffard
- Normandie University, UNICAEN, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Axis (Biology and Innovative Therapeutics for Ovarian Cancers), Esplanade de la Paix, Caen, France
| | - Fanny Cosson
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, mail Gay-Lussac, Cergy-pontoise, France
| | - Nadège Lubin-Germain
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, mail Gay-Lussac, Cergy-pontoise, France
| | - Jacques Uziel
- Laboratoire de Chimie Biologique, University of Cergy-Pontoise, mail Gay-Lussac, Cergy-pontoise, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, ERRMECe (EA1391), Institut des Matériaux, I-MAT (FD4122), University of Cergy-Pontoise, MIR, rue Descartes, France
| |
Collapse
|
35
|
Kim HJ. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules 2019; 9:biom9110665. [PMID: 31671902 PMCID: PMC6921038 DOI: 10.3390/biom9110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translation of mRNA is an important process that controls cell behavior and gene regulation because proteins are the functional molecules that determine cell types and function. Cancer develops as a result of genetic mutations, which lead to the production of abnormal proteins and the dysregulation of translation, which in turn, leads to aberrant protein synthesis. In addition, the machinery that is involved in protein synthesis plays critical roles in stem cell fate determination. In the current review, recent advances in the understanding of translational control, especially translational initiation in cancer development and stem cell fate control, are described. Therapeutic targets of mRNA translation such as eIF4E, 4EBP, and eIF2, for cancer treatment or stem cell fate regulation are reviewed. Upstream signaling pathways that regulate and affect translation initiation were introduced. It is important to regulate the expression of protein for normal cell behavior and development. mRNA translation initiation is a key step to regulate protein synthesis, therefore, identifying and targeting molecules that are critical for protein synthesis is necessary and beneficial to develop cancer therapeutics and stem cells fate regulation.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
36
|
Moradian C, Rahbarizadeh F. Targeted Toxin Gene Therapy Of Breast Cancer Stem Cells Using CXCR1 Promoter And bFGF 5'UTR. Onco Targets Ther 2019; 12:8809-8820. [PMID: 31695436 PMCID: PMC6821057 DOI: 10.2147/ott.s221223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer stem cells (BCSCs) are cells with a higher ability to metastasis and resistance to conventional treatments. They have a phenotype of (CD44high/CD24low) and the unlimited ability for proliferation. Development of strategies to target the BCSC population may lead to the establishment of more effective cancer therapies. Pseudomonas exotoxin A (PE) is a potent cytotoxic protein. CXCR1 promoter provides BCSC and HER2 specificity on transcription level. 5′UTR of the basic fibroblast growth factor-2 (bFGF 5ʹUTR) provides tumor specificity on translation level. Here, we utilized a mutant form of PE encoding DNA “PE38”, CXCR1 promoter and bFGF 5ʹUTR to target BCSCs. Methods The stemness of SK-BR-3, MDA-MB-231 and MCF10A cell lines were evaluated based on the expression of the CD44high/CD24low stem cell signature and the ability to form mammospheres. Then, the cell lines were transfected with constructs encoding luciferase/PE38 under the control of the CMV/CXCR1 promoter with or without bFGF 5′UTR. Luciferase protein expression was evaluated using dual-luciferase reporter assay. PE38 transcript expression was measured by real-time PCR, and the cytotoxic effect of PE38 protein expression was determined by MTT assay. Results The percentage of CD44high/CD24low population did not correlate to mammosphere forming efficiency (MFE). Given that the percentage of CD44 high/CD24 low is not a conclusive BCSC profile, we based our work on the mammosphere assay. However, in comparison with MCF10A, the two tumorigenic cell lines had higher MFE, probably due to their higher BCSC content. Reporter assay and real-time PCR results demonstrated that CXCR1 promoter combined with bFGF 5ʹUTR increased BCSC-specific gene expression. Meanwhile, tightly regulated expression of PE38 using these two gene regulatory elements resulted in high levels of cell death in the two tumorigenic cell lines while having little toxicity toward normal MCF10A. Conclusion Our data show that PE38, CXCR1 promoter and bFGF 5ʹUTR in combination can be considered as a promising tool for killer gene therapy of breast cancer.
