1
|
Sheikhi M, Rostami M, Ferns G, Ayatollahi H, Siyadat P, Ayatollahi Y, Khoshnegah Z. Prognostic significance of ASXL1 mutations in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:202-214. [PMID: 38807730 PMCID: PMC11129077 DOI: 10.22088/cjim.15.2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 05/30/2024]
Abstract
Background Although genetic mutations in additional sex-combs-like 1 (ASXL1) are prevalent in acute myeloid leukemia (AML), their exact impact on the AML prognosis remains uncertain. Hence, the present article was carried out to explore the prognostic importance of ASXL1 mutations in AML. Methods We thoroughly searched electronic scientific databases to find eligible papers. Twenty-seven studies with an overall number of 8,953 participants were selected for the current systematic review. The hazard ratio (HR) and 95% confidence interval (CI) for overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were extracted from all studies with multivariate or univariate analysis. Pooled HRs and p-values were also calculated as a part of our work. Results The pooled HR for OS in multivariable analysis indicated that ASXL1 significantly diminished survival in AML patients (pooled HR: 1.67; 95% CI: 1.342-2.091). Conclusions ASXL1 mutations may confer a poor prognosis in AML. Hence, they may be regarded as potential prognostic factors. However, more detailed studies with different ASXL1 mutations are suggested to shed light on this issue.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gordon Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Yasamin Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Wu Y, Gao B, Qi X, Bai L, Li B, Bao H, Wu X, Wu X, Zhao Y. Circular RNA ATAD1 is upregulated in acute myeloid leukemia and promotes cancer cell proliferation by downregulating miR-34b via promoter methylation. Oncol Lett 2021; 22:799. [PMID: 34630706 PMCID: PMC8477150 DOI: 10.3892/ol.2021.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/16/2021] [Indexed: 11/06/2022] Open
Abstract
A previous study has reported the oncogenic role of circular RNA (circ)-ATAD1 in gastric cancer. The aim of the present study was to investigate the role of circ-ATAD1 in acute myeloid leukemia (AML). Bone marrow mononuclear cells were collected from 60 patients with AML and 60 healthy controls, followed by RNA isolation and reverse transcription-quantitative PCR to assess the expression of circ-ATAD1 and microRNA (miR)-34b. A subcellular fractionation assay was used to determine the subcellular location of circ-ATAD1 in AML cells. Furthermore, circ-ATAD1 and miR-34b were overexpressed in AML cells to study crosstalk between the two molecules. The effect of circ-ATAD1 overexpression on miR-34b gene methylation was also analyzed by methylation-specific PCR, and the roles of circ-ATAD1 and miR-34b in the regulation of AML cell proliferation were analyzed by BrdU assay. circ-ATAD1 expression was found to be elevated, and inversely correlated with that of miR-34b, in patients with AML. Subcellular fractionation assays showed that circ-ATAD1 was specifically expressed in the nucleus. In addition, circ-ATAD1 overexpression in AML cells decreased miR-34b expression and increased miR-34b gene methylation. Moreover, AML cell proliferation was increased by circ-ATAD1 overexpression, but decreased by miR-34b overexpression, and the effect of circ-ATAD1 overexpression on AML cell proliferation was reduced by miR-34b overexpression. Together, these results indicate circ-ATAD1 as a nucleus-specific circRNA in AML, which promotes AML cell proliferation by downregulating miR-34b via methylation.
