1
|
Curry SD, Bower BM, Saemundsson SA, Goodwin AP, Cha JN. Binding affinity and transport studies of engineered photocrosslinkable affibody-enzyme-nanoparticle constructs. NANOSCALE ADVANCES 2025; 7:2239-2247. [PMID: 40028492 PMCID: PMC11866575 DOI: 10.1039/d4na00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Nanoparticle accumulation at tumor sites has been well reported in vivo, where targeting typically shows increased retention, but challenges remain for clinical translation. This work examines the effect of targeting ligand binding affinities and nanoparticle size on retention and transport through a solid tumor. We first show using cell affinity assays that modifying a wildtype (WT) anti-epidermal growth factor receptor (EGFR) affibody-enzyme fusion protein into a UV-photocrosslinkable (N23BP) version led to a significant decrease in affinity, whether as a free protein or as a conjugate to silica nanoparticles. Despite the reduced EGFR affinity, all protein conjugated nanoparticles showed binding and uptake to EGFR-overexpressing HTB9 bladder cancer cells as detected by confocal microscopy and flow cytometry. Next, transport studies of the protein conjugated nanoparticles using monoculture spheroids revealed that spheroid binding was higher for 17 nm particles bound with the WT proteins than N23BP, which was expected based on their respective K D values. However, the 17 nm particles conjugated with the photocrosslinkable N23BP affibody-enzymes showed an altered distribution profile that peaked further into the spheroid than the WT nanoparticle conjugates or in the absence of UV treatment. We correlate this finding with increased transport and retention of the photocrosslinked N23BP-nanoparticle conjugates in 3D spheroids to both the lower binding affinity of the affibodies for EGFR and the ability to introduce covalent linkages between the affibody and cell receptor. The larger 40 nm protein-conjugated nanoparticles showed limited penetration regardless of affinity or photocrosslinking on a 12 h timescale but did show overall increased transport after 24 h.
Collapse
Affiliation(s)
- Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
| | - Bryce M Bower
- Department of Chemical and Biological Engineering, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
| | - Sven A Saemundsson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
- Materials Science and Engineering Program, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
- Materials Science and Engineering Program, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
- Biomedical Engineering Program, University of Colorado, Boulder 596 UCB Boulder CO 80303 USA
| |
Collapse
|
2
|
Bower BM, Curry SD, Goodwin AP, Cha JN. Photocrosslinkable, Low-Affinity Affibodies Show Improved Transport and Retention in 3D Tumor Spheroids. Biomacromolecules 2024; 25:7511-7517. [PMID: 39453818 DOI: 10.1021/acs.biomac.4c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The efficacy of affinity-based treatments for cancer and other diseases is often limited by poor distribution throughout the targeted tissue. Although lower-affinity antibodies will penetrate more uniformly, these often reach lower concentrations because of their rapid clearance from the tissue. To increase retention and improve distribution, we created low-affinity photocrosslinkable affibodies that can diffuse into dense tumor matrices with limited tumor barrier formation and then be photocrosslinked in place to cell receptors to increase retention. In testing with 3D tumor spheroids, the addition of a 50 nM photocrosslinkable affibody showed a similar level of accumulation at the edges of the spheroid but a higher level near the middle of the spheroid than the wild-type (non-photocrosslinkable) affibody. These results show that target affinity affects protein transport in tumor microenvironments and that covalently cross-linking the ligands to cells may improve both their transport and retention.
Collapse
Affiliation(s)
- Bryce M Bower
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Shane D Curry
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Andrew P Goodwin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| | - Jennifer N Cha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Zhang X, Hu X, Xie Y, Xie L, Chen X, Peng M, Li D, Deng J, Xiao D, Yang X. Metformin-Loaded Chitosan Hydrogels Suppress Bladder Tumor Growth in an Orthotopic Mouse Model via Intravesical Administration. Molecules 2023; 28:6720. [PMID: 37764495 PMCID: PMC10534355 DOI: 10.3390/molecules28186720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Our previous study found that the intravesical perfusion of metformin has excellent inhibitory effects against bladder cancer (BC). However, this administration route allows the drug to be diluted and excreted in urine. Therefore, increasing the adhesion of metformin to the bladder mucosal layer may prolong the retention time and increase the pharmacological activity. It is well known that chitosan (Cs) has a strong adhesion to the bladder mucosal layer. Thus, this study established a novel formulation of metformin to enhance its antitumor activity by extending its retention time. In this research, we prepared Cs freeze-dried powder and investigated the effect of metformin-loaded chitosan hydrogels (MLCH) in vitro and in vivo. The results showed that MLCH had a strong inhibitory effect against proliferation and colony formation in vitro. The reduction in BC weight and the expression of tumor biomarkers in orthotopic mice showed the robust antitumor activity of MLCH via intravesical administration in vivo. The non-toxic profile of MLCH was observed as well, using histological examinations. Mechanistically, MLCH showed stronger functional activation of the AMPKα/mTOR signaling pathway compared with metformin alone. These findings aim to make this novel formulation an efficient candidate for managing BC via intravesical administration.
Collapse
Affiliation(s)
- Xingjian Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Xin Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Yijun Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Lejing Xie
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Xiangyi Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Duo Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410205, China; (X.Z.); (X.H.); (Y.X.); (L.X.); (X.C.); (M.P.); (D.L.); (J.D.)
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410205, China
| |
Collapse
|
4
|
Yin L, Thaker H. Cancer Drug Delivery Systems Using Bacterial Toxin Translocation Mechanisms. Bioengineering (Basel) 2023; 10:813. [PMID: 37508840 PMCID: PMC10376142 DOI: 10.3390/bioengineering10070813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent advances in targeted cancer therapy hold great promise for both research and clinical applications and push the boundaries in finding new treatments for various currently incurable cancers. However, these therapies require specific cell-targeting mechanisms for the efficient delivery of drug cargo across the cell membrane to reach intracellular targets and avoid diffusion to unwanted tissues. Traditional drug delivery systems suffer from a limited ability to travel across the barriers posed by cell membranes and, therefore, there is a need for high doses, which are associated with adverse reactions and safety concerns. Bacterial toxins have evolved naturally to specifically target cell subtypes via their receptor binding module, penetrating the cell membrane efficiently through the membrane translocation process and then successfully delivering the toxic cargo into the host cytosol. They have, thus, been harnessed for the delivery of various drugs. In this review, we focus on bacterial toxin translocation mechanisms and recent progress in the targeted delivery systems of cancer therapy drugs that have been inspired by the receptor binding and membrane translocation processes of the anthrax toxin protective antigen, diphtheria toxin, and Pseudomonas exotoxin A. We also discuss the challenges and limitations of these studies that should be addressed before bacterial toxin-based drug delivery systems can become a viable new generation of drug delivery approaches in clinical translation.