Collapse
Affiliation(s)
- Cobra Moradian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
37
|
Anti-Tumor Potential of IMP Dehydrogenase Inhibitors: A Century-Long Story. Cancers (Basel) 2019; 11:cancers11091346. [PMID: 31514446 PMCID: PMC6770829 DOI: 10.3390/cancers11091346] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/15/2023] Open
Abstract
The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis and fundamental for energy metabolism. Although de novo purine nucleotide biosynthesis is increased in highly proliferating cells, such as malignant tumors, it is not clear if this is merely a secondary manifestation of increased cell proliferation. Suggestive of a direct causative effect includes evidence that, in some cancer types, the rate-limiting enzyme in de novo GTP biosynthesis, inosine monophosphate dehydrogenase (IMPDH), is upregulated and that the IMPDH inhibitor, mycophenolic acid (MPA), possesses anti-tumor activity. However, historically, enthusiasm for employing IMPDH inhibitors in cancer treatment has been mitigated by their adverse effects at high treatment doses and variable response. Recent advances in our understanding of the mechanistic role of IMPDH in tumorigenesis and cancer progression, as well as the development of IMPDH inhibitors with selective actions on GTP synthesis, have prompted a reappraisal of targeting this enzyme for anti-cancer treatment. In this review, we summarize the history of IMPDH inhibitors, the development of new inhibitors as anti-cancer drugs, and future directions and strategies to overcome existing challenges.
Collapse
|
38
|
Casaos J, Gorelick NL, Huq S, Choi J, Xia Y, Serra R, Felder R, Lott T, Kast RE, Suk I, Brem H, Tyler B, Skuli N. The Use of Ribavirin as an Anticancer Therapeutic: Will It Go Viral? Mol Cancer Ther 2019; 18:1185-1194. [DOI: 10.1158/1535-7163.mct-18-0666] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/25/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
|
39
|
Qi NN, Tian S, Li X, Wang FL, Liu B. Up-regulation of microRNA-496 suppresses proliferation, invasion, migration and in vivo tumorigenicity of human osteosarcoma cells by targeting eIF4E. Biochimie 2019; 163:1-11. [PMID: 30998968 DOI: 10.1016/j.biochi.2019.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Osteosarcoma is an aggressive bone tumor characterized by a high level of genetic instability and recurring DNA deletions and amplifications. This study aims to investigate how microRNA-496 (miR-496) affects proliferation, invasion, and migration of human osteosarcoma (OS) cells and in vivo tumorigenicity by targeting eukaryotic translation initiation factor 4E (eIF4E). Microarray-based gene expression profiling involving OS was used in order to identify differentially expressed genes. After that, the interaction between miR-496 expression and OS patients' survival rate was determined. The expression pattern of miR-496 and eIF4E was determined in OS tissues and cells, and their potential relationship was further analyzed by using the dual luciferase reporter gene assay. With the purpose of identifying the functional role miR-496 in OS, cell proliferation, migration, and invasion were measured in cells treated with miR-496 mimic or inhibitor. A nude mouse model was constructed in order to investigate the regulatory effects of miR-496 on tumor growth in vivo by regulating eIF4E. OS cells exhibited a down-regulated expression of miR-496 and an up-regulated expression of eIF4E. miR-496 expression was positively correlated to OS patients' survival rate. Bioinformatics analysis suggested eIF4E would be a direct target of miR-496, and the expression of eIF4E was inhibited by overexpression of miR-496. miR-496 elevation was found to exert suppressive effects on OS cell proliferation, migration and invasion in vitro and tumor growth in vivo, with the effects being reversed using miR-496 depletion. Altogether, the above findings support a conclusion that miR-496 could work as a tumor suppressor in OS through down-regulation of eIF4E. This study may provide a novel target for treatment of OS.