Collapse
Affiliation(s)
- Yarong Wu
- Department of Hematology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Bingjun Gao
- Department of Osteology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xiaolei Qi
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Liyun Bai
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Bixin Li
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Hongjing Bao
- Department of Ultrasound, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Xi Wu
- Department of Neurosurgery, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Xiaoyun Wu
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010000, P.R. China
| | - Yuxia Zhao
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| |
Collapse
|
3
|
Ronaghy A, Yang RK, Khoury JD, Kanagal-Shamanna R. Clinical Applications of Chromosomal Microarray Testing in Myeloid Malignancies. Curr Hematol Malig Rep 2020; 15:194-202. [PMID: 32382988 DOI: 10.1007/s11899-020-00578-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Knowledge of both somatic mutations and copy number aberrations are important for the understanding of cancer pathogenesis and management of myeloid neoplasms. The currently available standard of care technologies for copy number assessment such as conventional karyotype and FISH are either limited by low resolution or restriction to targeted assessment. RECENT FINDINGS Chromosomal microarray (CMA) is effective in characterization of chromosomal and gene aberrations of diagnostic, prognostic, and therapeutic significance at a higher resolution than conventional karyotyping. These results are complementary to NGS mutation studies. Copy-neutral loss of heterozygosity (CN-LOH), which is prognostic in AML, is currently only identified by CMA. Yet, despite the widespread availability, CMA testing is not routinely performed in diagnostic laboratories due to lack of knowledge on best-testing practices for clinical work-up of myeloid neoplasms. In this review, we provide an overview of the clinical significance of CMA in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). We will also elaborate the specific clinical scenarios where CMA can provide additional information essential for management and could potentially alter treatment. Chromosomal microarray (CMA) is an effective technology for characterizing chromosomal copy number changes and copy-neutral loss of heterozygosity of diagnostic, prognostic, and therapeutic significance at a high resolution in myeloid malignancies.
Collapse
MESH Headings
- Chromosome Aberrations
- Chromosomes, Human
- Comparative Genomic Hybridization
- DNA Copy Number Variations
- Genetic Predisposition to Disease
- High-Throughput Nucleotide Sequencing
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/genetics
- Loss of Heterozygosity
- Microarray Analysis
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Polymorphism, Single Nucleotide
- Predictive Value of Tests
- Prognosis
- Reproducibility of Results
Collapse
Affiliation(s)
- Arash Ronaghy
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA
| | - Richard K Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 072, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Liu Q, Hua M, Yan S, Zhang C, Wang R, Yang X, Han F, Hou M, Ma D. Immunorelated gene polymorphisms associated with acute myeloid leukemia. Clin Exp Immunol 2020; 201:266-278. [PMID: 32349161 PMCID: PMC7419888 DOI: 10.1111/cei.13446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although the pathogenesis of acute myeloid leukemia (AML) is still unknown, accumulating evidence has revealed that immune response plays a vital part in the pathogenesis. Here, we investigated the involvement of 21 single nucleotide polymorphisms (SNPs) of immunorelated genes, including cytokines [interleukin (IL)-2, IL-4, IL-9, IL-12A, IL-22, interferon (IFN-α) and transforming growth factor (TGF)-β1], transcriptional regulatory genes (TBX21, STAT1, STAT3, STAT5B, STAT6, GATA3, FOXP3 and IRF4) and others (IL2RA, IL6R, NFKBIA) in 269 AML in-patients and 200 healthy controls. Furthermore, we analyzed the relationship between the SNPs and clinical characteristics. Immunorelated SNP genotyping was performed on the Sequenom MassARRAY iPLEX platform. All the SNPs in healthy controls were consistent with Hardy-Weinberg equilibrium. All final P-values were adjusted by Bonferroni multiple testing. Our results showed that IL-22 (rs2227491) was significantly associated with the white blood cell (WBC) counts. Signal transducer and activator of transcription 5B (STAT-5B) (rs6503691) showed a close relationship with the recurrent genetic abnormalities in patients with AML. We verified the negatively independent effect of age and risk of cytogenetics on overall survival (OS). More importantly, the GG genotype of IL-12A (rs6887695) showed a negative impact on AML prognosis independently. Furthermore, the relative expression of IL-12 was decreased in GG genotype, no matter under a co-dominant or recessive model. However, no correlation was observed between the SNPs mentioned above and disease susceptibility, risk stratification and survival. Our findings suggest that immunorelated gene polymorphisms are associated with prognosis in AML, which may perform as novel inspection targets for AML patients.
