1
|
Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, Previs RA, Conroy JM, DePietro P, Pabla S, Kurzrock R. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev 2024; 43:1001-1013. [PMID: 38526805 PMCID: PMC11300540 DOI: 10.1007/s10555-024-10184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.
Collapse
Affiliation(s)
- Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | - Suzanna Lee
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | | | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Mikami H, Feng S, Matsuda Y, Ishii S, Naoi S, Azuma Y, Nagano H, Asanuma K, Kayukawa Y, Tsunenari T, Kamikawaji S, Iwabuchi R, Shinozuka J, Yamazaki M, Kuroi H, Ho SSW, Gan SW, Chichili P, Pang CL, Yeo CY, Shimizu S, Hironiwa N, Kinoshita Y, Shimizu Y, Sakamoto A, Muraoka M, Takahashi N, Kawa T, Shiraiwa H, Mimoto F, Kashima K, Kamata-Sakurai M, Ishikawa S, Aburatani H, Kitazawa T, Igawa T. Engineering CD3/CD137 Dual Specificity into a DLL3-Targeted T-Cell Engager Enhances T-Cell Infiltration and Efficacy against Small-Cell Lung Cancer. Cancer Immunol Res 2024; 12:719-730. [PMID: 38558120 DOI: 10.1158/2326-6066.cir-23-0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Collapse
Affiliation(s)
- Hirofumi Mikami
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Shu Feng
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yutaka Matsuda
- Project & Lifecycle Management Unit, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| | - Shinya Ishii
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yumiko Azuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Hiroaki Nagano
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kentaro Asanuma
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yoko Kayukawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shogo Kamikawaji
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Ryutaro Iwabuchi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaki Yamazaki
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Siok Wan Gan
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | | | - Chai Ling Pang
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Chiew Ying Yeo
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Naoka Hironiwa
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Yasuko Kinoshita
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | - Masaru Muraoka
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Tatsuya Kawa
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Futa Mimoto
- Research Division, Chugai Pharmabody Research, Singapore, Singapore
| | - Kenji Kashima
- Research Division, Chugai Pharmaceutical, Yokohama, Kanagawa, Japan
| | | | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical, Chuo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Kinget L, Naulaerts S, Govaerts J, Vanmeerbeek I, Sprooten J, Laureano RS, Dubroja N, Shankar G, Bosisio FM, Roussel E, Verbiest A, Finotello F, Ausserhofer M, Lambrechts D, Boeckx B, Wozniak A, Boon L, Kerkhofs J, Zucman-Rossi J, Albersen M, Baldewijns M, Beuselinck B, Garg AD. A spatial architecture-embedding HLA signature to predict clinical response to immunotherapy in renal cell carcinoma. Nat Med 2024; 30:1667-1679. [PMID: 38773341 DOI: 10.1038/s41591-024-02978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
An important challenge in the real-world management of patients with advanced clear-cell renal cell carcinoma (aRCC) is determining who might benefit from immune checkpoint blockade (ICB). Here we performed a comprehensive multiomics mapping of aRCC in the context of ICB treatment, involving discovery analyses in a real-world data cohort followed by validation in independent cohorts. We cross-connected bulk-tumor transcriptomes across >1,000 patients with validations at single-cell and spatial resolutions, revealing a patient-specific crosstalk between proinflammatory tumor-associated macrophages and (pre-)exhausted CD8+ T cells that was distinguished by a human leukocyte antigen repertoire with higher preference for tumoral neoantigens. A cross-omics machine learning pipeline helped derive a new tumor transcriptomic footprint of neoantigen-favoring human leukocyte antigen alleles. This machine learning signature correlated with positive outcome following ICB treatment in both real-world data and independent clinical cohorts. In experiments using the RENCA-tumor mouse model, CD40 agonism combined with PD1 blockade potentiated both proinflammatory tumor-associated macrophages and CD8+ T cells, thereby achieving maximal antitumor efficacy relative to other tested regimens. Thus, we present a new multiomics and spatial map of the immune-community architecture that drives ICB response in patients with aRCC.
Collapse
Affiliation(s)
- Lisa Kinget
- Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolina Dubroja
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Gautam Shankar
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca M Bosisio
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Markus Ausserhofer
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | | | | | - Johan Kerkhofs
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Jessica Zucman-Rossi
- Inserm, UMRS-1138, Génomique fonctionnelle des tumeurs solides, Centre de recherche des Cordeliers, Paris, France
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | | | - Benoit Beuselinck
- Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium.
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Abhishek D Garg
- Laboratory of Cell Stress and Immunity (CSI), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O'Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating tumor necrosis factor receptors. Cell Chem Biol 2024; 31:944-954.e5. [PMID: 38653243 PMCID: PMC11142405 DOI: 10.1016/j.chembiol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
Collapse
MESH Headings
- Humans
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Receptors, OX40/antagonists & inhibitors
- Antibodies/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/pharmacology
- Mice
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O'Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O’Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating receptors in the tumor necrosis factor superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571146. [PMID: 38168220 PMCID: PMC10760063 DOI: 10.1101/2023.12.11.571146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Agonist antibodies that activate cellular receptors are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their potent activation. This can be achieved using antibodies that recognize two unique epitopes on the same receptor and mediate receptor superclustering. However, identifying compatible pairs of antibodies to generate biepitopic antibodies (also known as biparatopic antibodies) for activating TNF receptors typically requires animal immunization and is a laborious and unpredictable process. Here, we report a simple method for systematically identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses off-the-shelf, receptor-specific IgG antibodies, which lack intrinsic (Fc-gamma receptor-independent) agonist activity, to first block their corresponding epitopes. Next, we perform selections for single-chain antibodies from human nonimmune libraries that bind accessible epitopes on the same ectodomains using yeast surface display and fluorescence-activated cell sorting. The selected single-chain antibodies are finally fused to the light chains of IgGs to generate human tetravalent antibodies that engage two different receptor epitopes and mediate potent receptor activation. We highlight the broad utility of this approach by converting several existing clinical-stage antibodies against TNF receptors, including ivuxolimab and pogalizumab against OX40 and utomilumab against CD137, into biepitopic antibodies with highly potent agonist activity. We expect that this widely accessible methodology can be used to systematically generate biepitopic antibodies for activating other receptors in the TNF receptor superfamily and many other receptors whose activation is dependent on strong receptor clustering.
Collapse
Affiliation(s)
- Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S. Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Sun Y, Yu X, Wang X, Yuan K, Wang G, Hu L, Zhang G, Pei W, Wang L, Sun C, Yang P. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm Sin B 2023; 13:3583-3597. [PMID: 37719370 PMCID: PMC10501874 DOI: 10.1016/j.apsb.2023.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has been rapid, with many new structures and target combinations being created. The boom in bsAbs has led to the successive issuance of industry guidance for their development in the US and China. However, there is a high degree of similarity in target selection, which could affect the development of diversity in bsAbs. This review presents a classification of various bsAbs for cancer therapy based on structure and target selection and examines the advantages of bsAbs over monoclonal antibodies (mAbs). Through database research, we have identified the preferences of available bsAbs combinations, suggesting rational target selection options and warning of potential wastage of medical resources. We have also compared the US and Chinese guidelines for bsAbs in order to provide a reference for their development.
Collapse
Affiliation(s)
- Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Shen A, Liu W, Wang H, Zeng X, Wang M, Zhang D, Zhao Q, Fang Q, Wang F, Cheng L, Shen G, Li Y. A novel 4-1BB/HER2 bispecific antibody shows potent antitumor activities by increasing and activating tumor-infiltrating T cells. Am J Cancer Res 2023; 13:3246-3256. [PMID: 37559991 PMCID: PMC10408481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
Resistance to HER2-targeted therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB/CD137 is a promising drug target as a costimulatory molecule of immune cells, no therapeutic drug has been approved in the clinic because of systemic toxicity or limited efficacy. Previously, we developed a humanized anti-HER2 monoclonal antibody (mAb) HuA21 and anti-4-1BB mAb HuB6 with distinct antigen epitopes for cancer therapy. Here, we generated an Fc-muted IgG4 HER2/4-1BB bispecific antibody (BsAb) HK006 by the fusion of HuB6 scFv and HuA21 Fab. HK006 exhibited synergistic antitumor activity by blocking HER2 signal transduction and stimulating the 4-1BB signaling pathway simultaneously and strictly dependent on HER2 expression in vitro and in vivo. Strikingly, HK006 treatment enhanced antitumor immunity by increasing and activating tumor-infiltrating T cells. Moreover, HK006 did not induce nonspecific production of proinflammatory cytokines and had no obvious toxicity in mice. Overall, these data demonstrated that HK006 should be a promising candidate for HER2-positive cancer immunotherapy.