Collapse
Affiliation(s)
- Ni-Nan Qi
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Shuo Tian
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Xin Li
- Operating Theater, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Fu-Li Wang
- The Third Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China
| | - Bin Liu
- The Second Department of Orthopedics, The Fifth Hospital of Harbin, Harbin, 150040, Heilongjiang Province, PR China.
| |
Collapse
|
40
|
Suppression of oncogenic protein translation via targeting eukaryotic translation initiation factor 4E overcomes chemo-resistance in nasopharyngeal carcinoma. Biochem Biophys Res Commun 2019; 512:902-907. [PMID: 30929914 DOI: 10.1016/j.bbrc.2019.03.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Abstract
Resistance to adjuvant chemotherapy remains therapeutic challenge in nasopharyngeal carcinoma (NPC). In this work, we demonstrate that targeting eukaryotic translation initiation factor 4E (eIF4E) is a potential sensitizing strategy to overcome chemoresistance in NPC. We observe the aberrant activation of eIF4E and translational upregulation of eIF4E-regulated oncogenes in NPC cell after pro-longed exposure of cisplatin. Functional analysis demonstrates that eIF4E depletion effectively inhibits proliferation and induces apoptosis in cisplatin-resistant NPC cells. Consistently, eIF4E knockdown significantly enhances cisplatin efficacy in cisplatin-sensitive cells. We identify eIF4E as a therapeutically actionable targets by showing that ribavirin, an anti-viral drug, phenocopies the effects of eIF4E knockdown in NPC. We further demonstrate that ribavirin acts on chemoresistant NPC cells through suppressing eIF4E activity and oncogenic protein translation. Using two independent NPC xenograft mouse models, we show that ribavirin not only is effective in inhibiting chemoresistant NPC growth but also significantly augments the inhibitory effects of cisplatin efficacy in vivo without causing significant toxicity in mice. Taken together, our work shows an activation of eIF4E-mediated growth and survival mechanisms in response to chemotherapy and suggests that inhibition of eIF4E activity represents an attractive sensitizing strategy for NPC treatment. Our findings also suggest that ribavirin is a useful addition to the treatment armamentarium for NPC.
Collapse
|
41
|
Ramalingam S, Ramamurthy VP, Gediya LK, Murigi FN, Purushottamachar P, Huang W, Choi EY, Zhang Y, Vasaitis TS, Kane MA, Lapidus RG, Njar VCO. The Novel Mnk1/2 Degrader and Apoptosis Inducer VNLG-152 Potently Inhibits TNBC Tumor Growth and Metastasis. Cancers (Basel) 2019; 11:cancers11030299. [PMID: 30832411 PMCID: PMC6468747 DOI: 10.3390/cancers11030299] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Currently, there are no effective therapies for patients with triple-negative breast cancer (TNBC), an aggressive and highly metastatic disease. Activation of eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (Mnk1/2) play a critical role in the development, progression and metastasis of TNBC. Herein, we undertook a comprehensive study to evaluate the activity of a first-in-class Mnk1/2 protein degraders, racemic VNLG-152R and its two enantiomers (VNLG-152E1 and VNLG-152E2) in in vitro and in vivo models of TNBC. These studies enabled us to identify racemic VNLG-152R as the most efficacious Mnk1/2 degrader, superior to its pure enantiomers. By targeting Mnk1/2 protein degradation (activity), VNLG-152R potently inhibited both Mnk-eIF4E and mTORC1 signaling pathways and strongly regulated downstream factors involved in cell cycle regulation, apoptosis, pro-inflammatory cytokines/chemokines secretion, epithelial-mesenchymal transition (EMT) and metastasis. Most importantly, orally bioavailable VNLG-152R exhibited remarkable antitumor (91 to 100% growth inhibition) and antimetastatic (~80% inhibition) activities against cell line and patient-derived TNBC xenograft models, with no apparent host toxicity. Collectively, these studies demonstrate that targeting Mnk-eIF4E/mTORC1 signaling with a potent Mnk1/2 degrader, VNLG-152R, is a novel therapeutic strategy that can be developed as monotherapy for the effective treatment of patients with primary/metastatic TNBC.
Collapse
Affiliation(s)
- Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Lalji K Gediya
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Francis N Murigi
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1559, USA.
| | - Eun Yong Choi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201-1559, USA.
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Tadas S Vasaitis
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, 207 Somerset Hall, Princess Anne, MD 21853, USA.
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1559, USA.
