1
|
Zhang J, Croft J, Le A. Familial CCM Genes Might Not Be Main Drivers for Pathogenesis of Sporadic CCMs-Genetic Similarity between Cancers and Vascular Malformations. J Pers Med 2023; 13:jpm13040673. [PMID: 37109059 PMCID: PMC10143507 DOI: 10.3390/jpm13040673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormally dilated intracranial capillaries that form cerebrovascular lesions with a high risk of hemorrhagic stroke. Recently, several somatic "activating" gain-of-function (GOF) point mutations in PIK3CA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit p110α) were discovered as a dominant mutation in the lesions of sporadic forms of cerebral cavernous malformation (sCCM), raising the possibility that CCMs, like other types of vascular malformations, fall in the PIK3CA-related overgrowth spectrum (PROS). However, this possibility has been challenged with different interpretations. In this review, we will continue our efforts to expound the phenomenon of the coexistence of gain-of-function (GOF) point mutations in the PIK3CA gene and loss-of-function (LOF) mutations in CCM genes in the CCM lesions of sCCM and try to delineate the relationship between mutagenic events with CCM lesions in a temporospatial manner. Since GOF PIK3CA point mutations have been well studied in reproductive cancers, especially breast cancer as a driver oncogene, we will perform a comparative meta-analysis for GOF PIK3CA point mutations in an attempt to demonstrate the genetic similarities shared by both cancers and vascular anomalies.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Jacob Croft
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Alexander Le
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
2
|
Śmiałek D, Jóźwiak S, Kotulska K. Safety of Sirolimus in Patients with Tuberous Sclerosis Complex under Two Years of Age-A Bicenter Retrospective Study. J Clin Med 2023; 12:jcm12010365. [PMID: 36615165 PMCID: PMC9821318 DOI: 10.3390/jcm12010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND mTOR inhibitors are a novel pharmacotherapy recommended for subependymal giant astrocytomas, refractory epilepsy, and the treatment of the other clinical manifestations of tuberous sclerosis complex (TSC). Clinical trials on everolimus proved it to be effective and safe in children. Despite its common use in clinical practice, the research on sirolimus is limited. This study is the first to determine and assess the severity of the adverse effects (AEs) of sirolimus administered to children with TSC under two years of age. METHODS We performed a bicenter retrospective data analysis of medical records of individuals with TSC who initiated therapy with sirolimus under the age of two. RESULTS Twenty-one patients were included in the study. At least one AE was reported in all participants. The most prevalent AEs were anemia, thrombocytosis, and hyperlipidemia. Infections and mouth ulcerations, often reported in the studies on older patients, were infrequent and of mild or moderate grade. CONCLUSIONS Adverse effects associated with sirolimus use in infants and young children with TSC are frequent yet not life- or health-threatening. Further multicenter prospective clinical trials should determine the long-term safety of sirolimus.
Collapse
Affiliation(s)
- Dominika Śmiałek
- Department of Pediatric Neurology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Sergiusz Jóźwiak
- Research Department, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
- Correspondence:
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-736 Warsaw, Poland
| |
Collapse
|
3
|
Shiels SM, Muire PJ, Wenke JC. FK506 increases susceptibility to musculoskeletal infection in a rodent model. BMC Musculoskelet Disord 2022; 23:716. [PMID: 35897089 PMCID: PMC9327275 DOI: 10.1186/s12891-022-05667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Delayed fracture healing caused by soft tissue loss can be resolved by the administration of a Th1 immunosuppressant, such as FK506. Additionally, open fractures are at high risk for infection. We hypothesized that the inclusion of an immunosuppressant to a subject at risk for a musculoskeletal infection will increase the likelihood of infection. Methods A rat model of musculoskeletal infection was used. Sprague Dawley rats received a stabilized femur defect and were inoculated with 104 CFU Staphylococcus aureus via a collagen matrix. Six hours after inoculation, the wounds were debrided of collagen and devitalized tissue and irrigated with sterile saline. The animals were randomized into two groups: carrier control and FK506, which were administered daily for 14 days and were euthanized and the tissues harvested to measure local bioburden. Results The dosing regimen of FK506 that restored bone healing increased the bioburden in the bone and on the fixation implant compared to the carrier control animals. As expected, the administration of FK506 decreased circulating white blood cells, lymphocytes, neutrophils, and monocytes. Additionally, the red blood cell count, hematocrit, and body weight were lower in those animals that received FK506 compared to carrier control. Conclusions FK506 administration decreased the systemic immune cell counts and increased the bacterial bioburden within a model of musculoskeletal infection. Collectively, these outcomes could be attributed to the overall T cell suppression by FK506 and the altered antimicrobial activity of innate cells, thereby allowing S. aureus to thrive and subsequently leading to infection of severe, musculoskeletal injuries. These observations reveal the crucial continued investigation for the clinical use of FK506, and other immunosuppressant compounds, in trauma patients who are at increased risk of developing infections.
Collapse
Affiliation(s)
- Stefanie M Shiels
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, TX, 78234, USA.
| | - Preeti J Muire
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, TX, 78234, USA
| | - Joseph C Wenke
- Combat Wound Care, U.S. Army Institute of Surgical Research, JBSA-Fort Sam Houston, TX, 78234, USA
| |
Collapse
|
4
|
Adefemi F, Fruman DA, Marshall AJ. A Case for Phosphoinositide 3-Kinase-Targeted Therapy for Infectious Disease. THE JOURNAL OF IMMUNOLOGY 2021; 205:3237-3245. [PMID: 33288538 DOI: 10.4049/jimmunol.2000599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
PI3Ks activate critical signaling cascades and have multifaceted regulatory functions in the immune system. Loss-of-function and gain-of-function mutations in the PI3Kδ isoform have revealed that this enzyme can substantially impact immune responses to infectious agents and their products. Moreover, reports garnered from decades of infectious disease studies indicate that pharmacologic inhibition of the PI3K pathway could potentially be effective in limiting the growth of certain microbes via modulation of the immune system. In this review, we briefly highlight the development and applications of PI3K inhibitors and summarize data supporting the concept that PI3Kδ inhibitors initially developed for oncology have immune regulatory potential that could be exploited to improve the control of some infectious diseases. This repurposing of existing kinase inhibitors could lay the foundation for alternative infectious disease therapy using available therapeutic agents.