Collapse
Affiliation(s)
- Linxiang Yin
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Ray A, Moore TF, Pandit R, Burke AD, Borsch DM. An Overview of Selected Bacterial Infections in Cancer, Their Virulence Factors, and Some Aspects of Infection Management. BIOLOGY 2023; 12:963. [PMID: 37508393 PMCID: PMC10376897 DOI: 10.3390/biology12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In cancer development and its clinical course, bacteria can be involved in etiology and secondary infection. Regarding etiology, various epidemiological studies have revealed that Helicobacter pylori can directly impact gastric carcinogenesis. The Helicobacter pylori-associated virulence factor cytotoxin-associated gene A perhaps plays an important role through different mechanisms such as aberrant DNA methylation, activation of nuclear factor kappa B, and modulation of the Wnt/β-catenin signaling pathway. Many other bacteria, including Salmonella and Pseudomonas, can also affect Wnt/β-catenin signaling. Although Helicobacter pylori is involved in both gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma, its role in the latter disease is more complicated. Among other bacterial species, Chlamydia is linked with a diverse range of diseases including cancers of different sites. The cellular organizations of Chlamydia are highly complex. Interestingly, Escherichia coli is believed to be associated with colon cancer development. Microorganisms such as Escherichia coli and Pseudomonas aeruginosa are frequently isolated from secondary infections in cancer patients. In these patients, the common sites of infection are the respiratory, gastrointestinal, and urinary tracts. There is an alarming rise in infections with multidrug-resistant bacteria and the scarcity of suitable antimicrobial agents adversely influences prognosis. Therefore, effective implementation of antimicrobial stewardship strategies is important in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Thomas F Moore
- College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | | | | | - Daniel M Borsch
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| |
Collapse
|
6
|
Relouw S, Dugbartey GJ, Sener A. Non-Invasive Imaging Modalities in Intravesical Murine Models of Bladder Cancer. Cancers (Basel) 2023; 15:cancers15082381. [PMID: 37190309 DOI: 10.3390/cancers15082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Bladder cancer (BCa) is the sixth most prevalent cancer in men and seventeenth most prevalent cancer in women worldwide. Current treatment paradigms have limited therapeutic impact, suggesting an urgent need for the investigation of novel therapies. To best emulate the progression of human BCa, a pre-clinical intravesical murine model is required in conjunction with existing non-invasive imaging modalities to detect and evaluate cancer progression. Non-invasive imaging modalities reduce the number of required experimental models while allowing for longitudinal studies of novel therapies to investigate long-term efficacy. In this review, we discuss the individual and multi-modal use of non-invasive imaging modalities; bioluminescence imaging (BLI), micro-ultrasound imaging (MUI), magnetic resonance imaging (MRI), and positron emission tomography (PET) in BCa evaluation. We also provide an update on the potential and the future directions of imaging modalities in relation to intravesical murine models of BCa.
Collapse
Affiliation(s)
- Sydney Relouw
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 1181, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, London, ON N6A 5A5, Canada
| | - Alp Sener
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Department of Surgery, Division of Urology, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, London, ON N6A 5A5, Canada
| |
Collapse
|
7
|
Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: review and update. J Drug Target 2021; 29:848-862. [PMID: 33615933 DOI: 10.1080/1061186x.2021.1894435] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotoxins (ITs) are protein-based drugs that compose of targeting and cytotoxic moieties. After binding the IT to the specific cell-surface antigen, the IT internalises into the target cell and kills it. Targeting and cytotoxic moieties usually include monoclonal antibodies and protein toxins with bacterial or plant origin, respectively. ITs have been successful in haematologic malignancies treatment. However, ITs penetrate poorly into solid tumours because of their large size. Use of camelid antibody fragments known as nanobodies (Nbs) as a targeting moiety may overcome this problem. Nbs are the smallest fragment of antibodies with excellent tumour tissue penetration. The ability to recognise cryptic (immuno-evasive) target antigens, low immunogenicity, and high-affinity are other fundamental characteristics of Nbs that make them suitable candidates in targeted therapy. Here, we reviewed and discussed the structure and function of ITs, Nbs, and nanobody-based ITs. To gain sound insight into the issue at hand, we focussed on nanobody-based ITs.
Collapse
Affiliation(s)
- Mohammad Reza Khirehgesh
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Sharifi
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Qi Z, Qiu Y, Wang Z, Zhang H, Lu L, Liu Y, Mathes D, Pomfret EA, Gao D, Lu SL, Wang Z. A novel diphtheria toxin-based bivalent human EGF fusion toxin for treatment of head and neck squamous cell carcinoma. Mol Oncol 2021; 15:1054-1068. [PMID: 33540470 PMCID: PMC8024719 DOI: 10.1002/1878-0261.12919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is often overexpressed in head and neck squamous cell carcinoma (HNSCC) and represents a top candidate for targeted HNSCC therapy. However, the clinical effectiveness of current Food and Drug Administration (FDA)-approved drugs targeting EGFR is moderate, and the overall survival rate for HNSCC patients remains low. Therefore, more effective treatments are urgently needed. In this study, we generated a novel diphtheria toxin-based bivalent human epidermal growth factor fusion toxin (bi-EGF-IT) to treat EGFR-expressing HNSCC. Bi-EGF-IT was tested for in vitro binding affinity, cytotoxicity, and specificity using 14 human EGFR-expressing HNSCC cell lines and three human EGFR-negative cancer cell lines. Bi-EGF-IT had increased binding affinity for EGFR-expressing HNSCC compared with the monovalent version (mono-EGF-IT), and both versions specifically depleted EGFR-positive HNSCC, but not EGFR-negative cell lines, in vitro. Bi-EGF-IT exhibited a comparable potency to that of the FDA-approved EGFR inhibitor, erlotinib, for inhibiting HNSCC tumor growth in vivo using both subcutaneous and orthotopic HNSCC xenograft mouse models. When tested in an experimental metastasis model, survival was significantly longer in the bi-EGF-IT treatment group than the erlotinib treatment group, with a significantly reduced number of metastases compared with mono-EGF-IT. In addition, in vivo off-target toxicities were significantly reduced in the bi-EGF-IT treatment group compared with the mono-EGF-IT group. These results demonstrate that bi-EGF-IT is more effective and markedly less toxic at inhibiting primary HNSCC tumor growth and metastasis than mono-EGF-IT and erlotinib. Thus, the novel bi-EGF-IT is a promising drug candidate for further development.