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
42
|
Jin J, Xiang W, Wu S, Wang M, Xiao M, Deng A. Targeting eIF4E signaling with ribavirin as a sensitizing strategy for ovarian cancer. Biochem Biophys Res Commun 2019; 510:580-586. [PMID: 30739792 DOI: 10.1016/j.bbrc.2019.01.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 12/20/2022]
Abstract
The essential roles of eukaryotic translation initiation factor 4E (eIF4E) have been shown in various cancers, including ovarian cancer. In this work, we demonstrate that eIF4E inhibition in ovarian cancer can be achieved by ribavirin, a FDA-approved antiviral drug. We show that ribavirin at clinically relevant doses significantly inhibits growth and survival in multiple ovarian cancer cell lines, regardless of morphological and molecular subtypes. Mechanistically, ribavirin suppresses Akt/mTOR and eIF4E/p70S6K signaling pathways in ovarian cancer cells. We confirm that eIF4E is the critical molecular target of ribavirin, and furthermore that this is dependent on phosphorylation at S209. Notably, using both in vitro cell culture system and in vivo xenograft mouse model, we show that the combination of ribavirin with cisplatin (standard of care for patients with ovarian cancer) results in significantly greater efficacy than cisplatin alone in ovarian cancer. Interestingly, the sensitivity to ribavirin varies among a panel of ovarian cancer cell lines, mostly likely due to their differential expression level of eIF4E and dependency to eIF4E inhibition. The differential expression level is further observed in ovarian cancer tissues, with the higher level of eIF4E in the majority of ovarian cancer tissues compared to normal ovary tissues. Our work suggests that eIF4E expression varies among ovarian cancer. Additionally, ribavirin is a useful addition to ovarian cancer treatment, particularly to those with high dependency on eIF4E.
Collapse
Affiliation(s)
- Jing Jin
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Xiang
- Department of Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Shuang Wu
- Department of Obstetrics and Gynecology, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Meifang Xiao
- Department of Clinical Laboratory, Hainan Provincial Women and Children Hospital, Haikou, Hainan Province, China
| | - Ali Deng
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
43
|
Benedetti S, Catalani S, Palma F, Canonico B, Luchetti F, Galati R, Papa S, Battistelli S. Acyclovir induces cell cycle perturbation and apoptosis in Jurkat leukemia cells, and enhances chemotherapeutic drug cytotoxicity. Life Sci 2018; 215:80-85. [DOI: 10.1016/j.lfs.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
44
|
Chen J, Xu X, Chen J. Clinically relevant concentration of anti-viral drug ribavirin selectively targets pediatric osteosarcoma and increases chemosensitivity. Biochem Biophys Res Commun 2018; 506:604-610. [PMID: 30454696 DOI: 10.1016/j.bbrc.2018.10.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 12/30/2022]
Abstract
Ribavirin is an anti-viral drug but has recently gained attention as a potential candidate for cancer treatment. In line with these efforts, our work is the first to demonstrate that ribavirin, at clinically relevant concentration, selectively targets pediatric osteosarcoma and increases chemosensitivity. Using preclinical osteosarcoma cell and xenograft models, we found that ribavirin is active against osteosarcoma bulk and subpopulations with highly proliferative and invasive properties via inhibiting growth, inducing apoptosis and suppressing colony formation. At the same concentrations, ribavirin either did not or affected human normal osteoblastic cell and fibroblast cells in a less extent than osteosarcoma cells. Notably, the combination of ribavirin with doxorubicin resulted in greater efficacy than single drug alone. The combination completely arrested the osteosarcoma growth in vivo throughout the whole duration of drug treatment. We further showed that ribavirin acted on osteosarcoma largely via targeting eIF4E. In addition to eIF4E, ribavirin also modulated phosphorylation of Erk and expression of EZH2 and Snail without affecting Akt and mTOR. Lastly, we found that eIF4E expression and phosphorylation were elevated in osteosarcoma compared to normal cells, which might explain the selective anti-osteosarcoma activity of ribavirin. eIF4E depletion mimics the inhibitory effects of ribavirin, further confirm that eIF4E is the essential target of ribavirin in osteosarcoma. Our work provides fundamental evidence of repurposing ribavirin for the treatment of osteosarcoma. Our findings also highlight the therapeutic value of inhibiting eIF4E in osteosarcoma.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Pediatric Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, People's Republic of China.