Collapse
Affiliation(s)
- Folayemi Adefemi
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, R3E-0T5 Winnipeg, Manitoba, Canada
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697; and.,Institute for Immunology, University of California, Irvine, CA 92697
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, R3E-0T5 Winnipeg, Manitoba, Canada;
| |
Collapse
|
5
|
Ruiz-Camps I, Aguilar-Company J. Risk of infection associated with targeted therapies for solid organ and hematological malignancies. Ther Adv Infect Dis 2021; 8:2049936121989548. [PMID: 33680453 PMCID: PMC7897815 DOI: 10.1177/2049936121989548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Higher risks of infection are associated with some targeted drugs used to treat solid organ and hematological malignancies, and an individual patient’s risk of infection is strongly influenced by underlying diseases and concomitant or prior treatments. This review focuses on risk levels and specific suggestions for management, analyzing groups of agents associated with a significant effect on the risk of infection. Due to limited clinical experience and ongoing advances in these therapies, recommendations may be revised in the near future. Bruton tyrosine kinase (BTK) inhibitors are associated with a higher rate of infections, including invasive fungal infection, especially in the first months of treatment and in patients with advanced, pretreated disease. Phosphatidylinositol 3-kinase (PI3K) inhibitors are associated with an increased risk of Pneumocystis pneumonia and cytomegalovirus (CMV) reactivation. Venetoclax is associated with cytopenias, respiratory infections, and fever and neutropenia. Janus kinase (JAK) inhibitors may predispose patients to opportunistic and fungal infections; need for prophylaxis should be assessed on an individual basis. Mammalian target of rapamycin (mTOR) inhibitors have been linked to a higher risk of general and opportunistic infections. Breakpoint cluster region-Abelson (BCR-ABL) inhibitors are associated with neutropenia, especially over the first months of treatment. Anti-CD20 agents may cause defects in the adaptative immune response, hypogammaglobulinemia, neutropenia, and hepatitis B reactivation. Alemtuzumab is associated with profound and long-lasting immunosuppression; screening is recommended for latent infections and prevention strategies against CMV, herpesvirus, and Pneumocystis infections. Checkpoint inhibitors (CIs) may cause immune-related adverse events for which prolonged treatment with corticosteroids is needed: prophylaxis against Pneumocystis is recommended.
Collapse
Affiliation(s)
- Isabel Ruiz-Camps
- Infectious Diseases Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Juan Aguilar-Company
- Infectious Diseases Department and Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
6
|
Ramalingam P, Poulos MG, Gutkin MC, Katsnelson L, Freire AG, Lazzari E, Butler JM. Endothelial mTOR maintains hematopoiesis during aging. J Exp Med 2021; 217:151661. [PMID: 32289154 PMCID: PMC7971143 DOI: 10.1084/jem.20191212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/18/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
Aging leads to a decline in hematopoietic stem and progenitor cell (HSPC) function. We recently discovered that aging of bone marrow endothelial cells (BMECs) leads to an altered crosstalk between the BMEC niche and HSPCs, which instructs young HSPCs to behave as aged HSPCs. Here, we demonstrate aging leads to a decrease in mTOR signaling within BMECs that potentially underlies the age-related impairment of their niche activity. Our findings reveal that pharmacological inhibition of mTOR using Rapamycin has deleterious effects on hematopoiesis. To formally determine whether endothelial-specific inhibition of mTOR can influence hematopoietic aging, we conditionally deleted mTOR in ECs (mTOR(ECKO)) of young mice and observed that their HSPCs displayed attributes of an aged hematopoietic system. Transcriptional profiling of HSPCs from mTOR(ECKO) mice revealed that their transcriptome resembled aged HSPCs. Notably, during serial transplantations, exposure of wild-type HSPCs to an mTOR(ECKO) microenvironment was sufficient to recapitulate aging-associated phenotypes, confirming the instructive role of EC-derived signals in governing HSPC aging.
Collapse
Affiliation(s)
- Pradeep Ramalingam
- Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY
| | - Michael G Poulos
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Michael C Gutkin
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Lizabeth Katsnelson
- Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY
| | - Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Elisa Lazzari
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Jason M Butler
- Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY.,Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ.,Molecular Oncology Program, Georgetown University, Washington, DC
| |
Collapse
|
7
|
McLeod R, Kumar R, Papadatos-Pastos D, Mateo J, Brown JS, Garces AHI, Ruddle R, Decordova S, Jueliger S, Ferraldeschi R, Maiques O, Sanz-Moreno V, Jones P, Traub S, Halbert G, Mellor S, Swales KE, Raynaud FI, Garrett MD, Banerji U. First-in-Human Study of AT13148, a Dual ROCK-AKT Inhibitor in Patients with Solid Tumors. Clin Cancer Res 2020; 26:4777-4784. [PMID: 32616501 PMCID: PMC7611345 DOI: 10.1158/1078-0432.ccr-20-0700] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE AT13148 is an oral AGC kinase inhibitor, which potently inhibits ROCK and AKT kinases. In preclinical models, AT13148 has been shown to have antimetastatic and antiproliferative activity. PATIENTS AND METHODS The trial followed a rolling six design during dose escalation. An intrapatient dose escalation arm to evaluate tolerability and a biopsy cohort to study pharmacodynamic effects were later added. AT13148 was administered orally three days a week (Mon-Wed-Fri) in 28-day cycles. Pharmacokinetic profiles were assessed using mass spectrometry and pharmacodynamic studies included quantifying p-GSK3β levels in platelet-rich plasma (PRP) and p-cofilin and p-MLC2 levels in tumor biopsies. RESULTS Fifty-one patients were treated on study. The safety of 5-300 mg of AT13148 was studied. Further, the doses of 120-180-240 mg were studied in an intrapatient dose escalation cohort. The dose-limiting toxicities included hypotension (300 mg), pneumonitis, and elevated liver enzymes (240 mg), and skin rash (180 mg). The most common side effects were fatigue, nausea, headaches, and hypotension. On the basis of tolerability, 180 mg was considered the maximally tolerated dose. At 180 mg, mean C max and AUC were 400 nmol/L and 13,000 nmol/L/hour, respectively. At 180 mg, ≥50% reduction of p-cofilin was observed in 3 of 8 posttreatment biopsies. CONCLUSIONS AT13148 was the first dual potent ROCK-AKT inhibitor to be investigated for the treatment of solid tumors. The narrow therapeutic index and the pharmacokinetic profile led to recommend not developing this compound further. There are significant lessons learned in designing and testing agents that simultaneously inhibit multiple kinases including AGC kinases in cancer.