Collapse
Affiliation(s)
- Q. Liu
- Department of HematologyQilu HospitalShandong UniversityJinanChina
- Department of HematologyQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of HematologyTaian Central HospitalTaianShandongChina
| | - M. Hua
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - S. Yan
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - C. Zhang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - R. Wang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - X. Yang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - F. Han
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - M. Hou
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - D. Ma
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| |
Collapse
|
5
|
Mäkelä E, Löyttyniemi E, Salmenniemi U, Kauko O, Varila T, Kairisto V, Itälä-Remes M, Westermarck J. Arpp19 Promotes Myc and Cip2a Expression and Associates with Patient Relapse in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111774. [PMID: 31717978 PMCID: PMC6895887 DOI: 10.3390/cancers11111774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Disease relapse from standard chemotherapy in acute myeloid leukemia (AML) is poorly understood. The importance of protein phosphatase 2A (PP2A) as an AML tumor suppressor is emerging. Therefore, here, we examined the potential role of endogenous PP2A inhibitor proteins as biomarkers predicting AML relapse in a standard patient population by using three independent patient materials: cohort1 (n = 80), cohort2 (n = 48) and The Cancer Genome Atlas Acute Myeloid Leukemia (TCGA LAML) dataset (n = 160). Out of the examined PP2A inhibitors (CIP2A, SET, PME1, ARPP19 and TIPRL), expression of ARPP19 mRNA was found to be independent of the current AML risk classification. Functionally, ARPP19 promoted AML cell viability and expression of oncoproteins MYC, CDK1, and CIP2A. Clinically, ARPP19 mRNA expression was significantly lower at diagnosis (p = 0.035) in patients whose disease did not relapse after standard chemotherapy. ARPP19 was an independent predictor for relapse both in univariable (p = 0.007) and in multivariable analyses (p = 0.0001) and gave additive information to EVI1 expression and risk group status (additive effect, p = 0.005). Low ARPP19 expression was also associated with better patient outcome in the TCGA LAML cohort (p = 0.019). In addition, in matched patient samples from diagnosis, remission and relapse phases, ARPP19 expression was associated with disease activity (p = 0.034), indicating its potential usefulness as a minimal residual disease (MRD) marker. Together, these data demonstrate the oncogenic function of ARPP19 in AML and its risk group independent role in predicting AML patient relapse tendency.
Collapse
Affiliation(s)
- Eleonora Mäkelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, 20520 Turku, Finland
| | | | - Urpu Salmenniemi
- Department of Hematology, Turku University Hospital (TYKS), 20521 Turku, Finland
| | - Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Veli Kairisto
- Central Laboratory, Turku University Hospital (TYKS), 20521 Turku, Finland
| | - Maija Itälä-Remes
- Department of Hematology, Turku University Hospital (TYKS), 20521 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: or ; Tel.: +358-29-450-2880
| |
Collapse
|
6
|
Yang L, Shen K, Zhang M, Zhang W, Cai H, Lin L, Long X, Xing S, Tang Y, Xiong J, Wang J, Li D, Zhou J, Xiao M. Clinical Features and MicroRNA Expression Patterns Between AML Patients With DNMT3A R882 and Frameshift Mutations. Front Oncol 2019; 9:1133. [PMID: 31709191 PMCID: PMC6821681 DOI: 10.3389/fonc.2019.01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023] Open
Abstract
Background: DNA methyltransferase 3A (DNMT3A) plays a unique role in hematopoiesis and acute myeloid leukemia (AML) pathogenesis. While the influences of DNMT3A mutation subtypes are still under debate. Purpose: Exploration of the clinical and molecular differences between AML patients carrying DNMT3A R882 mutations and DNMT3A frameshift mutations. Methods: Next generation of sequencing (NGS) and clinical data of 118 AML patients in our center were analyzed and compared. NGS, mRNA and miRNA profiling and clinical data from 12 patients in TCGA database were integrative analyzed. Results: Among all patients enrolled, 113 patients were positive for the variants of interest. Overall, a total of 295 variants were discovered, among which 24 DNMT3A mutations were detected, including 1 non-sense, 20 missense, 3 frameshift mutations. And 7 DNMT3A R882 mutations (3 R882H, 2 R882C, and 2 R882P) were found. Clinical analysis from our cohort and TCGA database indicated that patients carrying DNMT3A R882 mutation exhibited significantly higher levels of peripheral blood hemoglobin and non-significantly inferior prognosis compared with patients with DNMT3A frameshift mutations. Integrative analysis indicated that miR-10b, miR-143, and miR-30a were significantly decreased in the DNMT3A R882 group. High miR-143 expression is significantly associated with better prognosis in AML patients with DNMT3A mutations. Conclusion: Different molecular and clinical characteristics existed between patients with DNMT3A variant subtypes. The distinct microRNA expression pattern for DNMT3A R882 AML patients might not only act as markers to predict disease prognosis, but also could be further investigated to develop novel therapeutic targets for patients with DNMT3A mutations.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ke'Feng Shen
