1
|
Chen H, Lee LJ, Vincent KM, Xu Z, Liu J, Zhang G, Nakevska Z, Smith D, Lee CH, Postovit LM, Fu Y. Transcription factor ZIC2 regulates the tumorigenic phenotypes associated with both bulk and cancer stem cells in epithelial ovarian cancer. Oncogene 2024; 43:1688-1700. [PMID: 38594503 DOI: 10.1038/s41388-024-03026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America. Current therapeutic regimens are ineffective against advanced EOC. A better understanding of the molecular mechanisms that regulate the biology of EOC will be a critical step toward developing more efficacious therapies against EOC. Herein, we demonstrate that elevated expression of transcription factor ZIC2 was associated with lower survival of EOC patients. Knockout of endogenous ZIC2 in EOC cells attenuated the tumorigenic phenotypes associated with both bulk and cancer stem cells in vitro and in vivo, indicating a pro-tumorigenic role of ZIC2 in EOC. On the other hand, however, overexpression of ZIC2 in EOC cells that do not express endogenous ZIC2 promoted cell migration and sphere formation, but inhibited cell growth and colony formation in vitro and tumor growth in vivo, indicating that the role for ZIC2 in EOC is context dependent. Our transcriptomic analysis showed that ZIC2-regulated genes were involved in multiple biological processes and signaling pathways associated with tumor progression. In conclusion, our findings reveal a context-dependent role for ZIC2 in regulating tumorigenic phenotypes in EOC, providing evidence that ZIC2 can be a potential therapeutic target for EOCs that express a high level of ZIC2.
Collapse
Affiliation(s)
- Huachen Chen
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Laura Jiyoung Lee
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Krista M Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhihua Xu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Guihua Zhang
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zorica Nakevska
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - DuPreez Smith
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cheng-Han Lee
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| | - YangXin Fu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Lv Z, Wang M, Hou H, Tang G, Xu H, Wang X, Li Y, Wang J, Liu M. FOXM1-regulated ZIC2 promotes the malignant phenotype of renal clear cell carcinoma by activating UBE2C/mTOR signaling pathway. Int J Biol Sci 2023; 19:3293-3306. [PMID: 37496990 PMCID: PMC10367559 DOI: 10.7150/ijbs.84067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
Background: As a transcription factor, Zic family member 2 (ZIC2) has been involved in more and more studies of tumorigenesis, which has been proved by our research team to be an effective prognostic marker for Pan-cancer. However, the prognosis, tumor promoting effect and regulatory mechanism of ZIC2 in clear cell renal cell carcinoma (ccRCC) are still unknown. Methods: The potential clinical significance of ZIC2 was evaluated by bioinformatics analysis using data from TCGA, GEO, and ArrayExpress data sets. WB and IHC were used to detect ZIC2 expression in tumors and adjacent tissues. CCK-8, EdU, colony formation, cell cycle, wound healing, transwell, subcutaneous xenograft, and lung metastasis models were used to detect the biological function of ZIC2. The regulatory mechanism of ZIC2 was confirmed by data of RNA-seq, ATAC-seq, MS-PCR, Chip-PCR, and luciferase reporter experiments. Results: ZIC2 was markedly upregulated and correlated with poor clinicopathological features in ccRCC. Knockdown of ZIC2 resulted in reduced cell proliferation, invasion, migration, induction of G2/M phase arrest, and reduced tumor formation and lung metastasis in nude mice. The opposite was observed after overexpression. Mechanistically, the high expression of ZIC2 is regulated by hypomethylation and high H3K4Me3 in the promoter region, as well as positive transcriptional regulation by FOXM1. And then, ZIC2 transcriptase-positively regulates UBE2C and activates AKT/mTOR signaling pathway to promote tumor malignant progression. Conclusion: This study reveals that FOXM1-ZIC2-UBE2C-mTOR signaling axis promotes the progression of ccRCC, which can be used as a prognostic indicator and potential therapeutic target.
Collapse
Affiliation(s)
- Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, P.R. China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
| | - Guyu Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Haozhe Xu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
| | - Yuan Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, P.R. China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, P.R. China
| |
Collapse
|
3
|
A Novel Machine Learning 13-Gene Signature: Improving Risk Analysis and Survival Prediction for Clear Cell Renal Cell Carcinoma Patients. Cancers (Basel) 2022; 14:cancers14092111. [PMID: 35565241 PMCID: PMC9103317 DOI: 10.3390/cancers14092111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Clear cell renal cell carcinoma is a type of kidney cancer which comprises the majority of all renal cell carcinomas. Many efforts have been made to identify biomarkers which could help healthcare professionals better treat this kind of cancer. With extensive public data available, we conducted a machine learning study to determine a gene signature that could indicate patient survival with high accuracy. Through the min-Redundancy and Max-Relevance algorithm we generated a signature of 13 genes highly correlated with patient outcomes. These findings reveal potential strategies for personalized medicine in the clinical practice. Abstract Patients with clear cell renal cell carcinoma (ccRCC) have poor survival outcomes, especially if it has metastasized. It is of paramount importance to identify biomarkers in genomic data that could help predict the aggressiveness of ccRCC and its resistance to drugs. Thus, we conducted a study with the aims of evaluating gene signatures and proposing a novel one with higher predictive power and generalization in comparison to the former signatures. Using ccRCC cohorts of the Cancer Genome Atlas (TCGA-KIRC) and International Cancer Genome Consortium (ICGC-RECA), we evaluated linear survival models of Cox regression with 14 signatures and six methods of feature selection, and performed functional analysis and differential gene expression approaches. In this study, we established a 13-gene signature (AR, AL353637.1, DPP6, FOXJ1, GNB3, HHLA2, IL4, LIMCH1, LINC01732, OTX1, SAA1, SEMA3G, ZIC2) whose expression levels are able to predict distinct outcomes of patients with ccRCC. Moreover, we performed a comparison between our signature and others from the literature. The best-performing gene signature was achieved using the ensemble method Min-Redundancy and Max-Relevance (mRMR). This signature comprises unique features in comparison to the others, such as generalization through different cohorts and being functionally enriched in significant pathways: Urothelial Carcinoma, Chronic Kidney disease, and Transitional cell carcinoma, Nephrolithiasis. From the 13 genes in our signature, eight are known to be correlated with ccRCC patient survival and four are immune-related. Our model showed a performance of 0.82 using the Receiver Operator Characteristic (ROC) Area Under Curve (AUC) metric and it generalized well between the cohorts. Our findings revealed two clusters of genes with high expression (SAA1, OTX1, ZIC2, LINC01732, GNB3 and IL4) and low expression (AL353637.1, AR, HHLA2, LIMCH1, SEMA3G, DPP6, and FOXJ1) which are both correlated with poor prognosis. This signature can potentially be used in clinical practice to support patient treatment care and follow-up.
Collapse
|
4
|
Kanıt N, Yalçın P, Erbayraktar S, Ozer E. Methylation Profiling of Specific Genes in Ependymomas. Turk Patoloji Derg 2022; 38:213-218. [PMID: 34854470 PMCID: PMC10508420 DOI: 10.5146/tjpath.2021.01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Ependymomas are neuroepithelial tumors of the central nervous system with heterogeneous biology and clinical course. The aim of the present study is to investigate the relationship between the methylation status and clinicopathological parameters in ependymomas. MATERIAL AND METHOD DNA methylation status of CDKN2A, RASSF1A, KLF4 and ZIC2 genes were quantitatively analyzed with pyrosequencing in 44 ependymoma tumor tissues. The relationship of methylation profiles with tumor subtype, histological grade and patient age was statistically analyzed. RESULTS DNA methylation analyses for CDKN2A revealed no difference in methylation levels. Of the 31 included samples for optimal ZIC2 methylation analysis, 10 were hypermethylated (32.3%) and this change was significantly found in the adult spinal ependymomas (p=0.01). KLF4 hypermethylation was observed in 6 of the overall included 35 samples (17.1%); however, there was no statistically significant relation of the methylation status with tumor subtype, histological grade or age group. RASSF1A hypermethylation was observed in overall 40 included samples with varying methylation levels. Higher levels of hypermethylation were significantly related to the grade 3 histology (p=0.01) and spinal ependymomas (p=0.006). The pediatric cases with grade 3 ependymomas and ependymomas of adulthood showed significantly increased RASSF1A hypermethylation levels (p < 0.001 and p=0.001, respectively). CONCLUSION DNA methylation changes are likely to have biological importance in ependymomas. Both ZIC2 and RASSF1A methylation status may be useful parameters in the subclassification of these tumors.