Collapse
Affiliation(s)
| | - Rajiv Kumar
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Joaquin Mateo
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jessica S Brown
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Ruth Ruddle
- The Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Oscar Maiques
- Bart's Cancer Centre, Queen Mary University of London, London, United Kingdom
| | | | - Paul Jones
- Cancer Research UK, London, United Kingdom
| | | | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, United Kingdom
| | | | - Karen E Swales
- The Institute of Cancer Research, London, United Kingdom
| | | | - Michelle D Garrett
- The Institute of Cancer Research, London, United Kingdom
- University of Kent, Canterbury, United Kingdom
| | - Udai Banerji
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Ruiz-Camps I, Aguilar-Company J. Epidermal Growth Factor Receptor Inhibitors and Other Tyrosine Kinase Inhibitors for Solid Tumors. Infect Dis Clin North Am 2020; 34:257-270. [PMID: 32334988 DOI: 10.1016/j.idc.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article analyzes the risk of infection associated with small molecule kinase inhibitors used to treat solid organ malignancies and establishes specific recommendations. Most of these drugs are orally administered and have the ability to inhibit distinct kinases, which play a major role in cancer initiation and progression. Although the true extent of adverse events is not yet known, risk of infection does not seem to be a major problem with these drugs. Because of the limited clinical experience and the constant evolution of targeted therapies, recommendations may evolve in the near future.
Collapse
Affiliation(s)
- Isabel Ruiz-Camps
- Infectious Diseases Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain
| | - Juan Aguilar-Company
- Infectious Diseases Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Oncology Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain.
| |
Collapse
|
9
|
Fujiwara Y, Kuchiba A, Koyama T, Machida R, Shimomura A, Kitano S, Shimizu T, Yamamoto N. Infection risk with PI3K-AKT-mTOR pathway inhibitors and immune checkpoint inhibitors in patients with advanced solid tumours in phase I clinical trials. ESMO Open 2020; 5:S2059-7029(20)30063-6. [PMID: 32276948 PMCID: PMC7174012 DOI: 10.1136/esmoopen-2019-000653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Patients undergoing chemotherapy are known to be at risk for infection from myelosuppression by cytotoxic agents (CTAs) or immunosuppressive effects from mTOR inhibitors. The infection risk of newly developed anticancer agents has not been fully evaluated. It remains unknown how T-cell activation induced by immune checkpoint inhibitors (ICIs) relates to infection. Methods We retrospectively examined infection risk in patients with cancer treated with investigational agents in a phase I study. The investigational agents were classified into four groups: CTA, phosphatidylinositol 3 kinase/Akt/mammalian target of rapamycin inhibitor (PAM), molecular targeted agent (MTA) and ICI. All infection-related adverse events (AEs) during treatment were recorded. We compared the CTA, PAM and ICI with MTA, because MTA are already considered low risk and were used in the largest number of patients. Results A total of 641 patients were enrolled: 35 CTAs (5.5%), 61 PAMs (9.5%), 445 MTAs (69.4%) and 100 ICIs (15.6%). Among all patients, 132 (20.6%) experienced infection-related AEs and 46 (7.2%) developed 50 ≥grade 3 infection-related AEs. In any infection-related AEs, the ORs compared with MTAs were 2.19 (95% CI 1.03 to 4.66) for CTAs, 3.55 (95% CI 2.02 to 6.24) for PAMs and 1.05 (95% CI 0.60 to 1.85) for ICIs, respectively. In time to the first infection-related AE analysis, the risks for any infection-related AE from CTAs and PAMs were higher than those from MTAs (HR 1.84 (95% CI 0.82 to 4.11); p=0.05 and 3.96 (95% CI 2.18 to 7.22); p<0.001). The risk from ICIs was not significantly different from that of MTAs (HR 0.71 (95% CI 0.46 to 1.10); p=0.19). Conclusion Our results validate that PAMs and CTAs carry a higher infection risk in patients with advanced solid tumours compared with MTAs. We suggest that the infection risk of ICIs is a similar infection risk to MTAs.
Collapse
Affiliation(s)
- Yutaka Fujiwara
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan .,Department of Respiratory Medicine, Mitsui Memorial Hospital, Chiyoda-ku, Tokyo, Japan
| | - Aya Kuchiba
- Biostatistics Division, Centre for Research Administration and Support, National Cancer Center Japan, Chuo-ku, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Ryunosuke Machida
- Biostatistics Division, Centre for Research Administration and Support, National Cancer Center Japan, Chuo-ku, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Toshio Shimizu
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| |
Collapse
|
10
|
Bai Y, Ahmad D, Wang T, Cui G, Li W. Research Advances in the Use of Histone Deacetylase Inhibitors for Epigenetic Targeting of Cancer. Curr Top Med Chem 2019; 19:995-1004. [PMID: 30686256 DOI: 10.2174/1568026619666190125145110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
Abstract
The causes and progression of cancer are controlled by epigenetic processes. The mechanisms involved in epigenetic regulation of cancer development, gene expression, and signaling pathways have been studied. Histone deacetylases (HDACs) have a major impact on chromatin remodeling and epigenetics, making their inhibitors a very interesting area of cancer research. This review comprehensively summarizes the literature regarding HDAC inhibitors (HDACis) as an anticancer treatment published in the past few years. In addition, we explain the mechanisms of their therapeutic effects on cancer. An analysis of the beneficial characteristics and drawbacks of HDACis also is presented, which will assist preclinical and clinical researchers in the design of future experiments to improve the therapeutic efficacy of these drugs and circumvent the challenges in the path of successful epigenetic therapy. Future therapeutic strategies may include a combination of HDACis and chemotherapy or other inhibitors to target multiple oncogenic signaling pathways.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Daid Ahmad