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Mei'Lan Zhang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hao'Dong Cai
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li'Man Lin
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao'Lu Long
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shu'Gang Xing
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Tang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiong
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia'Chen Wang
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Deng'Ju Li
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jian'Feng Zhou
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group. Cancer Genet 2018; 228-229:218-235. [DOI: 10.1016/j.cancergen.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
|
8
|
Khan I, Halasi M, Patel A, Schultz R, Kalakota N, Chen YH, Aardsma N, Liu L, Crispino JD, Mahmud N, Frankfurt O, Gartel AL. FOXM1 contributes to treatment failure in acute myeloid leukemia. JCI Insight 2018; 3:121583. [PMID: 30089730 PMCID: PMC6129129 DOI: 10.1172/jci.insight.121583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with NPM1 mutations demonstrate a superior response to standard chemotherapy treatment. Our previous work has shown that these favorable outcomes are linked to the cytoplasmic relocalization and inactivation of FOXM1 driven by mutated NPM1. Here, we went on to confirm the important role of FOXM1 in increased chemoresistance in AML. A multiinstitution retrospective study was conducted to link FOXM1 expression to clinical outcomes in AML. We establish nuclear FOXM1 as an independent clinical predictor of chemotherapeutic resistance in intermediate-risk AML in a multivariate analysis incorporating standard clinicopathologic risk factors. Using colony assays, we show a dramatic decrease in colony size and numbers in AML cell lines with knockdown of FOXM1, suggesting an important role for FOXM1 in the clonogenic activity of AML cells. In order to further prove a potential role for FOXM1 in AML chemoresistance, we induced an FLT3-ITD-driven myeloid neoplasm in a FOXM1-overexpressing transgenic mouse model and demonstrated significantly higher residual disease after standard chemotherapy. This suggests that constitutive overexpression of FOXM1 in this model induces chemoresistance. Finally, we performed proof-of-principle experiments using a currently approved proteasome inhibitor, ixazomib, to target FOXM1 and demonstrated a therapeutic response in AML patient samples and animal models of AML that correlates with the suppression of FOXM1 and its transcriptional targets. Addition of low doses of ixazomib increases sensitization of AML cells to chemotherapy backbone drugs cytarabine and the hypomethylator 5-azacitidine. Our results underscore the importance of FOXM1 in AML progression and treatment, and they suggest that targeting it may have therapeutic benefit in combination with standard AML therapies.
Collapse
Affiliation(s)
- Irum Khan
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Marianna Halasi
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Rachael Schultz
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Nandini Kalakota
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Nathan Aardsma
- Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Li Liu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois, Chicago, Illinois, USA
| | | | - Nadim Mahmud
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
9
|
Gonzales F, Cheok M. [Copy-number analysis identifies new prognostic marker in acute myeloid leukemia]. Med Sci (Paris) 2017; 33:929-932. [PMID: 29200386 DOI: 10.1051/medsci/20173311005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fanny Gonzales
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Meyling Cheok
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| |
Collapse
|
10
|
Parkin B, Londoño-Joshi A, Kang Q, Tewari M, Rhim AD, Malek SN. Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest 2017; 127:3484-3495. [PMID: 28825596 DOI: 10.1172/jci91964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
Acute myelogenous leukemia (AML) frequently relapses after complete remission (CR), necessitating improved detection and phenotypic characterization of treatment-resistant residual disease. In this work, we have optimized droplet digital PCR to broadly measure mutated alleles of recurrently mutated genes in CR marrows of AML patients at levels as low as 0.002% variant allele frequency. Most gene mutations persisted in CR, albeit at highly variable and gene-dependent levels. The majority of AML cases demonstrated residual aberrant oligoclonal hematopoiesis. Importantly, we detected very rare cells (as few as 1 in 15,000) that were genomically similar to the dominant blast populations at diagnosis and were fully clonally represented at relapse, identifying these rare cells as one common source of AML relapse. Clinically, the mutant allele burden was associated with overall survival in AML, and our findings narrow the repertoire of gene mutations useful in minimal residual disease-based prognostication in AML. Overall, this work delineates rare cell populations that cause AML relapse, with direct implications for AML research directions and strategies to improve AML therapies and outcome.