| | - Xiaoming Xu
- Department of Orthopedic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, People's Republic of China
| | - Junjun Chen
- Department of Spine Surgery, The Second Hospital of Jingzhou, Jingzhou, People's Republic of China
| |
Collapse
|
45
|
Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene 2018; 38:2241-2262. [PMID: 30478448 PMCID: PMC6440839 DOI: 10.1038/s41388-018-0567-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023]
Abstract
The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.
Collapse
|
46
|
Kai J, Wang Y, Xiong F, Wang S. Genetic and pharmacological inhibition of eIF4E effectively targets esophageal cancer cells and augments 5-FU's efficacy. J Thorac Dis 2018; 10:3983-3991. [PMID: 30174840 DOI: 10.21037/jtd.2018.06.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Aberrant activation of eIF4E is critically involved in the progression and chemoresistance of various cancers. Elevated expression of eIF4E has also been documented in human cancerous esophageal tissues. However, the role of eIF4E in esophageal cancer is unclear. Methods We analysed the levels of eIF4E expression and eIF4E function in a number of normal and cancerous esophageal cancer cell lines, and studied its underlying mechanism. Results We observed that eIF4E expression varies in different esophageal cancer cell lines but was significantly elevated in all tested esophageal cell lines as compared to the control cell lines. We demonstrated that eIF4E inhibition via genetic and pharmacological approaches inhibits cancer cell growth and survival. This inhibition also augments 5-flurouracil's (5-FU's) efficacy as demonstrated with both the in vitro esophageal cancer culture system and our in vivo xenograft mouse model. Of note, the sensitivity of esophageal cancer cells to ribavirin or eIF4E knockdown correlates well with the expression levels of eIF4E, demonstrating that esophageal cells with higher eIF4E expression are more sensitive to eIF4E inhibition. We further confirmed that the mechanism of action of ribavirin on esophageal cancer cells was through suppressing the Akt/mTOR/eIF4E and eIF4E-regulated pathways. Conclusions To our knowledge, our work is the first to demonstrate the multiple roles of eIF4E in esophageal cancer. eIF4E was shown to promote cancer cell growth and survival, and protected the cells from chemotherapy. Our work also demonstrated that ribavirin is an attractive candidate for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Jindan Kai
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan 430079, China
| | - Yiqiao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan 430072, China
| | - Fei Xiong
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan 430079, China
| | - Sheng Wang
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan 430079, China
| |
Collapse
|
47
|
Xi C, Wang L, Yu J, Ye H, Cao L, Gong Z. Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer. Biochem Biophys Res Commun 2018; 503:2286-2292. [PMID: 29959920 DOI: 10.1016/j.bbrc.2018.06.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023]
Abstract
Although cancer patients initially respond well to chemotherapy, they eventually develop resistance and relapse. In this work, we demonstrate that eIF4E-targeting therapy is a potential sensitizing strategy for overcoming chemoresistance and progression in cancer. We show that ribavirin, an anti-viral drug and pharmacological eIF4E inhibitor, effectively inhibits proliferation and decreases viability of paclitaxel-resistant cervical cancer and 5-FU-resistant colon cancer cells while is less toxic to human fibroblast cells. Importantly, oral administration of ribavirin significantly inhibits paclitaxel-resistant colon and 5-FU-resistant cervical cancer growth in xenograft mouse cancer model without causing significant toxicity in mice. Consistently, combination of ribavirin with paclitaxel or 5-FU sensitizes colon and cervical cancer cells to chemotherapeutic agents treatment in vitro and in vivo. We further confirm that the mechanism of the action of ribavirin in chemoresistant cancer cells is through suppressing eIF4E function. In addition, specific eIF4E knockdown via two independent siRNA mimics the effects of ribavirin in chemoresistant colon and cervical cancer cells. Cell cycle analysis indicate that ribavirin enhances the anti-proliferative effect of 5-FU by additionally arresting cells at G2/M phase via increasing cyclin B1, p-histone H3(Ser10) and Mad2 levels. Our work demonstrates that eIF4E inhibition using inhibitor or siRNA, either as single agent or in combination, could sensitize chemoresistant cancer cells to paclitaxel or 5-FU treatment and thereby improving the efficacy of chemodrug. Our findings demonstrate the therapeutic value of inhibiting eIF4E, particularly in chemoresistant cancers. Our findings also suggest ribavirin as a promising sensitizing drug for cancer treatment.
