1
|
Nguyen DD, Hooper WF, Liu W, Chu TR, Geiger H, Shelton JM, Shah M, Goldstein ZR, Winterkorn L, Helland A, Sigouros M, Manohar J, Moyer J, Al Assaad M, Semaan A, Cohen S, Madorsky Rowdo F, Wilkes D, Osman M, Singh RR, Sboner A, Valentine HL, Abbosh P, Tagawa ST, Nanus DM, Nauseef JT, Sternberg CN, Molina AM, Scherr D, Inghirami G, Mosquera JM, Elemento O, Robine N, Faltas BM. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 2024; 635:219-228. [PMID: 39385020 PMCID: PMC11541202 DOI: 10.1038/s41586-024-07955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Advanced urothelial cancer is a frequently lethal disease characterized by marked genetic heterogeneity1. In this study, we investigated the evolution of genomic signatures caused by endogenous and external mutagenic processes and their interplay with complex structural variants (SVs). We superimposed mutational signatures and phylogenetic analyses of matched serial tumours from patients with urothelial cancer to define the evolutionary dynamics of these processes. We show that APOBEC3-induced mutations are clonal and early, whereas chemotherapy induces mutational bursts of hundreds of late subclonal mutations. Using a genome graph computational tool2, we observed frequent high copy-number circular amplicons characteristic of extrachromosomal DNA (ecDNA)-forming SVs. We characterized the distinct temporal patterns of APOBEC3-induced and chemotherapy-induced mutations within ecDNA-forming SVs, gaining new insights into the timing of these mutagenic processes relative to ecDNA biogenesis. We discovered that most CCND1 amplifications in urothelial cancer arise within circular ecDNA-forming SVs. ecDNA-forming SVs persisted and increased in complexity, incorporating additional DNA segments and contributing to the evolution of treatment resistance. Oxford Nanopore Technologies long-read whole-genome sequencing followed by de novo assembly mapped out CCND1 ecDNA structure. Experimental modelling of CCND1 ecDNA confirmed its role as a driver of treatment resistance. Our findings define fundamental mechanisms that drive urothelial cancer evolution and have important therapeutic implications.
Collapse
Affiliation(s)
- Duy D Nguyen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Weisi Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alissa Semaan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Florencia Madorsky Rowdo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Osman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul R Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Henkel L Valentine
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Phillip Abbosh
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Urology, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Jones T Nauseef
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cora N Sternberg
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Douglas Scherr
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Bishoy M Faltas
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Liu YF, Feng ZQ, Chu TH, Yi B, Liu J, Yu H, Xue J, Wang YJ, Zhang CZ. Andrographolide sensitizes KRAS-mutant colorectal cancer cells to cetuximab by inhibiting the EGFR/AKT and PDGFRβ/AKT signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155462. [PMID: 38394734 DOI: 10.1016/j.phymed.2024.155462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Cetuximab, an inhibitor targeting EGFR, is widely applied in clinical management of colorectal cancer (CRC). Nevertheless, drug resistance induced by KRAS-mutations limits cetuximab's anti-cancer effectiveness. Furthermore, the persistent activation of EGFR-independent AKT is another significant factor in cetuximab resistance. Nevertheless, the mechanism that EGFR-independent AKT drives cetuximab resistance remains unclear. Thus, highlighting the need to optimize therapies to overcome cetuximab resistance and also to explore the underlying mechanism. PURPOSE This work aimed to investigate whether and how andrographolide enhance the therapeutic efficacy of cetuximab in KRAS-mutant CRC cells by modulating AKT. METHODS The viabilities of CRC cell lines were analyzed by CCK-8. The intracellular proteins phosphorylation levels were investigated by Human Phospho-kinase Antibody Array analysis. Knockdown and transfection of PDGFRβ were used to evaluate the role of andrographolide on PDGFRβ. The western blotting was used to investigate Wnt/β-catenin pathways, PI3K/AKT, and EMT in KRAS-mutant CRC cells. The animal models including subcutaneous tumor and lung metastasis were performed to assess tumor response to therapy in vivo. RESULTS Andrographolide was demonstrated to decrease the expression of PI3K and AKT through targeting PDGFRβ and EGFR, and it enhanced cetuximab effect on KRAS-mutant CRC cells by this mechanism. Meanwhile, andrographolide helped cetuximab to inhibit Wnt/β-catenin, CRC cell migration and reduced Vimentin expression, while increasing that of E-cadherin. Lastly, co-treatment with cetuximab and andrographolide reduced the growth of KRAS-mutant tumors and pulmonary metastases in vivo. CONCLUSIONS Our findings suggest that andrographolide can overcome the KRAS-mutant CRC cells' resistance to cetuximab through inhibiting the EGFR/PI3K/AKT and PDGFRβ /AKT signaling pathways. This research provided a possible theory that andrographolide sensitizes KRAS-mutant tumor to EGFR TKI.
Collapse
Affiliation(s)
- Yan-Fei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Zhi-Qiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Tian-Hao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China
| | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300241, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
| | - Yi-Jia Wang
- Laboratory of Oncologic molecular medicine, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China.
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, 190 JieYuan Road, Tianjin 300121, China.
| |
Collapse
|
3
|
Gendrau‐Sanclemente N, Figueras A, Gracova K, Lahiguera Á, Alsina‐Sanchís E, Marín‐Jiménez JA, Vidal A, Matias‐Guiu X, Fernandez‐Gonzalez S, Barahona M, Martí L, Ponce J, Viñals F. Ovarian cancer relies on the PDGFRβ-fibronectin axis for tumorsphere formation and metastatic spread. Mol Oncol 2024; 18:136-155. [PMID: 38010623 PMCID: PMC10766197 DOI: 10.1002/1878-0261.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malignancy. The most common form of metastatic spread of HGSOC is transcoelomic dissemination. In this process, detached cells from the primary tumor aggregate as tumorspheres and promote the accumulation of peritoneal ascites. This represents an early event in HGSOC development and is indicative of poor prognosis. In this study, based on tumorspheres isolated from ascitic liquid samples from HGSOC patients, ovarian cancer spheroid 3D cultures, and in vivo models, we describe a key signal for tumorsphere formation in HGSOC. We report that platelet-derived growth factor receptor beta (PDGFRβ) is essential for fibronectin-mediated cell clustering of ovarian cancer cells into tumorspheres. This effect is mediated by the kinase NUAK family SNF1-like kinase 1 (NUAK1) and blocked by PDGFRβ pharmacological or genetic inhibition. In the absence of PDGFRβ, ovarian cancer cells can be provided with fibronectin by cancer-associated fibroblasts to generate chimeric spheroids. This work provides new insights that uncover potential targets to prevent peritoneal dissemination, the main cause of advanced disease in HGSOC patients.
Collapse
Affiliation(s)
- Núria Gendrau‐Sanclemente
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Kristina Gracova
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Álvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Elisenda Alsina‐Sanchís
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
| | - Juan A. Marín‐Jiménez
- Cancer Immunotherapy (CIT) Group‐ProCUREBellvitge Biomedical Research Institute (IDIBELL) – OncoBellBarcelonaSpain
- Department of Medical OncologyCatalan Institute of Oncology (ICO)BarcelonaSpain
| | - August Vidal
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | - Xavier Matias‐Guiu
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Department of PathologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
- CIBERONCInstituto de Salud Carlos IIIMadridSpain
| | | | - Marc Barahona
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Lola Martí
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Jordi Ponce
- Department of GynaecologyUniversity Hospital of Bellvitge (IDIBELL)BarcelonaSpain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of Oncology (ICO), Hospital Duran i ReynalsBarcelonaSpain
- Oncobell ProgramInstitut d'Investigació Biomèdica de Bellvitge (IDIBELL)BarcelonaSpain
- Departament de Ciències FisiològiquesUniversitat de BarcelonaSpain
| |
Collapse
|
4
|
Funke K, Einsfelder U, Hansen A, Arévalo L, Schneider S, Nettersheim D, Stein V, Schorle H. Genome-scale CRISPR screen reveals neddylation to contribute to cisplatin resistance of testicular germ cell tumours. Br J Cancer 2023; 128:2270-2282. [PMID: 37024667 PMCID: PMC10241889 DOI: 10.1038/s41416-023-02247-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Type II testicular germ cell tumours (TGCT) are the most prevalent tumours in young men. Patients suffering from cisplatin-resistant TGCTs are facing very poor prognosis demanding novel therapeutic options. Neddylation is a known posttranslational modification mediating many important biological processes, including tumorigenesis. Overactivation of the neddylation pathway promotes carcinogenesis and tumour progression in various entities by inducing proteasomal degradation of tumour suppressors (e.g., p21, p27). METHODS We used a genome-scale CRISPR/Cas9 activation screen to identify cisplatin resistance factors. TGCT cell lines were treated with the neddylation inhibitor (MLN4924)/cisplatin/combination and investigated for changes in viability (XTT assay), apoptosis/cell cycle (flow cytometry) as well as in the transcriptome (3'mRNA sequencing). RESULTS NAE1 overexpression was detected in cisplatin-resistant colonies from the CRISPR screen. Inhibition of neddylation using MLN4924 increased cisplatin cytotoxicity in TGCT cell lines and sensitised cisplatin-resistant cells towards cisplatin. Apoptosis, G2/M-phase cell cycle arrest, γH2A.X/P27 accumulation and mesoderm/endoderm differentiation were observed in TGCT cells, while fibroblast cells were unaffected. CONCLUSIONS We identified overactivation of neddylation as a factor for cisplatin resistance in TGCTs and highlighted the additive effect of NAE1 inhibition by MLN4924 in combination with cisplatin as a novel treatment option for TGCTs.
Collapse
Affiliation(s)
- Kai Funke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Ulf Einsfelder
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Aylin Hansen
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
5
|
He J, Chen J, Shen J. Selamectin increases cisplatin sensitivity by inhibiting cisplatin-resistant genes expression and autophagy in uveal melanoma. Biochem Biophys Res Commun 2023; 661:75-81. [PMID: 37087801 DOI: 10.1016/j.bbrc.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Cisplatin resistance is the main reason for uveal melanoma (UM) treatment failure. Thus, developing strategy that increasing cisplatin sensitivity is needed. In this study, we performed drug repositioning analysis with the Connectivity Map database using a panel of previously identified cisplatin sensitivity-associated genes and cisplatin resistance-associated genes as the signature and obtained the antiparasitic drug selamectin. We demonstrated that the selamectin and cisplatin combination showed a synergistic effect on inhibiting UM cell growth. Experiments in tumor-bearing nude mice further showed that selamectin and cisplatin have synergistic effects in reducing tumor growth. Previous studies have linked increased autophagy with tumor resistance to chemotherapy. We found that selamectin inhibited the expression of the autophagy-related gene ATG9B, thus reducing autophagy. The cisplatin resistance-associated genes PDGFRB, DUSP1, MAST1 and IL11 were significantly downregulated in UM cells treated with selamectin. In summary, our study shows that selamectin enhanced the sensitivity of UM to cisplatin, through the mechanism of inhibiting cisplatin resistance-associated gene expression and autophagy. These findings may provide a new strategy for the treatment of UM.