Collapse
Affiliation(s)
- Aolin Shen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Mengli Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Liansheng Cheng
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd.Hefei 230088, Anhui, China
| | - Guodong Shen
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
8
|
Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, Axisa PP, Tosolini M, Mazzotti C, Golec DP, Maheo S, do Souto L, Ekren R, Blanquart E, Lemaitre L, Feliu V, Joubert MV, Cannons JL, Guillerey C, Avet-Loiseau H, Watts TH, Salomon BL, Joffre O, Grinberg-Bleyer Y, Schwartzberg PL, Lucca LE, Martinet L. TCR-independent CD137 (4-1BB) signaling promotes CD8 +-exhausted T cell proliferation and terminal differentiation. Immunity 2023; 56:1631-1648.e10. [PMID: 37392737 PMCID: PMC10649891 DOI: 10.1016/j.immuni.2023.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Collapse
Affiliation(s)
- Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Samira Ghazali
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Allison Voisin
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Laura do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Eve Blanquart
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Virginie Feliu
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Guillerey
- Cancer Immunotherapies Group, The University of Queensland, Brisbane, QLD, Australia
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benoit L Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana E Lucca
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France.
| |
Collapse
|
9
|
Qian Y, Galan-Cobo A, Guijarro I, Dang M, Molkentine D, Poteete A, Zhang F, Wang Q, Wang J, Parra E, Panda A, Fang J, Skoulidis F, Wistuba II, Verma S, Merghoub T, Wolchok JD, Wong KK, DeBerardinis RJ, Minna JD, Vokes NI, Meador CB, Gainor JF, Wang L, Reuben A, Heymach JV. MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma. Cancer Cell 2023; 41:1363-1380.e7. [PMID: 37327788 PMCID: PMC11161201 DOI: 10.1016/j.ccell.2023.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/18/2023]
Abstract
Inactivating STK11/LKB1 mutations are genomic drivers of primary resistance to immunotherapy in KRAS-mutated lung adenocarcinoma (LUAD), although the underlying mechanisms remain unelucidated. We find that LKB1 loss results in enhanced lactate production and secretion via the MCT4 transporter. Single-cell RNA profiling of murine models indicates that LKB1-deficient tumors have increased M2 macrophage polarization and hypofunctional T cells, effects that could be recapitulated by the addition of exogenous lactate and abrogated by MCT4 knockdown or therapeutic blockade of the lactate receptor GPR81 expressed on immune cells. Furthermore, MCT4 knockout reverses the resistance to PD-1 blockade induced by LKB1 loss in syngeneic murine models. Finally, tumors from STK11/LKB1 mutant LUAD patients demonstrate a similar phenotype of enhanced M2-macrophages polarization and hypofunctional T cells. These data provide evidence that lactate suppresses antitumor immunity and therapeutic targeting of this pathway is a promising strategy to reversing immunotherapy resistance in STK11/LKB1 mutant LUAD.
Collapse
Affiliation(s)
- Yu Qian
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Ana Galan-Cobo
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Irene Guijarro
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Minghao Dang
- Department of Genomic Medicine, Houston, TX, USA
| | - David Molkentine
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Fahao Zhang
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, Houston, TX, USA
| | - Edwin Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jacy Fang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svena Verma
- Ludwig Collaborative and Swim Across America Laboratory, MSK, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, MSK, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, MSK, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - Catherine B Meador
- Department of Medicine, Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Center for Thoracic Cancers, Massachusetts General Hospital, Boston, MA, USA
| | - Justin F Gainor
- Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Thoracic Cancers, Massachusetts General Hospital, Boston, MA, USA
| | - Linghua Wang
- Department of Genomic Medicine, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, Houston, TX, USA.
| |
Collapse
|
10
|
Dastouri M, Kilic N, Yilmaz H. The apoptotic effects of NK-92 cells stimulated with an anti-CD226 antibody on MDA-MB-231 triple-negative breast cancer cells. Med Oncol 2023; 40:228. [PMID: 37410214 DOI: 10.1007/s12032-023-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Research on immunotherapy in breast cancer treatment has recently gained importance. In this context, natural killer (NK) cells have been shown to kill cancer cells without affecting normal cells. Our study used the NK-92 cells that were stimulated with anti-CD226 antibodies (sNK-92) to increase their activity to target MDA-MB-231 triple-negative breast cancer cells. MCF-12A normal breast cells were used as the control in all experiments. The cytotoxic effects of NK-92 and sNK-92 cells on MDA-MB-231 cells were investigated using lactate dehydrogenase tests. The sNK-92 cells were more cytotoxic than NK-92 cells on MDA-MB-231 cells. In contrast, a significant cytotoxic change was not observed in MCF-12A cells cocultured with NK-92 and sNK-92 cells. An increase in granzyme B levels after coculturing with sNK-92 cells was investigated using the granzyme B enzyme-linked immunosorbent assay. The sNK-92 cells secreted more granzyme B than NK-92 cells against MDA-MB-231 cells. This increase was not observed in MCF-12A, indicating that sNK-92 cells specifically target cancer cells. In addition, immunostaining was used to investigate the synthesis level of BAX, CASP3, and CASP9 proteins to determine whether the observed cytotoxic effect was due to apoptosis. These proteins were synthesized more in MDA-MB-231 cells cocultured with sNK-92 than with NK-92 cells. However, no increase in their synthesis was observed in normal breast cells cocultured with NK-92 and sNK-92 cells. In conclusion, NK-92 cells stimulated with anti-CD226 antibodies secrete more granzyme B, resulting in a greater cytotoxic effect by inducing programmed cell death (apoptosis). The fact that the observed effects on breast cancer cells were not observed in normal breast cells indicates that sNK-92 cells specifically target breast cancer cells. These results indicate the potential use of CD226-stimulated NK-92 cells in immunotherapy.
Collapse
Affiliation(s)
- Mohammadreza Dastouri
- Ankara University Biotechnology Institute and SISBIYOTEK Advanced Research Unit, Gumusdere Yerleskesi, Kecioren, 06135, Ankara, Turkey.
| | - Nil Kilic
- Department of Biology, Faculty of Science, Ankara University, Tandogan Campus, 06100, Ankara, Turkey
| | - Humeyra Yilmaz
- Department of Medical Biology, Institute of Health Sciences, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
11
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
12
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
13
|
Kilic N, Dastouri M, Kandemir I, Yilmaz E. The effects of KIR2DL4 stimulated NK-92 cells on the apoptotic pathways of HER2 + /HER-breast cancer cells. Med Oncol 2023; 40:139. [PMID: 37027073 DOI: 10.1007/s12032-023-02009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
Natural killer (NK) cells are immune cells that have attracted significant attention due to their cytotoxic properties. They are believed to be highly effective in cancer therapy. In this study, anti-KIR2DL4 (Killer cell Immunoglobulin like Receptor, 2 Ig Domains and Long cytoplasmic tail 4) was used to stimulate the NK-92 activator receptor to increase their cytotoxicity on breast cancer cell lines. Unstimulated and stimulated NK-92 cells (sNK-92) were cocultured with breast cancer (MCF-7 and SK-BR-3) and normal breast (MCF-12A) cell lines at 1:1, 1:5, and 1:10 (Target:Effector) ratios. The most effective cell cytotoxicity ratio (1:10) was used in the immunostaining and western blot assays to evaluate apoptosis pathway proteins. The sNK-92 cells showed higher cytotoxic activity on breast cancer cells than NK-92 cells. sNK-92 cells had a selective significant cytotoxicity effect on MCF-7 and SK-BR-3 cells but not MCF-12A cells. While sNK-92 cells were effective at all cell concentrations, they were most effective at a 1:10 ratio. Immunostaining and western blots showed significantly higher BAX, caspase 3, and caspase 9 protein levels in all breast cancer cell groups cocultured with sNK-92 than with NK-92 cells. NK-92 cells stimulated with KIR2DL4 showed elevated cytotoxic activity. The cytotoxic activity of sNK-92 cells on breast cancer cells is via apoptosis pathways. However, their effect on normal breast cells is limited. While the obtained data contains only basic information, additional clinical studies are needed to provide a basis for a new treatment model.
Collapse
Affiliation(s)
- Nil Kilic
- Department of Biology, Faculty of Science, Ankara University, Tandogan Campus, 06100, Ankara, Turkey
| | - Mohammadreza Dastouri
- Ankara University Biotechnology Institute and SISBIYOTEK Advanced Research Unit, Gumusdere Yerleskesi, Kecioren Ankara, 06135, Turkey.
| | - Irfan Kandemir
- Department of Biology, Faculty of Science, Ankara University, Tandogan Campus, 06100, Ankara, Turkey
| | - Erkan Yilmaz
- Ankara University Biotechnology Institute and SISBIYOTEK Advanced Research Unit, Gumusdere Yerleskesi, Kecioren Ankara, 06135, Turkey
| |
Collapse
|
14
|
Simonetti E, Cutarella S, Valente M, Sani T, Ravara M, Maio M, Di Giacomo AM. From Co-Stimulation to Co-Inhibition: A Continuum of Immunotherapy Care Toward Long-Term Survival in Melanoma. Onco Targets Ther 2023; 16:227-232. [PMID: 37041860 PMCID: PMC10083011 DOI: 10.2147/ott.s368408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Harnessing the immune system with immune-checkpoint(s) blockade (ICB) has dramatically changed the treatment landscape of advanced melanoma patients in the last decade. Indeed, durable clinical responses and long-term survival can be achieved with anti-Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and anti-Programmed cell Death-1 (PD-1) monoclonal antibodies (mAb) either alone or in combination. Despite these unprecedented results, due to intrinsic or acquired resistance to ICB-based immunotherapy, about half of metastatic melanoma (MM) patients neither respond to therapy nor experience durable clinical benefit or long-term survival. To improve the efficacy of ICB therapy among a larger proportion of MM patients, in addition to the targeting of immune-checkpoint(s) inhibitors (ICI) such as CTLA-4 or PD-1, several co-stimulatory molecules, such as Inducible T-cell COStimulator (ICOS), CD137 and OX40, have been investigated in MM, with initial signs of activity. Thus, a number of MM patients have been exposed to co-inhibitory and co-stimulatory mAb in the course of their disease. Being aware of the clinical outcome of such patients may pave the way to novel and more effective clinical approaches and therapeutic sequences for MM patients. Here we report a paradigmatic clinical case of a cutaneous MM patient who achieved multiple and durable complete responses, leading to an extraordinary long-term survival with sequential ICB therapies, suggesting the possibility to build a highly effective continuum of care with co-inhibitory and co-stimulatory therapeutic mAb.