Collapse
Affiliation(s)
- Naz Kanıt
- Department of Molecular Medicine, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| | - Pelin Yalçın
- Department of Medical Biology, Dokuz Eylul University Institute of Health Sciences, Izmir, Turkey
| | - Serhat Erbayraktar
- Department of Neurosurgery, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Erdener Ozer
- Department of Pathology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
5
|
Gu H, Duan Z. Silencing of circDPP4 suppresses cell progression of human prostate cancer and enhances docetaxel cytotoxicity through regulating miR-564/ZIC2 axis. J Gene Med 2021; 24:e3403. [PMID: 34904327 DOI: 10.1002/jgm.3403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA derived from dipeptidyl peptidase 4 (circDPP4; ID: hsa_circ_0056881) is one top increased circRNA in prostate cancer (PC), and docetaxel (DTX)-based chemotherapy is the primary therapeutic choice for PC. However, its repertoire in PC development and chemoresistance remains to be documented. METHODS Expression of circDPP4, microRNA (miR)-564 and zinc finger of the cerebellum 2 (ZIC2) was detected by real-time quantitative PCR and western blotting; the direct interaction was validated by RNA pull-down assay, dual-luciferase reporter assay and RNA immunoprecipitation. Cell progression was measured by cell counting kit-8, colony formation assay, flow cytometry, Transwell assay, xenograft experiment, and immunohistochemistry. DTX cytotoxicity was confirmed by MTT cell viability assay. RESULTS Expression of circDPP4 is upregulated in PC tumors from 60 patients and PC cell lines, and higher circDPP4 might predict poor overall survival. Decreasing circDPP4 suppresses cell proliferation, colony formation, migration/invasion, and 50% inhibitory concentration of DTX in PC cells, and promotes apoptosis rate. Both overexpressing miR-564 and inhibiting ZIC2 could imitate those effects, while inhibiting miR-564 and restoring ZIC2 could separately counteract that. Mechanistically, circDPP4 functions as miR-564 sponge and regulates the expression of ZIC2, a target gene for miR-564. Tumor growth is retarded by silencing circDPP4, accompanied with elevated miR-564 and attenuated Ki-67 and ZIC2. CONCLUSION Blocking circDPP4 antagonizes cell progression of PC and contributes to in vitro DTX cytotoxicity via regulating miR-564/ZIC2 axis, at least. This study suggests circDPP4 as a potential biomarker and target for PC.
Collapse
Affiliation(s)
- Hao Gu
- Department of Urinary Surgery, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Zhongqi Duan
- Department of Urinary Surgery, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| |
Collapse
|
6
|
Liu A, Xie H, Li R, Ren L, Yang B, Dai L, Lu W, Liu B, Ren D, Zhang X, Chen Q, Huang Y, Shi K. Silencing ZIC2 abrogates tumorigenesis and anoikis resistance of non-small cell lung cancer cells by inhibiting Src/FAK signaling. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:195-208. [PMID: 34514099 PMCID: PMC8424131 DOI: 10.1016/j.omto.2021.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
Aberrant expression of the zinc finger protein (ZIC) family has been extensively reported to contribute to progression and metastasis in multiple human cancers. However, the functional roles and underlying mechanisms of ZIC2 in non-small cell lung cancer (NSCLC) are largely unknown. In this study, ZIC2 expression was evaluated using qRT-PCR, western blot, and immunohistochemistry, respectively. Animal experiments in vivo and functional assays in vitro were performed to investigate the role of ZIC2 in NSCLC. Luciferase assays and chromatin immunoprecipitation (ChIP) were carried out to explore the underlying target involved in the roles of ZIC2 in NSCLC. Here, we reported that ZIC2 was upregulated in NSCLC tissues, and high expression of ZIC2 predicted worse overall and progression-free survival of NSCLC patients. Silencing ZIC2 repressed tumorigenesis and reduced the anoikis resistance of NSCLC cells. Mechanical investigation further revealed that silencing ZIC2 transcriptionally inhibited Src expression and inactivated steroid receptor coactivator/focal adhesion kinase signaling, which further attenuated the anoikis resistance of NSCLC cells. Importantly, our results showed that the number of circulating tumor cells (CTCs) was positively correlated with ZIC2 expression in NSCLC patients. Collectively, our findings unravel a novel mechanism implicating ZIC2 in NSCLC, which will facilitate the development of anti-tumor strategies in NSCLC.
Collapse
Affiliation(s)
- Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huayan Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Longxia Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Lu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Baoyi Liu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Dong Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang 524023, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang 524023, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
- Corresponding author: Yanming Huang, Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China.
| | - Ke Shi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Corresponding author: Ke Shi, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
7
|
Cai P, Li G, Wu M, Zhang B, Bai H. ZIC2 upregulates lncRNA SNHG12 expression to promote endometrial cancer cell proliferation and migration by activating the Notch signaling pathway. Mol Med Rep 2021; 24:632. [PMID: 34278490 PMCID: PMC8281313 DOI: 10.3892/mmr.2021.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
It was previously reported that long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) promoted the proliferation, invasion and migration of endometrial cancer (EC) cells; however, the upstream underlying mechanism remains unclear. The present study aimed to determine the possible underlying mechanism of SNHG12 regulating EC. The Encyclopedia of RNA Interactomes database was used to analyze whether SNHG12 could bind to Zic family member 2 (ZIC2) and the expression levels of ZIC2 in patients with EC. ZIC2 expression levels in EC cell lines were analyzed using western blotting and reverse transcription-quantitative PCR. RL95-2 cells were subsequently transfected with short hairpin RNA targeting ZIC2, or ZIC2 or SNHG12 overexpression plasmids. Cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8, colony formation, wound healing and Transwell assays, respectively. The binding between ZIC2 and SHNG12 was verified using dual luciferase reporter and chromatin immunoprecipitation assays. The results of the present study revealed that the expression levels of ZIC2 were upregulated in the tissues of patients with EC and EC cell lines. ZIC2 knockdown inhibited RL95-2 cell proliferation, migration and invasion. The protein expression levels of Ki67, proliferating cell nuclear antigen, MMP2 and MMP9 were also downregulated following the knockdown of ZIC2. ZIC2 was predicted to bind to SNHG12 and positively regulate SNHG12 expression. Further experiments demonstrated that the effects of the knockdown of ZIC2 on RL95-2 cells were partially reversed by SNHG12 overexpression. In addition, ZIC2 knockdown inhibited Notch signaling activation, while SNHG12 overexpression reversed this effect. In conclusion, the findings of the present study indicated that ZIC2 may upregulate SNHG12 expression to promote EC cell proliferation and migration by activating the Notch signaling pathway.
Collapse
Affiliation(s)
- Pengyu Cai
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Gaijuan Li
- Department of Obstetrics and Gynecology, Midwifery Profession, Shanxi Health Vocational College, Jinzhong, Shanxi 030600, P.R. China
| | - Mingxiu Wu
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Hong Bai
- The Second Ward of Gynecology, Dalian Obstetrics and Gynecology Hospital Affiliated to Dalian Medical University and Dalian Maternal and Child Health Care Hospital, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
8
|
Wei W, Zhao X, Liu J, Zhang Z. Downregulation of LINC00665 suppresses the progression of lung adenocarcinoma via regulating miR-181c-5p/ZIC2 axis. Aging (Albany NY) 2021; 13:17499-17515. [PMID: 34232917 PMCID: PMC8312465 DOI: 10.18632/aging.203240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
Long non-coding RNA (lncRNA) LINC00665 was demonstrated to be upregulated in lung adenocarcinoma (LUAD) and target miR-181c-5p. ZIC2, which is upregulated in LUAD, serves as a putative target of miR-181c-5p. In this study, we aimed to reveal whether LINC00665 regulates miR-181c-5p/ZIC2 axis to promote LUAD progression. The results showed that LINC00665, HOXA1, ZIC2, and HOXA11 levels were increased in LUAD tissues, while miR-181c-5p level was decreased when compared to the adjacent normal tissues. High expression levels of LINC00665, ZIC2, HOXA1 and HOXA11, and low expression of miR-181c-5p were closely linked to poor prognosis of LUAD patients. Knockdown of LINC00665 induced obvious inhibitions in cell viability, clone formation, invasion and tumorigenesis in LUAD cells, whereas miR-181c-5p downregulation significantly neutralized these effects. In addition, downregulation of ZIC2 obviously reversed the enhancements of cell viability, clone formation, invasion and tumorigenesis induced by miR-181c-5p knockdown. In summary, the present study reveals that silencing of LINC00665 suppresses LUAD progression through targeting miR-181c-5p/ZIC2 axis.