Collapse
Affiliation(s)
- Zeng Qi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yue Qiu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zhaohui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Huiping Zhang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David Mathes
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth A Pomfret
- Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dexiang Gao
- Department of Biostatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zhirui Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Division of Transplant Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Briquez PS, Hauert S, de Titta A, Gray LT, Alpar AT, Swartz MA, Hubbell JA. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol 2020; 8:19. [PMID: 32117911 PMCID: PMC7026271 DOI: 10.3389/fbioe.2020.00019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile. Moreover, vaccine efficacy and safety can be substantially modulated through selection of the site at which they are delivered, which fosters the engineering of materials capable of targeting cancer vaccines to specific relevant sites, such as within the tumor or within lymphoid organs, to further optimize their immunotherapeutic effects. In this review, we aim to give the reader an overview of principles and current strategies to engineer therapeutic cancer vaccines, with a particular focus on the use of site-specific targeting materials. We will first recall the goal of therapeutic cancer vaccination and the type of immune responses sought upon vaccination, before detailing key components of cancer vaccines. We will then present how materials can be engineered to enhance the vaccine's pharmacokinetic and pharmacodynamic properties. Finally, we will discuss the rationale for site-specific targeting of cancer vaccines and provide examples of current targeting technologies.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Sylvie Hauert
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | | | - Laura T. Gray
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Jack S, Madhivanan K, Ramadesikan S, Subramanian S, Edwards DF, Elzey BD, Dhawan D, McCluskey A, Kischuk EM, Loftis AR, Truex N, Santos M, Lu M, Rabideau A, Pentelute B, Collier J, Kaimakliotis H, Koch M, Ratliff TL, Knapp DW, Aguilar RC. A novel, safe, fast and efficient treatment for Her2-positive and negative bladder cancer utilizing an EGF-anthrax toxin chimera. Int J Cancer 2019; 146:449-460. [PMID: 31584195 DOI: 10.1002/ijc.32719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/10/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Bladder cancer is the sixth most common cancer in the United States, and it exhibits an alarming 70% recurrence rate. Thus, the development of more efficient antibladder cancer approaches is a high priority. Accordingly, this work provides the basis for a transformative anticancer strategy that takes advantage of the unique characteristics of the bladder. Unlike mucin-shielded normal bladder cells, cancer cells are exposed to the bladder lumen and overexpress EGFR. Therefore, we used an EGF-conjugated anthrax toxin that after targeting EGFR was internalized and triggered apoptosis in exposed bladder cancer cells. This unique agent presented advantages over other EGF-based technologies and other toxin-derivatives. In contrast to known agents, this EGF-toxin conjugate promoted its own uptake via receptor microclustering even in the presence of Her2 and induced cell death with a LC50 < 1 nM. Furthermore, our data showed that exposures as short as ≈3 min were enough to commit human (T24), mouse (MB49) and canine (primary) bladder cancer cells to apoptosis. Exposure of tumor-free mice and dogs with the agent resulted in no toxicity. In addition, the EGF-toxin was able to eliminate cells from human patient tumor samples. Importantly, the administration of EGF-toxin to dogs with spontaneous bladder cancer, who had failed or were not eligible for other therapies, resulted in ~30% average tumor reduction after one treatment cycle. Because of its in vitro and in vivo high efficiency, fast action (reducing treatment time from hours to minutes) and safety, we propose that this EGF-anthrax toxin conjugate provides the basis for new, transformative approaches against bladder cancer.
Collapse
Affiliation(s)
- Sherwin Jack
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Kayalvizhi Madhivanan
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Swetha Ramadesikan
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Sneha Subramanian
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Daniel F Edwards
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Bennett D Elzey
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | | | - Erin M Kischuk
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | - Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Nicholas Truex
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Michael Santos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Mike Lu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Amy Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Bradley Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.,Koch Institute MIT, Cambridge, MA.,Broad Institute of Harvard and MIT, Cambridge, MA.,Center for Environmental Health Sciences MIT, Cambridge, MA
| | - John Collier
- Department of Microbiology, Harvard Medical School, Boston, MA
| | | | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Timothy L Ratliff
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN
| | - Deborah W Knapp
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN
| | - Ruben C Aguilar
- Purdue University Center for Cancer Research, West Lafayette, IN.,Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
11
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Peng M, Deng J, Zhou S, Xiao D, Long J, Zhang N, He C, Mo M, Yang X. Dual Inhibition of Pirarubicin-Induced AKT and ERK Activations by Phenformin Sensitively Suppresses Bladder Cancer Growth. Front Pharmacol 2019; 10:1159. [PMID: 31649535 PMCID: PMC6791928 DOI: 10.3389/fphar.2019.01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023] Open
Abstract
Activations of Akt or ERK pathway induced by clinical drugs promote therapeutic failure due to decrease of drug response, and no available strategies have been developed to solve these problems. In this study, we found that pirarubicin (THP), one important chemotherapeutic drug for treating bladder cancer intravesically, dramatically elevated phosphorylations of both Akt and Erk1/2 in addition to inducing DNA damage. MK2206 or AZD6244, representative Akt and Erk1/2 inhibitors, respectively, profoundly sensitized bladder cancer cells to THP treatment. Interestingly, we found that inhibition of a single arm of either Akt or Erk1/2 pathway would induce the increase of another arm, indicating the existence of the crosstalk between these two pathways. Thus, simultaneous suppression of both signals may be needed for increasing the sensitivity of THP. On the other hand, we revealed that phenformin efficiently inhibited both Akt and Erk1/2 phosphorylation in a dose-dependent manner. Furthermore, we demonstrated that phenformin, mimicking dual inhibitors, plays dramatically synergistic action with THP both in vitro and in vivo. Our findings suggest that combination therapy of THP with dual inhibitors may constitute a successful strategy for improving chemotherapy response.