Collapse
Affiliation(s)
| | | | - Monica Valente
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
| | | | | | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
| | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital, Siena, Italy
- NIBIT Foundation Onlus, Genoa, Italy
- Correspondence: Anna Maria Di Giacomo, Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Viale Bracci, 14, Siena, 53100, Italy, Email
| |
Collapse
|
15
|
Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB, Li Y, Hamadene L, Flamar AL, Choi H, Cortez CA, Liu C, Holland A, Schad S, Schulze I, Betof Warner A, Hollmann TJ, Arora A, Panageas KS, Rizzuto GA, Duhen R, Weinberg AD, Spencer CN, Ng D, He XY, Albrengues J, Redmond D, Egeblad M, Wolchok JD, Merghoub T. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 2023; 186:1432-1447.e17. [PMID: 37001503 PMCID: PMC10994488 DOI: 10.1016/j.cell.2023.03.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/11/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.
Collapse
Affiliation(s)
- Daniel Hirschhorn
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Sadna Budhu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Lukas Kraehenbuehl
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - David Schröder
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Chow
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jacob M Ricca
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Billel Gasmi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier De Henau
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Levi Mark B Mangarin
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Yanyun Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linda Hamadene
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Anne-Laure Flamar
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Hyejin Choi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Czrina A Cortez
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Cailian Liu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Aliya Holland
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Sara Schad
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Isabell Schulze
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA
| | - Allison Betof Warner
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Travis J Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabrielle A Rizzuto
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebekka Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Andrew D Weinberg
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Christine N Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jedd D Wolchok
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY, USA; Department of Medicine and Graduate Schools, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Wang Y, Zhang X, Xu C, Nan Y, Fan J, Zeng X, Kwon BS, Ju D. Targeting 4-1BB and PD-L1 induces potent and durable antitumor immunity in B-cell lymphoma. Front Immunol 2022; 13:1004475. [PMID: 36544785 PMCID: PMC9762552 DOI: 10.3389/fimmu.2022.1004475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Although PD-1/L1 mAb has demonstrated clinical benefits in certain cancer types, low response rate and resistance remain the main challenges for the application of these immune checkpoint inhibitors (ICIs). 4-1BB is a co-stimulator molecule expressed in T cells, which could enhance T cell proliferation and activation. Herein, the synergetic antitumor effect and underlying mechanism of 4-1BB agonist combined with PD-1/PD-L1 blockade were determined in B-cell lymphoma (BCL). Methods Subcutaneous transplantation BCL tumor models and metastasis models were established to evaluate the therapeutic effect of PD-L1 antibody and/or 4-1BB agonist in vivo. For the mechanistic study, RNA-seq was applied to analyze the tumor microenvironment and immune-related signal pathway after combination treatment. The level of IFN-γ, perforin, and granzyme B were determined by ELISA and Real-time PCR assays, while tumor-infiltrating T cells were measured by flow cytometry and immunohistochemical analysis. CD4/CD8 specific antibodies were employed to deplete the related T cells to investigate the role CD4+ and CD8+ T cells played in combination treatment. Results Our results showed that combining anti-PD-L1 ICI and 4-1BB agonists elicited regression of BCL and significantly extended the survival of mice compared to either monotherapy. Co-targeting PD-L1 and 4-1BB preferentially promoted intratumoral cytotoxic lymphocyte infiltration and remodeled their function. RNA-sequence analysis uncovered a series of up-regulated genes related to the activation and proliferation of cytotoxic T lymphocytes, further characterized by increased cytokines including IFN-γ, granzyme B, and perforin. Furthermore, depleting CD8+ T cells not CD4+ T cells totally abrogated the antitumor efficacy, indicating the crucial function of the CD8+ T cell subset in the combination therapy. Discussion In summary, our findings demonstrated that 4-1BB agonistic antibody intensified the antitumor immunity of anti-PD-1/PD-L1 ICI via promoting CD8+ T cell infiltration and activation, providing a novel therapeutic strategy to BCL.
Collapse
Affiliation(s)
- Yichen Wang
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Xuyao Zhang
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Caili Xu
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Yanyang Nan
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Jiajun Fan
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Xian Zeng
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Byoung S. Kwon
- Eutilex Institute for Biomedical Research, Eutilex Co., Ltd, Seoul, South Korea
| | - Dianwen Ju
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China,Department of Biologics, Fudan Zhangjiang Institute, Shanghai, China,*Correspondence: Dianwen Ju,
| |
Collapse
|
17
|
Ruiz D, Haynes C, Marable J, Pundkar C, Nance RL, Bedi D, Agarwal P, Suryawanshi AS, Mishra A, Smith BF, Sandey M. Development of OX40 agonists for canine cancer immunotherapy. iScience 2022; 25:105158. [PMID: 36217551 PMCID: PMC9547195 DOI: 10.1016/j.isci.2022.105158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
Recent breakthroughs in cancer immunotherapy have provided unprecedented clinical benefits to human cancer patients. Cancer is also one of the most common causes of death in pet dogs. Thus, canine-specific immune therapies targeting similar signaling pathways can provide better treatment options for canine cancer patients. Here, we describe the development and characterization of two canine-specific anti-OX40 agonists to activate OX40 signaling. We show that canine OX40, like human OX40, is not expressed on resting T cells, and its expression is markedly increased on canine CD4 T cells and Tregs after stimulation with concanavalin A (Con-A). cOX40 is also expressed on tumor-infiltrating lymphocytes (TILs) in canine osteosarcoma patients. The canine-specific OX40 agonists strongly activates cPBMCs by increasing IFN-γ expression and do not require Fc receptor-mediated cross-linking for OX40 agonism. Together, these results suggest that cFcOX40L proteins are potent OX40 agonists and have the potential to enhance antitumor immunity in canine cancer patients.
Collapse
Affiliation(s)
- Damien Ruiz
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chloe Haynes
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Jonathan Marable
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rebecca L. Nance
- Scott Ritchy Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Deepa Bedi
- Biomedical Sciences, Tuskegee University, Tuskegee, AL, USA
| | - Payal Agarwal
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Scott Ritchy Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amol S. Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Bruce F. Smith
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Scott Ritchy Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
- Corresponding author
| |
Collapse
|
18
|
Santiago-Sánchez GS, Hodge JW, Fabian KP. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation. Front Immunol 2022; 13:993624. [PMID: 36159809 PMCID: PMC9492957 DOI: 10.3389/fimmu.2022.993624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has emerged as an effective therapeutic approach for several cancer types. However, only a subset of patients exhibits a durable response due in part to immunosuppressive mechanisms that allow tumor cells to evade destruction by immune cells. One of the hallmarks of immune suppression is the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment (TME). Additionally, the proper activation and function of lymphocytes that successfully infiltrate the tumor are hampered by the lack of co-stimulatory molecules and the increase in inhibitory factors. These contribute to the imbalance of effector functions by natural killer (NK) and T cells and the immunosuppressive functions by myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional anti-tumor immune response. Therefore, therapeutic regimens that elicit immune responses and reverse immune dysfunction are required to counter immune suppression in the TME and allow for the re-establishment of proper immune surveillance. Immuno-oncology (IO) agents, such as immune checkpoint blockade and TGF-β trapping molecules, have been developed to decrease or block suppressive factors to enable the activity of effector cells in the TME. Therapeutic agents that target immunosuppressive cells, either by direct lysis or altering their functions, have also been demonstrated to decrease the barrier to effective immune response. Other therapies, such as tumor antigen-specific vaccines and immunocytokines, have been shown to activate and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting in improved T effector to Treg ratio. The preclinical data on these diverse IO agents have led to the development of ongoing phase I and II clinical trials. This review aims to provide an overview of select therapeutic strategies that tip the balance from immunosuppression to immune activity in the TME.
Collapse
|
19
|
Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer EM, Richter M, Lelievre H, Scholer-Dahirel A, Bossenmaier B, Sancerne C, Riviere M, Grandclaudon M, Zettl M, Bel Aiba RS, Rothe C, Blanc V, Olwill SA. The PD-L1/4-1BB Bispecific Antibody-Anticalin Fusion Protein PRS-344/S095012 Elicits Strong T-Cell Stimulation in a Tumor-Localized Manner. Clin Cancer Res 2022; 28:3387-3399. [PMID: 35121624 PMCID: PMC9662934 DOI: 10.1158/1078-0432.ccr-21-2762] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 02/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE While patients responding to checkpoint blockade often achieve remarkable clinical responses, there is still significant unmet need due to resistant or refractory tumors. A combination of checkpoint blockade with further T-cell stimulation mediated by 4-1BB agonism may increase response rates and durability of response. A bispecific molecule that blocks the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis and localizes 4-1BB costimulation to a PD-L1-positive (PD-L1+) tumor microenvironment (TME) or tumor draining lymph nodes could maximize antitumor immunity and increase the therapeutic window beyond what has been reported for anti-4-1BB mAbs. EXPERIMENTAL DESIGN We generated and characterized the PD-L1/4-1BB bispecific molecule PRS-344/S095012 for target binding and functional activity in multiple relevant in vitro assays. Transgenic mice expressing human 4-1BB were transplanted with human PD-L1-expressing murine MC38 cells to assess in vivo antitumoral activity. RESULTS PRS-344/S095012 bound to its targets with high affinity and efficiently blocked the PD-1/PD-L1 pathway, and PRS-344/S095012-mediated 4-1BB costimulation was strictly PD-L1 dependent. We demonstrated a synergistic effect of both pathways on T-cell stimulation with the bispecific PRS-344/S095012 being more potent than the combination of mAbs. PRS-344/S095012 augmented CD4-positive (CD4+) and CD8-positive (CD8+) T-cell effector functions and enhanced antigen-specific T-cell stimulation. Finally, PRS-344/S095012 demonstrated strong antitumoral efficacy in an anti-PD-L1-resistant mouse model in which soluble 4-1BB was detected as an early marker for 4-1BB agonist activity. CONCLUSIONS The PD-L1/4-1BB bispecific PRS-344/S095012 efficiently combines checkpoint blockade with a tumor-localized 4-1BB-mediated stimulation burst to antigen-specific T cells, more potent than the combination of mAbs, supporting the advancement of PRS-344/S095012 toward clinical development. See related commentary by Shu et al., p. 3182.