Collapse
Affiliation(s)
- Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Jiang Liu
- Department of Molecule Imaging and Nuclear Medicine in Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin 300060, China
| |
Collapse
|
9
|
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021; 9:693. [PMID: 34207450 PMCID: PMC8235073 DOI: 10.3390/biomedicines9060693] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death in women as survival is highly dependent on the stage of the disease. Ovarian cancer is typically diagnosed in the late stage due to the fact that in the early phases is mostly asymptomatic. Genomic instability is one of the hallmarks of ovarian cancer. While ovarian cancer is stratified into different clinical subtypes, there still exists extensive genetic and progressive diversity within each subtype. Early detection of the disorder is one of the most important steps that facilitate a favorable prognosis and a good response to medical therapy for the patients. In targeted therapies, individual patients are treated by agents targeting the changes in tumor cells that help them grow, divide and spread. Currently, in gynecological malignancies, potential therapeutic targets include tumor-intrinsic signaling pathways, angiogenesis, homologous-recombination deficiency, hormone receptors, and immunologic factors. Ovarian cancer is usually diagnosed in the final stages, partially due to the absence of an effective screening strategy, although, over the times, numerous biomarkers have been studied and used to assess the status, progression, and efficacy of the drug therapy in this type of disorder.
Collapse
Affiliation(s)
- Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Alina Prădatu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Romeo Micu
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Viorica Elena Rădoi
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Xu Z, Zheng J, Chen Z, Guo J, Li X, Wang X, Qu C, Yuan L, Cheng C, Sun X, Yu J. Multilevel regulation of Wnt signaling by Zic2 in colon cancer due to mutation of β-catenin. Cell Death Dis 2021; 12:584. [PMID: 34099631 PMCID: PMC8184991 DOI: 10.1038/s41419-021-03863-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/22/2023]
Abstract
Zinc-finger of the cerebellum 2 (Zic2) is widely implicated in cancers, but the role of Zic2 in tumorigenesis is bilateral. A recent study indicated that Zic2 could render colon cancer cells more resistant to low glucose-induced apoptosis. However, the functional roles of Zic2 in colon cancer and the underlying molecular mechanism remain elusive. Herein, we demonstrated that Zic2 was highly expressed in colon cancer tissues and correlated with poor survival. Knockdown of Zic2 inhibited colon cancer cell growth, arrested the cell cycle transition from G0/G1 to S phase, and suppressed tumor sphere formation in vitro; in addition, silencing Zic2 retarded xenograft tumor formation in vivo. Consistently, ectopic expression of Zic2 had the opposite effects. Mechanistically, Zic2 executed its oncogenic role in colon cancer by enhancing Wnt/β-catenin signaling. Zic2 directly binds to the promoter of Axin2 and transcriptionally represses Axin2 expression and subsequently promotes the accumulation and nuclear translocation of β-catenin. Meanwhile, Zic2 could activate Wnt signaling by interacting with β-catenin. Intriguingly, in HCT116 cells with intrinsic Ser45 mutation of β-catenin, which blocks the degradation-related phosphorylation of β-catenin by CK1, modified Zic2 expression did not affect the protein level of β-catenin. Altogether, our findings uncover a novel multilevel mechanism for the oncogenic activity of Zic2 in colon cancer and suggest Zic2 as a potential therapeutic target for colon cancer patients.
Collapse
Affiliation(s)
- Zhengshui Xu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Zilu Chen
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Jing Guo
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xiaopeng Li
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xingjie Wang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Chao Qu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Liyue Yuan
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Chen Cheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China.
| | - Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China.
| |
Collapse
|
11
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
12
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Lv Z, Qi L, Hu X, Mo M, Jiang H, Fan B, Li Y. Zic Family Member 2 (ZIC2): a Potential Diagnostic and Prognostic Biomarker for Pan-Cancer. Front Mol Biosci 2021; 8:631067. [PMID: 33665207 PMCID: PMC7921168 DOI: 10.3389/fmolb.2021.631067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background: As a transcription factor, Zinc finger protein ZIC2 can interact with various DNAs and proteins. Current studies have shown that ZIC2 plays an oncogene role in various cancers. In this study, we systematically characterize the prevalence and predictive value of ZIC2 expression across multiple cancer types. Methods: We mined several public databases, including Oncomine, the Cancer Genome Atlas (TCGA), cBioPortal, Kaplan-Meier Plotter and PrognoScan to evaluated the differentially expressed ZIC2 between tumor samples and normal control samples in pan-cancner, and then explored the association between ZIC2 expression and patient survival, prognosis and clinicopathologic stage. We also analyzed the relationship between tumor mutation burden (TMB), microsatellite instability (MSI), tumor microenvironment, tumor- and immune-related genes and ZIC2 expression. Finally, we explored the potential signaling pathway mechanism through gene set enrichment analysis (GSEA). Results: ZIC2 expression was higher in most cancer tissues compared with adjacent normal tissues. High ZIC2 expression was associated with worse prognosis and a higher clinicopathologic stage. ZIC2 expression was strongly associated with the TMB, MSI, tumor microenvironment and tumor- and immune-related genes. The GSEA revealed that multiple tumor- and immune-related pathways were differentially enriched in ZIC2 high or low expression phenotype. Conclusion: ZIC2 expression may be a potential prognostic molecular biomarker of poor survival in pan-cancer and may act as an oncogene with a strong effect in the processes of tumorigenesis and progression.
Collapse
Affiliation(s)
- Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Mo
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huichuan Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Szenajch J, Szabelska-Beręsewicz A, Świercz A, Zyprych-Walczak J, Siatkowski I, Góralski M, Synowiec A, Handschuh L. Transcriptome Remodeling in Gradual Development of Inverse Resistance between Paclitaxel and Cisplatin in Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E9218. [PMID: 33287223 PMCID: PMC7730278 DOI: 10.3390/ijms21239218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to anti-cancer drugs is the main challenge in oncology. In pre-clinical studies, established cancer cell lines are primary tools in deciphering molecular mechanisms of this phenomenon. In this study, we proposed a new, transcriptome-focused approach, utilizing a model of isogenic cancer cell lines with gradually changing resistance. We analyzed trends in gene expression in the aim to find out a scaffold of resistance development process. The ovarian cancer cell line A2780 was treated with stepwise increased concentrations of paclitaxel (PTX) to generate a series of drug resistant sublines. To monitor transcriptome changes we submitted them to mRNA-sequencing, followed by the identification of differentially expressed genes (DEGs), principal component analysis (PCA), and hierarchical clustering. Functional interactions of proteins, encoded by DEGs, were analyzed by building protein-protein interaction (PPI) networks. We obtained human ovarian cancer cell lines with gradually developed resistance to PTX and collateral sensitivity to cisplatin (CDDP) (inverse resistance). In their transcriptomes, we identified two groups of DEGs: (1) With fluctuations in expression in the course of resistance acquiring; and (2) with a consistently changed expression at each stage of resistance development, constituting a scaffold of the process. In the scaffold PPI network, the cell cycle regulator-polo-like kinase 2 (PLK2); proteins belonging to the tumor necrosis factor (TNF) ligand and receptor family, as well as to the ephrin receptor family were found, and moreover, proteins linked to osteo- and chondrogenesis and the nervous system development. Our cellular model of drug resistance allowed for keeping track of trends in gene expression and studying this phenomenon as a process of evolution, reflected by global transcriptome remodeling. This approach enabled us to explore novel candidate genes and surmise that abrogation of the osteomimic phenotype in ovarian cancer cells might occur during the development of inverse resistance between PTX and CDDP.
Collapse
Affiliation(s)
- Jolanta Szenajch
- Laboratory for Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Alicja Szabelska-Beręsewicz
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Aleksandra Świercz
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Idzi Siatkowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland; (A.S.-B.); (J.Z.-W.); (I.S.)
| | - Michał Góralski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
| | - Agnieszka Synowiec
- Laboratory for Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Luiza Handschuh
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Science, 61-704 Poznań, Poland; (A.Ś.); (M.G.); (L.H.)
| |
Collapse
|
15
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Ahmed JN, Diamand KEM, Bellchambers HM, Arkell RM. Systematized reporter assays reveal ZIC protein regulatory abilities are Subclass-specific and dependent upon transcription factor binding site context. Sci Rep 2020; 10:13130. [PMID: 32753700 PMCID: PMC7403390 DOI: 10.1038/s41598-020-69917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
17
|
Xu D, Dang W, Wang S, Hu B, Yin L, Guan B. An optimal prognostic model based on gene expression for clear cell renal cell carcinoma. Oncol Lett 2020; 20:2420-2434. [PMID: 32782559 PMCID: PMC7400162 DOI: 10.3892/ol.2020.11780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/06/2020] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of RCC; however, prognostic prediction tools for ccRCC are scant. Developing mRNA or long non-coding RNA (lncRNA)-based risk assessment tools may improve the prognosis in patients with ccRCC. RNA-sequencing and prognostic data from patients with ccRCC were downloaded from The Cancer Genome Atlas and the European Bioinformatics Institute Array database at the National Center for Biotechnology Information. Differentially expressed (DE) RNAs (DERs) and prognostic DERs were screened between less favorable and favorable prognoses using the limma package in R 3.4.1, and analyzed using univariate and multivariate Cox regression analyses, respectively. Risk score models were constructed using optimal combinations of DEmRNAs and DElncRNAs identified using the Least Absolute Shrinkage And Selection Operator Cox regression model of the penalized package. Associations between risk score models and overall survival time were evaluated. Independent prognostic clinical factors were screened using univariate and multivariate Cox regression analyses, and nomogram models were constructed. Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted using the clusterProfiler package in R3.4.1. A total of 451 DERs were identified, including 404 mRNAs and 47 lncRNAs, between less favorable and favorable prognoses, and 269 DERs, including 233 mRNAs and 36 lncRNAs, were identified as independent prognostic factors. Optimal combinations including 10 DEmRNAs or 10 DElncRNAs were screened using four risk score models based on the status or expression levels of the 10 DEmRNAs or 10 DElncRNAs. The model based on the expression levels of the 10 DEmRNAs had the highest prognostic power. These prognostic DEmRNAs may be involved in biological processes associated with the inflammatory response, complement and coagulation cascades and neuroactive ligand-receptor interaction pathways. The present validated risk assessment tool based on the expression levels of these 10 DEmRNAs may help to identify patients with ccRCC at a high risk of mortality. These 10 DEmRNAs in optimal combinations may serve as prognostic biomarkers and help to elucidate the pathogenesis of ccRCC.