Collapse
Affiliation(s)
- Brian Parkin
- Department of Internal Medicine, Division of Hematology and Oncology
| | | | - Qing Kang
- Department of Internal Medicine, Division of Hematology and Oncology
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology and Oncology.,Department of Biomedical Engineering.,Biointerfaces Institute, and.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew D Rhim
- Department of Internal Medicine, Division of Gastroenterology
| | - Sami N Malek
- Department of Internal Medicine, Division of Hematology and Oncology
| |
Collapse
|
11
|
Xu Q, Li Y, Lv N, Jing Y, Xu Y, Li Y, Li W, Yao Z, Chen X, Huang S, Wang L, Li Y, Yu L. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin Cancer Res 2017; 23:4511-4522. [PMID: 28246275 DOI: 10.1158/1078-0432.ccr-16-2628] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Whether isocitrate dehydrogenase (IDH) gene aberrations affected prognosis of patients with acute myeloid leukemia (AML) was controversial. Here, we conducted a meta-analysis to evaluate their prognostic value.Experimental Design: PubMed, Embase, Cochrane, and Chinese databases were searched to identify studies exploring how IDH gene aberrations affected AML outcome. Pooled HRs and relative risks (RR) were calculated, along with 95% confidence intervals (CI).Results: Thirty-three reports were included. IDH mutations seemed not to affect overall survival (OS: HR, 1.05; 95% CI, 0.89-1.23) and event-free survival (EFS: HR, 0.97; 95% CI, 0.80-1.18) when considered as a single factor, but improved accumulative incidence of relapse (CIR: HR, 1.44; 95% CI, 1.18-1.76) in patients with intermediate-risk karyotypes (IR-AML). However, IDH1 mutation conferred worse OS (HR, 1.17; 95% CI, 1.05-1.31) and EFS (HR, 1.29; 95% CI, 1.07-1.56), especially in patients with normal cytogenetics (OS: HR, 1.21; 95% CI, 1.01-1.46; EFS: HR, 1.56; 95% CI, 1.23-1.98). Prognosis of the IDH1 single-nucleotide polymorphism rs11554137 was also poor (OS: HR, 1.34; 95% CI, 1.03-1.75). IDH2 mutation improved OS (HR, 0.78; 95% CI, 0.66-0.93), particularly in IR-AML patients (OS: HR, 0.65; 95% CI, 0.49-0.86). The IDH2 (R140) mutation was associated with better OS among younger cases (HR, 0.64; 95% CI, 0.49-0.82). Treatment outcome was poor [RR for complete remission rates in IDH1 mutation: 1.21; 95% CI, 1.02-1.44; IDH2 (R172) mutation: 2.14; 95% CI, 1.61-2.85].Conclusions: Various subtypes of IDH mutations might contribute to different prognosis and be allowed to stratify IR-AML further. Clin Cancer Res; 23(15); 4511-22. ©2017 AACR.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Nankai University, Tianjin, China
| | - Yan Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Na Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yu Jing
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yihan Xu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yuyan Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjun Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Zilong Yao
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaosu Chen
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China.,Medical School of Nankai University, Tianjin, China
| | - Sai Huang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Lili Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Steensma DP. Predicting therapy-related myeloid neoplasms-and preventing them? Lancet Oncol 2016; 18:11-13. [PMID: 27927581 DOI: 10.1016/s1470-2045(16)30622-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022]
Affiliation(s)
- David P Steensma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, Peyrouze P, Geffroy S, Quentin S, Alberdi A, Abdelali RB, Renneville A, Demay C, Celli-Lebras K, Barbry P, Quesnel B, Castaigne S, Dombret H, Soulier J, Preudhomme C, Cheok MH. Copy-number analysis identified new prognostic marker in acute myeloid leukemia. Leukemia 2016; 31:555-564. [PMID: 27686867 DOI: 10.1038/leu.2016.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023]
Abstract
Recent advances in genomic technologies have revolutionized acute myeloid leukemia (AML) understanding by identifying potential novel actionable genomic alterations. Consequently, current risk stratification at diagnosis not only relies on cytogenetics, but also on the inclusion of several of these abnormalities. Despite this progress, AML remains a heterogeneous and complex malignancy with variable response to current therapy. Although copy-number alterations (CNAs) are accepted prognostic markers in cancers, large-scale genomic studies aiming at identifying specific prognostic CNA-based markers in AML are still lacking. Using 367 AML, we identified four recurrent CNA on chromosomes 11 and 21 that predicted outcome even after adjusting for standard prognostic risk factors and potentially delineated two new subclasses of AML with poor prognosis. ERG amplification, the most frequent CNA, was related to cytarabine resistance, a cornerstone drug of AML therapy. These findings were further validated in The Cancer Genome Atlas data. Our results demonstrate that specific CNA are of independent prognostic relevance, and provide new molecular information into the genomic basis of AML and cytarabine response. Finally, these CNA identified two potential novel risk groups of AML, which when confirmed prospectively, may improve the clinical risk stratification and potentially the AML outcome.