Collapse
Affiliation(s)
| | | | - Lucia Pattarini
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | | | | - Catherine Gallou
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | | | | - Helene Lelievre
- Institut de Recherches Internationales Servier Oncology R&D Unit, Suresnes, France
| | - Alix Scholer-Dahirel
- Institut de Recherches Internationales Servier Oncology R&D Unit, Suresnes, France
| | | | - Celine Sancerne
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Matthieu Riviere
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Maximilien Grandclaudon
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Markus Zettl
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | - Veronique Blanc
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | |
Collapse
|
20
|
Sanmamed MF, Berraondo P, Rodriguez-Ruiz ME, Melero I. Charting roadmaps towards novel and safe synergistic immunotherapy combinations. NATURE CANCER 2022; 3:665-680. [PMID: 35764745 DOI: 10.1038/s43018-022-00401-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.
Collapse
Affiliation(s)
- Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Departments of Oncology and Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| |
Collapse
|
21
|
Wang K, Patkar S, Lee JS, Gertz EM, Robinson W, Schischlik F, Crawford DR, Schäffer AA, Ruppin E. Deconvolving Clinically Relevant Cellular Immune Cross-talk from Bulk Gene Expression Using CODEFACS and LIRICS Stratifies Patients with Melanoma to Anti-PD-1 Therapy. Cancer Discov 2022; 12:1088-1105. [PMID: 34983745 PMCID: PMC8983586 DOI: 10.1158/2159-8290.cd-21-0887] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a complex mixture of cell types whose interactions affect tumor growth and clinical outcome. To discover such interactions, we developed CODEFACS (COnfident DEconvolution For All Cell Subsets), a tool deconvolving cell type-specific gene expression in each sample from bulk expression, and LIRICS (Ligand-Receptor Interactions between Cell Subsets), a statistical framework prioritizing clinically relevant ligand-receptor interactions between cell types from the deconvolved data. We first demonstrate the superiority of CODEFACS versus the state-of-the-art deconvolution method CIBERSORTx. Second, analyzing The Cancer Genome Atlas, we uncover cell type-specific ligand-receptor interactions uniquely associated with mismatch-repair deficiency across different cancer types, providing additional insights into their enhanced sensitivity to anti-programmed cell death protein 1 (PD-1) therapy compared with other tumors with high neoantigen burden. Finally, we identify a subset of cell type-specific ligand-receptor interactions in the melanoma TME that stratify survival of patients receiving anti-PD-1 therapy better than some recently published bulk transcriptomics-based methods. SIGNIFICANCE This work presents two new computational methods that can deconvolve a large collection of bulk tumor gene expression profiles into their respective cell type-specific gene expression profiles and identify cell type-specific ligand-receptor interactions predictive of response to immune-checkpoint blockade therapy. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Kun Wang
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| | - Sushant Patkar
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Computer Science, University of Maryland, College Park, MD
| | - Joo Sang Lee
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Artificial Intelligence & Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - E. Michael Gertz
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| | - Welles Robinson
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Computer Science, University of Maryland, College Park, MD
| | - Fiorella Schischlik
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| | - David R. Crawford
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Bethesda, MD
| |
Collapse
|
22
|
Balakrishnan PB, Ledezma DK, Cano-Mejia J, Andricovich J, Palmer E, Patel VA, Latham PS, Yvon ES, Villagra A, Fernandes R, Sweeney EE. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. NANO RESEARCH 2022; 15:2300-2314. [PMID: 36089987 PMCID: PMC9455608 DOI: 10.1007/s12274-021-3813-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the promise of immunotherapy such as the immune checkpoint inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 for advanced melanoma, only 26%-52% of patients respond, and many experience grade III/IV immune-related adverse events. Motivated by the need for an effective therapy for patients non-responsive to clinically approved ICIs, we have developed a novel nanoimmunotherapy that combines locally administered Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) with systemically administered agonistic anti-CD137 monoclonal antibody therapy (aCD137). PBNP-PTT was administered at various thermal doses to melanoma cells in vitro, and was combined with aCD137 in vivo to test treatment effects on melanoma tumor progression, animal survival, immunological protection against tumor rechallenge, and hepatotoxicity. When administered at a melanoma-specific thermal dose, PBNP-PTT elicits immunogenic cell death (ICD) in melanoma cells and upregulates markers associated with antigen presentation and immune cell co-stimulation in vitro. Consequently, PBNP-PTT eliminates primary melanoma tumors in vivo, yielding long-term tumor-free survival. However, the antitumor immune effects generated by PBNP-PTT cannot eliminate secondary tumors, despite significantly slowing their growth. The addition of aCD137 enables significant abscopal efficacy and improvement of survival, functioning through activated dendritic cells and tumor-infiltrating CD8+ T cells, and generates CD4+ and CD8+ T cell memory that manifests in the rejection of tumor rechallenge, with no long-term hepatotoxicity. This study describes for the first time a novel and effective nanoimmunotherapy combination of PBNP-PTT with aCD137 mAb therapy for melanoma.
Collapse
Affiliation(s)
- Preethi Bala Balakrishnan
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Debbie K. Ledezma
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Juliana Cano-Mejia
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Jaclyn Andricovich
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Erica Palmer
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Vishal A. Patel
- Department of Dermatology & Oncology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Patricia S. Latham
- Department of Pathology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Eric S. Yvon
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Alejandro Villagra
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Rohan Fernandes
- GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- ImmunoBlue, Bethesda, MD 20817, USA
| | - Elizabeth E. Sweeney
- GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
- ImmunoBlue, Bethesda, MD 20817, USA
| |
Collapse
|
23
|
Saghari M, Gal P, Gilbert S, Yateman M, Porter‐Brown B, Brennan N, Quaratino S, Wilson R, Grievink HW, Klaassen ES, Bergmann KR, Burggraaf J, Doorn MB, Powell J, Moerland M, Rissmann R. OX40L Inhibition Suppresses KLH‐driven Immune Responses in Healthy Volunteers: A Randomized Controlled Trial Demonstrating Proof‐of‐Pharmacology for KY1005. Clin Pharmacol Ther 2022; 111:1121-1132. [PMID: 35092305 PMCID: PMC9314635 DOI: 10.1002/cpt.2539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
The safety, tolerability, immunogenicity, and pharmacokinetic (PK) profile of an anti‐OX40L monoclonal antibody (KY1005, currently amlitelimab) were evaluated. Pharmacodynamic (PD) effects were explored using keyhole limpet hemocyanin (KLH) and tetanus toxoid (TT) immunizations. Sixty‐four healthy male subjects (26.5 ± 6.0 years) were randomized to single doses of 0.006, 0.018, or 0.05 mg/kg, or multiple doses of 0.15, 0.45, 1.35, 4, or 12 mg/kg KY1005, or placebo (6:2). Serum KY1005 concentrations were measured. Antibody responses upon KLH and TT immunizations and skin response upon intradermal KLH administration were performed. PD data were analyzed using repeated measures analysis of covariances (ANCOVAs) and post hoc exposure‐response modeling. No serious adverse events occurred and all adverse events were temporary and of mild or moderate severity. A nonlinear increase in mean serum KY1005 concentrations was observed (median time to maximum concentration (Tmax) ~ 4 hours, geometric mean terminal half‐life (t½) ~ 24 days). Cutaneous blood perfusion (estimated difference (ED) −13.4 arbitrary unit (AU), 95% confidence interval (CI) −23.0 AU to −3.8 AU) and erythema quantified as average redness (ED −0.23 AU, 95% CI −0.35 AU to −0.11 AU) decreased after KY1005 treatment at doses of 0.45 mg/kg and above. Exposure‐response analysis displayed a statistically significant treatment effect on anti‐KLH antibody titers (IgG maximum effect (Emax) −0.58 AU, 95% CI −1.10 AU to −0.06 AU) and skin response (erythema Emax −0.20 AU, 95% CI −0.29 AU to −0.11 AU). Administration of KY1005 demonstrated an acceptable safety and tolerability profile and PK analyses displayed a nonlinear profile of KY1005. Despite the observed variability, skin challenge response after KY1005 treatment indicated pharmacological activity of KY1005. Therefore, KY1005 shows potential as a novel pharmacological treatment in immune‐mediated disorders.