Collapse
Affiliation(s)
- Dan Xu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wantai Dang
- Department of Rheumatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shaoqing Wang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
18
|
Lv B, Li F, Liu X, Lin L. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway. Cancer Gene Ther 2020; 28:74-88. [PMID: 32555352 DOI: 10.1038/s41417-020-0185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, relapse, and metastasis. Thus, residual CSCs after chemotherapy may result in poor prognosis for nasopharyngeal carcinoma (NPC). Emerging evidence suggests that differentially expressed microRNAs (miRNAs) regulate genes that carry out important functions in CSCs. Here we investigate the interaction of microRNA-873 (miR-873) with the Zic family member 2 (ZIC2) and the effects on downstream serine-threonine protein kinase (AKT) signaling pathway in CSCs in the context of NPC. Initially, microarray-based gene expression profiling identified ZIC2 as a key differentially expressed gene in NPC, which was subsequently confirmed to be upregulated in clinical NPC tissue samples. NPC cells were subjected to sphere-formation conditions in low-attachment plates, followed by sorting of CD133+ cells, which were selected as NPC stem cells after further characterization of stem cell biomarkers. ZIC2 was then shown to be enriched in NPC stem cells at both mRNA and protein levels. However, loss of ZIC2 was associated with the self-renewal, proliferative and tumorigenic properties of NPC stem cells. Next, miRNAs potentially able to target ZIC2 were predicted by the intersection of mirDIP and TargetScan database results, and miRNA miR-873 was found to be downregulated in NPC tissues in general but especially in NPC stem cells. Upregulation of miR-873 inhibited the stem-like properties and tumorigenicity of NPC stem cells, which was found to take place through downregulation of ZIC2 and disruption of the AKT signaling pathway. Collectively, the results obtained suggest that overexpression of miR-873 could aid NPC tumor suppression through reduction of the malignant potential of CSCs.
Collapse
Affiliation(s)
- Baotao Lv
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Fuzhou Li
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Xiaoli Liu
- Department of Psychology, Linyi Rongjun Hospital, 276003, Linyi, P.R. China
| | - Liqiang Lin
- Department of E.N.T., Linyi People's Hospital, 276000, Linyi, P.R. China.
| |
Collapse
|
19
|
Shang Z, Zhao T, Ou T, Yan H, Cui B, Wang Q, Wu J, Jia C, Cui X, Li J. The level of zinc finger of the cerebellum 2 is predictive of overall survival in clear cell renal cell carcinoma. Transl Androl Urol 2020; 9:614-620. [PMID: 32420167 PMCID: PMC7215046 DOI: 10.21037/tau.2020.01.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The zinc finger of the cerebellum 2 (ZIC2) has been reported to function as an oncogenic transcription factor. However, the level and prognostic value of ZIC2 in patients with clear cell renal cell carcinoma (ccRCC) remain unclear. Methods UALCAN was employed to analyze the level of ZIC2 mRNA in ccRCC samples compared to normal kidney tissues and to explore the impacts of ZIC2 expression according to tumor-node-metastasis (TNM) stages and histologic grades. The correlations between ZIC2 expression and clinicopathological parameters were investigated by bioinformatic analysis using UCSC Xena Browser in the light of data from The Cancer Genome Atlas. We used Kaplan-Meier analysis to assess the association between the level of ZIC2 and overall survival (OS), disease-free survival (DFS) in ccRCC patients. Moreover, Cox analyses were adopted to evaluate its prognostic value in ccRCC patients. Results ZIC2 expression was much higher in ccRCC samples than that in normal ones and increased with the escalation of TNM stages and histologic grades. In addition, the high ZIC2 expression group had significantly advanced age (age >65), T, N, M, TNM stage, histologic grade and lower 5-years OS (19.40% vs. 31.74%, P=0.006) than the low one. High ZIC2 expression was related to remarkably worse OS (P<0.001) in ccRCC patients, whereas no statistical relation was detected between the level of ZIC2 and DFS. Moreover, multivariate analysis indicated high level of ZIC2 is an independent factor of prognosis for worse OS (HR: 1.625, 95% CI, 1.146-2.302, P=0.006). Conclusions The level of ZIC2 expression is an independent predictor for OS in ccRCC patients.
Collapse
Affiliation(s)
- Zhenhua Shang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Teng Zhao
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Bo Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Jiangtao Wu
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Chunsong Jia
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Xin Cui
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| | - Jin Li
- Department of Urology, Xuanwu Hospital Capital Medical University, Beijing 100069, China
| |
Collapse
|
20
|
Kong Q, Li W, Hu P, Zeng H, Pan Y, Zhou T, Hu K. The expression status of ZIC2 is an independent prognostic marker of hepatocellular carcinoma. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Yu D, Han GH, Zhao X, Liu X, Xue K, Wang D, Xu CB. MicroRNA-129-5p suppresses nasopharyngeal carcinoma lymphangiogenesis and lymph node metastasis by targeting ZIC2. Cell Oncol (Dordr) 2019; 43:249-261. [PMID: 31884576 DOI: 10.1007/s13402-019-00485-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The etiology of nasopharyngeal carcinoma (NPC) is multifactorial, complex and not fully characterized yet. MicroRNAs (miRNAs or miRs) have been found to contribute to the development and progression of NPC. Here, we aimed to investigate the putative role of miR-129-5p in NPC lymphangiogenesis and lymph node metastasis (LNM), including the involvement of its target gene ZIC2 and the Hedgehog signaling pathway. METHODS The expression of miR-129-5p and ZIC2 in primary NPC tissues was assessed using RT-qPCR and Western blot analyses, followed by LNM and lymph vessel density (LVD) correlation analyses. A direct interaction between miR-129-5p and ZIC2 was verified using a dual-luciferase reporter assay. Gain- and loss-of-function experiments were conducted to investigate the effects of miR-129-5p and ZIC2 expression on NPC cell invasion, migration and proliferation in vitro, as well as on LDV and LNM in nude mice in vivo. Additionally, RT-qPCR and Western blot analyses were performed to determine the expression levels of Hedgehog signaling pathway-related factors. RESULTS We found that ZIC2 was highly expressed, and miR-129-5p was lowly expressed, in primary NPC tissues. In addition, we found that miR-129-5p can directly bind to and reduce ZIC2 expression. LVD was found to be negatively correlated with miR-129-5p and to be positively correlated with ZIC2 expression. Concomitantly, we found that miR-129-5p abrogated activation of the Hedgehog signaling pathway via ZIC2 targeting, leading to suppression of NPC cell invasion, migration and proliferation in vitro as well as suppression of LNM and LVD in vivo. CONCLUSIONS From our data we conclude that miR-129-5p, by decreasing ZIC2 expression, may inhibit NPC lymphangiogenesis and LNM through suppression of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Guang-Hong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Xueshibojie Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Kai Xue
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Di Wang
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China
| | - Cheng-Bi Xu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
22
|
Toth R, Schiffmann H, Hube-Magg C, Büscheck F, Höflmayer D, Weidemann S, Lebok P, Fraune C, Minner S, Schlomm T, Sauter G, Plass C, Assenov Y, Simon R, Meiners J, Gerhäuser C. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019; 11:148. [PMID: 31640781 PMCID: PMC6805338 DOI: 10.1186/s13148-019-0736-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The clinical course of prostate cancer (PCa) is highly variable, demanding an individualized approach to therapy. Overtreatment of indolent PCa cases, which likely do not progress to aggressive stages, may be associated with severe side effects and considerable costs. These could be avoided by utilizing robust prognostic markers to guide treatment decisions. RESULTS We present a random forest-based classification model to predict aggressive behaviour of prostate cancer. DNA methylation changes between PCa cases with good or poor prognosis (discovery cohort with n = 70) were used as input. DNA was extracted from formalin-fixed tumour tissue, and genome-wide DNA methylation differences between both groups were assessed using Illumina HumanMethylation450 arrays. For the random forest-based modelling, the discovery cohort was randomly split into a training (80%) and a test set (20%). Our methylation-based classifier demonstrated excellent performance in discriminating prognosis subgroups in the test set (Kaplan-Meier survival analyses with log-rank p value < 0.0001). The area under the receiver operating characteristic curve (AUC) for the sensitivity analysis was 95%. Using the ICGC cohort of early- and late-onset prostate cancer (n = 222) and the TCGA