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China.,Center for Biomaterials, Jilin Medical University, Jilin, China.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Flinn IW, Cherry MA, Maris MB, Matous JV, Berdeja JG, Patel M. Combination trial of duvelisib (IPI-145) with rituximab or bendamustine/rituximab in patients with non-Hodgkin lymphoma or chronic lymphocytic leukemia. Am J Hematol 2019; 94:1325-1334. [PMID: 31490009 DOI: 10.1002/ajh.25634] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Duvelisib, a potent δ- and γ-PI3K inhibitor, is a potential therapeutic for hematologic malignancies. Rituximab and bendamustine have demonstrated activity in non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Combining duvelisib with either rituximab alone or rituximab and bendamustine may improve response rates and remission durability. We conducted this Phase one study in relapsed/refractory NHL and CLL patients. During expansion, each arm enrolled to disease-specific cohorts to assess efficacy. Arm one received rituximab 375 mg/m2 IV weekly for two 4-week cycles plus duvelisib until progression/intolerance. Arm two received rituximab 375 mg/m2 IV Day one, bendamustine 90 mg/m2 IV (NHL patients) or 70 mg/m2 IV (CLL patients) Days one-two for six cycles, plus duvelisib until progression/intolerance. Duvelisib doses of 50 mg and 75 mg BID were tested during dose escalation. Forty-six patients (27 NHL, 19 CLL) were treated. The adverse events of the drug combinations were consistent with single agent toxicities. The most common AEs were neutropenia (47.7%), fatigue (41.3%), and rash (41.3%). A duvelisib expansion dose of 25 mg BID was chosen based on the monotherapy phase one study, IPI-145-02, which confirmed that dose for further clinical development. Overall response rate was 71.8%. Median progression-free survival was 13.7 months. Median overall survival has not been reached, but 30-month overall survival probability was 62%. Duvelisib combined with rituximab, or bendamustine and rituximab did not appear to increase toxicities beyond the known safety profile of the individual agents. Further study is needed to determine if these combinations improve efficacy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bendamustine Hydrochloride/administration & dosage
- Bendamustine Hydrochloride/adverse effects
- Chemical and Drug Induced Liver Injury/etiology
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Drug Administration Schedule
- Drug Eruptions/etiology
- Drug Resistance, Neoplasm
- Febrile Neutropenia/chemically induced
- Female
- Humans
- Isoquinolines/administration & dosage
- Isoquinolines/adverse effects
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/enzymology
- Male
- Middle Aged
- Molecular Targeted Therapy
- Neoplasm Proteins/antagonists & inhibitors
- Phosphoinositide-3 Kinase Inhibitors/administration & dosage
- Phosphoinositide-3 Kinase Inhibitors/adverse effects
- Progression-Free Survival
- Purines/administration & dosage
- Purines/adverse effects
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Salvage Therapy
- Thrombocytopenia/chemically induced
Collapse
Affiliation(s)
- Ian W Flinn
- Sarah Cannon Research Institute, Nashville, Tennessee
- Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Mohamad A Cherry
- Sarah Cannon Research Institute, Nashville, Tennessee
- Department of Hematology and Oncology, Stephenson Cancer Center, Oklahoma City, Oklahoma
| | - Michael B Maris
- Sarah Cannon Research Institute, Nashville, Tennessee
- Colorado Blood Cancer Institute, Denver, Colorado
| | - Jeffrey V Matous
- Sarah Cannon Research Institute, Nashville, Tennessee
- Colorado Blood Cancer Institute, Denver, Colorado
| | - Jesus G Berdeja
- Sarah Cannon Research Institute, Nashville, Tennessee
- Tennessee Oncology, PLLC, Nashville, Tennessee
| | - Manish Patel
- Sarah Cannon Research Institute, Nashville, Tennessee
- Florida Cancer Specialists, Sarasota, Florida
| |
Collapse
|
12
|
Phan TK, Bindra GK, Williams SA, Poon IK, Hulett MD. Combating Human Pathogens and Cancer by Targeting Phosphoinositides and Their Metabolism. Trends Pharmacol Sci 2019; 40:866-882. [DOI: 10.1016/j.tips.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
|
13
|
Eades CP, Armstrong-James DPH. Invasive fungal infections in the immunocompromised host: Mechanistic insights in an era of changing immunotherapeutics. Med Mycol 2019; 57:S307-S317. [DOI: 10.1093/mmy/myy136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractThe use of cytotoxic chemotherapy in the treatment of malignant and inflammatory disorders is beset by considerable adverse effects related to nonspecific cytotoxicity. Accordingly, a mechanistic approach to therapeutics has evolved in recent times with small molecular inhibitors of intracellular signaling pathways involved in disease pathogenesis being developed for clinical use, some with unparalleled efficacy and tolerability. Nevertheless, there are emerging concerns regarding an association with certain small molecular inhibitors and opportunistic infections, including invasive fungal diseases. This is perhaps unsurprising, given that the molecular targets of such agents play fundamental and multifaceted roles in orchestrating innate and adaptive immune responses. Nevertheless, some small molecular inhibitors appear to possess intrinsic antifungal activity and may therefore represent novel therapeutic options in future. This is particularly important given that antifungal resistance is a significant, emerging concern. This paper is a comprehensive review of the state-of-the-art in the molecular immunology to fungal pathogens as applied to existing and emerging small molecular inhibitors.
Collapse
Affiliation(s)
- Christopher P Eades
- Department of Clinical Infection, Royal Free London NHS Foundation Trust, London, UK
| | - Darius P H Armstrong-James
- National Heart and Lung Institute, Imperial College London, UK
- Department of Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Combination of eribulin plus AKT inhibitor evokes synergistic cytotoxicity in soft tissue sarcoma cells. Sci Rep 2019; 9:5759. [PMID: 30962488 PMCID: PMC6453888 DOI: 10.1038/s41598-019-42300-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
An activated AKT pathway underlies the pathogenesis of soft tissue sarcoma (STS), with over-expressed phosphorylated AKT (p-AKT) correlating with a poor prognosis in a subset of STS cases. Recently, eribulin, a microtubule dynamics inhibitor, has demonstrated efficacy and is approved in patients with advanced/metastatic liposarcoma and breast cancer. However, mechanisms of eribulin resistance and/or insensitivity remain largely unknown. In this study, we demonstrated that an increased p-AKT level was associated with eribulin resistance in STS cells. We found a combination of eribulin with the AKT inhibitor, MK-2206, synergistically inhibited STS cell growth in vivo as well as in vitro. Mechanistically, eribulin plus MK-2206 induced G1 or G2/M arrest by down-regulating cyclin-dependent kinases, cyclins and cdc2, followed by caspase-dependent apoptosis in STS cells. Our findings demonstrate the significance of p-AKT signaling for eribulin-resistance in STS cells and provide a rationale for the development of an AKT inhibitor in combination with eribulin to treat patients with STS.
