1
|
Fotopoulou C, Rockall A, Lu H, Lee P, Avesani G, Russo L, Petta F, Ataseven B, Waltering KU, Koch JA, Crum WR, Cunnea P, Heitz F, Harter P, Aboagye EO, du Bois A, Prader S. Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer (HGSOC). Br J Cancer 2021; 126:1047-1054. [PMID: 34923575 PMCID: PMC8979975 DOI: 10.1038/s41416-021-01662-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Predictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality. METHODS RPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n = 323) who underwent upfront debulking surgery (01/2011-07/2018). RPV was correlated with operability, survival and adjusted for well-established prognostic factors (age, postoperative residual disease, stage), and compared to previous validation models. RESULTS The distribution of low, medium and high RPV scores was 54.2% (n = 175), 33.4% (n = 108) and 12.4% (n = 40) across the cohort, respectively. High RPV scores independently associated with significantly worse progression-free survival (PFS) (HR = 1.69; 95% CI:1.06-2.71; P = 0.038), even after adjusting for stage, age, performance status and residual disease. Moreover, lower RPV was significantly associated with total macroscopic tumour clearance (OR = 2.02; 95% CI:1.56-2.62; P = 0.00647). CONCLUSIONS RPV was validated to independently identify those HGSOC patients who will not be operated tumour-free in an optimal setting, and those who will relapse early despite complete tumour clearance upfront. Further prospective, multicentre trials with a translational aspect are warranted for the incorporation of this radiomics approach into clinical routine.
Collapse
Affiliation(s)
- Christina Fotopoulou
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.
| | - Andrea Rockall
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Department of Radiology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK.,Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Haonan Lu
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Philippa Lee
- Department of Radiology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Giacomo Avesani
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Russo
- Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Petta
- Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Beyhan Ataseven
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, München, Germany
| | - Kai-Uwe Waltering
- Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - Jens Albrecht Koch
- Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - William R Crum
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Institute of Translational Medicine and Therapeutics (ITMAT), Imperial College, London, UK
| | - Paula Cunnea
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany.,Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - Eric O Aboagye
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - Sonia Prader
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany.,Department of Obstetrics and Gynecology, Brixen General Hospital, Brixen, Italy.,Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
2
|
Abstract
Cancers are not composed merely of cancer cells alone; instead, they are complex 'ecosystems' comprising many different cell types and noncellular factors. The tumour stroma is a critical component of the tumour microenvironment, where it has crucial roles in tumour initiation, progression, and metastasis. Most anticancer therapies target cancer cells specifically, but the tumour stroma can promote the resistance of cancer cells to such therapies, eventually resulting in fatal disease. Therefore, novel treatment strategies should combine anticancer and antistromal agents. Herein, we provide an overview of the advances in understanding the complex cancer cell-tumour stroma interactions and discuss how this knowledge can result in more effective therapeutic strategies, which might ultimately improve patient outcomes.
Collapse
|
3
|
Lu H, Arshad M, Thornton A, Avesani G, Cunnea P, Curry E, Kanavati F, Liang J, Nixon K, Williams ST, Hassan MA, Bowtell DDL, Gabra H, Fotopoulou C, Rockall A, Aboagye EO. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun 2019; 10:764. [PMID: 30770825 PMCID: PMC6377605 DOI: 10.1038/s41467-019-08718-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35-40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name "Radiomic Prognostic Vector" (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types.