PRAD cohort (n = 477) for external validation, AUCs for sensitivity analyses were 77.1% and 68.7%, respectively. Cancer progression-related DNA hypomethylation was frequently located in 'partially methylated domains' (PMDs)-large-scale genomic areas with progressive loss of DNA methylation linked to mitotic cell division. We selected several candidate genes with differential methylation in gene promoter regions for additional validation at the protein expression level by immunohistochemistry in > 12,000 tissue micro-arrayed PCa cases. Loss of ZIC2 protein expression was associated with poor prognosis and correlated with significantly shorter time to biochemical recurrence. The prognostic value of ZIC2 proved to be independent from established clinicopathological variables including Gleason grade, tumour stage, nodal stage and prostate-specific-antigen. CONCLUSIONS Our results highlight the prognostic relevance of methylation loss in PMD regions, as well as of several candidate genes not previously associated with PCa progression. Our robust and externally validated PCa classification model either directly or via protein expression analyses of the identified top-ranked candidate genes will support the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Heiko Schiffmann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Urology, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Yassen Assenov
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Clarissa Gerhäuser
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Ding TT, Ma H, Feng JH. A three-gene novel predictor for improving the prognosis of cervical cancer. Oncol Lett 2019; 18:4907-4915. [PMID: 31612001 PMCID: PMC6781735 DOI: 10.3892/ol.2019.10815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/16/2019] [Indexed: 01/19/2023] Open
Abstract
Cervical cancer is the most common gynecological malignancy, the third most common malignant tumor in women worldwide, and the most common malignant tumor among Chinese women. However, despite continuous improvement in medical treatment, the number of cervical cancer cases in China is on the increase annually, consistent with the general trend in global cervical cancer incidence. Therefore, it is particularly important to study the pathogenesis of cervical cancer at the genetic level in China. The aim of the present study was to use the TCGA database to identify potential genetic signatures that could predict the prognosis of patients with cervical cancer and provide evidence supporting clinical genetic intervention in cervical cancer. Primarily, an effective three-gene signature was found that predicts prognosis in patients with cervical cancer. This model can provide prima facie evidence for future assessment of patient risk and prognosis, but further testing is required to improve its accuracy. Our results also suggested that centromere protein M, methionine sulfoxide reductase B3 and Zic family member 2 could be promising biomarkers for the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Department of Oncology, Tumor Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hu Ma
- Department of Oncology, Tumor Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Taizhou Municipal Hospital, The Affiliated Hospital of Medical College of Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
24
|
Zhao Z, Wang L, Bartom E, Marshall S, Rendleman E, Ryan C, Shilati A, Savas J, Chandel N, Shilatifard A. β-Catenin/Tcf7l2-dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer. SCIENCE ADVANCES 2019; 5:eaax0698. [PMID: 31392276 PMCID: PMC6669021 DOI: 10.1126/sciadv.aax0698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
The zinc finger of the cerebellum (ZIC) proteins has been implicated to function in normal tissue development. Recent studies have described the critical functions of Zic proteins in cancers and the potential tumor-suppressive functions in colon cancer development and progression. To elucidate the functional roles of Zic proteins in colorectal cancer, we knocked out the Zic5 gene and analyzed the chromatin localization pattern and transcriptional regulation of target gene expression. We found that Zic5 regulates glucose metabolism, and Zic5 knockout is accompanied by an increased glycolytic state and tolerance to a low-glucose condition. Furthermore, loss of β-catenin or TCF7l2 diminishes the chromatin binding of Zic5 globally. Our studies suggest that the Wnt/β-catenin signaling pathway has a strong influence on the function of Zic proteins and glucose metabolism in colorectal cancers through GLUT1. Interfering Wnt/-catenin-Zic5 axis-regulated aerobic glycolysis represents a potentially effective strategy to selectively target colon cancer cells.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stacy Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emily Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Caila Ryan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anthony Shilati
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Xiong J, Guo S, Bing Z, Su Y, Guo L. A Comprehensive RNA Expression Signature for Cervical Squamous Cell Carcinoma Prognosis. Front Genet 2019; 9:696. [PMID: 30662454 PMCID: PMC6328499 DOI: 10.3389/fgene.2018.00696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Clinicopathological characteristics alone are not enough to predict the survival of patients with cervical squamous cell carcinoma (CESC) due to clinical heterogeneity. In recent years, many genes and non-coding RNAs have been shown to be oncogenes or tumor-suppressors in CESC cells. This study aimed to develop a comprehensive transcriptomic signature for CESC patient prognosis. Univariate, multivariate, and Least Absolute Shrinkage and Selection Operator penalized Cox regression were used to identify prognostic signatures for CESC patients from transcriptomic data of The Cancer Genome Atlas. A normalized prognostic index (NPI) was formulated as a synthetical index for CESC prognosis. Time-dependent receiver operating characteristic curve analysis was used to compare prognostic signatures. A prognostic transcriptomic signature was identified, including 1 microRNA, 1 long non-coding RNA, and 6 messenger RNAs. Decreased survival was associated with CESC patients being in the high-risk group stratified by NPI. The NPI was an independent predictor for CESC patient prognosis and it outperformed the known clinicopathological characteristics, microRNA-only signature, gene-only signature, and previously identified microRNA and gene signatures. Function and pathway enrichment analysis revealed that the identified prognostic RNAs were mainly involved in angiogenesis. In conclusion, we proposed a transcriptomic signature for CESC prognosis and it may be useful for effective clinical risk management of CESC patients. Moreover, RNAs in the transcriptomic signature provided clues for downstream experimental validation and mechanism exploration.
Collapse
Affiliation(s)
- Jie Xiong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shengyu Guo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhitong Bing
- Department of Computational Physics, Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, China
| | - Yanlin Su
- Department of Gynaecology and Obstetrics, Changsha Central Hospital, Changsha, China
| | - Le Guo
- The First Department of Operation, Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
26
|
Chen X, Yang S, Zeng J, Chen M. miR‑1271‑5p inhibits cell proliferation and induces apoptosis in acute myeloid leukemia by targeting ZIC2. Mol Med Rep 2018; 19:508-514. [PMID: 30483794 PMCID: PMC6297795 DOI: 10.3892/mmr.2018.9680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to regulate the progression of numerous types of cancer, including acute myeloid leukemia (AML). Previous studies demonstrated that miR‑1271‑5p functions as a tumor suppressor; however, the roles of miR‑1271‑5p in AML remain unknown. In the present study, miR‑1271‑5p was significantly downregulated in AML tissues compared with normal tissues by reverse transcription‑quantitative polymerase chain reaction analysis. Furthermore, the expression levels of miR‑1271‑5p in patients with AML may function as a prognostic marker. In addition, overexpression of miR‑1271‑5p significantly suppressed the proliferation and induced apoptosis of AML cells by Cell Counting kit‑8 and fluorescence activated cell sorter assays; miR‑1271‑5p downregulation exhibited opposing effects. Additionally, transcription factor ZIC2 may be a direct target of miR‑1271‑5p in AML cells, which was demonstrated by a luciferase reporter assay and RNA pulldown assay. Overexpression of miR‑1271‑5p significantly reduced the mRNA and protein expression levels of ZIC2 in AML193 and OCI‑AML2 cells by reverse transcription‑quantitative polymerase chain reaction analysis and western blotting. Furthermore, an inverse correlation between miR‑1271‑5p and ZIC2 expression in AML samples was observed. In summary, ZIC2 was upregulated in AML tissues, and restoration of ZIC2 expression was able to promote the proliferation and reduce the apoptosis of AML cells transfected with miR‑1271‑5p mimics. The results of the present study demonstrated that miR‑1271‑5p inhibited the progression of AML by targeting ZIC2.