Collapse
|
15
|
Basu B, Krebs MG, Sundar R, Wilson RH, Spicer J, Jones R, Brada M, Talbot DC, Steele N, Ingles Garces AH, Brugger W, Harrington EA, Evans J, Hall E, Tovey H, de Oliveira FM, Carreira S, Swales K, Ruddle R, Raynaud FI, Purchase B, Dawes JC, Parmar M, Turner AJ, Tunariu N, Banerjee S, de Bono JS, Banerji U. Vistusertib (dual m-TORC1/2 inhibitor) in combination with paclitaxel in patients with high-grade serous ovarian and squamous non-small-cell lung cancer. Ann Oncol 2018; 29:1918-1925. [PMID: 30016392 PMCID: PMC6158767 DOI: 10.1093/annonc/mdy245] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background We have previously shown that raised p-S6K levels correlate with resistance to chemotherapy in ovarian cancer. We hypothesised that inhibiting p-S6K signalling with the dual m-TORC1/2 inhibitor in patients receiving weekly paclitaxel could improve outcomes in such patients. Patients and methods In dose escalation, weekly paclitaxel (80 mg/m2) was given 6/7 weeks in combination with two intermittent schedules of vistusertib (dosing starting on the day of paclitaxel): schedule A, vistusertib dosed bd for 3 consecutive days per week (3/7 days) and schedule B, vistusertib dosed bd for 2 consecutive days per week (2/7 days). After establishing a recommended phase II dose (RP2D), expansion cohorts in high-grade serous ovarian cancer (HGSOC) and squamous non-small-cell lung cancer (sqNSCLC) were explored in 25 and 40 patients, respectively. Results The dose-escalation arms comprised 22 patients with advanced solid tumours. The dose-limiting toxicities were fatigue and mucositis in schedule A and rash in schedule B. On the basis of toxicity and pharmacokinetic (PK) and pharmacodynamic (PD) evaluations, the RP2D was established as 80 mg/m2 paclitaxel with 50 mg vistusertib bd 3/7 days for 6/7 weeks. In the HGSOC expansion, RECIST and GCIG CA125 response rates were 13/25 (52%) and 16/25 (64%), respectively, with median progression-free survival (mPFS) of 5.8 months (95% CI: 3.28-18.54). The RP2D was not well tolerated in the SqNSCLC expansion, but toxicities were manageable after the daily vistusertib dose was reduced to 25 mg bd for the following 23 patients. The RECIST response rate in this group was 8/23 (35%), and the mPFS was 5.8 months (95% CI: 2.76-21.25). Discussion In this phase I trial, we report a highly active and well-tolerated combination of vistusertib, administered as an intermittent schedule with weekly paclitaxel, in patients with HGSOC and SqNSCLC. Clinical trial registration ClinicialTrials.gov identifier: CNCT02193633.
Collapse
Affiliation(s)
- B Basu
- Department of Oncology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - M G Krebs
- Manchester Academic Health Science Centre, The University of Manchester and The Christie NHS Foundation Trust, Manchester
| | - R Sundar
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK; Department of Haematology-Oncology, National University Health System, Singapore
| | - R H Wilson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast and Belfast City Hospital, Belfast
| | - J Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London and Guy's and St Thomas' NHS Foundation Trust, London
| | - R Jones
- Cardiff University and Velindre Cancer Centre, Cardiff
| | - M Brada
- University of Liverpool and Clatterbridge Cancer Centre NHS Foundation Trust, Wirral
| | - D C Talbot
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford
| | - N Steele
- University of Glasgow and Beatson West of Scotland Cancer Centre, Glasgow
| | - A H Ingles Garces
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - W Brugger
- Oncology, IMED Biotech Unit AstraZeneca, Cambridge
| | | | - J Evans
- University of Glasgow and Beatson West of Scotland Cancer Centre, Glasgow
| | - E Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London
| | - H Tovey
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London
| | - F M de Oliveira
- Division of Clinical Studies, The Institute of Cancer Research, London
| | - S Carreira
- Division of Clinical Studies, The Institute of Cancer Research, London
| | - K Swales
- Division of Cancer Therapeutics, The Institute of Cancer Research, London
| | - R Ruddle
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK; Division of Cancer Therapeutics, The Institute of Cancer Research, London
| | - F I Raynaud
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK; Division of Cancer Therapeutics, The Institute of Cancer Research, London
| | - B Purchase
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - J C Dawes
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - M Parmar
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - A J Turner
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - N Tunariu
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK
| | - S Banerjee
- Department of Gynae-Oncology, The Royal Marsden, London, UK
| | - J S de Bono
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK; Division of Clinical Studies, The Institute of Cancer Research, London
| | - U Banerji
- Drug Development Unit, The Institute of Cancer Research and The Royal Marsden, London, UK; Division of Clinical Studies, The Institute of Cancer Research, London; Division of Cancer Therapeutics, The Institute of Cancer Research, London.
| |
Collapse
|
16
|
de Bono JS, De Giorgi U, Rodrigues DN, Massard C, Bracarda S, Font A, Arranz Arija JA, Shih KC, Radavoi GD, Xu N, Chan WY, Ma H, Gendreau S, Riisnaes R, Patel PH, Maslyar DJ, Jinga V. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin Cancer Res 2018; 25:928-936. [DOI: 10.1158/1078-0432.ccr-18-0981] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 11/16/2022]
|
17
|
Bendell JC, Varghese AM, Hyman DM, Bauer TM, Pant S, Callies S, Lin J, Martinez R, Wickremsinhe E, Fink A, Wacheck V, Moore KN. A First-in-Human Phase 1 Study of LY3023414, an Oral PI3K/mTOR Dual Inhibitor, in Patients with Advanced Cancer. Clin Cancer Res 2018; 24:3253-3262. [PMID: 29636360 DOI: 10.1158/1078-0432.ccr-17-3421] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The PI3K/mTOR pathway is frequently aberrated in cancer. LY3023414 is a potent and selective ATP-competitive inhibitor of class I PI3K isoforms, mTOR, and DNA-PK. Here we report the dose-escalation results of the first-in-human phase I study of LY3023414.Patients and Methods: A 3+3 dose escalation for once-daily and twice-daily oral dosing of LY3023414 was followed by an expansion cohort for CYP3A4 drug-drug interaction (DDI) assessment. The primary objective was to determine the recommended phase 2 dose (RP2D). Additional objectives included safety, pharmacokinetics/pharmacodynamics, and antitumor activity.Results: Forty-seven patients with solid tumors received LY3023414 at once-daily (20-450 mg) or twice-daily dosing (150-250 mg). Dose-limiting toxicities were observed at 450 mg once-daily (thrombocytopenia, hypotension, hyperkalemia) in three of three patients, 250-mg twice-daily dosing (hypophosphatemia, fatigue, mucositis) in three of four patients, and in one of 15 patients at 200 mg twice-daily (nausea). Common related AEs included nausea (38%), fatigue (34%), and vomiting (32%) and were mostly mild or moderate. LY3023414 pharmacokinetics demonstrated dose-dependent increase in exposure with ≥ 90% target inhibition at doses ≥150 mg. DDI analysis demonstrated LY3023414 to be a weak inhibitor of CYP3A4. Durable partial response was observed in a patient with endometrial cancer harboring PIK3R1 and PTEN truncating mutations, and 13 additional patients (28%) had a decrease in their target lesions by up to 30%.Conclusions: LY3023414 has a tolerable safety profile and single-agent activity in patients with advanced cancers. The RP2D of LY3023414 monotherapy is 200 mg twice daily based on safety, tolerability, and pharmacokinetic/pharmacodynamic data. Clin Cancer Res; 24(14); 3253-62. ©2018 AACR.