Collapse
Affiliation(s)
- Mei Peng
- Departments of Pharmacy and Urology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Jiahui Long
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Nan Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Caimei He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Miao Mo
- Departments of Pharmacy and Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Jiménez-Martínez Y, Griñán-Lisón C, Khaldy H, Martín A, Cambrils A, Ibáñez Grau A, Jiménez G, Marchal JA, Boulaiz H. LdrB Toxin with In Vitro and In Vivo Antitumor Activity as a Potential Tool for Cancer Gene Therapy. Cancers (Basel) 2019; 11:cancers11071016. [PMID: 31330822 PMCID: PMC6678987 DOI: 10.3390/cancers11071016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/03/2023] Open
Abstract
Due to the high prevalence of cancer in recent years, it is necessary to develop new and more effective therapies that produce fewer side effects. Development of gene therapy for cancer based on the use of suicide genes that can damage the tumor cell, without requiring a prodrug for its lethal effect, is one of the recent foci of gene therapy strategies. We evaluated the cytotoxic impact of the LdrB toxin from Escherichia coli k12 as a possible tool for cancer gene therapy. For that, colorectal and breast cancer cells were transfected under the control of a TRE3G promoter inducible by doxycycline. Our results showed that ldrB gene expression induced a drastic inhibition of proliferation in vitro, in both 2D and 3D experimental models. Moreover, unlike conventional chemotherapy, the ldrB gene induced a severe loss of proliferation in vivo without any side effects in our animal model. This antitumor outcome was modulated by cell cycle arrest in the G0/G1 phase and apoptotic death. Scanning electronic microscopy demonstrates that the LdrB toxin conserves its pore-forming ability in HCT-116 cells as in E. coli k12. Taken together, our results provide, for the first time, a proof of concept of the antitumor capacity of the ldrB gene in colorectal and breast cancer.
Collapse
Affiliation(s)
- Yaiza Jiménez-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
| | - Hoda Khaldy
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain
| | - Ana Martín
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
| | - Alba Cambrils
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
| | - Andrea Ibáñez Grau
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain.
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
14
|
Kwon D, Lim Y, Kwon J, Shim I, Kim E, Lee D, Yoon B, Kim P, Kim H. Evaluation of pulmonary toxicity of benzalkonium chloride and triethylene glycol mixtures using in vitro and in vivo systems. ENVIRONMENTAL TOXICOLOGY 2019; 34:561-572. [PMID: 30786124 PMCID: PMC6594094 DOI: 10.1002/tox.22722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 05/25/2023]
Abstract
Benzalkonium chloride (BAC) is a widely used disinfectant/preservative, and respiratory exposure to this compound has been reported to be highly toxic. Spray-form household products have been known to contain BAC together with triethylene glycol (TEG) in their solutions. The purpose of this study was to estimate the toxicity of BAC and TEG mixtures to pulmonary organs using in vitro and in vivo experiments. Human alveolar epithelial (A549) cells incubated with BAC (1-10 μg/mL) for 24 hours showed significant cytotoxicity, while TEG (up to 1000 μg/mL) did not affect cell viability. However, TEG in combination with BAC aggravated cell damage and inhibited colony formation as compared to BAC alone. TEG also exacerbated BAC-promoted production of reactive oxygen species (ROS) and reduction of glutathione (GSH) level in A549 cells. However, pretreatment of the cells with N-acetylcysteine (NAC) alleviated the cytotoxicity, indicating oxidative stress could be a mechanism of the toxicity. Quantification of intracellular BAC by LC/MS/MS showed that cellular distribution/absorption of BAC was enhanced in A549 cells when it was exposed together with TEG. Intratracheal instillation of BAC (400 μg/kg) in rats was toxic to the pulmonary tissues while that of TEG (up to 1000 μg/kg) did not show any harmful effect. A combination of nontoxic doses of BAC (200 μg/kg) and TEG (1000 μg/kg) promoted significant lung injury in rats, as shown by increased protein content and lactate dehydrogenase (LDH) activity in bronchoalveolar lavage fluids (BALF). Moreover, BAC/TEG mixture recruited inflammatory cells, polymorphonuclear leukocytes (PMNs), in terminal bronchioles and elevated cytokine levels, tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in BALF. These results suggest that TEG can potentiate BAC-induced pulmonary toxicity and inflammation, and thus respiratory exposure to the air mist from spray-form products containing this chemical combination is potentially harmful to humans.
Collapse
Affiliation(s)
- Doyoung Kwon
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Yeon‐Mi Lim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Jung‐Taek Kwon
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Ilseob Shim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Eunji Kim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Doo‐Hee Lee
- Environmental Measurement & Analysis CenterNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Byung‐Il Yoon
- College of Veterinary MedicineKangwon National UniversityChuncheon‐siGangwon‐doRepublic of Korea
| | - Pilje Kim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| | - Hyun‐Mi Kim
- Risk Assessment Division, Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonRepublic of Korea
| |
Collapse
|
15
|
Cho SK, Su LJ, Mao C, Wolenski CD, Flaig TW, Park W. Multifunctional nanoclusters of NaYF 4:Yb 3+,Er 3+ upconversion nanoparticle and gold nanorod for simultaneous imaging and targeted chemotherapy of bladder cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:784-792. [PMID: 30678969 PMCID: PMC6407122 DOI: 10.1016/j.msec.2018.12.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/03/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022]
Abstract
This paper reports successful synthesis of multifunctional nanoclusters of upconversion nanoparticle (UCNP) and gold nanorod (AuNR) through a PEGylation process. UCNPs emit visible luminescence under near-infrared excitation, producing high-contrast images with no background fluorescence. When coupled with AuNRs, the resulting UCNP-AuNR multifunctional nanoclusters are capable of simultaneous detection and treatment of bladder cancer. These UCNP-AuNR nanoclusters are further functionalized with antibodies to epidermal growth factor receptor (EGFR) to target bladder cancer cells known to overexpress EGFRs. This paper demonstrates, for the first time, efficient targeting of bladder cancer cells with UCNP-AuNR nanoclusters. In addition to high-contrast imaging and consequently high sensitivity detection of bladder cancer cells, highly selective optoporation-assisted chemotherapy was accomplished using a dosage of chemotherapy agent significantly lower than any previous reports, within a clinically relevant incubation time window. These results are highly relevant to the eventual human application in which the nanoclusters and chemotherapy drugs will be directly instilled in bladder via urinary catheter.