Collapse
Affiliation(s)
- Haonan Lu
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Mubarik Arshad
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Andrew Thornton
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Giacomo Avesani
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Paula Cunnea
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Ed Curry
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Fahdi Kanavati
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Jack Liang
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Katherine Nixon
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Sophie T Williams
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Mona Ali Hassan
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, 3010, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- Early Clinical Development, iMED Biotech Unit, AstraZeneca, Cambridge, SG8 6HB, UK
| | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Andrea Rockall
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- Department of Radiology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Eric O Aboagye
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
4
|
Coleman DT, Gray AL, Stephens CA, Scott ML, Cardelli JA. Repurposed drug screen identifies cardiac glycosides as inhibitors of TGF-β-induced cancer-associated fibroblast differentiation. Oncotarget 2017; 7:32200-9. [PMID: 27058757 PMCID: PMC5078007 DOI: 10.18632/oncotarget.8609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment, primarily composed of myofibroblasts, directly influences the progression of solid tumors. Through secretion of growth factors, extracellular matrix deposition, and contractile mechanotransduction, myofibroblasts, or cancer-associated fibroblasts (CAFs), support angiogenesis and cancer cell invasion and metastasis. The differentiation of fibroblasts to CAFs is primarily induced by TGF-β from cancer cells. To discover agents capable of blocking CAF differentiation, we developed a high content immunofluorescence-based assay to screen repurposed chemical libraries utilizing fibronectin expression as an initial CAF marker. Screening of the Prestwick chemical library and NIH Clinical Collection repurposed drug library, totaling over 1700 compounds, identified cardiac glycosides as particularly potent CAF blocking agents. Cardiac glycosides are traditionally used to regulate intracellular calcium by inhibiting the Na+/K+ ATPase to control cardiac contractility. Herein, we report that multiple cardiac glycoside compounds, including digoxin, are able to inhibit TGF-β-induced fibronectin expression at low nanomolar concentrations without undesirable cell toxicity. We found this inhibition to hold true for multiple fibroblast cell lines. Using real-time qPCR, we determined that digoxin prevented induction of multiple CAF markers. Furthermore, we report that digoxin is able to prevent TGF-β-induced fibroblast contraction of extracellular matrix, a major phenotypic consequence of CAF differentiation. Assessing the mechanism of inhibition, we found digoxin reduced SMAD promoter activity downstream of TGF-β, and we provide data that the effect is through inhibition of its known target, the Na+/K+ ATPase. These findings support a critical role for calcium signaling during CAF differentiation and highlight a novel, repurposable modality for cancer therapy.
Collapse
Affiliation(s)
- David T Coleman
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Alana L Gray
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Charles A Stephens
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - Matthew L Scott
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| | - James A Cardelli
- Louisiana State University Health Sciences Center, Feist-Weiller Cancer Center, Shreveport, LA, USA
| |
Collapse
|
5
|
Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Semin Cancer Biol 2015; 35:3-10. [PMID: 26416466 DOI: 10.1016/j.semcancer.2015.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
Several evidences support the concept that cancer development and progression are not entirely cancer cell-autonomous processes, but may be influenced, and possibly driven, by cross-talk between cancer cells and the surrounding microenvironment in which, besides immune cells, stromal cells and extracellular matrix (ECM) play a major role in regulating distinct biologic processes. Stroma and ECM-related signatures proved to influence breast cancer progression, and to contribute to the identification of tumor phenotypes resistant to cytotoxic and hormonal treatments. The possible clinical implications of the interplay between tumor cells and the microenvironment, with special reference to ECM remodelling, will be discussed in this review.
Collapse
Affiliation(s)
- Marta Giussani
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Giuseppe Merlino
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Vera Cappelletti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Elda Tagliabue
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133 Milan, Italy.
| |
Collapse
|
6
|
Palumbo A, Da Costa NDOM, Bonamino MH, Pinto LFR, Nasciutti LE. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol Cancer 2015; 14:145. [PMID: 26227631 PMCID: PMC4521350 DOI: 10.1186/s12943-015-0409-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The recent exponential increase in our knowledge of cellular and molecular mechanisms involved in carcinogenesis has largely failed to translate into new therapies and clinical practices. This lack of success may result in part from the fact that most studies focus on tumor cells as potential therapeutic targets and neglect the complex microenvironment that undergoes profound changes during tumor development. Furthermore, an unfortunate association of factors such as tumor genetic complexity, overestimation of biomarker and drug potentials, as well as a poor understanding of tumor microenvironment in diagnosis and prognosis leads to the current levels of treatment failure regarding a vast majority of cancer types. A growing body of evidence points to the importance of the functional diversity of immune and structural cells during tumor development. In this sense, the lack of technologies that would allow for molecular screening of individual stromal cell types poses a major challenge for the development of therapies targeting the tumor microenvironment. Progress in microenvironment genetic studies represents a formidable opportunity for the development of new selective drugs because stromal cells have lower mutation rates than malignant cells, and should prove to be good targets for therapy.