Collapse
Affiliation(s)
- Jie He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Ophthalmology, Shanghai Shibei Hospital of Jing'an District, Shanghai, 2000443, China
| | - Jili Chen
- Department of Ophthalmology, Shanghai Shibei Hospital of Jing'an District, Shanghai, 2000443, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China; Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Testicular germ cell tumors: Genomic alternations and RAS-dependent signaling. Crit Rev Oncol Hematol 2023; 183:103928. [PMID: 36717007 DOI: 10.1016/j.critrevonc.2023.103928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are a common malignancy occurring in young adult men. The various genetic risk factors have been suggested to contribute to TGCT pathogenesis, however, they have a distinct mutational profile with a low rate of somatic point mutations, more frequent chromosomal gains, and aneuploidy. The most frequently mutated oncogenes in human cancers are RAS oncogenes, while their impact on testicular carcinogenesis and refractory disease is still poorly understood. In this mini-review, we summarize current knowledge on genetic alternations of RAS signaling-associated genes (the single nucleotide polymorphisms and point mutations) in this particular cancer type and highlight their link to chemotherapy resistance mechanisms. We also mention the impact of epigenetic changes on TGCT progression. Lastly, we propose a model for RAS-dependent signaling networks, regulation, cross-talks, and outcomes in TGCTs.
Collapse
|
7
|
Országhová Z, Kalavska K, Mego M, Chovanec M. Overcoming Chemotherapy Resistance in Germ Cell Tumors. Biomedicines 2022; 10:biomedicines10050972. [PMID: 35625709 PMCID: PMC9139090 DOI: 10.3390/biomedicines10050972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are highly curable malignancies. Excellent survival rates in patients with metastatic disease can be attributed to the exceptional sensitivity of GCTs to cisplatin-based chemotherapy. This hypersensitivity is probably related to alterations in the DNA repair of cisplatin-induced DNA damage, and an excessive apoptotic response. However, chemotherapy fails due to the development of cisplatin resistance in a proportion of patients. The molecular basis of this resistance appears to be multifactorial. Tracking the mechanisms of cisplatin resistance in GCTs, multiple molecules have been identified as potential therapeutic targets. A variety of therapeutic agents have been evaluated in preclinical and clinical studies. These include different chemotherapeutics, targeted therapies, such as tyrosine kinase inhibitors, mTOR inhibitors, PARP inhibitors, CDK inhibitors, and anti-CD30 therapy, as well as immune-checkpoint inhibitors, epigenetic therapy, and others. These therapeutics have been used as single agents or in combination with cisplatin. Some of them have shown promising in vitro activity in overcoming cisplatin resistance, but have not been effective in clinical trials in refractory GCT patients. This review provides a summary of current knowledge about the molecular mechanisms of cisplatin sensitivity and resistance in GCTs and outlines possible therapeutic approaches that seek to overcome this chemoresistance.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
| | - Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Correspondence:
| |
Collapse
|
8
|
Li G, Liao M, Li S, You J, Wang J, Lei W, Yang C, Xu H, Xiao H, Chen H. Downregulation of inhibitor of apoptosis protein induces apoptosis and suppresses stemness maintenance in testicular teratoma. Exp Ther Med 2021; 22:1399. [PMID: 34675993 PMCID: PMC8524704 DOI: 10.3892/etm.2021.10835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/23/2021] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans that physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. Melanoma IAP (ML-IAP) is a potent anti-apoptotic protein that is strongly upregulated in melanoma and confers protection against a variety of pro-apoptotic stimuli. In the present study, it was revealed that ML-IAP was expressed at high levels in testicular teratoma. Deletion and mutational analysis demonstrated that ML-IAP silencing significantly decreased P19 cell proliferation while inducing cell cycle arrest and apoptosis. ML-IAP knockdown significantly induced caspase-3/8/9-mediated apoptosis in P19 cells. In addition, metabolism and stemness maintenance in P19 cells were suppressed by ML-IAP knockdown. These results indicated that ML-IAP silencing is a powerful inducer of apoptosis mediated by cell death receptors and may function as a direct activator of downstream effector caspases.
Collapse
Affiliation(s)
- Gang Li
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Man Liao
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Shuang Li
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Jia You
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Jun Wang
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Wei Lei
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Chunlei Yang
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Haolun Xu
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - He Xiao
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| | - Haitao Chen
- Department of Urology, Wuhan Children's Hospital, Wuhan, Hubei 430016, P.R. China
| |
Collapse
|
9
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
10
|
Testicular Germ Cell Tumors Acquire Cisplatin Resistance by Rebalancing the Usage of DNA Repair Pathways. Cancers (Basel) 2021; 13:cancers13040787. [PMID: 33668653 PMCID: PMC7917736 DOI: 10.3390/cancers13040787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Germ cell tumors are a model of curable solid tumors due to their unique sensitivity to cisplatin-based chemotherapy. Patients are typically young adults, and despite high cure rate, about 20% of them do not achieve remission or relapse, and 50% of them succumb to the disease. The mechanisms behind their resistance to therapy are largely unknown. By using Testicular Germ Cell Tumor (TGCT) cell lines as a model, we investigated the mechanism of acquired resistance to cisplatin. We demonstrated that resistance occurred by a fine modulation of the DNA repair pathway choice. Namely, in resistant cells, repair of double-strand breaks by non-homologous end joining was dampened by the reduced expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs). However, cisplatin-induced damage was repaired efficiently by homologous recombination. Additionally, we demonstrate that pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) combined with cisplatin had an additive/synergistic effect on cisplatin-resistant cells, which represents the proof of concept for introducing PARP inhibitors in salvage therapy. Abstract Despite germ cell tumors (GCTs) responding to cisplatin-based chemotherapy at a high rate, a subset of patients does not respond to treatment and have significantly worse prognosis. The biological mechanisms underlying the resistance remain unknown. In this study, by using two TGCT cell lines that have acquired cisplatin resistance after chronic exposure to the drug, we identified some key proteins and mechanisms of acquired resistance. We show that cisplatin-resistant cell lines had a non-homologous end-joining (NHEJ)-less phenotype. This correlated with a reduced basal expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs) proteins and reduced formation of 53BP1 foci after cisplatin treatment. Consistent with these observations, modulation of 53BP1 protein expression altered the cell line’s resistance to cisplatin, and inhibition of DNA-PKcs activity antagonized cisplatin cytotoxicity. Dampening of NHEJ was accompanied by a functional increase in the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. As a result, cisplatin-resistant cells were more resistant to PARP inhibitor (PARPi) monotherapy. Moreover, when PARPi was given in combination with cisplatin, it exerted an additive/synergistic effect, and reduced the cisplatin dose for cytotoxicity. These results suggest that treatment of cisplatin-refractory patients may benefit from low-dose cisplatin therapy combined with PARPi.
Collapse
|
11
|
The PI3K/AKT Pathway Is Activated by HGF in NT2D1 Non-Seminoma Cells and Has a Role in the Modulation of Their Malignant Behavior. Int J Mol Sci 2020; 21:ijms21228669. [PMID: 33212946 PMCID: PMC7698414 DOI: 10.3390/ijms21228669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
Overactivation of the c-MET/HGF system is a feature of many cancers. We previously reported that type II testicular germ cell tumor (TGCT) cells express the c-MET receptor, forming non-seminomatous lesions that are more positive compared with seminomatous ones. Notably, we also demonstrated that NT2D1 non-seminomatous cells (derived from an embryonal carcinoma lesion) increase their proliferation, migration, and invasion in response to HGF. Herein, we report that HGF immunoreactivity is more evident in the microenvironment of embryonal carcinoma biopsies with respect to seminomatous ones, indicating a tumor-dependent modulation of the testicular niche. PI3K/AKT is one of the signaling pathways triggered by HGF through the c-MET activation cascade. Herein, we demonstrated that phospho-AKT increases in NT2D1 cells after HGF stimulation. Moreover, we found that this pathway is involved in HGF-dependent NT2D1 cell proliferation, migration, and invasion, since the co-administration of the PI3K inhibitor LY294002 together with HGF abrogates these responses. Notably, the inhibition of endogenous PI3K affects collective cell migration but does not influence proliferation or chemotactic activity. Surprisingly, LY294002 administered without the co-administration of HGF increases cell invasion at levels comparable to the HGF-administered samples. This paradoxical result highlights the role of the testicular microenvironment in the modulation of cellular responses and stimulates the study of the testicular secretome in cancer lesions.
Collapse
|
12
|
de Vries G, Rosas-Plaza X, Meersma GJ, Leeuwenburgh VC, Kok K, Suurmeijer AJH, van Vugt MATM, Gietema JA, de Jong S. Establishment and characterisation of testicular cancer patient-derived xenograft models for preclinical evaluation of novel therapeutic strategies. Sci Rep 2020; 10:18938. [PMID: 33144587 PMCID: PMC7641131 DOI: 10.1038/s41598-020-75518-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Testicular cancer (TC) is the most common solid tumour in young men. While cisplatin-based chemotherapy is highly effective in TC patients, chemoresistance still accounts for 10% of disease-related deaths. Pre-clinical models that faithfully reflect patient tumours are needed to assist in target discovery and drug development. Tumour pieces from eight TC patients were subcutaneously implanted in NOD scid gamma (NSG) mice. Three patient-derived xenograft (PDX) models of TC, including one chemoresistant model, were established containing yolk sac tumour and teratoma components. PDX models and corresponding patient tumours were characterised by H&E, Ki-67 and cyclophilin A immunohistochemistry, showing retention of histological subtypes over several passages. Whole-exome sequencing, copy number variation analysis and RNA-sequencing was performed on these TP53 wild type PDX tumours to assess the effects of passaging, showing high concordance of molecular features between passages. Cisplatin sensitivity of PDX models corresponded with patients' response to cisplatin-based chemotherapy. MDM2 and mTORC1/2 targeted drugs showed efficacy in the cisplatin sensitive PDX models. In conclusion, we describe three PDX models faithfully reflecting chemosensitivity of TC patients. These models can be used for mechanistic studies and pre-clinical validation of novel therapeutic strategies in testicular cancer.