Collapse
Affiliation(s)
- O Nibourel
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - S Guihard
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - C Roumier
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - N Pottier
- CHU Lille University Hospital, Department of Biochemistry and Molecular Biology, Lille, France
| | - C Terre
- Hospital of Versailles, Department of Hematology, Chesnay, France
| | - A Paquet
- University Côte d'Azur, CNRS Institute of Molecular and Cellular Pharmacology, Sophia-Antipolis, Nice, France
| | - P Peyrouze
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - S Geffroy
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - S Quentin
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - A Alberdi
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - R B Abdelali
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - A Renneville
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - C Demay
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - K Celli-Lebras
- University Paris 7, Department of Hematology, Paris, France
| | - P Barbry
- University Côte d'Azur, CNRS Institute of Molecular and Cellular Pharmacology, Sophia-Antipolis, Nice, France
| | - B Quesnel
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - S Castaigne
- Hospital of Versailles, Department of Hematology, Chesnay, France
| | - H Dombret
- University Paris 7, Department of Hematology, Paris, France
| | - J Soulier
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - C Preudhomme
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - M H Cheok
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| |
Collapse
|
14
|
Yuan XQ, Zhang DY, Yan H, Yang YL, Zhu KW, Chen YH, Li X, Yin JY, Li XL, Zeng H, Chen XP. Evaluation of DNMT3A genetic polymorphisms as outcome predictors in AML patients. Oncotarget 2016; 7:60555-60574. [PMID: 27528035 PMCID: PMC5312402 DOI: 10.18632/oncotarget.11143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/26/2016] [Indexed: 12/15/2022] Open
Abstract
DNMT3A mutation is known as a recurrent event in acute myelogenous leukemia (AML) patients. However, association between DNMT3A genetic polymorphisms and AML patients' outcomes is unknown. DNMT3A 11 SNPs (rs11695471, rs2289195, rs734693, rs2276598, rs1465825, rs7590760, rs13401241, rs7581217, rs749131, rs41284843 and rs7560488) were genotyped in 344 diagnostic non-FAB-M3 AML patients from southern China. Patients underwent combined chemotherapy with cytarabine and anthracyclines. DNMT3A mRNA expression was analyzed in PBMCs from randomly selected AML patients. Multivariate analysis and combined genotype analysis showed that rs2276598 was associated with increased while rs11695471 and rs734693 were associated with decreased chemosensitivity (P<0.05), while rs11695471 (worse for OS), rs2289195 (favorable for OS and DFS) and rs2276598 (favorable for DFS) were significantly associated with disease prognosis (P<0.05). In conclusion, DNMT3A polymorphisms may be potential predictive markers for AML patients' outcomes, which might improve prognostic stratification of AML.
Collapse
Affiliation(s)
- Xiao-Qing Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yong-Long Yang
- Department of Pharmacy, Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, P. R. China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yan-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Lin Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P. R. China
| |
Collapse
|
15
|
Abstract
High-throughput sequencing of cancer genomes is increasingly becoming an essential tool of clinical oncology that facilitates target identification and targeted therapy within the context of precision medicine. The cumulative profiles of somatic mutations in cancer yielded by comprehensive molecular studies also constitute a fingerprint of historical exposures to exogenous and endogenous mutagens, providing insight into cancer evolution and etiology. Mutational signatures that were first established by inspection of the TP53 gene somatic landscape have now been confirmed and expanded by comprehensive sequencing studies. Further, the degree of granularity achieved by deep sequencing allows detection of low-abundance mutations with clinical relevance. In tumors, they represent the emergence of small aggressive clones; in normal tissues, they signal a mutagenic exposure related to cancer risk; and, in blood, they may soon become effective surveillance tools for diagnostic purposes and for monitoring of cancer prognosis and recurrence.