Collapse
Affiliation(s)
- Xiaohe Chen
- Department of Blood Transfusion, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Shouhang Yang
- Department of Blood Transfusion, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Jue Zeng
- Department of Blood Transfusion, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Ming Chen
- Department of Blood Transfusion, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| |
Collapse
|
27
|
Wang YF, Yang HY, Shi XQ, Wang Y. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol Ther 2018; 19:1162-1173. [PMID: 30260270 DOI: 10.1080/15384047.2018.1491497] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recently, some studies have placed additional research focus on microRNAs (miRNAs) in a bid to discover novel therapeutic approaches for cervical cancer (CC), which is one of the most common female reproductive tract malignancies with high rates of morbidity and mortality. Hence, the aim of the present study was to evaluate the ability of miR-129-5p to influence cell angiogenesis, invasion and migration by targeting ZIC2 through the Hedgehog signaling pathway in CC. Both CC and adjacent normal tissues were extracted from 87 eligible participating patients with CC. Measurements of the levels of miR-129-5p, mRNA and protein levels of ZIC2, sonic Hedgehog (Shh), Gli1, and Gli2 and levels of CXCL1, VEGF and Ang2 were determined accordingly. An angiogenesis assay was performed to evaluate cell angiogenesis in vitro, while a scratch test and transwell assay were adopted for cell invasion and migration determination. Lastly, tumor formation within nude mice was performed in order to analyze angiogenesis and tumor growth among the nude mice in vivo. The findings revealed that upregulation of miR-129-5p resulted in the decrease in the mRNA and protein levels of ZIC2, Shh, Gli1, Gli2, as well as reduced levels of CXCL1, VEGF and Ang2. Moreover, up-regulation of miR-129-5p was determined to inhibit CC cell angiogenesis ability in vitro, in addition to the processes of cell migration, and invasion. Finally, up-regulation of miR-129-5p was observed to inhibit the tumor growth and angiogenesis ability of nude mice in vivo. The results of the present study provided evidence suggesting that overexpressed miR-129-5p prevents angiogenesis and inhibits cell migration and invasion by means of negatively targeting ZIC2 through suppression of the Hedgehog signaling pathway in CC. Thus, highlighting the promise of miR-129-5p as a novel target for treating CC is promising.
Collapse
Affiliation(s)
- Ying-Fang Wang
- a Department of Gynecology , Henan Provincial People's Hospital & People's Hospital of Zhengzhou University , Zhengzhou , P.R. China
| | | | | | - Yue Wang
- a Department of Gynecology , Henan Provincial People's Hospital & People's Hospital of Zhengzhou University , Zhengzhou , P.R. China
| |
Collapse
|
28
|
Yi W, Wang J, Yao Z, Kong Q, Zhang N, Mo W, Xu L, Li X. The expression status of ZIC2 as a prognostic marker for nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4446-4460. [PMID: 31949842 PMCID: PMC6962988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 06/10/2023]
Abstract
Zinc finger protein ZIC2 is a transcription factor encoded by the ZIC2 gene, which can interact with various DNAs and proteins. ZIC2 expression may promote cell proliferation and inhibit apoptosis. Recent studies have reported that ZIC2 acts as an oncogene in various cancers. The expression and distinct prognostic value of ZIC2 in NPC is not well established. The aim of this study was to investigate ZIC2 expression and its prognostic significance in nasopharyngeal carcinoma (NPC). The ZIC2 expressions at the mRNA levels in NPC tissues and normal tissues were investigated using Oncomine analysis. ZIC2 protein expression was analyzed in paraffin-embedded NPC tissues by immunohistochemistry. Statistical analyses were performed to evaluate the clinicopathological significance of ZIC2 expression. The result shows the expression of ZIC2 mRNA is significantly elevated in NPC tissue compared with normal nasopharynx tissues. In paraffin-embedded tissue samples, the immunoreactivity of ZIC2 was primarily seen in the nuclei and cytoplasms within tumor cells. High ZIC2 expression was obviously related to poor OS and DFS compared to low ZIC2 expression. In a multivariate analysis, the expression of ZIC2 was an independent prognostic factor for OS and DFS. ZIC2 is up-regulated in NPC and associated with histology and survival. ZIC2 may serve as a prognostic indicator for patients with NPC.
Collapse
Affiliation(s)
- Wei Yi
- Department of Radiotherapy, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong Province, P. R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, P. R. China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, P. R. China
| | - Qinglei Kong
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, P. R. China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, P. R. China
| | - Wei Mo
- Department of Radiotherapy, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong Province, P. R. China
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong Province, P. R. China
| | - Xian Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong Province, P. R. China
| |
Collapse
|
29
|
Bawa PS, Ravi S, Paul S, Chaudhary B, Srinivasan S. A novel molecular mechanism for a long non-coding RNA PCAT92 implicated in prostate cancer. Oncotarget 2018; 9:32419-32434. [PMID: 30197753 PMCID: PMC6126693 DOI: 10.18632/oncotarget.25940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
The role of many lncRNAs in cancer remains elusive including that for a Prostate Cancer Associated Transcript 92 (PCAT92). PCAT92 shares the locus on chromosome 13 with ABCC4 gene, known to be implicated in prostate cancer. It has been shown that PCAT92 and ABCC4 are up-regulated in prostate cancer samples from multiple transcriptome datasets. Among the prostate cancer cell-lines LNCaP showed maximum overexpression of PCAT92 compared to control cell-line RWPE-1. We have shown that knockdown of PCAT92 in LNCaP cells reduces cell viability and proliferation and down-regulates ABCC4 transcript/protein expression. The shared region between PCAT92 and ABCC4 has a binding site for an oncogenic transcription factor (ZIC2) which is also upregulated in the majority of datasets studied here. ZIC2 binding to the predicted ABCC4 promoter has been confirmed using pull-down assay. Interestingly, under PCAT92 knockdown condition, there is a reduction in the ZIC2 binding to ABCC4 promoter indicating the potential involvement of PCAT92 in the recruitment of ZIC2. We have identified distinct regions on PCAT92 with potential to bind to ZIC2 non-DNA binding Zinc-finger domain and potential for triplex formation near ABCC4 promoter region, which have been experimentally validated. Together, these observations and localization in the nucleus suggests that PCAT92 may play a role in prostate cancer by increasing the local concentration of ZIC2 by forming RNA-DNA triplex near ABCC4 promoter thus helping in recruitment of ZIC2 for ABCC4 regulation.
Collapse
Affiliation(s)
- Pushpinder Singh Bawa
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India.,Manipal University, Manipal, Karnataka, India
| | - Samathmika Ravi
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Swagatika Paul
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Bibha Chaudhary
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| |
Collapse
|
30
|
Zhang P, Yang F, Luo Q, Yan D, Sun S. miR-1284 Inhibits the Growth and Invasion of Breast Cancer Cells by Targeting ZIC2. Oncol Res 2018; 27:253-260. [PMID: 30075825 PMCID: PMC7848447 DOI: 10.3727/096504018x15242763477504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
miR-1284 has been reported to inhibit tumor growth in some human cancers, including lung cancer, ovarian cancer, and gastric cancer. Whether it regulates breast cancer progression remains elusive. In this study, we found that miR-1284 was downregulated in breast cancer tissues and cell lines compared to normal control cells. Moreover, we showed that overexpression of miR-1284 significantly inhibited the proliferation, migration, and invasion of breast cancer cells while promoting apoptosis. In terms of mechanism, we found that transcription factor ZIC2 was a target of miR-1284 in breast cancer cells. Through the luciferase reporter assay, we demonstrated their direct interaction. RT-qPCR and Western blot also indicated that miR-1284 overexpression inhibited the protein levels of ZIC2 in breast cancer cells. Moreover, we found that ZIC2 knockdown inhibited the proliferation, migration, and invasion of breast cancer cells, whereas restoration of ZIC2 reversed the effects of miR-1284 on breast cancer cells. Taken together, our findings demonstrated that miR-1284 suppressed the proliferation, migration, and invasion of breast cancer cells via targeting ZIC2, which provided a new insight on the development of therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Breast Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Fang Yang
- Department of Nursing, Xiangyang No. 1 People's Hospital of Hubei University of Medicine, Xiangyang, Hubei Province, P.R. China
| | - Qin Luo
- Department of Neonatal Intensive Care Unit, Xiangyang No. 1 People's Hospital of Hubei University of Medicine, Xiangyang, Hubei Province, P.R. China
| | - Daxue Yan
- Department of Breast Thyroid Surgery, Xiangyang No. 1 People's Hospital of Hubei University of Medicine, Xiangyang, Hubei Province, P.R. China
| | - Shengrong Sun
- Department of Breast Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
31
|
Houtmeyers R, Souopgui J, Tejpar S. Deregulation of ZIC Family Members in Oncogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:329-338. [DOI: 10.1007/978-981-10-7311-3_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Huang S, Jin A. ZIC2 promotes viability and invasion of human osteosarcoma cells by suppressing SHIP2 expression and activating PI3K/AKT pathways. J Cell Biochem 2017; 119:2248-2257. [PMID: 28857346 DOI: 10.1002/jcb.26387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is a malignant tumor of the skeletal system. The zinc finger transcription factor ZIC2 has been reported to be highly expressed in human cancers. The present study evaluated the effects of ZIC2 and the possible underlying mechanisms in the human osteosarcoma cells. The expression levels of ZIC2 in human fetal osteoblastic cell line (hFOB1.19), osteosarcoma cell lines (U-2OS, SaoS2, and MG63), normal bone tissue, and osteosarcoma tumor were analyzed by Western blot, and real-time quantitative RT-PCR (qRT-PCR). Osteosarcoma cells with either overexpressed ZIC2 or suppressed ZIC2 were analyzed to determine cell viability, colony formation, and cell invasion. The expressions of SHIP2 and PI3K/AKT signal pathway-related proteins were analyzed by Western blot and qRT-PCR. We first showed that ZIC2 is highly expressed in osteosarcoma cells and tissues. Then we demonstrated that overexpression of ZIC2 promoted viability, migration, and invasion of osteosarcoma cells, whereas suppression of ZIC2 showed opposite effects. Furthermore, SHIP2 expression was negatively regulated by ZIC2. Importantly, ZIC2 overexpression activated the PI3K/AKT signal pathway; however, overexpressed SHIP2 inhibited these effects. Lastly, we showed that activation of the PI3K/AKT signal pathway is essential for the effects of ZIC2 on osteosarcoma cells, as the effects of ZIC2 on the osteosarcoma cells were reversed by a PI3K/AKT inhibitor. Overall, ZIC2 is highly expressed in osteosarcoma cells and tissues, and its overexpression promotes viability, invasion of osteosarcoma cells via SHIP2 suppression, and PI3K/AKT activation. Thus, ZIC2 can be considered as a novel drug target for osteosarcoma management.