Collapse
Affiliation(s)
- Gerda de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ximena Rosas-Plaza
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Gert Jan Meersma
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vincent C Leeuwenburgh
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
13
|
Kozakova K, Mego M, Cheng L, Chovanec M. Promising novel therapies for relapsed and refractory testicular germ cell tumors. Expert Rev Anticancer Ther 2020; 21:53-69. [PMID: 33138660 DOI: 10.1080/14737140.2021.1838279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Germ cell tumors (GCTs) are the most common solid malignancies in young men. The overall cure rate of GCT patients in metastatic stage is excellent, however; patients with relapsed or refractory disease have poor prognosis. Attempts to treat refractory disease with novel effective treatment to improve prognosis have been historically dismal and the ability to predict prognosis and treatment response in GCTs did not sufficiently improve in the last three decades. AREAS COVERED We performed a comprehensive literature search of PubMed/MEDLINE to identify original and review articles (years 1964-2020) reporting on current improvement salvage treatment in GCTs and novel treatment options including molecularly targeted therapy and epigenetic approach. Review articles were further searched for additional original articles. EXPERT OPINION Despite multimodal treatment approaches the treatment of relapsed or platinum-refractory GCTs remains a challenge. High-dose chemotherapy (HDCT) regimens with autologous stem-cell transplant (ASCT) from peripheral blood showed promising results in larger retrospective studies. Promising results from in vitro studies raised high expectations in molecular targets. So far, the lacking efficacy in small and unselected trials do not shed a light on targeted therapy. Currently, wide inclusion of patients into clinical trials is highly advised.
Collapse
Affiliation(s)
- Kristyna Kozakova
- Department of Anesthesiology and Intensive Care Medicine, National Cancer Institute , Bratislava, Slovakia.,2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute , Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute , Bratislava, Slovakia.,Division of Hematology Oncology, Indiana University Simon Cancer Center , Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine , Indianapolis, IN, USA
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute , Bratislava, Slovakia.,Division of Hematology Oncology, Indiana University Simon Cancer Center , Indianapolis, IN, USA
| |
Collapse
|
14
|
Raghavan S, Snyder CS, Wang A, McLean K, Zamarin D, Buckanovich RJ, Mehta G. Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers (Basel) 2020; 12:cancers12082063. [PMID: 32726910 PMCID: PMC7464970 DOI: 10.3390/cancers12082063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Within the ovarian cancer tumor microenvironment, cancer stem-like cells (CSC) interact with carcinoma associated mesenchymal stem/stromal cells (CA-MSC) through multiple secreted cytokines and growth factors. These paracrine interactions have been revealed to cause enrichment of CSC and their chemoprotection; however, it is still not known if platelet-derived growth factor (PDGF) signaling is involved in facilitating these responses. In order to probe this undiscovered bidirectional communication, we created a model of ovarian malignant ascites in the three-dimensional (3D) hanging drop heterospheroid array, with CSC and CA-MSC. We hypothesized that PDGF secretion by CA-MSC increases self-renewal, migration, epithelial to mesenchymal transition (EMT) and chemoresistance in ovarian CSC. Our results indicate that PDGF signaling in the CSC-MSC heterospheroids significantly increased stemness, metastatic potential and chemoresistance of CSC. Knockdown of PDGFB in MSC resulted in abrogation of these phenotypes in the heterospheroids. Our studies also reveal a cross-talk between PDGF and Hedgehog signaling in ovarian cancer. Overall, our data suggest that when the stromal signaling via PDGF to ovarian CSC is blocked in addition to chemotherapy pressure, the tumor cells are significantly more sensitive to chemotherapy. Our results emphasize the importance of disrupting the signals from the microenvironment to the tumor cells, in order to improve response rates. These findings may lead to the development of combination therapies targeting stromal signaling (such as PDGF and Hedgehog) that can abrogate the tumorigenic, metastatic and platinum resistant phenotypes of ovarian CSC through additional investigations.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Catherine S. Snyder
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
| | - Anni Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Karen McLean
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitriy Zamarin
- Department of Gynecologic Medical Oncology and Immunotherapeutics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Ronald J. Buckanovich
- Director of Ovarian Cancer Research, Magee Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Geeta Mehta
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (S.R.); (C.S.S.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Precision Health, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-763-3957; Fax: +1-734-763-4788
| |
Collapse
|
15
|
Guerra F, Quintana S, Giustina S, Mendeluk G, Jufe L, Avagnina MA, Díaz LB, Palaoro LA. Investigation of EGFR/pi3k/Akt signaling pathway in seminomas. Biotech Histochem 2020; 96:125-137. [PMID: 32597316 DOI: 10.1080/10520295.2020.1776393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the receptor for epidermal growth factor (EGFR) in some testicular tumors activates several signaling pathways. Some components of these pathways are phosphorylated or mutated in testicular germ tumors (TCGT), including EGFR, Kirstein ras oncogen (KRAS) and cell surface protein of the germ cell (KIT). The latter two activate RAF ⁄MEK⁄ERK and PI3 K⁄AKT, and interconnect with the EGFR/pI3 k/Akt pathway. We investigated the expression of EGFR/pI3 k/Akt pathway proteins in seminomas and in their precursor lesion, germinal cell neoplasia in situ (GCNIS) and related genetic mutations. We used immunohistochemistry for pEGFR, pI3 k and pAkt expression with a scoring system for 46 seminoma surgical specimens: 36 classical and 10 GCNIS. In 17 samples, the mutations of EGFR (exons 19 - 21), KIT (exons 11, 17) and KRAS (exons 2, 3) were investigated using qPCR and sequencing. Of the 36 seminomas studied, 22 (61%) expressed pEGFR. Ten samples exhibited high scores for pEGFR, pI3 k and pAkt. In 5 of 17 cases (33%) some mutation was exhibited in the exons studied: 21 of EGFR (2), 17 of EGFR (1), 3 of KRAS (1) and 11 of KIT (1). Six cases exhibited nuclear translocation of EGFR; of these, four exhibited mutations of EGFR, KRAS and KIT. Eight of ten of the GCNIS expressed a high pEGFR score (80%). In 2 of 6 cases (33%), mutation was detected in exon 21 of EGFR and one smear showed EGFR translocation to the nucleus. The translocation represents a subpopulation with worse prognosis for TCGT. The EGFR/pI3 k/Akt signaling pathway is linked to TDRG1, which regulates chemosensitivity to cisplatin; this is a mechanism of resistance to treatment. TDRG1 and the EGFR/pI3 k/pAkt pathway could be therapeutic targets for seminomas resistant to cisplatin.
Collapse
Affiliation(s)
- F Guerra
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - S Quintana
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - S Giustina
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - G Mendeluk
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - L Jufe
- Laboratory of Pathology, Ramos Mejía Hospital, C.A.B.A ., Argentina
| | - M A Avagnina
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L B Díaz
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L A Palaoro
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| |
Collapse
|
16
|
Cisplatin Resistance in Testicular Germ Cell Tumors: Current Challenges from Various Perspectives. Cancers (Basel) 2020; 12:cancers12061601. [PMID: 32560427 PMCID: PMC7352163 DOI: 10.3390/cancers12061601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors share a marked sensitivity to cisplatin, contributing to their overall good prognosis. However, a subset of patients develop resistance to platinum-based treatments, by still-elusive mechanisms, experiencing poor quality of life due to multiple (often ineffective) interventions and, eventually, dying from disease. Currently, there is a lack of defined treatment opportunities for these patients that tackle the mechanism(s) underlying the emergence of resistance. Herein, we aim to provide a multifaceted overview of cisplatin resistance in testicular germ cell tumors, from the clinical perspective, to the pathobiology (including mechanisms contributing to induction of the resistant phenotype), to experimental models available for studying this occurrence. We provide a systematic summary of pre-target, on-target, post-target, and off-target mechanisms putatively involved in cisplatin resistance, providing data from preclinical studies and from those attempting validation in clinical samples, including those exploring specific alterations as therapeutic targets, some of them included in ongoing clinical trials. We briefly discuss the specificities of resistance related to teratoma (differentiated) phenotype, including the phenomena of growing teratoma syndrome and development of somatic-type malignancy. Cisplatin resistance is most likely multifactorial, and a combination of therapeutic strategies will most likely produce the best clinical benefit.
Collapse
|
17
|
de Vries G, Rosas-Plaza X, van Vugt MATM, Gietema JA, de Jong S. Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat Rev 2020; 88:102054. [PMID: 32593915 DOI: 10.1016/j.ctrv.2020.102054] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Testicular cancer (TC) is the most common solid tumor among men aged between 15 and 40 years. TCs are highly aneuploid and the 12p isochromosome is the most frequent chromosomal abnormality. The mutation rate is of TC is low, with recurrent mutations in KIT and KRAS observed only at low frequency in seminomas. Overall cure rates are high, even in a metastatic setting, resulting from excellent cisplatin sensitivity of TCs. Factors contributing to the observed cisplatin sensitivity include defective DNA damage repair and a hypersensitive apoptotic response to DNA damage. Nonetheless, around 10-20% of TC patients with metastatic disease cannot be cured by cisplatin-based chemotherapy. Resistance mechanisms include downregulation of OCT4 and failure to induce PUMA and NOXA, elevated levels of MDM2, and hyperactivity of the PI3K/AKT/mTOR pathway. Several pre-clinical approaches have proven successful in overcoming cisplatin resistance, including specific targeting of PARP, MDM2 or AKT/mTOR combined with cisplatin. Finally, patient-derived xenograft models hold potential for mechanistic studies and pre-clinical validation of novel therapeutic strategies in TC. While clinical trials investigating targeted drugs have been disappointing, pre-clinical successes with chemotherapy and targeted drug combinations fuel the need for further investigation in clinical setting.