Collapse
Affiliation(s)
- Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373 - bloco F, sala 26, 21941-902, Rio de Janeiro, RJ, Brasil. .,Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Nathalia de Oliveira Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil. .,Fundação Oswaldo Cruz, Vice-presidência de Pesquisa e Laboratórios de Referência, Rio de Janeiro, Brasil, Av. Brasil, 4365 - Pavilhão Mourisco - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brasil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373 - bloco F, sala 26, 21941-902, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
7
|
Guo X, Jo VY, Mills AM, Zhu SX, Lee CH, Espinosa I, Nucci MR, Varma S, Forgó E, Hastie T, Anderson S, Ganjoo K, Beck AH, West RB, Fletcher CD, van de Rijn M. Clinically Relevant Molecular Subtypes in Leiomyosarcoma. Clin Cancer Res 2015; 21:3501-11. [PMID: 25896974 DOI: 10.1158/1078-0432.ccr-14-3141] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/11/2015] [Indexed: 01/23/2023]
Abstract
PURPOSE Leiomyosarcoma is a malignant neoplasm with smooth muscle differentiation. Little is known about its molecular heterogeneity and no targeted therapy currently exists for leiomyosarcoma. Recognition of different molecular subtypes is necessary to evaluate novel therapeutic options. In a previous study on 51 leiomyosarcomas, we identified three molecular subtypes in leiomyosarcoma. The current study was performed to determine whether the existence of these subtypes could be confirmed in independent cohorts. EXPERIMENTAL DESIGN Ninety-nine cases of leiomyosarcoma were expression profiled with 3'end RNA-Sequencing (3SEQ). Consensus clustering was conducted to determine the optimal number of subtypes. RESULTS We identified 3 leiomyosarcoma molecular subtypes and confirmed this finding by analyzing publically available data on 82 leiomyosarcoma from The Cancer Genome Atlas (TCGA). We identified two new formalin-fixed, paraffin-embedded tissue-compatible diagnostic immunohistochemical markers; LMOD1 for subtype I leiomyosarcoma and ARL4C for subtype II leiomyosarcoma. A leiomyosarcoma tissue microarray with known clinical outcome was used to show that subtype I leiomyosarcoma is associated with good outcome in extrauterine leiomyosarcoma while subtype II leiomyosarcoma is associated with poor prognosis in both uterine and extrauterine leiomyosarcoma. The leiomyosarcoma subtypes showed significant differences in expression levels for genes for which novel targeted therapies are being developed, suggesting that leiomyosarcoma subtypes may respond differentially to these targeted therapies. CONCLUSIONS We confirm the existence of 3 molecular subtypes in leiomyosarcoma using two independent datasets and show that the different molecular subtypes are associated with distinct clinical outcomes. The findings offer an opportunity for treating leiomyosarcoma in a subtype-specific targeted approach.
Collapse
Affiliation(s)
- Xiangqian Guo
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anne M Mills
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Shirley X Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Cheng-Han Lee
- Division of Anatomical Pathology, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Inigo Espinosa
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Marisa R Nucci
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Erna Forgó
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Trevor Hastie
- Department of Statistics, Stanford University, Stanford, California
| | - Sharon Anderson
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kristen Ganjoo
- Stanford Comprehensive Cancer Center, Stanford University, Stanford, California
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Christopher D Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matt van de Rijn
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
8
|
Cheon DJ, Orsulic S. Ten-gene biomarker panel: a new hope for ovarian cancer? Biomark Med 2014; 8:523-6. [PMID: 24796616 DOI: 10.2217/bmm.14.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Dong-Joo Cheon
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Gray AL, Stephens CA, Bigelow RLH, Coleman DT, Cardelli JA. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS One 2014; 9:e109208. [PMID: 25272043 PMCID: PMC4182889 DOI: 10.1371/journal.pone.0109208] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/09/2014] [Indexed: 02/04/2023] Open
Abstract
The presence of reactive stroma, predominantly composed of myofibroblasts, is directly associated with and drives prostate cancer progression. We have previously shown that (−)-Epigallocatechin-3-gallate (EGCG), in the form of Polyphenon E, significantly decreases serum levels of HGF and VEGF in prostate cancer patients. Given that HGF and VEGF are secreted from surrounding tumor myofibroblasts, these observations suggested that EGCG may inhibit prostate cancer-associated myofibroblast differentiation. Herein, we demonstrate that micromolar combinations of EGCG and a second polyphenol, luteolin, synergistically inhibit TGF-β-induced myofibroblast phenotypes in prostate fibroblast cell lines, as observed primarily by potentiation of fibronectin expression. Functionally, EGCG and luteolin inhibited TGF-β-induced extracellular matrix contraction, an enhancer of tumor cell invasion. EGCG and luteolin inhibited downstream TGF-β-induced signaling, including activation of ERK and AKT, respectively, but mechanistically, only ERK appeared to be necessary for TGF-β-induced fibronectin expression. Furthermore, neither EGCG nor luteolin affected Smad signaling or nuclear translocation. Rho signaling was found to be necessary for TGF-β-induced fibronectin expression and EGCG and luteolin each reduced RhoA activation. Finally, EGCG and luteolin were shown to reverse TGF-β-induced fibronectin expression, implicating that these natural compounds may be useful not only in preventing but also in treating already activated myofibroblasts and the diseases they cause, including cancer. The ability of EGCG and luteolin to synergistically target myofibroblasts suggests that combined clinical use of these compounds could prevent or reverse cancer progression through targeting the tumor microenvironment, in addition to the tumor itself.