Collapse
Affiliation(s)
- Suehyun K Cho
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Lih-Jen Su
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, 12801 E. 17(th) Ave. Aurora, CO 80045, USA
| | - Chenchen Mao
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor D Wolenski
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Thomas W Flaig
- Division of Medical Oncology, School of Medicine, University of Colorado Denver, 12801 E. 17(th) Ave. Aurora, CO 80045, USA
| | - Wounjhang Park
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
16
|
Cáceres B, Ramirez A, Carrillo E, Jimenez G, Griñán-Lisón C, López-Ruiz E, Jiménez-Martínez Y, Marchal JA, Boulaiz H. Deciphering the Mechanism of Action Involved in Enhanced Suicide Gene Colon Cancer Cell Killer Effect Mediated by Gef and Apoptin. Cancers (Basel) 2019; 11:cancers11020264. [PMID: 30813432 PMCID: PMC6406936 DOI: 10.3390/cancers11020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the great advances in cancer treatment, colorectal cancer has emerged as the second highest cause of death from cancer worldwide. For this type of tumor, the use of suicide gene therapy could represent a novel therapy. We recently demonstrated that co-expression of gef and apoptin dramatically inhibits proliferation of the DLD-1 colon cell line. In the present manuscript, we try to establish the mechanism underlying the enhanced induction of apoptosis by triggering both gef and apoptin expression in colon tumor cells. Scanning microscopy reveals that simultaneous expression of gef and apoptin induces the apparition of many "pores" in the cytoplasmic membrane not detected in control cell lines. The formation of pores induced by the gef gene and accentuated by apoptin results in cell death by necrosis. Moreover, we observed the presence of apoptotic cells. Performing protein expression analysis using western blot, we revealed an activation of mitochondrial apoptosis (increased expression of Pp53, cytochrome c, Bax, and caspase 9) and also the involvement of the extrinsic pathway through caspase 8activation. In conclusion, in this manuscript we demonstrate for the first time that the extrinsic pathway of apoptosis and pore formation is also involved in the cell death caused by the co-expression of the gef and apoptin genes. Our results suggest that co-expression of gef and apoptin genes induces an increase in post-apoptotic necrotic cell death and could be a valuable tool in the design of new antitumor strategies focused on the enhancement of the immune response against cancer cell death.
Collapse
Affiliation(s)
- Blanca Cáceres
- Motril Health Center, Hospital Santa Ana, Motril, 18600 Granada, Spain.
| | - Alberto Ramirez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Esmeralda Carrillo
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Gema Jimenez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Carmen Griñán-Lisón
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Elena López-Ruiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain.
| | - Yaiza Jiménez-Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|
17
|
Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI JOURNAL 2018; 17:420-451. [PMID: 29805348 PMCID: PMC5962900 DOI: 10.17179/excli2018-1174] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.
Collapse
Affiliation(s)
- Sadaf Mushtaq
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan.,EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France
| | - Bushra Uzair
- Department of Bioinformatics & Biotechnology, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-8, Islamabad, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical & Genetic Engineering (IBGE), Sector G-9/1, Islamabad, Pakistan
| |
Collapse
|
18
|
Su Q, Tao T, Tang L, Deng J, Darko KO, Zhou S, Peng M, He S, Zeng Q, Chen AF, Yang X. Down-regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer. J Cell Mol Med 2018. [PMID: 29512924 PMCID: PMC5908113 DOI: 10.1111/jcmm.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels that are correlated with the sensitivity of anticancer chemotherapeutic drugs. THP is one of the major drugs used in non‐muscle‐invasive bladder cancer instillation chemotherapy. However, low response ratio of THP (19.7%) treatment to human genitourinary tumours using collagen gel matrix has been observed. This study aims to investigate the effect of down‐regulation of PKM2 on THP efficiency. Via inhibitor or siRNA, the effects of reduced PKM2 on the efficiency of THP were determined in 2 human and 1 murine bladder cancer cell lines, using MTT, cologenic and fluorescence approaches. Molecular mechanisms of PKM2 on THP sensitization were explored by probing p‐AMPK and p‐STAT3 levels via WB. Syngeneic orthotopic bladder tumour model was applied to evaluate this efficiency in vivo, analysed by Kaplan‐Meier survival curves, body and bladder weights plus immunohistochemistric tumour biomarkers. PKM2 was overexpressed in bladder cancer cells and tissues, and down‐regulation of PKM2 enhanced the sensitivity of THP in vitro. Activation of AMPK is essential for THP to exert anti‐bladder cancer activities. On the other hand, down‐regulating PKM2 activates AMPK and inhibits STAT3, correlated with THP sensitivity. Compared with THP alone (400 μmol L−1, 50 μL), the combination with metformin (60 mmol L−1, 50 μL) stopped growth of bladder cancer completely in vivo (combination group VS normal group P = .078). Down‐regulating the expression of PKM2 enhances the anticancer efficiency of THP. This study provides a new insight for improving the chemotherapeutic effect of THP.