Collapse
Affiliation(s)
- Gerda de Vries
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ximena Rosas-Plaza
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Rosas-Plaza X, de Vries G, Meersma GJ, Suurmeijer AJH, Gietema JA, van Vugt MATM, de Jong S. Dual mTORC1/2 Inhibition Sensitizes Testicular Cancer Models to Cisplatin Treatment. Mol Cancer Ther 2019; 19:590-601. [PMID: 31744897 DOI: 10.1158/1535-7163.mct-19-0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/09/2022]
Abstract
Testicular cancer is the most common cancer type among young men. Despite highly effective cisplatin-based chemotherapy, around 20% of patients with metastatic disease will still die from the disease. The aim of this study was to explore the use of kinase inhibitors to sensitize testicular cancer cells to cisplatin treatment. Activation of kinases, including receptor tyrosine kinases and downstream substrates, was studied in five cisplatin-sensitive or -resistant testicular cancer cell lines using phospho-kinase arrays and Western blotting. The phospho-kinase array showed AKT and S6 to be among the top phosphorylated proteins in testicular cancer cells, which are part of the PI3K/AKT/mTORC pathway. Inhibitors of most active kinases in the PI3K/AKT/mTORC pathway were tested using apoptosis assays and survival assays. Two mTORC1/2 inhibitors, AZD8055 and MLN0128, strongly enhanced cisplatin-induced apoptosis in all tested testicular cancer cell lines. Inhibition of mTORC1/2 blocked phosphorylation of the mTORC downstream proteins S6 and 4E-BP1. Combined treatment with AZD8055 and cisplatin led to reduced clonogenic survival of testicular cancer cells. Two testicular cancer patient-derived xenografts (PDX), either from a chemosensitive or -resistant patient, were treated with cisplatin in the absence or presence of kinase inhibitor. Combined AZD8055 and cisplatin treatment resulted in effective mTORC1/2 inhibition, increased caspase-3 activity, and enhanced tumor growth inhibition. In conclusion, we identified mTORC1/2 inhibition as an effective strategy to sensitize testicular cancer cell lines and PDX models to cisplatin treatment. Our results warrant further investigation of this combination therapy in the treatment of patients with testicular cancer with high-risk relapsed or refractory disease.
Collapse
Affiliation(s)
- Ximena Rosas-Plaza
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerda de Vries
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gert Jan Meersma
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Albert J H Suurmeijer
- Department of Pathology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
19
|
De Giorgi U, Casadei C, Bergamini A, Attademo L, Cormio G, Lorusso D, Pignata S, Mangili G. Therapeutic Challenges for Cisplatin-Resistant Ovarian Germ Cell Tumors. Cancers (Basel) 2019; 11:cancers11101584. [PMID: 31627378 PMCID: PMC6826947 DOI: 10.3390/cancers11101584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with advanced ovarian germ cell cancer are treated by cisplatin-based chemotherapy. Despite adequate first-line treatment, nearly one third of patients relapse and almost half develop cisplatin-resistant disease, which is often fatal. The treatment of cisplatin-resistant disease is challenging and prognosis remains poor. There are limited data on the efficacy of specific chemotherapeutic regimens, high-dose chemotherapy with autologous progenitor cell support and targeted therapies. The inclusion of patients in clinical trials is strongly recommended, especially in clinical trials on the most frequent male germ cell tumors, to offer wider therapeutic opportunities. Here, we provide an overview of current and potential new treatment options including combination chemotherapy, high-dose chemotherapy and molecular targeted therapies, for patients with cisplatin-resistant ovarian germ cell tumors.
Collapse
Affiliation(s)
- Ugo De Giorgi
- Department of Medical Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Casadei
- Department of Medical Oncology and Hematology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Alice Bergamini
- Department of Obstetrics and Gynaecology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Laura Attademo
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80138 Naples, Italy.
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico Giovanni Paolo II, 70124 Bari, Italy.
| | - Domenica Lorusso
- Gynecologic Oncology Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy.
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80138 Naples, Italy.
| | - Giorgia Mangili
- Department of Obstetrics and Gynaecology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
20
|
Singh R, Fazal Z, Freemantle SJ, Spinella MJ. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:580-594. [PMID: 31538140 PMCID: PMC6752046 DOI: 10.20517/cdr.2019.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Testicular germ cell tumors (TGCTs) are a cancer pharmacology success story with a majority of patients cured even in the highly advanced and metastatic setting. Successful treatment of TGCTs is primarily due to the exquisite responsiveness of this solid tumor to cisplatin-based therapy. However, a significant percentage of patients are, or become, refractory to cisplatin and die from progressive disease. Mechanisms for both clinical hypersensitivity and resistance have largely remained a mystery despite the promise of applying lessons to the majority of solid tumors that are not curable in the metastatic setting. Recently, this promise has been heightened by the realization that distinct (and perhaps pharmacologically replicable) epigenetic states, rather than fixed genetic alterations, may play dominant roles in not only TGCT etiology and progression but also their curability with conventional chemotherapies. In this review, it discusses potential mechanisms of TGCT cisplatin sensitivity and resistance to conventional chemotherapeutics.
Collapse
Affiliation(s)
- Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,The Carle Illinois College of Medicine , University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,The Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Peng D, Wei J, Gan Y, Yang J, Jiang X, Kitazawa R, Xiang Y, Dai Y, Tang Y. Testis developmental related gene 1 regulates the chemosensitivity of seminoma TCam-2 cells to cisplatin via autophagy. J Cell Mol Med 2019; 23:7773-7784. [PMID: 31496041 PMCID: PMC6815826 DOI: 10.1111/jcmm.14654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
We previously identified testis developmental related gene 1 (TDRG1), a gene implicated in proliferation of TCam-2 seminoma cells. Recent evidence has revealed that autophagy influences the chemosensitivity of cancer cells to chemotherapy. However, whether TDRG1 protein regulates autophagy in seminoma cells and influences their sensitivity to cis-dichlorodiammine platinum (CDDP) remains unknown. In this study, we used TCam-2 cells and male athymic BALB/c nude mice with xenografts of TCam-2 cells to investigate autophagy, cell viability, apoptosis and the p110β/Rab5/Vps34 (PI3-kinase Class III) pathway under the conditions of TDRG1 overexpression or knockdown and with or without CDDP treatment. We found that TDRG1 upregulation promoted autophagy in both TCam-2 cells and seminoma xenografts via p110β/Rab5/Vps34 activation. Inhibition of autophagy reduced cell viability and promoted apoptosis during CDDP treatment of TCam-2 cells. Similarly, TDRG1 knockdown inhibited autophagy, reduced cell viability and promoted apoptosis during CDDP treatment of TCam-2 cells. TDRG1 knockdown inhibited tumour growth and promoted apoptosis in TCam-2 cell xenografts, whereas TDRG1 overexpression had the opposite effect. According to these results, we propose that high expression of TDRG1 promotes autophagy through the p110β/Rab5/Vps34 pathway in TCam-2 cells. TDRG1 overexpression promotes autophagy and leads to CDDP resistance, whereas TDRG1 knockdown inhibits autophagy and promotes chemosensitivity to CDDP both in vivo and in vitro. This study has uncovered a novel role of TDRG1 in reducing chemoresistance during CDDP treatment and provides potential therapeutic strategies for the treatment of human seminoma.
Collapse
Affiliation(s)
- Dongyi Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingchao Wei
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital of Central South University, Changsha, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xianzhen Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Riko Kitazawa
- Department of Diagnostic Pathology, Ehime University Hospital, Toon, Japan
| | - Yali Xiang
- Department of Health Management Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
22
|
Mai W, Chen M, Huang M, Zhong J, Chen J, Liu X, Deng J, Yang X, Ye W, Zhang R, Zhou Q, Zhang D. Targeting platelet-derived growth factor receptor β inhibits the proliferation and motility of human pterygial fibroblasts. Expert Opin Ther Targets 2019; 23:805-817. [PMID: 31385548 DOI: 10.1080/14728222.2019.1653281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Pterygium, a common eye disease with high postoperative recurrence, lacks effective therapeutic strategies. Therefore, it's urgent to identify specific targets to develop rationally targeted molecular drugs for the pterygial therapy. Methods: The cell proliferation and motility were studied in both the primary human pterygial fibroblasts (hPFs) and an ex vivo pterygium model. hPFs transfected with the pCMV3-PDGFRB plasmid, PDGFRB siRNA and CRISPR/Cas9 system were used to determine the role of PDGFR-β in pterygial fibroblasts functions. Western blotting, immunohistochemistry and immunofluorescence were performed to evaluate the expression of the key proteins. Results: PDGFR-β expression in the pterygial stroma and primary hPFs was significantly higher than that in the conjunctiva and human conjunctival fibroblasts. PDGF-BB promoted the proliferation, migration and invasion of hPFs, which can be significantly suppressed by sunitinib via inhibition of the PDGFR-β/extracellular signal-regulated kinase (ERK) pathway. In the ex vivo model, the knockout of PDGFRB and sunitinib treatment blocked the proliferation and motility of fibroblasts in the pterygial stroma via the suppression of PDGFR-β/ERK pathway. Conclusion: This study demonstrates that PDGFR-β may be a potential therapeutic target for pterygium, and inhibition of PDGFR-β by sunitinib is a promising and effective approach for pterygium treatment.
Collapse
Affiliation(s)
- Weiqian Mai
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Minfeng Chen
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Maohua Huang
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Jincheng Zhong
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Jian Chen
- Eye Institute, Jinan University , Guangzhou , China
| | - Xiaoyong Liu
- The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Juan Deng
- The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xiaoxi Yang
- The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Wencai Ye
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Rijia Zhang
- The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Qing Zhou
- The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| |
Collapse
|
23
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
24
|
Batool A, Karimi N, Wu XN, Chen SR, Liu YX. Testicular germ cell tumor: a comprehensive review. Cell Mol Life Sci 2019; 76:1713-1727. [PMID: 30671589 PMCID: PMC11105513 DOI: 10.1007/s00018-019-03022-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biological and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk factors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underlying the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
Collapse
Affiliation(s)
- Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Nan Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
25
|
Li Z, Zhou J, Gan Y, Yin Y, Zhang W, Yang J, Tang Y, Dai Y. Synthesis of a novel platinum(II) complex with 6,7-dichloro-5,8-quinolinedione and the study of its antitumor mechanism in testicular seminoma. J Inorg Biochem 2019; 197:110701. [PMID: 31055215 DOI: 10.1016/j.jinorgbio.2019.110701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
A new platinum(II) complex, [Pt(ClClQ)(DMSO)Cl] (1), utilizing 6,7-dichloro-5,8-quinolinedione (ClClQ) as a ligand, has been synthesized and fully characterized. Single-crystal X-ray diffraction and other spectroscopic and analytical methods revealed that the coordination geometry of Pt(II) in complex 1 can also be described as a four-coordinated square planar geometry. The aim of the study was to explore the in vitro anticancer properties of complex 1. Our studies showed that complex 1 can regulate the viability of testicular seminoma cells in vitro, including cell proliferation and apoptosis. We further observed negative regulation by complex 1 of the expression levels of the key elements in the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK3β) pathway, including phosphorylated phosphoinositide-3 kinase (p-PI3K), phosphorylated protein kinase B(p-Akt) and phosphorylated glycogen synthase kinase-3β (p-GSK3β). Moreover, the negative effect of complex 1 was reversed by LiCl, a GSK3β-specific inhibitor of the PI3K signaling pathway. Meanwhile, the levels of Bcl2 associated death promoter (Bad), cytochrome c, active-caspase-3 and active-caspase-9 increased significantly. In conclusion, we observed that complex 1 can regulate the viability of testicular seminoma cells through the PI3K/Akt/GSK3β signaling pathway and the mitochondria-mediated apoptotic pathway in vitro, and thus, complex 1 may have potential for use as a drug in the treatment of testicular germ cell tumors.