Collapse
Affiliation(s)
- Mahdi Saghari
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
| | - Pim Gal
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
| | | | | | | | | | | | | | - Hendrika W. Grievink
- Centre for Human Drug Research Leiden the Netherlands
- Leiden Academic Centre for Drug Research Leiden the Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
- Leiden Academic Centre for Drug Research Leiden the Netherlands
| | - Martijn B.A. Doorn
- Department of Dermatology Erasmus Medical Centre Rotterdam the Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
- Leiden Academic Centre for Drug Research Leiden the Netherlands
| |
Collapse
|
24
|
Korman AJ, Garrett-Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov 2021; 21:509-528. [PMID: 34937915 DOI: 10.1038/s41573-021-00345-8] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunity, and the potential for cancer immunotherapy, have been topics of scientific discussion and experimentation for over a hundred years. Several successful cancer immunotherapies - such as IL-2 and interferon-α (IFNα) - have appeared over the past 30 years. However, it is only in the past decade that immunotherapy has made a broad impact on patient survival in multiple high-incidence cancer indications. The emergence of immunotherapy as a new pillar of cancer treatment (adding to surgery, radiation, chemotherapy and targeted therapies) is due to the success of immune checkpoint blockade (ICB) drugs, the first of which - ipilimumab - was approved in 2011. ICB drugs block receptors and ligands involved in pathways that attenuate T cell activation - such as cytotoxic T lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1) and its ligand, PDL1 - and prevent, or reverse, acquired peripheral tolerance to tumour antigens. In this Review we mark the tenth anniversary of the approval of ipilimumab and discuss the foundational scientific history of ICB, together with the history of the discovery, development and elucidation of the mechanism of action of the first generation of drugs targeting the CTLA4 and PD1 pathways.
Collapse
|
25
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
26
|
Warwas KM, Meyer M, Gonçalves M, Moldenhauer G, Bulbuc N, Knabe S, Luckner-Minden C, Ziegelmeier C, Heussel CP, Zörnig I, Jäger D, Momburg F. Co-Stimulatory Bispecific Antibodies Induce Enhanced T Cell Activation and Tumor Cell Killing in Breast Cancer Models. Front Immunol 2021; 12:719116. [PMID: 34484225 PMCID: PMC8415424 DOI: 10.3389/fimmu.2021.719116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although T cell-recruiting CD3-binding bispecific antibodies (BiMAb) have been proven to be clinically effective for hematologic malignancies, the success of BiMAb targeting solid tumor-associated antigens (TAA) in carcinomas so far remains poor. We reasoned that provision of co-stimulatory BiMAb in combination with αTAA-αCD3 BiMAb would boost T cell activation and proliferative capacity, and thereby facilitate the targeting of weakly or heterogeneously expressed tumor antigens. Various αTAA-αCD3 and αTAA-αCD28 BiMAb in a tetravalent IgG1-Fc based format have been analyzed, targeting multiple breast cancer antigens including HER2, EGFR, CEA, and EpCAM. Moreover, bifunctional fusion proteins of αTAA-tumor necrosis factor ligand (TNFL) superfamily members including 4-1BBL, OX40L, CD70 and TL1A have been tested. The functional activity of BiMAb was assessed using co-cultures of tumor cell lines and purified T cells in monolayer and tumor spheroid models. Only in the presence of tumor cells, αTAA-αCD3 BiMAb activated T cells and induced cytotoxicity in vitro, indicating a strict dependence on cross-linking. Combination treatment of αTAA-αCD3 BiMAb and co-stimulatory αTAA-αCD28 or αTAA-TNFL fusion proteins drastically enhanced T cell activation in terms of proliferation, activation marker expression, cytokine secretion and tumor cytotoxicity. Furthermore, BiMAb providing co-stimulation were shown to reduce the minimally required dose to achieve T cell activation by at least tenfold. Immuno-suppressive effects of TGF-β and IL-10 on T cell activation and memory cell formation could be overcome by co-stimulation. BiMAb-mediated co-stimulation was further augmented by immune checkpoint-inhibiting antibodies. Effective co-stimulation could be achieved by targeting a second breast cancer antigen, or by targeting fibroblast activation protein (FAP) expressed on another target cell. In tumor spheroids derived from pleural effusions of breast cancer patients, co-stimulatory BiMAb were essential for the activation tumor-infiltrating lymphocytes and cytotoxic anti-tumor responses against breast cancer cells. Taken together we showed that co-stimulation significantly potentiated the tumoricidal activity of T cell-activating BiMAb while preserving the dependence on TAA recognition. This approach could provide for a more localized activation of the immune system with higher efficacy and reduced peripheral toxicities.
Collapse
Affiliation(s)
- Karsten M. Warwas
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | - Marten Meyer
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | - Márcia Gonçalves
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | | | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
| | - Susanne Knabe
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Luckner-Minden
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Claudia Ziegelmeier
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Claus Peter Heussel
- Diagnostic and Interventional Radiology With Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital, Heidelberg, Germany
| |
Collapse
|
27
|
Jeong S, Park E, Kim HD, Sung E, Kim H, Jeon J, Kim Y, Jung UJ, Son YG, Hong Y, Lee H, Lee S, Lim Y, Won J, Jeon M, Hwang S, Fang L, Jiang W, Wang Z, Shin EC, Park SH, Jung J. Novel anti-4-1BB×PD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J Immunother Cancer 2021; 9:jitc-2021-002428. [PMID: 34230109 PMCID: PMC8261887 DOI: 10.1136/jitc-2021-002428] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Stimulation of 4-1BB with agonistic antibodies is a promising strategy for improving the therapeutic efficacy of immune checkpoint inhibitors (ICIs) or for overcoming resistance to ICIs. However, dose-dependent hepatotoxicity was observed in clinical trials with monoclonal anti-4-1BB agonistic antibodies due to the activation of 4-1BB signaling in liver resident Kupffer cells. Methods To avoid this on-target liver toxicity, we developed a novel bispecific antibody (4-1BB×PD-L1 bispecific antibody, termed “ABL503”) uniquely designed to activate 4-1BB signaling only in the context of PD-L1, while also blocking PD-1/PD-L1 signaling. Results Functional evaluation using effector cells expressing both 4-1BB and PD-1 revealed superior biological activity of ABL503 compared with the combination of each monoclonal antibody. ABL503 also augmented T-cell activation in in vitro assays and further enhanced the anti-PD-L1-mediated reinvigoration of tumor-infiltrating CD8+ T cells from patients with cancer. Furthermore, in humanized PD-L1/4-1BB transgenic mice challenged with huPD-L1-expressing tumor cells, ABL503 induced superior anti-tumor activity and maintained an anti-tumor response against tumor rechallenge. ABL503 was well tolerated, with normal liver function in monkeys. Conclusion The novel anti-4-1BB×PD-L1 bispecific antibody may exert a strong anti-tumor therapeutic efficacy with a low risk of liver toxicity through the restriction of 4-1BB stimulation in tumors.
Collapse
Affiliation(s)
- Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hyung-Don Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea.,Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Shin Hwang
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Seoul, Korea
| | - Lei Fang
- I-Mab Biopharma, Shanghai, China
| | | | | | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | |
Collapse
|
28
|
Farlow JL, Brenner JC, Lei YL, Chinn SB. Immune deserts in head and neck squamous cell carcinoma: A review of challenges and opportunities for modulating the tumor immune microenvironment. Oral Oncol 2021; 120:105420. [PMID: 34218062 DOI: 10.1016/j.oraloncology.2021.105420] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023]
Abstract
Immunotherapy revolutionized cancer treatment but has yet to elicit durable responses in the majority of patients with head and neck squamous cell carcinoma (HNSCC). HNSCC is generally characterized by a high tumor mutational burden, which has translated to a large neoantigen load that could prime the immune system to recognize and eliminate malignant cells. Studies are increasingly showing, however, that HNSCC is an "immune desert" tumor that can hijack multiple parts of the tumor immunity cycle in order to evade immune recognition and suppress immune system activation. Herein we will review how HNSCC tumors modulate their architecture, cellular composition, and cytokine milieu to maximize immunosuppression; as well as relevant therapeutic opportunities and emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Janice L Farlow
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Yu L Lei
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - Steven B Chinn
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Philips R, Han C, Swendseid B, Curry J, Argiris A, Luginbuhl A, Johnson J. Preoperative Immunotherapy in the Multidisciplinary Management of Oral Cavity Cancer. Front Oncol 2021; 11:682075. [PMID: 34277428 PMCID: PMC8281120 DOI: 10.3389/fonc.2021.682075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Despite advances in multimodal treatment for oral cavity squamous cell carcinoma, recurrence rates remain high, providing an opportunity for new therapeutic modalities that may improve oncologic outcomes. Much recent attention has been paid to the molecular interactions between the tumor cells with the adjacent peritumoral microenvironment, in which immunosuppressive molecular changes create a landscape that promotes tumor progression. The rationale for the introduction of immunotherapy is to reverse the balance of these immune interactions in a way that utilizes the host immune system to attack tumor cells. In the preoperative setting, immunotherapy has the advantage of priming the unresected tumor and the associated native immune infiltration, supercharging the adaptive anti-tumor immune response. It also provides the basis for scientific discovery where the molecular profile of responders can be interrogated to elucidate prognostic markers to aid in future patient selection. Preoperative immunotherapy is not without limitations. The risk of surgical delay due to immune adverse events must be carefully discussed by members of a multidisciplinary treatment team and patient selection will be critical. One day, the discovery of predictive biomarkers may allow for algorithms where pre-surgical immunotherapy decreases the size of surgical defect and impacts the intensity of adjuvant therapy leading to improved patient survival and decreased morbidity. With further study, immunotherapy could become a key component of future treatment algorithm.
