1
|
Game-theoretic link relevance indexing on genome-wide expression dataset identifies putative salient genes with potential etiological and diapeutics role in colorectal cancer. Sci Rep 2022; 12:13409. [PMID: 35927308 PMCID: PMC9352798 DOI: 10.1038/s41598-022-17266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Diapeutics gene markers in colorectal cancer (CRC) can help manage mortality caused by the disease. We applied a game-theoretic link relevance Index (LRI) scoring on the high-throughput whole-genome transcriptome dataset to identify salient genes in CRC and obtained 126 salient genes with LRI score greater than zero. The biomarkers database lacks preliminary information on the salient genes as biomarkers for all the available cancer cell types. The salient genes revealed eleven, one and six overrepresentations for major Biological Processes, Molecular Function, and Cellular components. However, no enrichment with respect to chromosome location was found for the salient genes. Significantly high enrichments were observed for several KEGG, Reactome and PPI terms. The survival analysis of top protein-coding salient genes exhibited superior prognostic characteristics for CRC. MIR143HG, AMOTL1, ACTG2 and other salient genes lack sufficient information regarding their etiological role in CRC. Further investigation in LRI methodology and salient genes to augment the existing knowledge base may create new milestones in CRC diapeutics.
Collapse
|
2
|
Hsieh JCH, Wang HM, Wu MH, Chang KP, Chang PH, Liao CT, Liau CT. Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. Head Neck 2020; 41 Suppl 1:19-45. [PMID: 31573749 DOI: 10.1002/hed.25932] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biomarkers in head and neck squamous cell carcinoma (HNSCC) emerge rapidly in recent years, especially for new targeted therapies and immunotherapies. METHODS Recent, relevant peer-reviewed evidence were critically reviewed and summarized. RESULTS This review article briefly introduces essential biomarker concepts, including purposes and classifications (predictive, prognostic, and diagnostic markers), and the phases of biomarker development. We summarize current biomarkers in order of clinical utility; p16 and human papillomavirus status remain the most important and validated biomarkers in HNSCC. The rationale for biomarker study design continues to evolve with technological advances, especially whole-exome or whole-genomic sequencing. Noninvasive body fluid and liquid biopsy biomarkers appear to hold strong potential for development as tools for early cancer detection, cancer diagnosis, monitoring of disease recurrence, and outcome prediction. In light of discrepancies among different technologies, standardized approaches are needed. CONCLUSION Biomarkers from cancer tissue or blood in HNSCC could direct new anticancer therapies.
Collapse
Affiliation(s)
- Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Min-Hsien Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan and Chang Gung University, Taoyuan, Taiwan.,Cancer Center, Chang Gung Memorial Hospital, Keelung, and Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chi-Ting Liau
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Luque de Castro M, Priego-Capote F. The analytical process to search for metabolomics biomarkers. J Pharm Biomed Anal 2018; 147:341-349. [DOI: 10.1016/j.jpba.2017.06.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023]
|
4
|
Wooden B, Goossens N, Hoshida Y, Friedman SL. Using Big Data to Discover Diagnostics and Therapeutics for Gastrointestinal and Liver Diseases. Gastroenterology 2017; 152:53-67.e3. [PMID: 27773806 PMCID: PMC5193106 DOI: 10.1053/j.gastro.2016.09.065] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
Technologies such as genome sequencing, gene expression profiling, proteomic and metabolomic analyses, electronic medical records, and patient-reported health information have produced large amounts of data from various populations, cell types, and disorders (big data). However, these data must be integrated and analyzed if they are to produce models or concepts about physiological function or mechanisms of pathogenesis. Many of these data are available to the public, allowing researchers anywhere to search for markers of specific biological processes or therapeutic targets for specific diseases or patient types. We review recent advances in the fields of computational and systems biology and highlight opportunities for researchers to use big data sets in the fields of gastroenterology and hepatology to complement traditional means of diagnostic and therapeutic discovery.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Gastroenterology and Hepatology, Department of Medical Specialties, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Serkova NJ, Eckhardt SG. Metabolic Imaging to Assess Treatment Response to Cytotoxic and Cytostatic Agents. Front Oncol 2016; 6:152. [PMID: 27471678 PMCID: PMC4946377 DOI: 10.3389/fonc.2016.00152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
For several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, assessed by volumetric computed tomography and magnetic resonance imaging, according to the response evaluation criteria in solid tumors (RECIST), was considered as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based dimensional measurements, a metabolic response to cytotoxic drugs can be assessed by positron emission tomography (PET) using (18)F-fluoro-thymidine (FLT) as a radioactive tracer for drug-disrupted DNA synthesis. The decreased (18)FLT-PET uptake is often seen concurrently with increased apparent diffusion coefficients by diffusion-weighted imaging due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery of molecular origins of tumorogenesis led to the introduction of novel signal transduction inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific biological inhibition with no immediate cell death. As such, tumor size is not anymore a sensitive end point for a treatment response to STIs; novel physiological imaging end points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of the downstream signaling pathways, an almost immediate inhibition in glycolytic activity (the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-glucose, FDG, and total choline) provide an early treatment response to targeted STIs, before a reduction in tumor burden can be seen.