Collapse
Affiliation(s)
- Zitaiyu Li
- Department of Urology, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410000, China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410000, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital of Central South University, Central South University, Changsha 410000, China
| | - Yinghao Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410000, China
| | - Wuchao Zhang
- Department of Urology, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410000, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Central South University, Changsha 410000, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
26
|
Oing C, Skowron MA, Bokemeyer C, Nettersheim D. Epigenetic treatment combinations to effectively target cisplatin-resistant germ cell tumors: past, present, and future considerations. Andrology 2019; 7:487-497. [PMID: 30924611 DOI: 10.1111/andr.12611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Type II germ cell tumors represent the most common solid malignancy in men aged 15-45 years. Despite high cure rates of >90% over all stages, 10-15% of advanced patients develop treatment resistance and potentially succumb to their disease. Treatment of refractory germ cell tumors remains unsatisfactory, and new approaches are needed to further improve outcomes. OBJECTIVES With this narrative review, we highlight epigenetic mechanisms related to resistance to standard systemic treatment, which may act as promising targets for novel combined epigenetic treatment approaches. MATERIALS AND METHODS A comprehensive literature search of PubMed and MEDLINE was conducted to identify original and review articles on resistance mechanisms and/or epigenetic treatment of germ cell tumors in vitro and in vivo. Review articles were hand-searched to identify additional articles. RESULTS Distinct epigenetic phenomena have been linked to chemotherapy resistance in germ cell tumors, among which DNA hypermethylation, histone acetylation, and bromodomain proteins appear as promising targets for therapeutic exploitation. Inhibitors of key regulators, for example DNA methyltransferases (e.g. decitabine, guadecitabine), histone deacetylases (e.g. romidepsin), and bromodomain proteins (e.g. JQ1) decreased cell viability, triggered apoptosis, and growth arrest. Additionally, these epigenetic drugs induced differentiation and led to loss of pluripotency and re-sensitization towards cisplatin in cell lines and animal models. DISCUSSION Epigenetic treatments hold promise to (i) reduce the treatment burden of and (ii) overcome resistance to standard cisplatin-based chemotherapy. Combined approaches may enhance activity, while the ideal target and treatment combination of epigenetic drugs, either with another epigenetic agent or conventional cytotoxic agents need to be defined. CONCLUSION Epigenetic (combination) treatment for germ cell tumors should be further explored in pre-clinical and clinical research for its potential to further improve germ cell tumor treatment.
Collapse
Affiliation(s)
- C Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M A Skowron
- Department of Urology, Urological Research Lab, Translational Urooncology, University Medical School Duesseldorf, Duesseldorf, Germany
| | - C Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Nettersheim
- Department of Urology, Urological Research Lab, Translational Urooncology, University Medical School Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
27
|
Alsdorf W, Seidel C, Bokemeyer C, Oing C. Current pharmacotherapy for testicular germ cell cancer. Expert Opin Pharmacother 2019; 20:837-850. [PMID: 30849243 DOI: 10.1080/14656566.2019.1583745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION With the implementation of platinum-based chemotherapy, germ cell tumors (GCTs) became a model for a curable solid tumor, with survival rates of 95% in all patients with >80% survival in metastatic stages. AREAS COVERED Herein, the authors review the current standards of adjuvant chemotherapy for stage I GCTs as well as first-line and salvage treatments for metastatic disease. Novel approaches for refractory disease are also reviewed. EXPERT OPINION Active surveillance should be considered for all stage I patients and is the preferred approach for stage I seminoma. In stage I non-seminomas with vascular invasion, one cycle of bleomycin, etoposide, and cisplatin (BEP) substantially reduces the relapse risk. For most advanced GCTs, BEP remains the first-line standard of care. For poor prognosis disease treatment, stratification according to tumor marker decline is recommended. The role of primary high-dose chemotherapy (HDCT) for selected very high-risk patients remains to be prospectively evaluated. Salvage HDCT at relapse seems superior to conventional chemotherapy, retrospectively. The treatment of multiply relapsed disease remains challenging. The gemcitabine/oxaliplatin/paclitaxel (GOP) protocol is considered the standard for refractory disease. However, overall, outcomes are poor and new treatment approaches are urgently needed with targeted therapies so far failing to yield relevant clinical activity.
Collapse
Affiliation(s)
- Winfried Alsdorf
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology , University Medical Center Eppendorf , Hamburg , Germany
| | - Christoph Seidel
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology , University Medical Center Eppendorf , Hamburg , Germany
| | - Carsten Bokemeyer
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology , University Medical Center Eppendorf , Hamburg , Germany
| | - Christoph Oing
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology , University Medical Center Eppendorf , Hamburg , Germany.,b Laboratory of Radiobiology and Experimental Radiation Oncology , University Medical Center Eppendorf , Hamburg , Germany
| |
Collapse
|
28
|
Schmidtova S, Kalavska K, Kucerova L. Molecular Mechanisms of Cisplatin Chemoresistance and Its Circumventing in Testicular Germ Cell Tumors. Curr Oncol Rep 2018; 20:88. [PMID: 30259297 DOI: 10.1007/s11912-018-0730-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. Majority of TGCTs respond well to cisplatin-based chemotherapy. However, patients with refractory disease have limited treatment modalities associated with poor prognosis. Here, we discuss the main molecular mechanisms associated with acquired cisplatin resistance in TGCTs and how their understanding might help in the development of new approaches to tackle this clinically relevant problem. We also discuss recent data on the strategies of circumventing the cisplatin resistance from different tumor types potentially efficient also in TGCTs. RECENT FINDINGS Recent data regarding deregulation of various signaling pathways as well as genetic and epigenetic mechanisms in cisplatin-resistant TGCTs have contributed to understanding of the mechanisms related to the resistance to cisplatin-based chemotherapy in these tumors. Understanding of these mechanisms enabled explaining why majority but not all TGCTs patients are curable with cisplatin-based chemotherapy. Moreover, it could lead to the development of more effective treatment of refractory TGCTs and potentially other solid tumors resistant to platinum-based chemotherapy. This review provides additional insights into mechanisms associated with cisplatin resistance in TGCTs, which is a complex phenomenon, and there is a need for novel modalities to overcome it.
Collapse
Affiliation(s)
- Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kalavska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenová 1, 833 10, Bratislava, Slovakia
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenová 1, Bratislava, 833 10, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
29
|
[Identification of diagnostic tumour markers and therapeutic targets in testicular tumours]. DER PATHOLOGE 2018; 39:215-220. [PMID: 30206653 DOI: 10.1007/s00292-018-0493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Today, tumour classification has been expanded due to immunohistochemical and molecular-pathological analyses due to corresponding patterns/profiles of protein and gene expression. The latter analyses often include growth factors and their ligands, intracellular signalling pathways, DNA-binding proteins, and oncogenes and suppressor genes, thus functionally including primarily the regulation of growth including angiogenesis and apoptosis as well as the induction of metastases to adhesion and migration disorders. Based on observations that testicular tumours often show microcalcifications, possibly due to impaired calcium metabolism, we focused on calcium-dependent transmembrane proteins, particularly cadherins, in the search for new tumour markers and therapeutic targets. N‑cadherin is expressed differently in the various subtypes of germ cell tumours and is useful in N‑cadherin-positive germ cell tumours as a novel therapeutic targeting structure, particularly in cisplatin resistance, due to functional analysis. In the tumours of the sex cord stroma beta-catenin and the transcription factor SOX-9 give a clear classification of these tumours. Thus, morphological investigations prove to be pilot experiments to purposefully narrow the spectrum of functionally important proteins and thus to establish promising new differential diagnostic markers or target structures.
Collapse
|
30
|
Piulats JM, Vidal A, García-Rodríguez FJ, Muñoz C, Nadal M, Moutinho C, Martínez-Iniesta M, Mora J, Figueras A, Guinó E, Padullés L, Aytés À, Molleví DG, Puertas S, Martínez-Fernández C, Castillo W, Juliachs M, Moreno V, Muñoz P, Stefanovic M, Pujana MA, Condom E, Esteller M, Germà JR, Capella G, Farré L, Morales A, Viñals F, García-del-Muro X, Cerón J, Villanueva A. Orthoxenografts of Testicular Germ Cell Tumors Demonstrate Genomic Changes Associated with Cisplatin Resistance and Identify PDMP as a Resensitizing Agent. Clin Cancer Res 2018; 24:3755-3766. [DOI: 10.1158/1078-0432.ccr-17-1898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/22/2017] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
|
31
|
Abstract
INTRODUCTION Most germ cell cancer patients with metastatic disease are cured by cisplatin-based combination chemotherapy. 30% of metastatic patients will develop relapse or progress despite adequate first-line treatment and will require salvage therapy, with about 10% of metastasized patients ultimately developing platinum-resistant and fatal disease. Areas covered: Based on a comprehensive literature search of MEDLINE, EMBASE and conference proceedings of ESMO, ASCO and EAU meetings, this review provides an overview on current and potential future treatment options for platinum-refractory germ cell cancer patients including cytostatics and molecularly targeted therapies. Expert commentary: Treatment of platinum-refractory disease remains challenging and long-term survival is rarely achieved despite multimodal treatment approaches. Targeted treatment approaches do not yet play a role in the treatment of platinum-refractory disease due to lacking efficacy in small, unselected clinical trials. Inclusion of patients into clinical trials is strongly recommended.