Collapse
Affiliation(s)
- Ramez Philips
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chihun Han
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Swendseid
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
31
|
Fu N, Xie F, Sun Z, Wang Q. The OX40/OX40L Axis Regulates T Follicular Helper Cell Differentiation: Implications for Autoimmune Diseases. Front Immunol 2021; 12:670637. [PMID: 34234777 PMCID: PMC8256170 DOI: 10.3389/fimmu.2021.670637] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
T Follicular helper (Tfh) cells, a unique subset of CD4+ T cells, play an essential role in B cell development and the formation of germinal centers (GCs). Tfh differentiation depends on various factors including cytokines, transcription factors and multiple costimulatory molecules. Given that OX40 signaling is critical for costimulating T cell activation and function, its roles in regulating Tfh cells have attracted widespread attention. Recent data have shown that OX40/OX40L signaling can not only promote Tfh cell differentiation and maintain cell survival, but also enhance the helper function of Tfh for B cells. Moreover, upregulated OX40 signaling is related to abnormal Tfh activity that causes autoimmune diseases. This review describes the roles of OX40/OX40L in Tfh biology, including the mechanisms by which OX40 signaling regulates Tfh cell differentiation and functions, and their close relationship with autoimmune diseases.
Collapse
Affiliation(s)
- NanNan Fu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Fang Xie
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - ZhongWen Sun
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Qin Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Compte M, Harwood SL, Erce-Llamazares A, Tapia-Galisteo A, Romero E, Ferrer I, Garrido-Martin EM, Enguita AB, Ochoa MC, Blanco B, Oteo M, Merino N, Nehme-Álvarez D, Hangiu O, Domínguez-Alonso C, Zonca M, Ramírez-Fernández A, Blanco FJ, Morcillo MA, Muñoz IG, Melero I, Rodriguez-Peralto JL, Paz-Ares L, Sanz L, Alvarez-Vallina L. An Fc-free EGFR-specific 4-1BB-agonistic Trimerbody Displays Broad Antitumor Activity in Humanized Murine Cancer Models without Toxicity. Clin Cancer Res 2021; 27:3167-3177. [PMID: 33785484 DOI: 10.1158/1078-0432.ccr-20-4625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The induction of 4-1BB signaling by agonistic antibodies can drive the activation and proliferation of effector T cells and thereby enhance a T-cell-mediated antitumor response. Systemic administration of anti-4-1BB-agonistic IgGs, although effective preclinically, has not advanced in clinical development due to their severe hepatotoxicity. EXPERIMENTAL DESIGN Here, we generated a humanized EGFR-specific 4-1BB-agonistic trimerbody, which replaces the IgG Fc region with a human collagen homotrimerization domain. It was characterized by structural analysis and in vitro functional studies. We also assessed pharmacokinetics, antitumor efficacy, and toxicity in vivo. RESULTS In the presence of a T-cell receptor signal, the trimerbody provided potent T-cell costimulation that was strictly dependent on 4-1BB hyperclustering at the point of contact with a tumor antigen-displaying cell surface. It exhibits significant antitumor activity in vivo, without hepatotoxicity, in a wide range of human tumors including colorectal and breast cancer cell-derived xenografts, and non-small cell lung cancer patient-derived xenografts associated with increased tumor-infiltrating CD8+ T cells. The combination of the trimerbody with a PD-L1 blocker led to increased IFNγ secretion in vitro and resulted in tumor regression in humanized mice bearing aggressive triple-negative breast cancer. CONCLUSIONS These results demonstrate the nontoxic broad antitumor activity of humanized Fc-free tumor-specific 4-1BB-agonistic trimerbodies and their synergy with checkpoint blockers, which may provide a way to elicit responses in most patients with cancer while avoiding Fc-mediated adverse reactions.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain.,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Eduardo Romero
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Eva M Garrido-Martin
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Ana B Enguita
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain
| | - Maria C Ochoa
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Daniel Nehme-Álvarez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Manuela Zonca
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Angel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Francisco J Blanco
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Miguel A Morcillo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ines G Muñoz
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Immunology, University Clinic, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - José L Rodriguez-Peralto
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain.,Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark. .,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
33
|
Shu D, Zhang L, Bai X, Yu J, Guo P. Stoichiometry of multi-specific immune checkpoint RNA Abs for T cell activation and tumor inhibition using ultra-stable RNA nanoparticles. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:426-435. [PMID: 33868786 PMCID: PMC8042240 DOI: 10.1016/j.omtn.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
Immunotherapy has become a revolutionary subject in cancer therapy during the past few years. Immune checkpoint-targeting antibodies (Abs) could boost anticancer immune responses. However, certain protein-based immunotherapies revealed side effects and unfavorable biodistribution, so effective non-protein options with lower side effects are highly sought after. RNA's ability to form various three-dimensional configurations allows for the creation of a variety of ligands to bind different cell receptors. The rubber-like properties of RNA nanoparticles (NPs) allow for swift lodging to cancer vasculature with little accumulation in vital organs, resulting in a favorable pharmacokinetic/pharmacodynamic (PK/PD) profile and safe pharmacological parameters. Multi-specific drugs are expected to be the fourth wave of biopharmaceutical innovation. Herein, we report the development of multi-specific Ab-like RNA NPs carrying multiple ligands for immunotherapy. The stoichiometries and stereo conformations of the checkpoint-activating RNA NPs were optimized for T cell activation. When compared to mono- and bi-specific RNA NPs, the tri-specific Ab-like RNA NPs bound to the trimeric T cell receptor with the highest efficiency, showed the optimal T cell activation, and promoted the strongest anti-tumor function of immune cells. Animal trials demonstrated that the tri-specific RNA NPs inhibited cancer growth. This Ab-like RNA NP platform represents an alternative to protein Abs for tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.,College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,College of Medicine, The Ohio State University, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.,College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,College of Medicine, The Ohio State University, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA.,College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.,College of Medicine, The Ohio State University, Columbus, OH 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
CD137 + T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel) 2021; 13:cancers13030456. [PMID: 33530328 PMCID: PMC7866028 DOI: 10.3390/cancers13030456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The CD137 receptor is expressed by activated antigen-specific T-cells. CD137+ T-cells were identified inside TILs and PBMCs of different tumor types and have proven to be the naturally occurring antitumor effector cells, capable of expressing a wide variability in terms of TCR specificity against both shared and neoantigenic tumor-derived peptides. The aim of this review is thus summarizing and highlighting their role as drivers of patients’ immune responses in anticancer therapies as well as their potential role in future and current strategies of immunotherapy. Abstract The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones. Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both in vitro and in vivo, raised particular interest in studying their potential role in different strategies of immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to immune-based therapies as well as monitor their response. In addition, the possibility of isolating and expanding this population, turned promising in order to generate effector antitumor T-cells in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing to test their possible introduction in different combination approaches of immunotherapy. Finally, the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.
Collapse
|
35
|
Gutierrez M, Moreno V, Heinhuis KM, Olszanski AJ, Spreafico A, Ong M, Chu Q, Carvajal RD, Trigo J, Ochoa de Olza M, Provencio M, De Vos FY, De Braud F, Leong S, Lathers D, Wang R, Ravindran P, Feng Y, Aanur P, Melero I. OX40 Agonist BMS-986178 Alone or in Combination With Nivolumab and/or Ipilimumab in Patients With Advanced Solid Tumors. Clin Cancer Res 2020; 27:460-472. [PMID: 33148673 DOI: 10.1158/1078-0432.ccr-20-1830] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I/IIa study (NCT02737475) evaluated the safety and activity of BMS-986178, a fully human OX40 agonist IgG1 mAb, ± nivolumab and/or ipilimumab in patients with advanced solid tumors. PATIENTS AND METHODS Patients (with non-small cell lung, renal cell, bladder, other advanced cancers) received BMS-986178 (20-320 mg) ± nivolumab (240-480 mg) and/or ipilimumab (1-3 mg/kg). The primary endpoint was safety. Additional endpoints included immunogenicity, pharmacodynamics, pharmacokinetics, and antitumor activity per RECIST version 1.1. RESULTS Twenty patients received BMS-986178 monotherapy, and 145 received combination therapy in various regimens (including two patients receiving nivolumab monotherapy). With a follow-up of 1.1 to 103.6 weeks, the most common (≥5%) treatment-related adverse events (TRAEs) included fatigue, pruritus, rash, pyrexia, diarrhea, and infusion-related reactions. Overall, grade 3-4 TRAEs occurred in one of 20 patients (5%) receiving BMS-986178 monotherapy, six of 79 (8%) receiving BMS-986178 plus nivolumab, zero of two receiving nivolumab monotherapy, six of 41 (15%) receiving BMS-986178 plus ipilimumab, and three of 23 (13%) receiving BMS-986178 plus nivolumab plus ipilimumab. No deaths occurred. No dose-limiting toxicities were observed with monotherapy, and the MTD was not reached in either the monotherapy or the combination escalation cohorts. No objective responses were seen with BMS-986178 alone; objective response rates ranged from 0% to 13% across combination therapy cohorts. CONCLUSIONS In this study, BMS-986178 ± nivolumab and/or ipilimumab appeared to have a manageable safety profile, but no clear efficacy signal was observed above that expected for nivolumab and/or ipilimumab.
Collapse
Affiliation(s)
- Martin Gutierrez
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, New Jersey.