Collapse
Affiliation(s)
- Changlei Xi
- Department of Anorectal Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Ling Wang
- Department of Obstetrics and Gynaecology, Jingzhou Central Hospital, Jingzhou, China
| | - Jie Yu
- Department of Anorectal Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Hui Ye
- Department of Anorectal Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Longlei Cao
- Department of Anorectal Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Zhilin Gong
- Department of Anorectal Surgery, Jingzhou Central Hospital, Jingzhou, China.
| |
Collapse
|
48
|
Li F, Wang Q, Xiong X, Wang C, Liu X, Liao Z, Li K, Xie B, Lin Y. Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma. Cancer Manag Res 2018; 10:1553-1563. [PMID: 29942157 PMCID: PMC6007205 DOI: 10.2147/cmar.s158547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Eukaryotic translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Changes in eIF4E activity disproportionally affect the translation of a subset of oncogenic mRNAs in some cancers. Materials and methods We have assessed the expression levels of vascular endothelial growth factor C (VEGFC), eIF4E, eIF4E-binding proteins (4E-BPs) and phospho-4E-BP1 in clear cell renal carcinoma (ccRCC; n=101) using immunohistochemistry and analyzed the relevant mRNA levels and survival using online databases. Results The protein levels of VEGFC, an eIF4E-regulated gene, were upregulated in ccRCC tissues compared with adjacent normal renal tissues, indicating an enhanced eIF4E activity in ccRCC. The expression of eIF4E had no significant changes in ccRCC tissues. However, 4E-BP1 and phospho-4E-BP1 were found to be overexpressed in ccRCC tissues (P<0.05), and the high mRNA and protein levels of 4E-BP1 and phospho-4E-BP1 correlated with an unfavorable clinical outcome in ccRCC patients. Meanwhile, the mRNA expression of PIK3CD and PIK3CG were enhanced in ccRCC. Conclusion From these results, we could infer that the increase in eIF4E activity may be caused by the increased phospho-4E-BP1 level, which was probably due to the activation of phosphoinositide 3-kinase (PI3K) pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Pathology, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Qingshui Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoxue Xiong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Chenyi Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaohua Liu
- Department of Obstetrics, Anxi County Hospital, Anxi, Fujian Province, People's Republic of China
| | - Ziqiang Liao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Ke Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Bifeng Xie
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
49
|
Casaos J, Huq S, Lott T, Felder R, Choi J, Gorelick N, Peters M, Xia Y, Maxwell R, Zhao T, Ji C, Simon T, Sesen J, Scotland SJ, Kast RE, Rubens J, Raabe E, Eberhart CG, Jackson EM, Brem H, Tyler B, Skuli N. Ribavirin as a potential therapeutic for atypical teratoid/rhabdoid tumors. Oncotarget 2018; 9:8054-8067. [PMID: 29487714 PMCID: PMC5814281 DOI: 10.18632/oncotarget.23883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive, malignant tumors and are the most common malignant brain tumor in children under 6 months of age. Currently, there is no standard treatment for AT/RT. Recent studies have reported potential anti-tumoral properties of ribavirin, a guanosine analog and anti-viral molecule approved by the Food and Drug Administration for treatment of hepatitis C. We previously demonstrated that ribavirin inhibited glioma cell growth in vitro and in vivo. Based on these results and the fact that no pre-clinical model of ribavirin in AT/RT exists, we decided to investigate the effect of ribavirin on several human AT/RT cell lines (BT12, BT16, and BT37) both in vitro and in vivo. We provide evidence that ribavirin has a significant impact on AT/RT cell growth and increases cell cycle arrest and cell death, potentially through modulation of the eIF4E and/or EZH2 pathways. Interestingly, using scratch wound and transwell Boyden chamber assays, we observed that ribavirin also impairs AT/RT cell migration, invasion, and adhesion. Finally, we demonstrate that ribavirin significantly improves the survival of mice orthotopically implanted with BT12 cells. Our work establishes that ribavirin is effective against AT/RT by decreasing tumoral cell growth and dissemination and could represent a new therapeutic option for children with this deadly disease.