Collapse
Affiliation(s)
- Christoph Oing
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christoph Seidel
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Carsten Bokemeyer
- a Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
32
|
Sarin N, Engel F, Rothweiler F, Cinatl J, Michaelis M, Frötschl R, Fröhlich H, Kalayda GV. Key Players of Cisplatin Resistance: Towards a Systems Pharmacology Approach. Int J Mol Sci 2018. [PMID: 29518977 PMCID: PMC5877628 DOI: 10.3390/ijms19030767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The major obstacle in the clinical use of the antitumor drug cisplatin is inherent and acquired resistance. Typically, cisplatin resistance is not restricted to a single mechanism demanding for a systems pharmacology approach to understand a whole cell's reaction to the drug. In this study, the cellular transcriptome of untreated and cisplatin-treated A549 non-small cell lung cancer cells and their cisplatin-resistant sub-line A549rCDDP2000 was screened with a whole genome array for relevant gene candidates. By combining statistical methods with available gene annotations and without a previously defined hypothesis HRas, MAPK14 (p38), CCL2, DOK1 and PTK2B were identified as genes possibly relevant for cisplatin resistance. These and related genes were further validated on transcriptome (qRT-PCR) and proteome (Western blot) level to select candidates contributing to resistance. HRas, p38, CCL2, DOK1, PTK2B and JNK3 were integrated into a model of resistance-associated signalling alterations describing differential gene and protein expression between cisplatin-sensitive and -resistant cells in reaction to cisplatin exposure.
Collapse
Affiliation(s)
- Navin Sarin
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, 53121 Bonn, Germany.
| | - Florian Engel
- Federal Institute for Drugs and Medical Devices (BfArM), 53175 Bonn, Germany.
| | - Florian Rothweiler
- Institute of Medical Virology, Goethe University Hospital Frankfurt, 60596 Frankfurt/Main, Germany.
| | - Jindrich Cinatl
- Institute of Medical Virology, Goethe University Hospital Frankfurt, 60596 Frankfurt/Main, Germany.
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices (BfArM), 53175 Bonn, Germany.
| | - Holger Fröhlich
- Bonn-Aachen International Center for IT (b-it), Life Science Data Analytics & Algorithmic Bioinformatics, University of Bonn, 53115 Bonn, Germany.
| | - Ganna V Kalayda
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
33
|
Chen KS, Fustino NJ, Shukla AA, Stroup EK, Budhipramono A, Ateek C, Stuart SH, Yamaguchi K, Kapur P, Frazier AL, Lum L, Looijenga LHJ, Laetsch TW, Rakheja D, Amatruda JF. EGF Receptor and mTORC1 Are Novel Therapeutic Targets in Nonseminomatous Germ Cell Tumors. Mol Cancer Ther 2018; 17:1079-1089. [PMID: 29483210 DOI: 10.1158/1535-7163.mct-17-0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/13/2017] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
Germ cell tumors (GCT) are malignant tumors that arise from pluripotent embryonic germ cells and occur in children and young adults. GCTs are treated with cisplatin-based regimens which, while overall effective, fail to cure all patients and cause significant adverse late effects. The seminoma and nonseminoma forms of GCT exhibit distinct differentiation states, clinical behavior, and response to treatment; however, the molecular mechanisms of GCT differentiation are not fully understood. We tested whether the activity of the mTORC1 and MAPK pathways were differentially active in the two classes of GCT. Here we show that nonseminomatous germ cell tumors (NSGCT, including embryonal carcinoma, yolk sac tumor, and choriocarcinoma) from both children and adults display activation of the mTORC1 pathway, while seminomas do not. In seminomas, high levels of REDD1 may negatively regulate mTORC1 activity. In NSGCTs, on the other hand, EGF and FGF2 ligands can stimulate mTORC1 and MAPK signaling, and members of the EGF and FGF receptor families are more highly expressed. Finally, proliferation of NSGCT cells in vitro and in vivo is significantly inhibited by combined treatment with the clinically available agents erlotinib and rapamycin, which target EGFR and mTORC1 signaling, respectively. These results provide an understanding of the signaling network that drives GCT growth and a rationale for therapeutic targeting of GCTs with agents that antagonize the EGFR and mTORC1 pathways. Mol Cancer Ther; 17(5); 1079-89. ©2018 AACR.
Collapse
Affiliation(s)
- Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Nicholas J Fustino
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Abhay A Shukla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emily K Stroup
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Albert Budhipramono
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christina Ateek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarai H Stuart
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiyoshi Yamaguchi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A Lindsay Frazier
- Department of Pediatric Oncology, Children's Hospital Dana-Farber Cancer Care, Boston, Massachusetts
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Theodore W Laetsch
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas.,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas
| | - Dinesh Rakheja
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James F Amatruda
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas. .,Margaret Gill Center for Cancer and Blood Disorders, Children's Health Medical Center, Dallas, Texas.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
34
|
Selfe J, Goddard NC, McIntyre A, Taylor KR, Renshaw J, Popov SD, Thway K, Summersgill B, Huddart RA, Gilbert DC, Shipley JM. IGF1R signalling in testicular germ cell tumour cells impacts on cell survival and acquired cisplatin resistance. J Pathol 2018; 244:242-253. [PMID: 29160922 PMCID: PMC5817239 DOI: 10.1002/path.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022]
Abstract
Testicular germ cell tumours (TGCTs) are the most frequent malignancy and cause of death from solid tumours in the 20‐ to 40‐year age group. Although most cases show sensitivity to cis‐platinum‐based chemotherapy, this is associated with long‐term toxicities and chemo‐resistance. Roles for receptor tyrosine kinases other than KIT are largely unknown in TGCT. We therefore conducted a phosphoproteomic screen and identified the insulin growth factor receptor‐1 (IGF1R) as both highly expressed and activated in TGCT cell lines representing the nonseminomatous subtype. IGF1R was also frequently expressed in tumour samples from patients with nonseminomas. Functional analysis of cell line models showed that long‐term shRNA‐mediated IGF1R silencing leads to apoptosis and complete ablation of nonseminoma cells with active IGF1R signalling. Cell lines with high levels of IGF1R activity also showed reduced AKT signalling in response to decreased IGF1R expression as well as sensitivity to the small‐molecule IGF1R inhibitor NVP‐AEW541. These results were in contrast to those in the seminoma cell line TCAM2 that lacked IGF1R signalling via AKT and was one of the two cell lines least sensitive to the IGF1R inhibitor. The dependence on IGF1R activity in the majority of nonseminomas parallels the known role of IGF signalling in the proliferation, migration, and survival of primordial germ cells, the putative cell of origin for TGCT. Upregulation of IGF1R expression and signalling was also found to contribute to acquired cisplatin resistance in an in vitro nonseminoma model, providing a rationale for targeting IGF1R in cisplatin‐resistant disease. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Neil C Goddard
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Alan McIntyre
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Kathryn R Taylor
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Jane Renshaw
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Sergey D Popov
- Glioma Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Khin Thway
- Sarcoma Unit, Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Brenda Summersgill
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Robert A Huddart
- Department of Clinical Oncology, The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Duncan C Gilbert
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK.,Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, UK
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
35
|
Figueras A, Alsina-Sanchís E, Lahiguera Á, Abreu M, Muinelo-Romay L, Moreno-Bueno G, Casanovas O, Graupera M, Matias-Guiu X, Vidal A, Villanueva A, Viñals F. A Role for CXCR4 in Peritoneal and Hematogenous Ovarian Cancer Dissemination. Mol Cancer Ther 2017; 17:532-543. [PMID: 29146630 DOI: 10.1158/1535-7163.mct-17-0643] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/08/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022]
Abstract
Epithelial ovarian cancer is characterized by a low recovery rate because the disease is typically diagnosed at an advanced stage, by which time most patients (80%) already exhibit disseminated neoplasia. The cytokine receptor CXCR4 has been implicated in the development of metastasis in various tumor types. Using a patient-derived tissue macroarray and mRNA expression analysis, we observed high CXCR4 levels in high-grade serous epithelial ovarian carcinomas, the most metastatic tumor, compared with those in endometrioid carcinomas. CXCR4 inhibition by treatment with the CXCR4 antagonist AMD3100 or by expression of shRNA anti-CXCR4 similarly inhibited angiogenesis in several models of ovarian carcinomas orthotopically grown in nude mice, but the effect on tumor growth was correlated with the levels of CXCR4 expression. Moreover, CXCR4 inhibition completely blocked dissemination and metastasis. This effect was associated with reduced levels of active Src, active ERKs, the inhibition of EMT transition, and block of hematogenous ovarian cancer dissemination decreasing circulating human tumoral cells (CTC). In tumors, CXCR4-expressing cells also had more mesenchymal characteristics. In conclusion, our results indicate that CXCR4 expression confers a proinvasive phenotype to ovarian carcinoma cells. Thus, anti-CXCR4 therapy is a possible agent for a complementary treatment of advanced disseminated epithelial high-grade serous ovarian cancer patients. Mol Cancer Ther; 17(2); 532-43. ©2017 AACR.
Collapse
Affiliation(s)
- Agnès Figueras
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Elisenda Alsina-Sanchís
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Álvaro Lahiguera
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Manuel Abreu
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPaz, Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain
| | - Oriol Casanovas
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Mariona Graupera
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Laboratori d'Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Xavier Matias-Guiu
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - August Vidal
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain.,Xenopat, Carrer de la Feixa Llarga S/N, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Xenopat, Carrer de la Feixa Llarga S/N, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d'Oncologia, Hospital Duran i Reynals, Barcelona, Spain. .,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain.,Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Facchini G, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Iovane G, Grimaldi G, Piscitelli R, Muto P, Botti G, Perdonà S, Veneziani BM, Berretta M, Montanari M. Exploring the molecular aspects associated with testicular germ cell tumors: a review. Oncotarget 2017; 9:1365-1379. [PMID: 29416701 PMCID: PMC5787445 DOI: 10.18632/oncotarget.22373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. They constitute a distinct entity because of their embryonic origin and their unique biological behavior. Recent preclinical data regarding biological signaling machinery as well as genetic and epigenetic mechanisms associated with molecular patterns of tumors have contribute to explain the pathogenesis and the differentiation of TGCTs and to understand the mechanisms responsible for the development of resistance to treatment. In this review, we discuss the main genetic and epigenetic events associated with TGCTs development in order to better define their role in the pathogenesis of these tumors and in cisplatin-acquired resistance.