Collapse
Affiliation(s)
- Qiongli Su
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Ting Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Lei Tang
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Jun Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Kwame Oteng Darko
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Sichun Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanping He
- Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| | - Qing Zeng
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Alex F Chen
- Department of Urology Surgery, 3rd Affiliated Hospital, Changsha, Hunan, China.,School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha, Hunan, China.,Animal Nutrition and Human Health Laboratory, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Yu C, Liu Z, Chen Q, Li Y, Jiang L, Zhang Z, Zhou F. Nkx2.8 Inhibits Epithelial-Mesenchymal Transition in Bladder Urothelial Carcinoma via Transcriptional Repression of Twist1. Cancer Res 2018; 78:1241-1252. [PMID: 29311157 DOI: 10.1158/0008-5472.can-17-1545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/19/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) promotes metastasis, which is the main cause of bladder urothelial carcinoma-related death. Loss of the candidate tumor-suppressor gene Nkx2.8 has been associated with urothelial carcinoma lymph node metastasis. Here, we show that enforced expression of Nkx2.8 is sufficient to inhibit EMT, reduce motility, and blunt invasiveness of urothelial carcinoma cells. Mechanistic investigations showed that Nkx2.8 negatively regulated expression of the EMT inducer Twist1 in urothelial carcinoma cells, at both the level of mRNA and protein accumulation. Nkx2.8 bound directly to the promoter region of this gene and transcriptionally repressed its expression. Twist1 upregulation reversed EMT inhibition by Nkx2.8, restoring the invasive phenotype of urothelial carcinoma cells. In clinical urothelial carcinoma specimens, expression of Nkx2.8 inversely correlated with Twist1 expression, and urothelial carcinoma patients with Nkx2.8 positivity and low Twist1 expression displayed the best prognosis. Our findings highlight the Nkx2.8-Twist1 axis as candidate target for therapeutic intervention in advanced urothelial carcinoma.Significance: These findings highlight a novel EMT signaling axis as a candidate target for therapeutic intervention in advanced urothelial carcinomas. Cancer Res; 78(5); 1241-52. ©2018 AACR.
Collapse
Affiliation(s)
- Chunping Yu
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhuowei Liu
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiuhong Chen
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonghong Li
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lijuan Jiang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhiling Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fangjian Zhou
- State Key Laboratory of Oncology in Southern China, Guangzhou, China. .,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
20
|
Woldu SL, Hutchinson RC, Krabbe LM, Sanli O, Margulis V. The Rho GTPase signalling pathway in urothelial carcinoma. Nat Rev Urol 2017; 15:83-91. [PMID: 29133936 DOI: 10.1038/nrurol.2017.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Urothelial carcinoma remains a clinical challenge: non-muscle-invasive disease has a high rate of recurrence and risk of progression, and outcomes for patients with advanced disease are poor, owing to a lack of effective systemic therapies. The Rho GTPase family of enzymes was first identified >30 years ago and contains >20 members, which are divided into eight subfamilies: Cdc42, Rac, Rho, RhoUV, RhoBTB, RhoDF, RhoH, and Rnd. Rho GTPases are molecular on-off switches, which are increasingly being understood to have a critical role in a number of cellular processes, including cell migration, cell polarity, cell adhesion, cell cycle progression, and regulation of the cytoskeleton. This switch is an evolutionarily conserved system in which GTPases alternate between GDP-bound (inactive) and GTP-bound (active) forms. The activities of these Rho GTPases are many, context-dependent, and regulated by a number of proteins that are being progressively elucidated. Aberrations of the Rho GTPase signalling pathways have been implicated in various malignancies, including urothelial carcinoma, and understanding of the role of Rho GTPases in these diseases is increasing. This signalling pathway has the potential for therapeutic targeting in urothelial carcinoma. Research in this area is nascent, and much work is necessary before current laboratory-based research can be translated into the clinic.
Collapse
Affiliation(s)
- Solomon L Woldu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Ryan C Hutchinson
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Laura-Maria Krabbe
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Oner Sanli
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Vitaly Margulis
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| |
Collapse
|
21
|
Goux M, Becker G, Gorré H, Dammicco S, Desselle A, Egrise D, Leroi N, Lallemand F, Bahri MA, Doumont G, Plenevaux A, Cinier M, Luxen A. Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors. Bioconjug Chem 2017; 28:2361-2371. [PMID: 28825794 DOI: 10.1021/acs.bioconjchem.7b00374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18F-4-fluorobenzamido-N-ethylamino-maleimide (18F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the development of valuable PET-based companion diagnostics.
Collapse
Affiliation(s)
| | | | - Harmony Gorré
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | | | - Ariane Desselle
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | - Dominique Egrise
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles , 8 Rue Adrienne Bolland, 6041 Gosselies, Belgium.,Service de Médecine Nucléaire, Hôpital Erasme, Université Libre de Bruxelles , Brussels, Belgium
| | - Natacha Leroi
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège , Avenue de l'Hopital, 4000 Liège, Belgium
| | | | | | - Gilles Doumont
- Centre for Microscopy and Molecular Imaging, Université Libre de Bruxelles , 8 Rue Adrienne Bolland, 6041 Gosselies, Belgium
| | | | - Mathieu Cinier
- Affilogic SAS , 21 rue La Noue Bras de Fer, 44200 Nantes, France
| | | |
Collapse
|
22
|
Yang X, Su LJ, La Rosa FG, Smith EE, Schlaepfer IR, Cho SK, Kavanagh B, Park W, Flaig TW. The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model. Bladder Cancer 2017; 3:201-210. [PMID: 28824948 PMCID: PMC5545915 DOI: 10.3233/blc-170096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gold nanoparticles treated with near infrared (NIR) light can be heated preferentially, allowing for thermal ablation of targeted cells. The use of novel intravesical nanoparticle-directed therapy in conjunction with laser irradiation via a fiber optic cystoscope, represents a potential ablative treatment approach in patients with superficial bladder cancer. OBJECTIVE To examine the thermal ablative effect of epidermal growth factor receptor (EGFR)-directed gold nanorods irradiated with NIR light in an orthotopic urinary bladder cancer model. METHODS Gold nanorods linked to an anti-EGFR antibody (Conjugated gold NanoRods - CNR) were instilled into the bladder cavity of an orthotopic murine xenograft model with T24 bladder cancer cells expressing luciferase. NIR light was externally administered via an 808 nm diode laser. This treatment was repeated weekly for 4 weeks. The anti-cancer effect was monitored by an in vivo imaging system in a non-invasive manner, which was the primary outcome of our study. RESULTS The optimal approach for an individual treatment was 2.1 W/cm2 laser power for 30 seconds. Using this in vivo model, NIR light combined with CNR demonstrated a statistically significant reduction in tumor-associated bioluminescent activity (n = 16) compared to mice treated with laser alone (n = 14) at the end of the study (p = 0.035). Furthermore, the CNR+NIR light treatment significantly abrogated bioluminescence signals over a 6-week observation period, compared to pre-treatment levels (p = 0.045). CONCLUSIONS Photothermal tumor ablation with EGFR-directed gold nanorods and NIR light proved effective and well tolerated in a murine in vivo model of urinary bladder cancer.