Collapse
Affiliation(s)
- Johanna C Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee.
| | | | - David M Hyman
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Todd M Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Shubham Pant
- Stephenson Oklahoma Cancer Center/Sarah Cannon Research Institute, Oklahoma City, Oklahoma
| | | | - Ji Lin
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Aaron Fink
- Eli Lilly and Company, Indianapolis, Indiana
| | | | - Kathleen N Moore
- Stephenson Oklahoma Cancer Center/Sarah Cannon Research Institute, Oklahoma City, Oklahoma
| |
Collapse
|
18
|
Reinwald M, Silva JT, Mueller NJ, Fortún J, Garzoni C, de Fijter JW, Fernández-Ruiz M, Grossi P, Aguado JM. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect 2018; 24 Suppl 2:S53-S70. [PMID: 29454849 DOI: 10.1016/j.cmi.2018.02.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The present review is part of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biologic therapies. AIMS To review, from an infectious diseases perspective, the safety profile of therapies targeting different intracellular signaling pathways and to suggest preventive recommendations. SOURCES Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Although BCR-ABL tyrosine kinase inhibitors modestly increase the overall risk of infection, dasatinib has been associated with cytomegalovirus and hepatitis B virus reactivation. BRAF/MEK kinase inhibitors do not significantly affect infection susceptibility. The effect of Bruton tyrosine kinase inhibitors (ibrutinib) among patients with B-cell malignancies is difficult to distinguish from that of previous immunosuppression. However, cases of Pneumocystis jirovecii pneumonia (PCP), invasive fungal infection and progressive multifocal leukoencephalopathy have been occasionally reported. Because phosphatidylinositol-3-kinase inhibitors (idelalisib) may predispose to opportunistic infections, anti-Pneumocystis prophylaxis and prevention strategies for cytomegalovirus are recommended. No increased rates of infection have been observed with venetoclax (antiapoptotic protein Bcl-2 inhibitor). Therapy with Janus kinase inhibitors markedly increases the incidence of infection. Pretreatment screening for chronic hepatitis B virus and latent tuberculosis infection must be performed, and anti-Pneumocystis prophylaxis should be considered for patients with additional risk factors. Cancer patients receiving mTOR inhibitors face an increased incidence of overall infection, especially those with additional risk factors (prior therapies or delayed wound healing). IMPLICATIONS Specific preventive approaches are warranted in view of the increased risk of infection associated with some of the reviewed agents.
Collapse
Affiliation(s)
- M Reinwald
- Department of Hematology and Oncology, Klinikum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Brandenburg an der Havel, Germany.
| | - J T Silva
- Department of Infectious Diseases, University Hospital of Badajoz, Fundación para la Formación e Investigación de los Profesionales de la Salud (FundeSalud), Badajoz, Spain
| | - N J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J Fortún
- Department of Infectious Diseases, Hospital Universitario 'Ramon y Cajal', Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - C Garzoni
- Department of Internal Medicine, Clinica Luganese, Lugano, Switzerland; Department of Infectious Disease, Clinica Luganese, Lugano, Switzerland
| | - J W de Fijter
- Department of Medicine, Division of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - P Grossi
- Department of Infectious and Tropical Diseases, University of Insubria, Ospedale di Circolo-Fondazioni Macchi, Varese, Italy
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Magryś A, Bogut A, Kiełbus M, Olender A. The role of the PI3K/mTOR signaling pathway in Staphylococcus epidermidis small colony variants intracellular survival. Immunol Invest 2018; 47:251-263. [PMID: 29336620 DOI: 10.1080/08820139.2018.1423569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objective of this study was to analyze how Staphylococcus epidermidis SCV and WT strains manipulate the PI3K/Akt/mTOR signaling pathway. Six S. epidermidis strains with normal phenotype (WT) and six S. epidermidis strains with SCV phenotype were isolated in parallel from six patients with the prosthetic hip joint infections. THP-1 activated cells were incubated with or without PI3K inhibitor-wortmannin or with mTOR inhibitor-rapamycin. Next, macrophages were exposed to S. epidermidis WT and SCV strains. After 4 h incubation, bacterial survival inside macrophages as well as PI3K-mTOR activation was analyzed. SCV strains of S. epidermidis increased the level of Akt phosphorylation, compared to uninfected macrophages and to their parental WT forms. Wild type variants of S. epidermidis phosphorylated Akt at similar or lower levels as control uninfected cells. Next, the induction of mTOR target, phosphorylated ribosomal protein S6, was measured in bacteria-infected macrophages. The level of phosphorylation was significantly reduced when the cells were exposed to WT strains of S. epidermidis. In contrast, the SCV strains activated S6 protein mostly at a level comparable to the control cells. Rapamycin inhibited mTOR activation as the number of p-S6 positive cells decreased in the tested cases. To conclude, the SCV strains activate the PI3K-Akt signaling pathway in opposite to WT strains. This fact however did not influence the increase in the number of live SCV bacteria as compared to the WT strains. Knowing that the PI3K-Akt pathway is involved in proinflammatory cytokines suppression, SCVs seem to use this pathway to reduce the inflammatory response during the infection.