Collapse
Affiliation(s)
- Gaetano Facchini
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Giovanni Grimaldi
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
37
|
Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK, Clarke RB, Clevers H, Coukos G, Dangles-Marie V, Eckhardt SG, Gonzalez-Suarez E, Hermans E, Hidalgo M, Jarzabek MA, de Jong S, Jonkers J, Kemper K, Lanfrancone L, Mælandsmo GM, Marangoni E, Marine JC, Medico E, Norum JH, Palmer HG, Peeper DS, Pelicci PG, Piris-Gimenez A, Roman-Roman S, Rueda OM, Seoane J, Serra V, Soucek L, Vanhecke D, Villanueva A, Vinolo E, Bertotti A, Trusolino L. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 2017; 17:254-268. [PMID: 28104906 DOI: 10.1038/nrc.2016.140] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the perspective of EurOPDX, an international initiative devoted to PDX-based research.
Collapse
Affiliation(s)
- Annette T Byrne
- EurOPDX Consortium and are at the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Denis G Alférez
- EurOPDX Consortium and are at the Breast Cancer Now Research Unit, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4QL, UK
| | - Frédéric Amant
- EurOPDX Consortium and are at the Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Daniela Annibali
- EurOPDX Consortium and are at the Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Joaquín Arribas
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology, 08035 Barcelona, the Universitat Autònoma de Barcelona, 08193 Bellaterra, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- CIBERONC, 08035 Barcelona, Spain
| | - Andrew V Biankin
- EurOPDX Consortium and are at the Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alejandra Bruna
- EurOPDX Consortium and are at Cancer Research UK Cambridge Institute, Cambridge Cancer Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Eva Budinská
- EurOPDX Consortium and is at the Institute of Biostatistics and Analyses, Faculty of Medicine, and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masarykova Univerzita, 625 00 Brno, Czech Republic
| | - Carlos Caldas
- EurOPDX Consortium and are at Cancer Research UK Cambridge Institute, Cambridge Cancer Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - David K Chang
- EurOPDX Consortium and are at the Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Robert B Clarke
- EurOPDX Consortium and are at the Breast Cancer Now Research Unit, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4QL, UK
| | - Hans Clevers
- Hubrecht Institute, University Medical Centre Utrecht, and Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, The Netherlands
| | - George Coukos
- EurOPDX Consortium and are at Lausanne Branch, Ludwig Institute for Cancer Research at the University of Lausanne, 1066 Lausanne, Switzerland
| | - Virginie Dangles-Marie
- EurOPDX Consortium and is at the Institut Curie, PSL Research University, Translational Research Department, 75005 Paris, and Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 75006 Paris, France
| | - S Gail Eckhardt
- University of Colorado Cancer Center, Aurora, Colorado 80045, USA
| | - Eva Gonzalez-Suarez
- EurOPDX Consortium and is at the Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Els Hermans
- EurOPDX Consortium and are at the Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Manuel Hidalgo
- EurOPDX Consortium and is at Beth Israel Deaconess Medical Center, Boston, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Monika A Jarzabek
- EurOPDX Consortium and are at the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Steven de Jong
- EurOPDX Consortium and is at the University Medical Centre Groningen, University of Groningen, 9713GZ Groningen, The Netherlands
| | - Jos Jonkers
- EurOPDX Consortium and are at The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kristel Kemper
- EurOPDX Consortium and are at The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Luisa Lanfrancone
- EurOPDX Consortium and are at the Department of Experimental Oncology, European Institiute of Oncology, 20139 Milan, Italy
| | - Gunhild Mari Mælandsmo
- EurOPDX Consortium and are at Oslo University Hospital, Institute for Cancer Research, 0424 Oslo, Norway
| | - Elisabetta Marangoni
- EurOPDX Consortium and are at Institut Curie, PSL Research University, Translational Research Department, 75005 Paris, France
| | - Jean-Christophe Marine
- EurOPDX Consortium and is at the Laboratory for Molecular Cancer Biology, Department of Oncology, Katholieke Universiteit Leuven, and the Center for Cancer Biology, VIB, 3000 Leuven, Belgium
| | - Enzo Medico
- EurOPDX Consortium and are at the Candiolo Cancer Institute IRCCS and Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| | - Jens Henrik Norum
- EurOPDX Consortium and are at Oslo University Hospital, Institute for Cancer Research, 0424 Oslo, Norway
| | - Héctor G Palmer
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology and CIBERONC, 08035 Barcelona, Spain
| | - Daniel S Peeper
- EurOPDX Consortium and are at The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Pier Giuseppe Pelicci
- EurOPDX Consortium and are at the Department of Experimental Oncology, European Institiute of Oncology, 20139 Milan, Italy
| | - Alejandro Piris-Gimenez
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology and CIBERONC, 08035 Barcelona, Spain
| | - Sergio Roman-Roman
- EurOPDX Consortium and are at Institut Curie, PSL Research University, Translational Research Department, 75005 Paris, France
| | - Oscar M Rueda
- EurOPDX Consortium and are at Cancer Research UK Cambridge Institute, Cambridge Cancer Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Joan Seoane
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology, 08035 Barcelona, the Universitat Autònoma de Barcelona, 08193 Bellaterra, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- CIBERONC, 08035 Barcelona, Spain
| | - Violeta Serra
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology and CIBERONC, 08035 Barcelona, Spain
| | - Laura Soucek
- EurOPDX Consortium and are at the Vall d'Hebron Institute of Oncology, 08035 Barcelona, the Universitat Autònoma de Barcelona, 08193 Bellaterra, and the Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Dominique Vanhecke
- EurOPDX Consortium and are at Lausanne Branch, Ludwig Institute for Cancer Research at the University of Lausanne, 1066 Lausanne, Switzerland
| | - Alberto Villanueva
- EurOPDX Consortium and is at the Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology ICO, Bellvitge Biomedical Research Institute IDIBELL, 08098 L'Hospitalet de Llobregat, Barcelona, and Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Andrea Bertotti
- EurOPDX Consortium and are at the Candiolo Cancer Institute IRCCS and Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- EurOPDX Consortium and are at the Candiolo Cancer Institute IRCCS and Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| |
Collapse
|
38
|
Berney DM, Lu YJ, Shamash J, Idrees M. Postchemotherapy changes in testicular germ cell tumours: biology and morphology. Histopathology 2016; 70:26-39. [DOI: 10.1111/his.13078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel M Berney
- Barts Cancer Institute; Queen Mary University of London; London UK
| | - Yong-Jie Lu
- Barts Cancer Institute; Queen Mary University of London; London UK
| | - Jonathan Shamash
- Barts Cancer Institute; Queen Mary University of London; London UK
| | - Muhammad Idrees
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine and Indiana Pathology Institute; Indianapolis IN USA
| |
Collapse
|
39
|
The Role of PDGFR-β Activation in Acquired Resistance to IGF-1R Blockade in Preclinical Models of Rhabdomyosarcoma. Transl Oncol 2016; 9:540-547. [PMID: 27835791 PMCID: PMC5114528 DOI: 10.1016/j.tranon.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/09/2016] [Indexed: 11/23/2022] Open
Abstract
To determine what alternative pathways may act as mechanisms of bypass resistance to type 1 insulin-like growth factor receptor (IGF-1R) blockade in rhabdomyosarcoma (RMS), we compared expression of receptor tyrosine kinase activity in a number of IGF-1R antibody-resistant and -sensitive RMS cell lines. We found that platelet-derived growth factor receptor β (PDGFR-β) activity was upregulated in three xenograft-derived IGF-1R antibody-resistant cell lines that arose from a highly sensitive fusion-positive RMS cell line (Rh41). Furthermore, we identified four additional fusion-negative RMS cell lines that similarly upregulated PDGFR-β activity when selected for IGF-1R antibody resistance in vitro. In the seven cell lines described, we observed enhanced growth inhibition when cells were treated with dual IGF-1R and PDGFR-β inhibition in vitro. In vivo studies have confirmed the enhanced effect of targeting IGF-1R and PDGFR-β in several mouse xenograft models of fusion-negative RMS. These findings suggest that PDGFR-β acts as a bypass resistance pathway to IGF-1R inhibition in a subset of RMS. Therapy co-targeting these receptors may be a promising new strategy in RMS care.
Collapse
|
40
|
Zarzosa P, Navarro N, Giralt I, Molist C, Almazán-Moga A, Vidal I, Soriano A, Segura MF, Hladun R, Villanueva A, Gallego S, Roma J. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clin Transl Oncol 2016; 19:44-50. [PMID: 27718156 DOI: 10.1007/s12094-016-1557-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Abstract
The use of preclinical models is essential in translational cancer research and especially important in pediatric cancer given the low incidence of each particular type of cancer. Cell line cultures have led to significant advances in cancer biology. However, cell lines have adapted to growth in artificial culture conditions, thereby undergoing genetic and phenotypic changes which may hinder the translational application. Tumor grafts developed in mice from patient tumor tissues, generally known as patient-derived xenografts (PDXs), are interesting alternative approaches to reproducing the biology of the original tumor. This review is focused on highlighting the interest of PDX models in pediatric cancer research and supporting strategies of personalized medicine. This review provides: (1) a description of the background of PDX in cancer, (2) the particular case of PDX in pediatric cancer, (3) how PDX can improve personalized medicine strategies, (4) new methods to increase engraftment, and, finally, (5) concluding remarks.
Collapse
Affiliation(s)
- P Zarzosa
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Navarro
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Giralt
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Molist
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Almazán-Moga
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Vidal
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Villanueva
- Chemoresistance and Predicitive Factors Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Xenopat S.L. Business Bioincubator Bellvitge Health Science Campus, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - S Gallego
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Roma
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
41
|
Oing C, Alsdorf WH, von Amsberg G, Oechsle K, Bokemeyer C. Platinum-refractory germ cell tumors: an update on current treatment options and developments. World J Urol 2016; 35:1167-1175. [PMID: 27449639 DOI: 10.1007/s00345-016-1898-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/13/2016] [Indexed: 01/07/2023] Open
Abstract
PURPOSE In general, 50 % up to 80 % of metastasized germ cell tumor patients can be cured by platinum-based chemotherapy. However, 3-5 % of patients will still die of platinum-refractory disease and new systemic treatment options are needed to improve treatment success in this difficult setting. This review aims to give an overview on treatment options and current developments in the field of platinum-refractory male germ cell tumors. METHODS A comprehensive literature search was conducted searching PubMed, Medline, Cochrane and Embase to identify clinical trials regarding the treatment of platinum-refractory disease. ASCO, EAU and ESMO conference proceedings were searched to identify unpublished results of relevant trials. Comprehensive review papers were hand searched for additional references. Clinicaltrials.gov was checked for ongoing clinical trials in the field of platinum-refractory germ cell tumors. RESULTS Outcome of platinum-refractory disease remains poor. Single-agents with reasonable activity are gemcitabine, oxaliplatin and paclitaxel, but complete remissions resulting in long-term survival could not be achieved. The triple-combination of gemcitabine, oxaliplatin and paclitaxel followed by resection of residual masses provides the best outcomes with objective responses in 51 % of patients and long-term survival in approximately 10-15 %. To date, no molecularly targeted agent has shown reasonable activity. CONCLUSIONS Treatment options for platinum-refractory disease are limited, but a small subset of patients may achieve long-term disease-free survival by multimodal treatment. The potential of novel targeted agents, i.e. by immune-checkpoint-inhibition remains to be defined.