Collapse
Affiliation(s)
- Xiaoping Yang
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| | - Lih-Jen Su
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Francisco G La Rosa
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| | - Elizabeth Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| | - Isabel R Schlaepfer
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Suehyun K Cho
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wounjhang Park
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Thomas W Flaig
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA.,University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
23
|
Shafiee F, Rabbani M, Jahanian-Najafabadi A. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology. Adv Biomed Res 2017; 6:22. [PMID: 28349025 PMCID: PMC5353773 DOI: 10.4103/2277-9175.201334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rabbani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H, Rahbarnia L. Immunotoxins in cancer therapy: Review and update. Int Rev Immunol 2017; 36:207-219. [DOI: 10.1080/08830185.2017.1284211] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bahman Akbari
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Safari
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dariushnejad
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rahbarnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat Rev Urol 2017; 14:244-255. [DOI: 10.1038/nrurol.2017.16] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
High efficacy of intravesical treatment of metformin on bladder cancer in preclinical model. Oncotarget 2016; 7:9102-17. [PMID: 26802022 PMCID: PMC4891029 DOI: 10.18632/oncotarget.6933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022] Open
Abstract
Anticancer potential of metformin has been extensively studied. However, its anticancer clinical use remains yet to be approved since sufficient concentration on target organs could not be achieved via conventional administration. To overcome this drawback, we aim to examine the efficiency of novel intravesical treatment of metformin on syngeneic orthotopic preclinical model. Three human and one murine bladder cancer cell lines were tested in vitro for inhibitory sensitivity by MTT and cologenic assays. AMPK pathway including AKT, Erk and S6K was examined by western blot and further explored by regulating activated levels using specific inhibitors. In vivo efficacy was determined by Kaplan-Meier survival curves and measurements of body and bladder weights plus tumor biomarkers. Lactic acid and metformin levels of plasma were measured by standard procedures. The results demonstrated that metformin activated AMPK and decreased phosphorylation of Akt and Erk. Furthermore, combinations of metformin with either Akt or Erk inhibitors synergistically diminished cancer proliferation, suggesting the involvement of Akt- and Erk- related pathways. Intravesical metformin 26 and 104 mg/kg, twice per week demonstrated a rapid elimination of the implanted tumor without any evidence of toxicity. In contrast, oral treatment at a dose of 800mg/kg/d exhibited little efficacy whereas severe toxicity existed if the dosage is higher. Collectively, intravesical metformin displays potent inhibition on bladder cancer in vitro and this preclinical study reveals the profound therapeutic application of metformin with durable tolerance via intravesical administration route.
Collapse
|
27
|
Shafiee F, Rabbani M, Jahanian-Najafabadi A. Production and evaluation of cytotoxic effects of DT386-BR2 fusion protein as a novel anti-cancer agent. J Microbiol Methods 2016; 130:100-105. [DOI: 10.1016/j.mimet.2016.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/21/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
|
28
|
Bacterial toxin's DNA vaccine serves as a strategy for the treatment of cancer, infectious and autoimmune diseases. Microb Pathog 2016; 100:184-194. [PMID: 27671283 DOI: 10.1016/j.micpath.2016.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
DNA vaccination -a third generation vaccine-is a modern approach to stimulate humoral and cellular responses against different diseases such as infectious diseases, cancer and autoimmunity. These vaccines are composed of a gene that encodes sequences of a desired protein under control of a proper (eukaryotic or viral) promoter. Immune response following DNA vaccination is influenced by the route and the dose of injection. In addition, antigen presentation following DNA administration has three different mechanisms including antigen presentation by transfected myocytes, transfection of professional antigen presenting cells (APCs) and cross priming. Recently, it has been shown that bacterial toxins and their components can stimulate and enhance immune responses in experimental models. A study demonstrated that DNA fusion vaccine encoding the first domain (DOM) of the Fragment C (FrC) of tetanus neurotoxin (CTN) coupled with tumor antigen sequences is highly immunogenic against colon carcinoma. DNA toxin vaccines against infectious and autoimmune diseases are less studied until now. All in all, this novel approach has shown encouraging results in animal models, but it has to go through adequate clinical trials to ensure its effectiveness in human. However, it has been proven that these vaccines are safe, multifaceted and simple and can be used widely in organisms which may be of advantage to public health in the near future. This paper outlines the mechanism of the action of DNA vaccines and their possible application for targeting infectious diseases, cancer and autoimmunity.
Collapse
|
29
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Metformin and gefitinib cooperate to inhibit bladder cancer growth via both AMPK and EGFR pathways joining at Akt and Erk. Sci Rep 2016; 6:28611. [PMID: 27334428 PMCID: PMC4917871 DOI: 10.1038/srep28611] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
EGFR is a potential therapeutic target for treating bladder cancer, but has not been approved for clinical use yet. Metformin is a widely used antidiabetic drug and has demonstrated interesting anticancer effects on various cancer models, alone or in combination with chemotherapeutic drugs. The efficacy of gefitinib, a well-known EGFR tyrosine kinase inhibitor, combined with metformin was assessed on bladder cancer and underlying mechanisms were explored. This drug combination induced a strong anti-proliferative and anti-colony forming effect and apoptosis in bladder cancer cell lines. Gefitinib suppressed EGFR signaling and inhibited phosphorylation of ERK and Akt. Metformin amplified this inhibitory effect and enhanced gefitinib-induced activation of AMPK signaling pathway. In vivo intravesical treatment of metformin and gefitinib on syngeneic orthotopic mice confirmed the significant inhibitory effect on bladder tumor growth. These two drugs may be an excellent combination for the treatment of bladder cancer through intravesical instillation.
Collapse
|
31
|
Simon N, FitzGerald D. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers. Toxins (Basel) 2016; 8:toxins8050137. [PMID: 27153091 PMCID: PMC4885052 DOI: 10.3390/toxins8050137] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022] Open
Abstract
Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR) to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers.