Collapse
Affiliation(s)
- Agnieszka Magryś
- a Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland
| | - Agnieszka Bogut
- a Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland
| | - Michał Kiełbus
- b Chair and Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Alina Olender
- a Chair and Department of Medical Microbiology , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
20
|
Singla A, Gupta N, Apewokin S, McCormack FX. Sirolimus for the treatment of lymphangioleiomyomatosis. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1391089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Abhishek Singla
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Senu Apewokin
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
21
|
Kamaladevi A, Balamurugan K. Global Proteomics Revealed Klebsiella pneumoniae Induced Autophagy and Oxidative Stress in Caenorhabditis elegans by Inhibiting PI3K/AKT/mTOR Pathway during Infection. Front Cell Infect Microbiol 2017; 7:393. [PMID: 28932706 PMCID: PMC5592217 DOI: 10.3389/fcimb.2017.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023] Open
Abstract
The enterobacterium, Klebsiella pneumoniae invades the intestinal epithelium of humans by interfering with multiple host cell response. To uncover a system-level overview of host response during infection, we analyzed the global dynamics of protein profiling in Caenorhabditis elegans using quantitative proteomics approach. Comparison of protein samples of nematodes exposed to K. pneumoniae for 12, 24, and 36 h by 2DE revealed several changes in host proteome. A total of 266 host-encoded proteins were identified by 2DE MALDI-MS/MS and LC-MS/MS and the interacting partners of the identified proteins were predicted by STRING 10.0 analysis. In order to understand the interacting partners of regulatory proteins with similar or close pI ranges, a liquid IEF was performed and the isolated fractions containing proteins were identified by LC-MS/MS. Functional bioinformatics analysis on identified proteins deciphered that they were mostly related to the metabolism, dauer formation, apoptosis, endocytosis, signal transduction, translation, developmental, and reproduction process. Gene enrichment analysis suggested that the metabolic process as the most overrepresented pathway regulated against K. pneumoniae infection. The dauer-like formation in infected C. elegans along with intestinal atrophy and ROS during the physiological analysis indicated that the regulation of metabolic pathway is probably through the involvement of mTOR. Immunoblot analysis supported the above notion that the K. pneumoniae infection induced protein mis-folding in host by involving PI3Kinase/AKT-1/mTOR mediated pathway. Furthermore, the susceptibility of pdi-2, akt-1, and mTOR C. elegans mutants confirmed the role and involvement of PI3K/AKT/mTOR pathway in mediating protein mis-folding which appear to be translating the vulnerability of host defense toward K. pneumoniae infection.
Collapse
|
22
|
Garcia CA, Wu S. Attributable Risk of Infection to mTOR Inhibitors Everolimus and Temsirolimus in the Treatment of Cancer. Cancer Invest 2016; 34:521-530. [DOI: 10.1080/07357907.2016.1242009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christine A. Garcia
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Shenhong Wu
- Division of Hematology/Oncology, Department of Medicine, Stony Brook University Hospital, Stony Brook, New York, USA
- Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
23
|
Eichler TE, Becknell B, Easterling RS, Ingraham SE, Cohen DM, Schwaderer AL, Hains DS, Li B, Cohen A, Metheny J, Tridandapani S, Spencer JD. Insulin and the phosphatidylinositol 3-kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract. Kidney Int 2016; 90:568-79. [PMID: 27401534 DOI: 10.1016/j.kint.2016.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus is a systemic disease associated with a deficiency of insulin production or action. Diabetic patients have an increased susceptibility to infection with the urinary tract being the most common site. Recent studies suggest that Ribonuclease 7 (RNase 7) is a potent antimicrobial peptide that plays an important role in protecting the urinary tract from bacterial insult. Because the impact of diabetes on RNase 7 expression and function are unknown, we investigated the effects of insulin on RNase 7 using human urine specimens. The urinary RNase 7 concentrations were measured in healthy control patients and insulin-deficient type 1 diabetics before and after starting insulin therapy. Compared with controls, diabetic patients had suppressed urinary RNase 7 concentrations, which increased with insulin. Using primary human urothelial cells, the mechanisms by which insulin stimulates RNase 7 synthesis were next explored. Insulin induced RNase 7 production via the phosphatidylinositide 3-kinase signaling pathway (PI3K/AKT) to shield urothelial cells from uropathogenic E. coli. In contrast, uropathogenic E. coli suppressed PI3K/AKT activity and RNase 7 production. Thus, insulin and PI3K/AKT signaling are essential for RNase 7 expression and increased infection risks in diabetic patients may be secondary to suppressed RNase 7 production. Our data may provide unique insight into novel urinary tract infection therapeutic strategies in at-risk populations.
Collapse
Affiliation(s)
- Tad E Eichler
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Brian Becknell
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - Robert S Easterling
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Susan E Ingraham
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - Daniel M Cohen
- Division of Emergency Medicine, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - Andrew L Schwaderer
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA
| | - David S Hains
- Innate Immunity Translational Research Center, Department of Pediatrics, Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Birong Li
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Ariel Cohen
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Jackie Metheny
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA; Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio, USA
| | - John David Spencer
- Center for Clinical and Translational Research, Department of Pediatrics, The Research Institute at Nationwide Children's, Columbus, Ohio, USA; Division of Nephrology, Department of Pediatrics, Nationwide Children's, Columbus, Ohio, USA.