Collapse
Affiliation(s)
- Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Winfried H Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Karin Oechsle
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
42
|
Yan D, An G, Kuo MT. C-Jun N-terminal kinase signalling pathway in response to cisplatin. J Cell Mol Med 2016; 20:2013-2019. [PMID: 27374471 PMCID: PMC5082413 DOI: 10.1111/jcmm.12908] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance.
Collapse
Affiliation(s)
- Dong Yan
- Department of Oncology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, China. .,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - GuangYu An
- Department of Oncology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, China
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Oing C, Kollmannsberger C, Oechsle K, Bokemeyer C. Investigational targeted therapies for the treatment of testicular germ cell tumors. Expert Opin Investig Drugs 2016; 25:1033-43. [PMID: 27286362 DOI: 10.1080/13543784.2016.1195808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Germ cell tumors (GCTs) are the most common malignancy among men aged between 15 to 45. Despite high cure rates of >90% over all GCTs, 3 to 5% of patients will still die of platinum-refractory disease. New systemic treatment options are needed to improve treatment success in this challenging setting. AREAS COVERED To review targeted treatment options and preclinical developments in platinum-refractory GCTs, a comprehensive literature search of PubMed, Medline and scientific meeting abstracts on published clinical trials and reports on molecularly targeted approaches was conducted. Outcomes of platinum-refractory disease and of patients failing high-dose chemotherapy remain poor. Currently, no molecularly targeted treatment has shown clinically meaningful activity in unselected patient populations in clinical trials, but individual patients may achieve short-lived objective responses by treatment with sunitinib, brentuximab vedotin or imatinib. Targeted trials based on molecular selection of patients have not yet been performed. EXPERT OPINION The limited activity of targeted agents in refractory GCT is disappointing. Assessment of druggable biomarkers and marker-stratified treatment may help individual patients, but is largely lacking. The low incidence and high curability of GCTs make the design of larger clinical trials difficult. The potential of novel agents, i.e. immune-checkpoint inhibitors, remains to be elucidated.
Collapse
Affiliation(s)
- Christoph Oing
- a Department of Oncology, Hematology and Bone Marrow Transplantation , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christian Kollmannsberger
- b Division of Medical Oncology, British Columbia Cancer Agency Vancouver Cancer Center , University of British Columbia , Vancouver , Canada
| | - Karin Oechsle
- a Department of Oncology, Hematology and Bone Marrow Transplantation , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Carsten Bokemeyer
- a Department of Oncology, Hematology and Bone Marrow Transplantation , University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
44
|
Abstract
Germ cell tumors (GCTs) are the most frequent malignancy in male patients between 15 and 45 years of age. Cisplatin-based chemotherapy shows excellent cure rates, but patients with cisplatin-resistant GCTs have a poor prognosis. Nintedanib (BIBF 1120, Vargatef) inhibits the receptor classes vascular endothelial growth factor receptor, platelet derived growth factor receptor, and fibroblast growth factor receptor, and has shown activity against many tumors, as well as in idiopathic lung fibrosis and bleomycin-induced lung injury. Here, we investigated the antineoplastic and antiangiogenic properties of nintedanib in cisplatin-resistant and cisplatin-sensitive GCT cells, both alone and in combination with classical cytotoxic agents such as cisplatin, etoposide, and bleomycin. The half-maximal inhibitory concentration (IC50) of nintedanib was 4.5 ± 0.43 μmol/l, 3.1 ± 0.45 μmol/l, and 3.6 ± 0.33 μmol/l in cisplatin-sensitive NTERA2, 2102Ep, and NCCIT cells, whereas the IC50 doses of the cisplatin-resistant counterparts were 6.6 ± 0.37 μmol/l (NTERA2-R), 4.5 ± 0.83 μmol/l (2102Ep-R), and 6.1 ± 0.41 μmol/l (NCCIT-R), respectively. Single treatment with nintedanib induced apoptosis and resulted in a sustained reduction in the capacity of colony formation in both cisplatin-sensitive and cisplatin-resistant GCT cells. Cell cycle analysis showed that nintedanib induced a strong G0/G1-phase arrest in all investigated cell lines. Combination treatment with cisplatin did not result in additive, synergistic, or antagonistic effects. The in-vivo activity was studied using the chorioallantoic membrane assay and indicated the antiangiogenic potency of nintedanib with markedly reduced microvessel density. Topical treatment of inoculated tumor plaques resulted in a significant reduction of the tumor size. This indicates that nintedanib might be a promising substance in the treatment of GCT.
Collapse
|
45
|
Gan Y, Wang Y, Tan Z, Zhou J, Kitazawa R, Jiang X, Tang Y, Yang J. TDRG1 regulates chemosensitivity of seminoma TCam-2 cells to cisplatin via PI3K/Akt/mTOR signaling pathway and mitochondria-mediated apoptotic pathway. Cancer Biol Ther 2016; 17:741-50. [PMID: 27104982 DOI: 10.1080/15384047.2016.1178425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously identified TDRG1 (testis developmental related gene 1), a novel gene with exclusive expression in testis, promoted the proliferation and progression of cultured human seminoma cells through PI3K/Akt/mTOR signaling. As increasing evidence reveal that aberrant activation of this signaling is involved in cisplatin resistance. Then, in this study, we further explored whether TDRG1 regulated the chemosensitivity of seminoma TCam-2 cells to cisplatin. Our researches showed TDRG1 could regulate the viability of TCam-2 cells following cisplatin treatment in vitro through control of both cell apoptosis and cell cycle. Mechanistically, we observed TDRG1 positively regulated the expression levels of the key elements in PI3K/Akt/mTOR pathway including p-PI3K, p-Akt and p-mTOR and also affected the translocation of nuclear p-Akt in TCam-2 cells during cisplatin treatment. Meanwhile, the levels of Bad, cytochrome c, caspase-9 ratio (activated/total), caspase-3 ratio (activated/total) and cleaved-PARP were negatively modulated by TDRG1, which meant the involvement of mitochondria-mediated apoptotic pathway. Furthermore, we found the effect of TDRG1 knockdown or TDRG1 overexpression could be reversed by IGF-1, a PI3K signaling activator, or LY294002, a inhibitor of this pathway, respectively. Similar effects of TDRG1 on cisplatin chemosensitivity and associated molecular mechanism were also confirmed in vivo by employing xenograft assays. In addition, the positive correlation between TDRG1 and p-PI3K, or p-Akt, was found in tumor tissues from seminoma patients. In conclusion, we uncover that TDRG1 regulates chemosensitivity of TCam-2 cells to cisplatin through PI3K/Akt/mTOR signaling and mitochondria-mediated apoptotic pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Gan
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Yong Wang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhengyu Tan
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Jun Zhou
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Riko Kitazawa
- b Department of Diagnostic Pathology , Ehime University Hospital, Shitsukawa , Tōon , Ehime Perfecture , Japan
| | - Xianzhen Jiang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Yuxin Tang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Jianfu Yang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| |
Collapse
|
46
|
Kurahara H, Maemura K, Mataki Y, Sakoda M, Shinchi H, Natsugoe S. Impact of p53 and PDGFR-β Expression on Metastasis and Prognosis of Patients with Pancreatic Cancer. World J Surg 2016; 40:1977-84. [DOI: 10.1007/s00268-016-3477-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to update the reader on advances in postpubertal male germ cell tumours (GCTs) over the last 18 months. RECENT FINDINGS Single nucleotide polymorphisms, including in four sex-determination genes, have been identified as additional genetic susceptibility loci to testicular GCT development. New insights into cisplatin resistance implicate the PDGFR-PIK3CA-AKT and RAS pathways. Circulating tumour cells and circulating microRNAs are potential new biomarkers. In clinical stage I (CS-I) GCT, two large studies have confirmed the excellent outcomes achieved with surveillance, which is now the management option of choice for CS I-A nonseminoma and all CS-I seminomas; CS I-B nonseminoma remains controversial. First-line trials of dose-dense multidrug regimens reported promising results but have not yet supplanted BEPx4. Survivorship issues, including secondary malignancies from chemotherapy, remain important in this disease and are a continuing focus of ongoing research. SUMMARY Important research questions remain across all aspects of GCT. The next decade is likely to produce many new and exciting discoveries that will benefit GCT patients.
Collapse
|
48
|
Oing C, Seidel C, von Amsberg G, Oechsle K, Bokemeyer C. Pharmacotherapeutic treatment of germ cell tumors: standard of care and recent developments. Expert Opin Pharmacother 2015; 17:545-60. [DOI: 10.1517/14656566.2016.1127357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Molecular biology of testicular germ cell tumors. Clin Transl Oncol 2015; 18:550-6. [PMID: 26482724 DOI: 10.1007/s12094-015-1423-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.
Collapse
|
50
|
Farooqi AA, Siddik ZH. Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct 2015; 33:257-65. [PMID: 26153649 DOI: 10.1002/cbf.3120] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor (PDGF)-mediated signalling has emerged as one of the most extensively and deeply studied biological mechanism reported to be involved in regulation of growth and survival of different cell types. However, overwhelmingly increasing scientific evidence is also emphasizing on dysregulation of spatio-temporally controlled PDGF-induced signalling as a basis for cancer development. We partition this multi-component review into recently developing understanding of dysregulation PDGF signalling in different cancers, how PDGF receptors are quantitatively controlled by microRNAs. Moreover, we also summarize most recent advancements in therapeutic targeting of PDGFR as evidenced by preclinical studies. Better understanding of the PDGF-induced intracellular signalling in different cancers will be helpful in catalysing the transition from a segmented view of cancer biology to a conceptual continuum.
Collapse
Affiliation(s)
| | - Zahid H Siddik
- University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|