Collapse
Affiliation(s)
- Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - S. Gail Eckhardt
- Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
6
|
Legal Aspects of Personalized Medicine. Per Med 2016. [DOI: 10.1007/978-3-319-39349-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nat Rev Cancer 2015; 15:747-56. [PMID: 26536825 PMCID: PMC4970460 DOI: 10.1038/nrc4015] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several 'next-generation' functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients.
Collapse
Affiliation(s)
- Adam A Friedman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, 440 Brookline Avenue, Mayer 430, Boston, Massachusetts 02215, USA
| | - David E Fisher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
- Dermatology and Cutaneous Biology Research Center, Massachusetts General Hospital, 149 East 13th Street, Charlestown, Massachusetts 02129, USA
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
8
|
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:32-48. [PMID: 26592944 PMCID: PMC4660259 DOI: 10.1016/j.pnmrs.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy.
Collapse
|
9
|
Baselga J, Bhardwaj N, Cantley LC, DeMatteo R, DuBois RN, Foti M, Gapstur SM, Hahn WC, Helman LJ, Jensen RA, Paskett ED, Lawrence TS, Lutzker SG, Szabo E. AACR Cancer Progress Report 2015. Clin Cancer Res 2015; 21:S1-128. [PMID: 26429991 PMCID: PMC5001568 DOI: 10.1158/1078-0432.ccr-15-1846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Goossens N, Nakagawa S, Hoshida Y. Molecular prognostic prediction in liver cirrhosis. World J Gastroenterol 2015; 21:10262-10273. [PMID: 26420954 PMCID: PMC4579874 DOI: 10.3748/wjg.v21.i36.10262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
The natural history of cirrhosis varies and therefore prognostic prediction is critical given the sizable patient population. A variety of clinical prognostic indicators have been developed and enable patient risk stratification although their performance is somewhat limited especially within relatively earlier stage of disease. Molecular prognostic indicators are expected to refine the prediction, and potentially link a subset of patients with molecular targeted interventions that counteract poor prognosis. Here we overview clinical and molecular prognostic indicators in the literature, and discuss critical issues to successfully define, evaluate, and deploy prognostic indicators as clinical scores or tests. The use of liver biopsy has been diminishing due to sampling variability on fibrosis assessment and emergence of imaging- or lab test-based fibrosis assessment methods. However, recent rapid developments of genomics technologies and selective molecular targeted agents has highlighted the need for biopsy tissue specimen to explore and establish molecular information-guided personalized/stratified clinical care, and eventually achieve “precision medicine”.
Collapse
|
11
|
|
12
|
Abstract
With the emergence of genomic profiling technologies and selective molecular targeted therapies, biomarkers play an increasingly important role in the clinical management of cancer patients. Single gene/protein or multi-gene "signature"-based assays have been introduced to measure specific molecular pathway deregulations that guide therapeutic decision-making as predictive biomarkers. Genome-based prognostic biomarkers are also available for several cancer types for potential incorporation into clinical prognostic staging systems or practice guidelines. However, there is still a large gap between initial biomarker discovery studies and their clinical translation due to the challenges in the process of cancer biomarker development. In this review we summarize the steps of biomarker development, highlight key issues in successful validation and implementation, and overview representative examples in the oncology field. We also discuss regulatory issues and future perspectives in the era of big data analysis and precision medicine.
Collapse
Affiliation(s)
- Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Shigeki Nakagawa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xiaochen Sun
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
13
|
Lin L, Bivona TG. The Hippo effector YAP regulates the response of cancer cells to MAPK pathway inhibitors. Mol Cell Oncol 2015; 3:e1021441. [PMID: 27308535 DOI: 10.1080/23723556.2015.1021441] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
RAF- and MEK-targeted therapies are approved for patients with BRAF(V600E) melanoma and under investigation in a several other tumor types, but resistance remains a major challenge. We uncovered yes-associated protein 1 (YAP1) as a mechanism of resistance to RAF-MEK inhibition in BRAF- and RAS-mutant cancers, providing a rationale for co-targeting YAP and RAF-MEK to enhance patient outcomes.
Collapse
Affiliation(s)
- Luping Lin
- Division of Hematology and Medical Oncology; University of California San Francisco; San Francisco, CA USA; Helen Diller Family Comprehensive Cancer Center; University of California San Francisco; San Francisco, CA USA
| | - Trever G Bivona
- Division of Hematology and Medical Oncology; University of California San Francisco; San Francisco, CA USA; Helen Diller Family Comprehensive Cancer Center; University of California San Francisco; San Francisco, CA USA
| |
Collapse
|