Collapse
Affiliation(s)
- Alana L. Gray
- Louisiana State University Health Sciences Center – Shreveport, Shreveport, Louisiana, United States of America
| | - Charles A. Stephens
- Louisiana State University Health Sciences Center – Shreveport, Shreveport, Louisiana, United States of America
| | - Rebecca L. H. Bigelow
- Louisiana State University Health Sciences Center – Shreveport, Shreveport, Louisiana, United States of America
| | - David T. Coleman
- Louisiana State University Health Sciences Center – Shreveport, Shreveport, Louisiana, United States of America
| | - James A. Cardelli
- Louisiana State University Health Sciences Center – Shreveport, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chen JY, Li CF, Kuo CC, Tsai KK, Hou MF, Hung WC. Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression. Breast Cancer Res 2014; 16:410. [PMID: 25060643 PMCID: PMC4220086 DOI: 10.1186/s13058-014-0410-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/10/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. Methods Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. Results Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. Conclusion Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0410-1) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Ma R, Fredriksson I, Karthik GM, Winn G, Darai-Ramqvist E, Bergh J, Hartman J. Superficial scrapings from breast tumors is a source for biobanking and research purposes. J Transl Med 2014; 94:796-805. [PMID: 24776644 DOI: 10.1038/labinvest.2014.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/01/2014] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is a unique tumor disease in terms of the stringent requirement of predictive biomarker assessments. As recommended by current international guidelines, the established markers consist of estrogen receptor (ER), progesterone receptor, human epidermal growth factor and Ki67, and are primarily analyzed by immunohistochemistry. However, new diagnostic methods based on microarray or next-generation sequencing on DNA and mRNA level are gaining ground. These analyses require fresh-frozen tumor tissue that is generally not available from tumors <10 mm in diameter, comprising almost 25% of all resected breast cancer at our department. We here present a simple and standardized method to generate material from small tumors without risking the histopathological examination. Furthermore, we show that the quality of this material is sufficient for subsequent analysis on mRNA, DNA, and epigenetic level. We were also able to use this method for isolation and expansion of cancer stem cells from the majority of tumors. Consequently, researches can be provided with clinically relevant material for translational studies. In conclusion, this method opens up a new possibility for usage of valuable fresh tumor material for research purposes, biobanking, and next-generation sequencing.