Collapse
Affiliation(s)
- Nathan Simon
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 37/5124 Bethesda, MD 20892, USA.
| | - David FitzGerald
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, 37/5124 Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Jiang G, Wu AD, Huang C, Gu J, Zhang L, Huang H, Liao X, Li J, Zhang D, Zeng X, Jin H, Huang H, Huang C. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis. Cancer Prev Res (Phila) 2016; 9:567-80. [PMID: 27080594 DOI: 10.1158/1940-6207.capr-15-0338] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/29/2016] [Indexed: 11/16/2022]
Abstract
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR.
Collapse
Affiliation(s)
- Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Amy D Wu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Liao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
33
|
Lin B, Gao A, Zhang R, Ma H, Shen H, Hu Q, Zhang H, Zhao M, Lan X, Liu K. Use of a Novel Integrase-Deficient Lentivirus for Targeted Anti-Cancer Therapy With Survivin Promoter-Driven Diphtheria Toxin A. Medicine (Baltimore) 2015; 94:e1301. [PMID: 26252309 PMCID: PMC4616595 DOI: 10.1097/md.0000000000001301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As an immunotoxin, diphtheria toxin has been widely used in gene therapy and gene function assays for its roles in protein synthesis inhibition, and the aim of our study is to set up a nonintegrating lentiviral system for specific expression of diphtheria toxin A (DTA) used in cancer gene therapy.Here, we established a lentiviral system that could coordinately express fluorescent protein and DTA driven by the cytomegalovirus (CMV) promoter, which is convenient for us to precisely trace the expression of DTA and monitor the process of lentivirus packaging. To achieve safer cancer therapy, we replaced the CMV promoter with the Survivin promoter, a specific promoter that is dramatically activated in cancer tissues and cells, but not in normal tissues and cells, and that will impose greater therapeutic potential because a significant expression difference occurred between these 2 groups. Meanwhile, we obtained integrase-deficient lentivirus (IDLV) after packaging with the integrase mutant, which expresses defective integrase RRK262263264AAH, to minimize the side effects that derived from the insertional mutagenesis of the host genome.Our results suggest that the IDLV system that we generated possesses therapeutic potential in cancers in vitro and in vivo.
Collapse
Affiliation(s)
- Baoshun Lin
- From the Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P.R. China (BL, AG, RZ, HM, MZ, XL, KL); Dong Fang Hospital, Xiamen University, Fuzhou, Fujian, P.R. China (BL, AG, QH, MZ, XL, KL); Institute for Laboratory Medicine, Fuzhou General Hospital, Second Military Medical University, Fuzhou, Fujian, P.R. China (HM); School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, P.R. China (HS); Agriculture and Animal Husbandry College, Tibet University, Nyingchi, P.R. China (HZ); and Fuzhou General Hospital Clinical Medical School, Fujian Medical University, Fuzhou, P.R. China (RZ, XL, KL)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat Rev Urol 2015; 12:225-35. [DOI: 10.1038/nrurol.2015.58] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Yang X, La Rosa FG, Genova EE, Huber K, Schaack J, DeGregori J, Serkova NJ, Li Y, Su LJ, Kessler E, Flaig TW. Simultaneous activation of Kras and inactivation of p53 induces soft tissue sarcoma and bladder urothelial hyperplasia. PLoS One 2013; 8:e74809. [PMID: 24058630 PMCID: PMC3776760 DOI: 10.1371/journal.pone.0074809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
The development of the Cre recombinase-controlled (Cre/LoxP) technique allows the manipulation of specific tumorigenic genes, temporarily and spatially. Our original intention of this study was to investigate the role of Kras and p53 in the development of urinary bladder cancer. First, to validate the effect of intravesical delivery on Cre recombination (Adeno-Cre), we examined activity and expression of β-galactosidase in the bladder of control ROSA transgenic mice. The results confirmed specific recombination as evidenced by β-galactosidase activity in the bladder urothelium of these mice. Then, we administered the same adenovirus into the bladder of double transgenic KrasLSLG12D/+. p53fl/fl mice. The virus solution was held in place by a distal urethral retention suture for 2 hours. To our surprise, there was a rapid development of a spindle-cell tumor with sarcoma characteristics near the suture site, within the pelvic area but outside the urinary track. Since we did not see any detectable β-galactosidase in the area outside of the bladder in the validating (control) experiment, we interpreted that this sarcoma formation was likely due to transduction by Adeno-Cre in the soft tissue of the suture site. To avoid the loss of skin integrity associated with the retention suture, we transitioned to an alternative technique without suture to retain the Adeno-Cre into the bladder cavity. Interestingly, although multiple Adeno-Cre treatments were applied, only urothelial hyperplasia but not carcinogenesis was observed in the subsequent experiments of up to 6 months. In conclusion, we observed that the simultaneous inactivation of p53 and activation of Kras induces quick formation of spindle-cell sarcoma in the soft tissues adjacent to the bladder but slow formation of urothelial hyperplasia inside the bladder. These results strongly suggest that the effect of oncogene regulation to produce either hyperplasia or carcinogenesis greatly depends on the tissue type.
Collapse
Affiliation(s)
- Xiaoping Yang
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
- * E-mail: (XY); (TWF)
| | - Francisco G. La Rosa
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - Elizabeth Erin Genova
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kendra Huber
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jerome Schaack
- Department of Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - Natalie J. Serkova
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - Yuan Li
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Lih-Jen Su
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elizabeth Kessler
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Thomas W. Flaig
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
- * E-mail: (XY); (TWF)
| |
Collapse
|
36
|
Boulaiz H, Aránega A, Blanca C, Pablo A, Fernando RS, Esmeralda C, Consolación M, Jose P. A Novel Double-Enhanced Suicide Gene Therapy in a Colon Cancer Cell Line Mediated by Gef and Apoptin. BioDrugs 2013; 28:63-74. [DOI: 10.1007/s40259-013-0055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Fenner A. Bladder cancer: EGF-diphtheria chimeric protein as a novel intravesical treatment. Nat Rev Urol 2012; 10:65. [PMID: 23229499 DOI: 10.1038/nrurol.2012.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|