Collapse
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jin Jen
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
A multicenter trial of myeloablative clofarabine and busulfan conditioning for relapsed or primary induction failure AML not in remission at the time of allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2016; 52:59-65. [PMID: 27427921 DOI: 10.1038/bmt.2016.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) may produce long-term survival in AML after relapse or primary induction failure (PIF). However, outcomes of HCT performed for AML not in remission are historically poor given high relapse rates and transplant-related mortality. Preliminary studies suggest conditioning with clofarabine and myeloablative busulfan (CloBu4) may exert significant anti-leukemic effects without excessive toxicity in refractory hematologic malignancies. A prospective multicenter phase II trial was conducted to determine the efficacy of CloBu4 for patients proceeding directly to HCT with AML not in remission. Seventy-one patients (median age: 56 years) received CloBu4. At day 30 after HCT, 90% achieved morphologic remission. The incidence of non-relapse mortality and relapse at 2 years was 25% and 55%, respectively. The 2-year overall survival (OS) and event-free survival (EFS) were 26% and 20%, respectively. Patients entering HCT in PIF had significantly greater EFS than those in relapse (34% vs 8%; P<0.01). Multivariate analysis comparing CloBu4 with a contemporaneous cohort (Center for International Blood and Marrow Transplantation Research) of AML not in remission receiving other myeloablative conditioning (n=105) demonstrated similar OS (HR: 1.33, 95% confidence interval: 0.92-1.92; P=0.12). HCT with myeloablative CloBu4 is associated with high early response rates and may produce durable remissions in select patients with AML not in remission.
Collapse
|
17
|
Schoumans J, Suela J, Hastings R, Muehlematter D, Rack K, van den Berg E, Berna Beverloo H, Stevens-Kroef M. Guidelines for genomic array analysis in acquired haematological neoplastic disorders. Genes Chromosomes Cancer 2016; 55:480-91. [PMID: 26774012 DOI: 10.1002/gcc.22350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 12/19/2022] Open
Abstract
Genetic profiling is important for disease evaluation and prediction of prognosis or responsiveness to therapy in neoplasia. Microarray technologies, including array comparative genomic hybridization and single-nucleotide polymorphism-detecting arrays, have in recent years been introduced into the diagnostic setting for specific types of haematological malignancies and solid tumours. It can be used as a complementary test or depending on the neoplasia investigated, also as a standalone test. However, comprehensive and readable presentation of frequently identified complex genomic profiles remains challenging. To assist diagnostic laboratories, standardization and minimum criteria for clinical interpretation and reporting of acquired genomic abnormalities detected through arrays in neoplastic disorders are presented.
Collapse
Affiliation(s)
- Jacqueline Schoumans
- Unité De Génétique Du Cancer, Service De Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, CH-1011, Switzerland
| | - Javier Suela
- Cytogenomics Laboratory, NIMGenetics, Madrid, Spain
| | - Ros Hastings
- Cytogenetic External Quality Assessment, Women's Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Dominique Muehlematter
- Unité De Génétique Du Cancer, Service De Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, CH-1011, Switzerland
| | - Katrina Rack
- Institut De Pathologie Et De Génétique, Gosselies, Belgium
- West Midland Regional Genetic Laboratory, Birmingham Womens Hospital, Birmingham, UK
| | - Eva van den Berg
- Dept Genet, University Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - H Berna Beverloo
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Marcinkowska-Swojak M, Handschuh L, Wojciechowski P, Goralski M, Tomaszewski K, Kazmierczak M, Lewandowski K, Komarnicki M, Blazewicz J, Figlerowicz M, Kozlowski P. Simultaneous detection of mutations and copy number variation of NPM1 in the acute myeloid leukemia using multiplex ligation-dependent probe amplification. Mutat Res 2016; 786:14-26. [PMID: 26894557 DOI: 10.1016/j.mrfmmm.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 01/13/2023]
Abstract