Collapse
Affiliation(s)
- Shuaihao Huang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Anmin Jin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
ZIC2 Is Essential for Maintenance of Latency and Is a Target of an Immediate Early Protein during Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation. J Virol 2017; 91:JVI.00980-17. [PMID: 28835494 PMCID: PMC5640855 DOI: 10.1128/jvi.00980-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023] Open
Abstract
Bivalent histone modifications are defined as repressive and activating epigenetic marks that simultaneously decorate the same genomic region. The H3K27me3 mark silences gene expression, while the H3K4me3 mark prevents the region from becoming permanently silenced and prepares the domain for activation when needed. Specific regions of Kaposi's sarcoma-associated herpesvirus (KSHV) latent episomes are poised to be activated by the KSHV replication and transcription activator (K-Rta). How KSHV episomes are prepared such that they maintain latent infection and switch to lytic replication by K-Rta remains unclear. K-Rta transactivation activity requires a protein degradation function; thus, we hypothesized that identification of cellular substrates of K-Rta may provide insight into the maintenance of KSHV latent infection and the switch to lytic replication. Here we show that a zinc finger protein, ZIC2, a key regulator for central nervous system development, is a substrate of K-Rta and is responsible for maintaining latency. K-Rta directly interacted with ZIC2 and functioned as an E3 ligase to ubiquitinate ZIC2. ZIC2 localized at immediate early and early gene cluster regions of the KSHV genome and contributed to tethering of polycomb repressive complex 2 through physical interaction, thus maintaining H3K27me3 marks at the K-Rta promoter. Accordingly, depletion of ZIC2 shifted the balance of bivalent histone modifications toward more active forms and induced KSHV reactivation in naturally infected cells. We suggest that ZIC2 turnover by K-Rta is a strategy employed by KSHV to favor the transition from latency to lytic replication. IMPORTANCE Posttranslational histone modifications regulate the accessibility of transcriptional factors to DNA; thus, they have profound effects on gene expression (e.g., viral reactivation). KSHV episomes are known to possess bivalent chromatin domains. How such KSHV chromatin domains are maintained to be reactivatable by K-Rta remains unclear. We found that ZIC2, a transcriptional factor essential for stem cell pluripotency, plays a role in maintaining KSHV latent infection in naturally infected cells. We found that ZIC2 degradation by K-Rta shifts bivalent histone marks to a more active configuration, leading to KSHV reactivation. ZIC2 interacts with and maintains polycomb repressor complex 2 at the K-Rta promoter. Our findings uncover (i) a mechanism utilized by KSHV to maintain latent infection, (ii) a latency-lytic cycle switch operated by K-Rta, and (iii) a molecular mechanism of ZIC2-mediated local histone modification.
Collapse
|
34
|
Lu SX, Zhang CZ, Luo RZ, Wang CH, Liu LL, Fu J, Zhang L, Wang H, Xie D, Yun JP. Zic2 promotes tumor growth and metastasis via PAK4 in hepatocellular carcinoma. Cancer Lett 2017; 402:71-80. [PMID: 28577975 DOI: 10.1016/j.canlet.2017.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 12/26/2022]
Abstract
The dysregulation of transcription factors contributes to the unlimited growth of cancer cells. Zic2 has been shown to be crucial to the progression of human cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Our data showed that Zic2 expression gradually increased from normal to cancer to metastatic tissues. Zic2 overexpression promoted, whereas Zic2 knockdown inhibited, cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Gene microarray results indicated that PAK4 was a potential target of Zic2. The knockdown of Zic2 decreased, whereas Zic2 re-expression increased, the expression of PAK4. ChIP and luciferase assays indicated that Zic2 directly bound to the PAK4 promoter and modulated its activity. PAK4 interference attenuated Zic2-mediated cell growth via modulating the Raf/MEK/ERK pathway. In a cohort of 615 patients, Zic2 was positively correlated with PAK4 and associated with worse overall and disease-free survival. Multivariate analyses revealed that Zic2 and PAK4 were independent indicators of a poor outcome in HCC. In addition, Zic2 expression was inversely correlated with miR-1271 expression. Re-introduction of miR-1271 attenuated Zic2-promoted cell proliferation and migration. Taken together, our findings suggest that the newly identified miR-1271/Zic2/PAK4 axis plays an important role in HCC progression and may serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Zhen Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chun-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA; Rutgers University, Newark, NJ, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
35
|
Inaguma S, Ito H, Riku M, Ikeda H, Kasai K. Addiction of pancreatic cancer cells to zinc-finger transcription factor ZIC2. Oncotarget 2016; 6:28257-68. [PMID: 26318045 PMCID: PMC4695058 DOI: 10.18632/oncotarget.4960] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022] Open
Abstract
Activity of GLI transcription factors of Hedgehog signaling is key for various cancer cell properties, especially in pancreatic ductal adenocarcinoma (PDAC). Zinc-finger transcriptional regulators ZIC1 to ZIC5 of ZIC gene family were demonstrated to associate with GLI to increase the nuclear accumulation and transcriptional activity of GLI. Notwithstanding this supportive role for GLI-dependent transcription, it was not fully understood whether ZIC plays an independent role in cancer cell biology. Here, we found that ZIC2 is indispensable in the regulation of PDAC cell apoptosis. We found that human PDAC cell lines uniquely express ZIC2. ZIC2 knockdown induced PDAC cell apoptosis; conversely, ZIC2 over-expression enhanced the cellular proliferation. Through a comprehensive screening, we identified fibroblast growth factor receptor 3 (FGFR3) and ANNEXIN A8 (ANXA8) as genes up-regulated by ZIC2 in PDAC cells. The forced expression of these two genes cooperatively rescued the apoptosis of ZIC2-knockdown cells. Immunohistochemical analyses further supported the correlation of ZIC2 expression and these genes in human pancreata harboring PDAC. Intriguingly, the ZIC2-mediated up-regulation of FGFR3 and ANXA8 was indicated to be GLI -independent. This evidence highlights the indispensable role of ZIC2 in regulating cellular proliferation and apoptosis during PDAC development and suggests a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Miho Riku
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
36
|
Ma G, Dai W, Sang A, Yang X, Li Q. Roles of ZIC family genes in human gastric cancer. Int J Mol Med 2016; 38:259-66. [PMID: 27177248 DOI: 10.3892/ijmm.2016.2587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/25/2016] [Indexed: 11/06/2022] Open
Abstract
The human zinc finger of the cerebellum (ZIC)family genes, comprised of 5 members, which are vertebrate homologues of the Drosophila odd-paired gene and encode zinc-finger transcription factors, have been shown to be involved in various diseases, including cancer. However, the roles of ZICs in human gastric cancer (GC) have not yet been fully elucidated. This study aimed to investigate the expression patterns of ZICs and determine their clinical significance in GC. The mRNA and protein expression levels of ZIC1-5 were detected by RT-qPCR and western blot analysis, respectively using 60 pairs of human GC and matched normal mucosa tissues. The expression pattern and subcellular localization of ZIC1 in 160 pairs of human GC and matched normal mucosa tissues were verified by immunohistochemistry. Moreover, the associations of ZIC1 expression with various clinicopathological characteristics and patient prognosis were evaluated. The mRNA and protein expression levels of ZIC1 were both found to be significantly decreased in the GC tissues compared to matched normal mucosa tissues (GC vs. normal, 2.15±0.69 vs. 4.28±0.95; P<0.001); however, ZIC2-5 expression exhibited no significant difference between the cancer and normal tissue samples. In addition, the downregulation of ZIC1 (ZIC1-low) was more frequently observed in the GC tissues with positive lymph node metastasis (P=0.006), an advanced TNM stage (P<0.001) and a great depth of invasion (P=0.01). Notably, a low ZIC1 expression was significantly associated with a poor disease-free and overall survival. Furthermore, multivariate analysis revealed that ZIC1 expression was an independent prognostic marker for patients with GC. In conclusion, among the human ZIC family genes, the dysregulation of ZIC1, but not of ZIC2, ZIC3, ZIC4 and ZIC5, may play a crucial role in the progression of GC. ZIC1 may thus serve as a novel molecular marker to predict the progression, survival and relapse of patients with GC.