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Kimberley M Heinhuis
- The Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, the Netherlands
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Ong
- The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Quincy Chu
- Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | - José Trigo
- Hospital Universitario Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | | | | | - Filip Yves De Vos
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Stephen Leong
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Rui Wang
- Bristol Myers Squibb, Princeton, New Jersey
| | | | - Yan Feng
- Bristol Myers Squibb, Princeton, New Jersey
| | | | - Ignacio Melero
- Clínica Universidad De Navarra, Pamplona, Spain. *was an employee of Bristol Myers Squibb at the time the studies were performed
| |
Collapse
|
36
|
Amani MF, Rolig AS, Redmond WL. Intracellular Galectin-3 Is Essential for OX40-Mediated Memory CD8+ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2020; 205:1857-1866. [DOI: 10.4049/jimmunol.1901052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/01/2020] [Indexed: 11/19/2022]
|
37
|
Intranasal Therapeutic Peptide Vaccine Promotes Efficient Induction and Trafficking of Cytotoxic T Cell Response for the Clearance of HPV Vaginal Tumors. Vaccines (Basel) 2020; 8:vaccines8020259. [PMID: 32485935 PMCID: PMC7349944 DOI: 10.3390/vaccines8020259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 11/30/2022] Open
Abstract
Human papillomavirus (HPV)-induced cancers continue to affect millions of women around the world, and the five year survival rate under the current standard of care for these cancers is less than 60% in some demographics. Therefore there is still an unmet need to develop an effective therapy that can be easily administered to treat established HPV cervical cancer lesions. We sought to investigate the potential of an intranasal HPV peptide therapeutic vaccine incorporating the combination of α-Galactosylceramide (α-GalCer) and CpG-ODN adjuvants (TVAC) against established HPV genital tumors in a syngeneic C57BL/6J mouse model. We obtained evidence to show that TVAC, delivered by the mucosal intranasal route, induced high frequencies of antigen-specific CD8 T cells concurrent with significant reduction in the immunosuppressive regulatory T cells and myeloid derived suppressor cells in the tumor microenvironment (TME), correlating with sustained elimination of established HPV genital tumors in over 85% of mice. Inclusion of both the adjuvants in the vaccine was necessary for significant increase of antigen-specific CD8 T cells to the tumor and antitumor efficacy because vaccination incorporating either adjuvant alone was inefficient. These results strongly support the utility of the TVAC administered by needle-free intranasal route as a safe and effective strategy for the treatment of established genital HPV tumors.
Collapse
|
38
|
Wu Y, Li J, Jabbarzadeh Kaboli P, Shen J, Wu X, Zhao Y, Ji H, Du F, Zhou Y, Wang Y, Zhang H, Yin J, Wen Q, Cho CH, Li M, Xiao Z. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol Res 2020; 155:104691. [DOI: 10.1016/j.phrs.2020.104691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
|
39
|
Baumann D, Hägele T, Mochayedi J, Drebant J, Vent C, Blobner S, Noll JH, Nickel I, Schumacher C, Boos SL, Daniel AS, Wendler S, Volkmar M, Strobel O, Offringa R. Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun 2020; 11:2176. [PMID: 32358491 PMCID: PMC7195409 DOI: 10.1038/s41467-020-15979-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor results in potent synergistic antitumor efficacy. Detailed analysis of the mechanism of action of MEKi shows that this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and T-regulatory cells. The combination of MEK inhibition with agonist anti-CD40 Ab is therefore a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma. Immune checkpoint inhibitors have limited efficacy in tumors with lower mutational burden and non-permissive microenvironment. Here, the authors show that combining MEK inhibition with an agonist anti-CD40 immunostimulatory antibody improves antitumor treatment by inducing immunogenic changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Daniel Baumann
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Tanja Hägele
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Julian Mochayedi
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Jennifer Drebant
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Caroline Vent
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Sven Blobner
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Julia Han Noll
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Irena Nickel
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Corinna Schumacher
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Sophie Luise Boos
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Oncogenic signaling pathways of colorectal/pancreatic cancer, Ludwig-Maximilians-Universitaet, Munich, Bavaria, 80539, Germany
| | - Aline Sophie Daniel
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Susann Wendler
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Michael Volkmar
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany.,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Oliver Strobel
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany
| | - Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center Heidelberg, Heidelberg, Baden-Wuerttemberg, 69120, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Baden-Wuerttemberg, 69120, Germany.
| |
Collapse
|
40
|
Kunimasa K, Goto T. Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. Int J Mol Sci 2020; 21:E597. [PMID: 31963413 PMCID: PMC7014343 DOI: 10.3390/ijms21020597] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a dual role in tumor evolution-it can identify and control nascent tumor cells in a process called immunosurveillance and can promote tumor progression through immunosuppression via various mechanisms. Thus, bilateral host-protective and tumor-promoting actions of immunity are integrated as cancer immunoediting. In this decade, immune checkpoint inhibitors, specifically programmed cell death 1 (PD-1) pathway inhibitors, have changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC). These agents are approved for the treatment of patients with NSCLC and demonstrate impressive clinical activity and durable responses in some patients. However, for many NSCLC patients, the efficacy of immune checkpoint inhibitors is limited. To optimize the full utility of the immune system for eradicating cancer, a broader understanding of cancer immunosurveillance and immunoediting is essential. In this review, we discuss the fundamental knowledge of the phenomena and provide an overview of the next-generation immunotherapies in the pipeline.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan;
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan
| |
Collapse
|
41
|
Barsoumian HB, Batra L, Shrestha P, Bowen WS, Zhao H, Egilmez NK, Gomez-Gutierrez JG, Yolcu ES, Shirwan H. A Novel Form of 4-1BBL Prevents Cancer Development via Nonspecific Activation of CD4 + T and Natural Killer Cells. Cancer Res 2019; 79:783-794. [PMID: 30770367 DOI: 10.1158/0008-5472.can-18-2401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/13/2018] [Accepted: 12/28/2018] [Indexed: 01/11/2023]
Abstract
Costimulation through 4-1BB (CD137) receptor generates robust CD8+ T-effector and memory responses. The only known ligand, 4-1BBL, is a trimeric transmembrane protein that has no costimulatory activity as a soluble molecule. Thus, agonistic antibodies to the receptor have been used for cancer immunotherapy in preclinical models and are currently being evaluated in the clinic. Here, we report that treatment with an oligomeric form of the ligand, SA-4-1BBL, as a single agent is able to protect mice against subsequent tumor challenge irrespective of the tumor type. Protection was long-lasting (>8 weeks) and a bona fide property of SA-4-1BBL, as treatment with an agonistic antibody to the 4-1BB receptor was ineffective in generating immune protection against tumor challenge. Mechanistically, SA-4-1BBL significantly expanded IFNγ-expressing, preexisting memory-like CD44+CD4+ T cells and NK cells in naïve mice as compared with the agonistic antibody. In vivo blockade of IFNγ or depletion of CD4+ T or NK cells, but not CD8+ T or B cells, abrogated the immunopreventive effects of SA-4-1BBL against cancer. SA-4-1BBL as a single agent also exhibited robust efficacy in controlling postsurgical recurrences. This work highlights unexpected features of SA-4-1BBL as a novel immunomodulator with implications for cancer immunoprevention and therapy. SIGNIFICANCE: This study demonstrates the unique and unexpected immunomodulatory features of SA-4-1BBL that bridge innate and adaptive immune responses with both preventive and therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Hampartsoum B Barsoumian
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Lalit Batra
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Hong Zhao
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky.,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Esma S Yolcu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky. .,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky.,FasCure Therapeutics, LLC, Louisville, Kentucky
| | - Haval Shirwan
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky. .,Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
42
|
Guo Y, Yang L, Lei S, Tan W, Long J. NEDD4 Negatively Regulates GITR via Ubiquitination in Immune Microenvironment of Melanoma. Onco Targets Ther 2019; 12:10629-10637. [PMID: 31824170 PMCID: PMC6900405 DOI: 10.2147/ott.s212317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/06/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Melanoma is a common skin cancer that is usually associated with poor clinical outcomes. Recently, the immune checkpoint GITR has been identified as a promising target for immunotherapy of melanoma. In this study, we aimed to investigate the post-translational regulation mechanism of GITR in melanoma. Methods Western blotting was used to evaluate the protein expression of NEDD4, GITR and Foxp3. Real-time PCR (RT-PCR) was performed to determine expression levels of NEDD4, GITR, Foxp3 and IL-2. Cell viability was detected by MTT assay. The ubiquitination of GITR was evaluated by immunoprecipitation. NEDD4 expression data and melanoma survival data were obtained from The Cancer Genome Atlas (TCGA) and cBioPortal databases. Results We demonstrate that E3 ligase NEDD4 binds to GITR and mediates ubiquitination and degradation of GITR. Overexpression of NEDD4 inhibits anti-tumor immunity mediated by T cells against melanoma cells. We also found that the expression of NEDD4 is increased in metastatic melanoma. High NEDD4 expression level is correlated with the poor prognosis of melanoma patients. Discussion In summary, our findings demonstrated that E3 ligase NEDD4 mediates ubiquitination and degradation of GITR and suppresses T-cell-mediated-killings on melanoma cells. Our work highlighted the E3 ligase NEDD4 as a novel prognosis biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yu Guo
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Lichang Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Wuyuan Tan
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jianhong Long
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
43
|
Grimmig T, Gasser M, Moench R, Zhu LJ, Nawalaniec K, Callies S, Wagner M, Polat B, Mothi SS, Luo Y, Ribas CM, Malafaia O, Hsiao LL, Waaga-Gasser AM. Expression of Tumor-mediated CD137 ligand in human colon cancer indicates dual signaling effects. Oncoimmunology 2019; 8:e1651622. [PMID: 31741755 PMCID: PMC6844327 DOI: 10.1080/2162402x.2019.1651622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
CD137-targeting immune therapy, which activates anti-tumor T effector cell responses, seems to be an attractive concept in clinical oncology. Recent evidence has demonstrated that tumor cells besides T cells and antigen-presenting cells are able to express CD137 and CD137L. Here we aimed to identify CD137/CD137L expression in established colon cancer cell lines and primary tumors (UICC stages I-IV) from patients with documented long-term follow-up. CD137/CD137L expression was highly upregulated in early to late-stage tumors while the inverse was observed in patient-derived peripheral blood mononuclear cells. High CD137L expression within primary tumors was mediated by tumor cells and significantly correlated with the occurrence of distant metastases and shortened survival in advanced stages of disease (UICC stage IV). Interestingly, induced tumor cell signaling via CD137L on its surface in vitro resulted in dual effects: (i) reduced tumor cell proliferation suggesting inhibitory signaling in all investigated cancers and (ii) increased epithelial-to-mesenchymal transition signaling events. Taken together CD137/CD137L expression was stage-dependently upregulated with shortened survival in patients with highly CD137L-expressing tumors. Our clinical and experimental data suggest that colon cancer cells predominantly express CD137L and thereby have negative impact on overall survival through a process of reverse signaling. Beside agonistic CD137 antibody therapy to foster T effector cell responses, CD137L-mediated intervention strategies may become instrumental to circumvent relapsed tumor growth through induced epithelial-to-mesenchymal transition and consecutive metastases formation.