Collapse
Affiliation(s)
- Ran Ma
- Departments of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Irma Fredriksson
- 1] Departments of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden [2] Departments of Breast and Endocrine Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Gregory Winn
- Departments of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Darai-Ramqvist
- Departments of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- 1] Departments of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden [2] Radiumhemmet - Karolinska Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Hartman
- 1] Departments of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden [2] Departments of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
West RB, van de Rijn M, Chen JL. Stromal responses among carcinomas--response. Clin Cancer Res 2014; 20:1397. [PMID: 24590889 DOI: 10.1158/1078-0432.ccr-13-3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Robert B West
- Authors' Affiliation: Stanford University, Stanford, California
| | | | | |
Collapse
|
13
|
Triulzi T, Orlandi R, Tagliabue E. Stromal responses among carcinomas--letter. Clin Cancer Res 2014; 20:1396. [PMID: 24590888 DOI: 10.1158/1078-0432.ccr-13-3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tiziana Triulzi
- Authors' Affiliation: Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | |
Collapse
|
14
|
Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol 2014; 25:61-8. [PMID: 24560651 DOI: 10.1016/j.semcancer.2014.02.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/12/2022]
Abstract
Prognostication is an integral part of cancer diagnostic and helps oncologists to guide treatment decisions and therapy intensity. Accumulating evidence suggest that the stroma compartment also contains independent prognostic information, best exemplified by the impact of immune cells and cells of the vasculature on cancer progression. Similarly, strong experimental evidence exist that stromal fibroblasts, often designated cancer associated fibroblasts (CAFs), are actively involved in tumorigenesis. Thus, it can be anticipated that the molecular repertoire of CAFs is likewise important for the clinical behavior of the tumor. In this review we present recent studies addressing the prognostic impact of CAFs, with the focus on human lung and breast cancer. Several single markers have been suggested, either CAF specific or CAF derived, that in immunohistochemical studies have demonstrated independent association with survival. This includes members of the platelet derived growth factor receptor (PDGFR) family, CAF-markers like podoplanin and fibroblast activation protein (FAP) as well as transcription factors (FoxF1) and secreted factors (matrix metalloproteinases (MMPs), SPARC). However, most studies are based on explorative evaluations on single patient cohorts and require further validation. Using a more comprehensive approach, microarray studies have been employed to create gene expression signatures that detect an activated fibroblast state. These "stroma signatures" have been applied to identify specific CAF features associated with prognosis in several independent data sets of breast and lung cancer patients. Early studies in breast cancer have also demonstrated that fibroblast features influence therapy response. Thus, many strategies have been used to present encouraging proof-of-concept findings that CAFs could be exploited for prognostication. However, these studies also highlight the difficulties to conclusively define an "activated stroma" and to identify the individual factors involved in clinically relevant tumor-stroma interactions.
Collapse
Affiliation(s)
- Janna Paulsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden.
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res 2013; 20:711-23. [PMID: 24218511 DOI: 10.1158/1078-0432.ccr-13-1256] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To elucidate molecular pathways contributing to metastatic cancer progression and poor clinical outcome in serous ovarian cancer. EXPERIMENTAL DESIGN Poor survival signatures from three different serous ovarian cancer datasets were compared and a common set of genes was identified. The predictive value of this gene signature was validated in independent datasets. The expression of the signature genes was evaluated in primary, metastatic, and/or recurrent cancers using quantitative PCR and in situ hybridization. Alterations in gene expression by TGF-β1 and functional consequences of loss of COL11A1 were evaluated using pharmacologic and knockdown approaches, respectively. RESULTS We identified and validated a 10-gene signature (AEBP1, COL11A1, COL5A1, COL6A2, LOX, POSTN, SNAI2, THBS2, TIMP3, and VCAN) that is associated with poor overall survival (OS) in patients with high-grade serous ovarian cancer. The signature genes encode extracellular matrix proteins involved in collagen remodeling. Expression of the signature genes is regulated by TGF-β1 signaling and is enriched in metastases in comparison with primary ovarian tumors. We demonstrate that levels of COL11A1, one of the signature genes, continuously increase during ovarian cancer disease progression, with the highest expression in recurrent metastases. Knockdown of COL11A1 decreases in vitro cell migration, invasion, and tumor progression in mice. CONCLUSION Our findings suggest that collagen-remodeling genes regulated by TGF-β1 signaling promote metastasis and contribute to poor OS in patients with serous ovarian cancer. Our 10-gene signature has both predictive value and biologic relevance and thus may be useful as a therapeutic target.
Collapse
Affiliation(s)
- Dong-Joo Cheon
- Authors' Affiliations: Women's Cancer Program, Department of Medicine, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute; Department of Pathology and Laboratory Medicine; Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles; and John Wayne Cancer Institute, Saint John's Hospital, Santa Monica, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Stromal features in carcinomas may provide a relatively consistent means to stratify patients afflicted with solid tumors. Stroma-derived transcriptome signatures can now be used to make predictions about patient survival, suggesting the potential for their clinical application in precision medicine to predict disease progression and emergence of therapeutic resistance.
Collapse
Affiliation(s)
- Michael R. Freeman
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA. 90048
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA. 90048
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA. 90048
| | - Quanlin Li
- Biostatistics and Bioinformatics Center, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA. 90048
| | - Leland W. K. Chung
- Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA. 90048
- Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA. 90048
| |
Collapse
|