Collapse
Affiliation(s)
- Gang Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Weijie Dai
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Aiyu Sang
- Department of Internal Medicine, Lianshui Third People's Hospital, Lianshui, Jiangsu 223411, P.R. China
| | - Xiaozhong Yang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qianjun Li
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
37
|
Kanth P, Bronner MP, Boucher KM, Burt RW, Neklason DW, Hagedorn CH, Delker DA. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype. Cancer Prev Res (Phila) 2016; 9:456-65. [PMID: 27026680 DOI: 10.1158/1940-6207.capr-15-0363] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Sessile serrated colon adenoma/polyps (SSA/P) are found during routine screening colonoscopy and may account for 20% to 30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. In addition, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing (RNA-Seq) was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon, and 20 control colon specimens. Differential expression and leave-one-out cross-validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1,422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n = 12) and sporadic SSA/Ps (n = 9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability. A smaller 7-gene panel showed high sensitivity and specificity in identifying BRAF-mutant, CpG island methylator phenotype high, and MLH1-silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. Cancer Prev Res; 9(6); 456-65. ©2016 AACR.
Collapse
Affiliation(s)
- Priyanka Kanth
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah.
| | - Mary P Bronner
- Department of Pathology, University of Utah, Salt Lake City, Utah. Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, Salt Lake City, Utah. Division of Epidemiology, University of Utah, Salt Lake City, Utah
| | - Randall W Burt
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah. Huntsman Cancer Institute, Salt Lake City, Utah
| | - Deborah W Neklason
- Division of Genetic Epidemiology, University of Utah, Salt Lake City, Utah
| | - Curt H Hagedorn
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah. The Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Don A Delker
- Department of Gastroenterology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
38
|
MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3. Biochem Biophys Res Commun 2015; 467:690-6. [DOI: 10.1016/j.bbrc.2015.10.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022]
|
39
|
Mazzini G, Carpignano F, Surdo S, Aredia F, Panini N, Torchio M, Erba E, Danova M, Scovassi AI, Barillaro G, Merlo S. 3D Silicon Microstructures: A New Tool for Evaluating Biological Aggressiveness of Tumor Cells. IEEE Trans Nanobioscience 2015; 14:797-805. [PMID: 26353377 DOI: 10.1109/tnb.2015.2476351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, silicon micromachined structures (SMS), consisting of arrays of 3- μ m-thick silicon walls separated by 50- μm-deep, 5- μ m-wide gaps, were applied to investigate the behavior of eight tumor cell lines, with different origins and biological aggressiveness, in a three-dimensional (3D) microenvironment. Several cell culture experiments were performed on 3D-SMS and cells grown on silicon were stained for fluorescence microscopy analyses. Most of the tumor cell lines recognized in the literature as highly aggressive (OVCAR-5, A375, MDA-MB-231, and RPMI-7951) exhibited a great ability to enter and colonize the narrow deep gaps of the SMS, whereas less aggressive cell lines (OVCAR-3, Capan-1, MCF7, and NCI-H2126) demonstrated less penetration capability and tended to remain on top of the SMS. Quantitative image analyses of several fluorescence microscopy fields of silicon samples were performed for automatic cell recognition and count, in order to quantify the fraction of cells inside the gaps, with respect to the total number of cells in the examined field. Our results show that higher fractions of cells in the gaps are obtained with more aggressive cell lines, thus supporting in a quantitative way the observation that the behavior of tumor cells on the 3D-SMS depends on their aggressiveness level.
Collapse
|
40
|
Zhu P, Wang Y, He L, Huang G, Du Y, Zhang G, Yan X, Xia P, Ye B, Wang S, Hao L, Wu J, Fan Z. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J Clin Invest 2015; 125:3795-808. [PMID: 26426078 DOI: 10.1172/jci81979] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022] Open
Abstract
Liver cancer stem cells (CSCs) have been identified and shown to have self-renewal and differentiation properties; however, the biology of these hepatic CSCs remains largely unknown. Here, we analyzed transcriptome gene expression profiles of liver CSCs and non-CSCs from hepatocellular carcinoma (HCC) cells lines and found that the transcription factor (TF) ZIC2 is highly expressed in liver CSCs. ZIC2 was required for the self-renewal maintenance of liver CSCs, as ZIC2 depletion reduced sphere formation and xenograft tumor growth in mice. We determined that ZIC2 acts upstream of the TF OCT4 and that ZIC2 recruits the nuclear remodeling factor (NURF) complex to the OCT4 promoter, thereby initiating OCT4 activation. In HCC patients, expression levels of the NURF complex were consistent with clinical severity and prognosis. Moreover, ZIC2 and OCT4 levels positively correlated to the clinicopathological stages of HCC patients. Altogether, our results indicate that levels of ZIC2, OCT4, and the NURF complex can be detected and used for diagnosis and prognosis prediction of HCC patients. Moreover, these factors may be potential therapeutic targets for eradicating liver CSCs.
Collapse
|
41
|
de Matos Simoes R, Dehmer M, Emmert-Streib F. B-cell lymphoma gene regulatory networks: biological consistency among inference methods. Front Genet 2013; 4:281. [PMID: 24379827 PMCID: PMC3864360 DOI: 10.3389/fgene.2013.00281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/25/2013] [Indexed: 01/28/2023] Open
Abstract
Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level—that are more important for our biological understanding—the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information.
Collapse
Affiliation(s)
- Ricardo de Matos Simoes
- Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT Hall in Tirol, Austria
| | - Frank Emmert-Streib
- Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK
| |
Collapse
|
42
|
Huang RL, Gu F, Kirma NB, Ruan J, Chen CL, Wang HC, Liao YP, Chang CC, Yu MH, Pilrose JM, Thompson IM, Huang HC, Huang THM, Lai HC, Nephew KP. Comprehensive methylome analysis of ovarian tumors reveals hedgehog signaling pathway regulators as prognostic DNA methylation biomarkers. Epigenetics 2013; 8:624-34. [PMID: 23774800 PMCID: PMC3857342 DOI: 10.4161/epi.24816] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Women with advanced stage ovarian cancer (OC) have a five-year survival rate of less than 25%. OC progression is associated with accumulation of epigenetic alterations and aberrant DNA methylation in gene promoters acts as an inactivating ?hit? during OC initiation and progression. Abnormal DNA methylation in OC has been used to predict disease outcome and therapy response. To globally examine DNA methylation in OC, we used next-generation sequencing technology, MethylCap-sequencing, to screen 75 malignant and 26 normal or benign ovarian tissues. Differential DNA methylation regions (DMRs) were identified, and the Kaplan?Meier method and Cox proportional hazard model were used to correlate methylation with clinical endpoints. Functional role of specific genes identified by MethylCap-sequencing was examined in in vitro assays. We identified 577 DMRs that distinguished (p < 0.001) malignant from non-malignant ovarian tissues; of these, 63 DMRs correlated (p < 0.001) with poor progression free survival (PFS). Concordant hypermethylation and corresponding gene silencing of sonic hedgehog pathway members ZIC1 and ZIC4 in OC tumors was confirmed in a panel of OC cell lines, and ZIC1 and ZIC4 repression correlated with increased proliferation, migration and invasion. ZIC1 promoter hypermethylation correlated (p < 0.01) with poor PFS. In summary, we identified functional DNA methylation biomarkers significantly associated with clinical outcome in OC and suggest our comprehensive methylome analysis has significant translational potential for guiding the design of future clinical investigations targeting the OC epigenome. Methylation of ZIC1, a putative tumor suppressor, may be a novel determinant of OC outcome.
Collapse
Affiliation(s)
- Rui-Lan Huang
- Department of Obstetrics and Gynecology; Tri-Service General Hospital; National Defense Medical Center; Taiwan, Republic of China; Laboratory of Epigenetics; Cancer Stem Cells; National Defense Medical Center; Taiwan, Republic of China; Institute of Biomedical Informatics of National Yang-Ming University at Taipei; Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|