The NPM1 gene encodes nucleophosmin, a protein involved in multiple cell functions and carcinogenesis. Mutation of the NPM1 gene, causing delocalization of the protein, is the most frequent genetic lesion in acute myeloid leukemia (AML); it is considered a founder event in AML pathogenesis and serves as a favorable prognostic marker. Moreover, in solid tumors and some leukemia cell lines, overexpression of the NPM1 gene is commonly observed. Therefore, the purpose of this study was to develop a new method for the detection of NPM1 mutations and the simultaneous analysis of copy number alterations (CNAs), which may underlie NPM1 gene expression deregulation. To address both of the issues, we applied a strategy based on multiplex ligation-dependent probe amplification (MLPA). A designed NPM1mut+ assay enables the detection of three of the most frequent NPM1 mutations: A, B and D. The accuracy of the assay was tested using a group of 83 samples from Polish patients with AML and other blood-proliferative disorders. To verify the results, we employed traditional Sanger sequencing and next-generation transcriptome sequencing. With the use of the NPM1mut+ assay, we detected mutations A, D and B in 14, 1 and 0 of the analyzed samples, respectively. All of these mutations were confirmed by complementary sequencing approaches, proving the 100% specificity and sensitivity of the proposed test. The performed sequencing analysis allowed the identification of two additional rare mutations (I and ZE). All of the mutations were identified exclusively in AML cases, accounting for 25% of those cases. We did not observe any CNAs (amplifications) of the NPM1 gene in the studied samples, either with or without the mutation. The presented method is simple, reliable and cost-effective. It can be easily introduced into clinical practice or developed to target both less-frequent mutations in the NPM1 gene and other cancer-related genes.
Collapse
Affiliation(s)
- Malgorzata Marcinkowska-Swojak
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Luiza Handschuh
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland; Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan, Poland.
| | - Pawel Wojciechowski
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.
| | - Michal Goralski
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Kamil Tomaszewski
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan, Poland.
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan, Poland.
| | - Mieczyslaw Komarnicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan, Poland.
| | - Jacek Blazewicz
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.
| | - Marek Figlerowicz
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland; Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland.
| | - Piotr Kozlowski
- European Center of Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
19
|
Wang ML, Bailey NG. Acute Myeloid Leukemia Genetics: Risk Stratification and Implications for Therapy. Arch Pathol Lab Med 2015; 139:1215-23. [DOI: 10.5858/arpa.2015-0203-ra] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute myeloid leukemia is a category of diseases with a common aggressive clinical presentation but with a prognosis and management that is dependent upon the underlying genetic characteristics of the neoplasm. The purpose of this brief review is to update the practicing pathologist on the current standard of care in the genetic evaluation of acute myeloid leukemia and to highlight future directions in the classification, genetic assessment, and management of these devastating diseases.
Collapse
Affiliation(s)
- Michael L. Wang
- From the Department of Pathology, University of Michigan, Ann Arbor
| | | |
Collapse
|
20
|
Goel RK, Lukong KE. Tracing the footprints of the breast cancer oncogene BRK - Past till present. Biochim Biophys Acta Rev Cancer 2015; 1856:39-54. [PMID: 25999240 DOI: 10.1016/j.bbcan.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
Twenty years have passed since the non-receptor tyrosine kinase, Breast tumor kinase (BRK) was cloned. While BRK is evolutionarily related to the Src family kinases it forms its own distinct sub-family referred here to as the BRK family kinases. The detection of BRK in over 60% of breast carcinomas two decades ago and more remarkably, its absence in the normal mammary gland attributed to its recognition as a mammary gland-specific potent oncogene and led BRK researchers on a wild chase to characterize the role of the enzyme in breast cancer. Where has this chase led us? An increasing number of studies have been focused on understanding the cellular roles of BRK in breast carcinoma and normal tissues. A majority of such studies have proposed an oncogenic function of BRK in breast cancers. Thus far, the vast evidence gathered highlights a regulatory role of BRK in critical cellular processes driving tumor formation such as cell proliferation, migration and metastasis. Functional characterization of BRK has identified several signaling proteins that work in concert with the enzyme to sustain such a malignant phenotype. As such targeting the non-receptor tyrosine kinase has been proposed as an attractive approach towards therapeutic intervention. Yet much remains to be explored about (a) the discrepant expression levels of BRK in cancer versus normal conditions, (b) the dependence on the enzymatic activity of BRK to promote oncogenesis and (c) an understanding of the normal physiological roles of the enzyme. This review outlines the advances made towards understanding the cellular and physiological roles of BRK, the mechanisms of action of the protein and its therapeutic significance, in the context of breast cancer.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|