| |
Collapse
|
24
|
Khan KH, Wong M, Rihawi K, Bodla S, Morganstein D, Banerji U, Molife LR. Hyperglycemia and Phosphatidylinositol 3-Kinase/Protein Kinase B/Mammalian Target of Rapamycin (PI3K/AKT/mTOR) Inhibitors in Phase I Trials: Incidence, Predictive Factors, and Management. Oncologist 2016; 21:855-60. [PMID: 27151652 DOI: 10.1634/theoncologist.2015-0248] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/04/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Dysregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is implicated in human cancer growth and progression. Agents targeting this pathway are associated with hyperglycemia due to interaction with the insulin-glucose regulatory axis. Identifying the predictive factors for hyperglycemia in patients treated with these agents may help direct future management. MATERIALS AND METHODS Clinical characteristics and outcomes of patients treated consecutively with PI3K, AKT, or mTOR inhibitors in the Drug Development Unit, The Royal Marsden (RM) National Health Service (NHS) Foundation Trust, between 2007 and 2012 were recorded. Baseline variables and their association with grade 3 hyperglycemia (Common Terminology Criteria for Adverse Events, version 3.0) were analyzed by using the chi-square test and Fisher exact test for categorical variables and binary logistic regression for continuous variables. RESULTS A total of 341 patients were treated in 12 phase I trials of PI3K/AKT/mTOR inhibitors, and 298 patients (87.4%) developed hyperglycemia. Hyperglycemia was grade 1 in 217 (72.8%) and grade 2 in 61 (20.5%) patients, respectively. Grade ≥3 hyperglycemia was seen in 6.7% of patients (n = 20). According to the chi-square test, age <65 years (p = .03), history of diabetes (p = .003), and treatment with AKT and dual PI3K/mTOR inhibitors (p < .0005) predicted the occurrence of grade 3 hyperglycemia. Of 24 patients requiring intervention, 20 received metformin, 2 dietary advice, 1 insulin, and 1 both metformin and insulin. One patient required dose reduction. There were no permanent drug discontinuations, and no hyperglycemia-related dose-limiting toxicities were observed; thus, the recommended phase II dose was not affected by the hyperglycemia observed in our cohort. CONCLUSION Hyperglycemia is common in patients treated with PI3K/AKT/mTOR inhibitors; however, it is manageable with conventional treatment. Predictive factors of age, history of diabetes, and administration of AKT and dual PI3K/mTOR inhibitors warrant prospective validation. IMPLICATIONS FOR PRACTICE This study reviewed the clinical data of 341 patients treated in 12 phase I trials of agents targeting phosphatidylinositol3-kinase (PI3), protein kinase B (AKT), and mammalian target of rapamycin (mTOR), as well as dual inhibitors. Hyperglycemia was evident in 87.4% of patients but was ≥grade 3 in just 6.7%. Age <65 years, history of diabetes, and treatment with AKT and dual PI3K/mTOR inhibitors were each associated with grade 3 hyperglycemia. Management of patients was uncomplicated, and no permanent drug discontinuations were necessary. Despite the small study size, these findings support continued caution about enrolling patients with a history of diabetes into such trials. However, clinicians may be reassured, pending prospective validation of these results, that significant hyperglycemia is not frequent and, when it occurs, is manageable.
Collapse
Affiliation(s)
- Khurum H Khan
- Drug Development Unit, Royal Marsden National Health Service Trust, London, United Kingdom
| | - Mabel Wong
- Drug Development Unit, Royal Marsden National Health Service Trust, London, United Kingdom
| | - Karim Rihawi
- Drug Development Unit, Royal Marsden National Health Service Trust, London, United Kingdom
| | - Shankar Bodla
- Department of Statistics, Royal Marsden National Health Service Trust, London, United Kingdom
| | - Daniel Morganstein
- Department of Endocrinology, The Royal Marsden (RM) National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Udai Banerji
- Drug Development Unit, Royal Marsden National Health Service Trust, London, United Kingdom
| | - Lulama R Molife
- Drug Development Unit, Royal Marsden National Health Service Trust, London, United Kingdom
| |
Collapse
|
25
|
Reinwald M, Boch T, Hofmann WK, Buchheidt D. Risk of Infectious Complications in Hemato-Oncological Patients Treated with Kinase Inhibitors. Biomark Insights 2016; 10:55-68. [PMID: 27127405 PMCID: PMC4841329 DOI: 10.4137/bmi.s22430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 12/30/2022] Open
Abstract
Infectious complications are a major cause of morbidity and mortality in patients with hemato-oncological diseases. Although disease-related immunosuppression represents one factor, aggressive treatment regimens, such as chemotherapy, stem cell transplantation, or antibody treatment, account for a large proportion of infectious side effects. With the advent of targeted therapies affecting specific kinases in malignant diseases, the outcome of patients has further improved. Nonetheless, dependent on the specific pathway targeted or off-target activity of the kinase inhibitor, therapy-associated infectious complications may occur. We review the most common and approved kinase inhibitors targeting a variety of hemato-oncological malignancies for their immunosuppressive potential and evaluate their risk of infectious side effects based on preclinical evidence and clinical data in order to raise awareness of the potential risks involved.
Collapse
Affiliation(s)
- Mark Reinwald
- Department of Hematology and Oncology, Mannheim University Hospital, University of Heidelberg, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Mannheim University Hospital, University of Heidelberg, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Mannheim University Hospital, University of Heidelberg, Mannheim, Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
26
|
Eiden AM, Zhang S, Gary JM, Simmons JK, Mock BA. Molecular Pathways: Increased Susceptibility to Infection Is a Complication of mTOR Inhibitor Use in Cancer Therapy. Clin Cancer Res 2015; 22:277-83. [PMID: 26607598 DOI: 10.1158/1078-0432.ccr-14-3239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
As one of the earliest examples of "chemical biology," the M: echanistic T: arget of R: apamycin (mTOR) protein and its chemical inhibitors have been extensively studied across a spectrum of physiologic and pathologic processes at the molecular, organismal, and patient population levels. There are several FDA-approved mTOR inhibitors (sirolimus, everolimus, and temsirolimus) with indications for cancer treatment and for prevention of solid organ rejection. Dozens of mTOR inhibitors are currently being evaluated in hundreds of ongoing clinical trials across a spectrum of diseases, including numerous cancer indications, autoimmune diseases, and a number of congenital disorders. As many of the approved and investigational indications for mTOR inhibitors require long-term treatment, the magnitude and incidence of particular side effects differ from those observed in shorter-term treatments. Here, we focus on the increased risk of infections in patients being treated with mTOR inhibitors. While increased infection rates might be expected from a class of drugs approved as posttransplant immunosuppressants, we review reports from clinical, mechanistic, and genetically engineered mouse model studies detailing a much more nuanced view of mTOR inhibitor drug action and target biology.
Collapse
Affiliation(s)
- Adrian M Eiden
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shuling Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joy M Gary
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - John K Simmons
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
27
|
Immunomodulation and Disease Tolerance to Staphylococcus aureus. Pathogens 2015; 4:793-815. [PMID: 26580658 PMCID: PMC4693165 DOI: 10.3390/pathogens4040793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The Gram-positive bacterium Staphylococcus aureus is one of the most frequent pathogens that causes severe morbidity and mortality throughout the world. S. aureus can infect skin and soft tissues or become invasive leading to diseases such as pneumonia, endocarditis, sepsis or toxic shock syndrome. In contrast, S. aureus is also a common commensal microbe and is often part of the human nasal microbiome without causing any apparent disease. In this review, we explore the immunomodulation and disease tolerance mechanisms that promote commensalism to S. aureus.
Collapse
|