Collapse
Affiliation(s)
- Tanja Grimmig
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Romana Moench
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Lang-Jing Zhu
- Nephrology Department, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, PR. China.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karol Nawalaniec
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simone Callies
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Wagner
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Buelent Polat
- Department of Radiation, Oncology University of Wuerzburg, Wuerzburg, Germany
| | - Suraj Sarvode Mothi
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yueming Luo
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmen M Ribas
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Osvaldo Malafaia
- Evangelical Medical School, Faculty University of Parana, Curitiba, Brazil
| | - Li-Li Hsiao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany.,Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
45
|
Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells. J Autoimmun 2019; 104:102310. [PMID: 31421963 DOI: 10.1016/j.jaut.2019.102310] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Advances in our understanding οf tumor immunity have prompted a paradigm shift in oncology, with the emergence of immunotherapy, where therapeutic agents are used to target immune cells rather than cancer cells. A real breakthrough in the field of immunotherapy came with the use of immune checkpoint inhibitors (ICI), namely antagonistic antibodies that block key immune regulatory molecules (checkpoint molecules), such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein (PD-1) and its ligand PD-L1, that under physiologic conditions suppress T cell effector function. However, despite the enormous success, a significant proportion of patients do not respond, while responses are frequently accompanied by life-threatening autoimmune related adverse events (irAEs). A major impediment in the effectiveness of ICI immunotherapy is the tumoral resistance, which is dependent on the immunosuppressive nature of tumor microenvironment (TME). Regulatory T cells (Tregs) are among the most abundant suppressive cells in the TME and their presence has been correlated with tumor progression, invasiveness as well as metastasis. Tregs are characterized by the expression of the transcription factor Foxp3 and various mechanisms ranging from cell-to-cell contact to secretion of inhibitory molecules have been implicated in their function. Notably, Tregs amply express most of the checkpoint molecules such as CTLA4, PD1 and LAG3 and therefore represent a direct target of ICI immunotherapy. Taking into consideration the critical role of Tregs in maintenance of immune homeostasis and avoidance of autoimmunity it is plausible that targeting of Tregs by ICI immunotherapy results in the development of irAEs. Since the use of ICI becomes common, and new immune checkpoint molecules are currently under clinical trials for the treatment of cancer, the occurrence of irAEs is expected to dramatically rise. Herein we review the current literature focusing on the role of Tregs in cancer evolution, ICI response and development of irAEs. Unraveling the complex mechanisms that hinder the tumor immune surveillance and in particular how ICI immunotherapy imprint on Treg activities to promote cancer regression while avoid development of irAEs, will empower the design of novel immunotherapeutic modalities in cancer with increased efficacy and diminished adverse events.
Collapse
|
46
|
Chakraborty D, Pati S, Bose S, Dhar S, Dutta S, Sa G. Cancer immunotherapy: present scenarios and the future of immunotherapy. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
47
|
Mikkelsen K, Harwood SL, Compte M, Merino N, Mølgaard K, Lykkemark S, Alvarez-Mendez A, Blanco FJ, Álvarez-Vallina L. Carcinoembryonic Antigen (CEA)-Specific 4-1BB-Costimulation Induced by CEA-Targeted 4-1BB-Agonistic Trimerbodies. Front Immunol 2019; 10:1791. [PMID: 31417564 PMCID: PMC6685135 DOI: 10.3389/fimmu.2019.01791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/16/2019] [Indexed: 01/26/2023] Open
Abstract
4-1BB (CD137) is an inducible costimulatory receptor that promotes expansion and survival of activated T cells; and IgG-based 4-1BB-agonistic monoclonal antibodies exhibited potent antitumor activity in clinical trials. However, the clinical development of those antibodies is restricted by major off-tumor toxicities associated with FcγR interactions. We have recently generated an EGFR-targeted 4-1BB-agonistic trimerbody that demonstrated strong antitumor activity and did not induce systemic inflammatory cytokine secretion and hepatotoxicity associated with first-generation 4-1BB agonists. Here, we generate a bispecific 4-1BB-agonistic trimerbody targeting the carcinoembryonic antigen (CEA) that is highly expressed in cancers of diverse origins. The CEA-targeted anti-4-1BB-agonistic trimerbody consists of three 4-1BB-specific single-chain fragment variable antibodies and three anti-CEA single-domain antibodies positioned around a murine collagen XVIII-derived homotrimerization domain. The trimerbody was produced as a homogenous, non-aggregating, soluble protein purifiable by standard affinity chromatographic methods. The purified trimerbody was found to be trimeric in solution, very efficient at recognizing 4-1BB and CEA, and potently costimulating T cells in vitro in the presence of CEA. Therefore, trimerbody-based tumor-targeted 4-1BB costimulation is a broadly applicable and clinically feasible approach to enhance the costimulatory environment of disseminated tumor lesions.
Collapse
Affiliation(s)
- Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Seandean Lykke Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | | | - Francisco J Blanco
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis Álvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark.,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
48
|
Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS, Li HS. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol 2019; 110:24-39. [PMID: 29549977 PMCID: PMC6139080 DOI: 10.1016/j.molimm.2018.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Slone
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Zhang L, Du T, Ma D, Guo F, Li Z, Yan H. Retracted: Combined therapy using LHRH-PE40 and anti-CD40 dendritic cells substantially eliminate tumor cells. J Cell Biochem 2019; 120:8093-8100. [PMID: 30485508 DOI: 10.1002/jcb.28088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
LHRH-PE40 was used to promote the proliferation of bone marrow derived cell (BMDC) and improve the antigen-presenting ability of BMDC as well as the immune function via the CD40 signal pathway. LHRH-PE40 was also implicated in cancer treatment, targeting a variety of cancer cells that express luteinizing hormone-releasing hormone receptor (LHRHR). In the present study, the mechanism and efficacy of LHRH-PE40 were addressed in the following three aspects. Enzyme-linked immunosorbent assay was performed to confirm the binding specificity of LHRH-PE40 to LHRHR. The killing effect of LHRH-PE40 on target cells was mediated by LHRHR, which specifically killed LHRHR-positive target cells while the minimal cytotoxicity of LHRHR-negative cells is negligible. Spiegelmers, a molecule mutually exclusive with GnRH and developed by Sven Klussmann and Dr Sven Klussmann of NOXXON Pharmaceuticals in Germany, demonstrated that LHRH-PE40 maintains a combinatory characteristics of LHRH and LHRHR. In the end, the mechanism of LHRH-PE40 underlying induction of apoptosis at low concentration and prolonged conditions was firstly demonstrated by the basic method of detecting apoptosis to induce apoptosis. It provided a scientific basis for clinical application of LHRH-PE40 and laid a foundation for the further study of LHRH-PE40 on inducing apoptosis of target cells. The target cells herein refer to tumor cells that overexpress LHRHR. This study shows that activated DC can more effectively promote the proliferation of CD4+ T cells, and initially proved that DC carrying anti-CD40 antibody promoted the immune treatment of the tumor. Combining LHRH-PE40 with anti-CD40 DCs achieved substantially improved efficacy in killing tumor cells.
Collapse
Affiliation(s)
- Limin Zhang
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | | | - DongBin Ma
- Tianjin Medical University, Tianjin, China
| | - Fang Guo
- Tianjin Medical University, Tianjin, China
| | - ZhenWei Li
- Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
50
|
Beha N, Harder M, Ring S, Kontermann RE, Müller D. IL15-Based Trifunctional Antibody-Fusion Proteins with Costimulatory TNF-Superfamily Ligands in the Single-Chain Format for Cancer Immunotherapy. Mol Cancer Ther 2019; 18:1278-1288. [PMID: 31040163 DOI: 10.1158/1535-7163.mct-18-1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
Collapse
Affiliation(s)
- Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Markus Harder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|