Collapse
Affiliation(s)
- Joshua Casaos
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sakibul Huq
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Tarik Lott
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Raphael Felder
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - John Choi
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Noah Gorelick
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Peters
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yuanxuan Xia
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Russell Maxwell
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Tianna Zhao
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chenchen Ji
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Thomas Simon
- Center for Vascular and Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Julie Sesen
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA.,INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, CRCT, 31100 Toulouse, France
| | - Sarah J Scotland
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | - Jeffrey Rubens
- Pathology Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Eric Raabe
- Pathology Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Charles G Eberhart
- Pathology Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Eric M Jackson
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Henry Brem
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Betty Tyler
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Nicolas Skuli
- Hunterian Neurosurgical Research Laboratory, Neurosurgery Department, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA.,INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, CRCT, 31100 Toulouse, France
| |
Collapse
|
50
|
Li X, Cong Y, Li W, Yan P, Zhao H. Thermodynamic modelling of solubility and preferential solvation for ribavirin (II) in co-solvent mixtures of (methanol, n-propanol, acetonitrile or 1,4-dioxane) + water. THE JOURNAL OF CHEMICAL THERMODYNAMICS 2017; 115:74-83. [PMID: 32287376 PMCID: PMC7126742 DOI: 10.1016/j.jct.2017.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 06/11/2023]
Abstract
The equilibrium solubility of ribavirin in solvent mixtures of {methanol (1) + water (2)}, {n-propanol (1) + water (2)}, {acetonitrile (1) + water (2)} and {1,4-dioxane (1) + water (2)} was determined experimentally by using isothermal dissolution equilibrium method within the temperature range from (278.15 to 318.15) K under atmospheric pressure (101.1 kPa). At the same temperature and mass fraction of methanol (n-propanol, acetonitrile or 1,4-dioxane), the mole fraction solubility of ribavirin is greater in (methanol + water) than in the other three solvent mixtures. The preferential solvation parameters were derived from their thermodynamic solution properties by means of the inverse Kirkwood-Buff integrals. The preferential solvation parameters for methanol, n-propanol, acetonitrile or 1,4-dioxane (δx 1,3) were negative in the four solvent mixtures with a very wide compositions, which indicated that ribavirin was preferentially solvated by water. Temperature had little effect on the preferential solvation magnitudes. The higher solvation by water could be explained in terms of the higher acidic behaviour of water interacting with the Lewis basic groups of the ribavirin. Besides, the solubility of the drugs was mathematically represented by using the Jouyban-Acree model, van't Hoff-Jouyban-Acree model and Apelblat-Jouyban-Acree model obtaining average relative deviations lower than 1.57% for correlative studies. It is noteworthy that the solubility data presented in this work contribute to expansion of the physicochemical information about the solubility of drugs in binary solvent mixtures and also allows the thermodynamic analysis of the respective dissolution and specific solvation process.
Collapse
Affiliation(s)
- Xinbao Li
- School of Environmental & Municipal Engineering, North China University of Water Resources and Electric Power, ZhengZhou, He'nan 450011, People's Republic of China
| | - Yang Cong
- College of Chemistry & Chemical Engineering, YangZhou University, YangZhou, Jiangsu 225002, People's Republic of China
| | - Wentian Li
- School of Environmental & Municipal Engineering, North China University of Water Resources and Electric Power, ZhengZhou, He'nan 450011, People's Republic of China
| | - Pengyao Yan
- School of Environmental & Municipal Engineering, North China University of Water Resources and Electric Power, ZhengZhou, He'nan 450011, People's Republic of China
| | - Hongkun Zhao
- College of Chemistry & Chemical Engineering, YangZhou University, YangZhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|