1
|
Prashanth N, Meghana P, Sandeep Kumar Jain R, Pooja S Rajaput, Satyanarayan N D, Raja Naika H, Kumaraswamy H M. Nicotine promotes epithelial to mesenchymal transition and gemcitabine resistance via hENT1/RRM1 signalling in pancreatic cancer and chemosensitizing effects of Embelin-a naturally occurring benzoquinone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169727. [PMID: 38163613 DOI: 10.1016/j.scitotenv.2023.169727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer is lethal due to poor prognosis with 5-year survival rate lesser than 5 %. Gemcitabine is currently used to treat pancreatic cancer and development of chemoresistance is a major obstacle to overcome pancreatic cancer. Nicotine is a known inducer of drug resistance in pancreatic tumor micro-environment. Present study evaluates chemoresistance triggered by nicotine while treating with gemcitabine and chemosensitization using Embelin. Embelin is a naturally occurring benzoquinone from Embelia ribes possessing therapeutic potency. To develop nicotine-induced chemo-resistance, pancreatic cancer cells PANC-1 and MIA PaCa-2 were continuously treated with nicotine followed by exposure to gemcitabine. Gemcitabine sensitivity assay and immunoblotting was performed to assess the chemo-resistance. Antiproliferative assays such as migration assay, clonogenic assay, Mitochondrial Membrane Potential (MMP) assay, dual staining assay, comet assay, Reactive Oxygen Species (ROS) assay, cell cycle analysis and immunoblotting assays were performed to witness the protein expression involved in chemoresistance and chemosensitization. Epithelial to mesenchymal transition was observed in nicotine induced chemoresistant cells. Gemcitabine sensitivity assay revealed that relative resistance was increased to 6.26 (p < 0.0001) and 6.45 (p < 0.0001) folds in resistant PANC-1 and MIA PaCa-2 compared to parental cells. Protein expression studies confirmed resistance markers like hENT1 and dCK were downregulated with subsequent increase in RRM1 expression in resistant cells. Embelin considerably decreased the cell viability with an IC50 value of 4.03 ± 0.08 μM in resistant PANC-1 and 2.11 ± 0.04 μM in resistant MIA PaCa-2. Cell cycle analysis showed Embelin treatment caused cell cycle arrest at S phase in resistant PANC-1 cells; in resistant MIA PaCa-2 cells there was an escalation in the Sub G1. Embelin upregulated Bax, γH2AX, p53, ERK1/2 and hENT1 expression with concomitant down regulation of Bcl-2 and RRM1. Bioactive molecule embelin, its combination with gemcitabine could provide new vistas to overcome chemo resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Prashanth N
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Meghana P
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Sandeep Kumar Jain R
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Pooja S Rajaput
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Satyanarayan N D
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, 577548, Karnataka, India
| | - Raja Naika H
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Kumaraswamy H M
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India.
| |
Collapse
|
2
|
Godfrey LK, Forster J, Liffers ST, Schröder C, Köster J, Henschel L, Ludwig KU, Lähnemann D, Trajkovic-Arsic M, Behrens D, Scarpa A, Lawlor RT, Witzke KE, Sitek B, Johnsen SA, Rahmann S, Horsthemke B, Zeschnigk M, Siveke JT. Pancreatic cancer acquires resistance to MAPK pathway inhibition by clonal expansion and adaptive DNA hypermethylation. Clin Epigenetics 2024; 16:13. [PMID: 38229153 PMCID: PMC10792938 DOI: 10.1186/s13148-024-01623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors (MEKi) failed due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation of resistance to oncogenic MAPK pathway inhibition, we utilized short-term passaged primary tumor cells from ten PDACs of genetically engineered mice. We followed gain and loss of resistance upon MEKi exposure and withdrawal by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA-sequencing and mass spectrometry data. RESULTS We found that resistant cell populations under increasing MEKi treatment evolved by the expansion of a single clone but were not a direct consequence of known resistance-conferring mutations. Rather, resistant cells showed adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regulatory elements known to be active in murine PDAC cells. Both DNA methylation changes and MEKi resistance were transient and reversible upon drug withdrawal. Furthermore, MEKi resistance could be reversed by DNA methyltransferase inhibition with remarkable sensitivity exclusively in the resistant cells. CONCLUSION Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treatment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic targeting.
Collapse
Affiliation(s)
- Laura K Godfrey
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Jan Forster
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Sven-Thorsten Liffers
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Christopher Schröder
- Genome Informatics, Institute of Human Genetics, University Duisburg-Essen, Essen, Germany
| | - Johannes Köster
- Bioinformatics and Computational Oncology, Institute for Artificial Intelligence in Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Leonie Henschel
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - David Lähnemann
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Marija Trajkovic-Arsic
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
| | - Diana Behrens
- EPO Experimental Pharmacology and Oncology GmbH, Berlin-Buch, Germany
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Pathological Anatomy Section, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Cancer Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Rita T Lawlor
- ARC-Net Cancer Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Kathrin E Witzke
- Medizinisches Proteom-Center/Zentrum Für Protein-Diagnostik, Ruhr-Universität Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center/Zentrum Für Protein-Diagnostik, Ruhr-Universität Bochum, Bochum, Germany
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Sven Rahmann
- Algorithmic Bioinformatics, Center for Bioinformatics Saar and Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Zeschnigk
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK), partner site Essen, a partnership between German Cancer Research Center (DKFZ) and University Hospital Essen, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT) West, Campus Essen, Essen, Germany.
| |
Collapse
|
3
|
Su J, Li R, Chen Z, Liu S, Zhao H, Deng S, Zeng L, Xu Z, Zhao S, Zhou Y, Li M, He X, Liu J, Xue C, Bai R, Zhuang L, Zhou Q, Zhang S, Chen R, Huang X, Lin D, Zheng J, Zhang J. N 6-methyladenosine Modification of FZR1 mRNA Promotes Gemcitabine Resistance in Pancreatic Cancer. Cancer Res 2023; 83:3059-3076. [PMID: 37326469 DOI: 10.1158/0008-5472.can-22-3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic options for treating pancreatic ductal adenocarcinoma (PDAC) are limited, and resistance to gemcitabine, a cornerstone of PDAC chemotherapy regimens, remains a major challenge. N6-methyladenosine (m6A) is a prevalent modification in mRNA that has been linked to diverse biological processes in human diseases. Herein, by characterizing the global m6A profile in a panel of gemcitabine-sensitive and gemcitabine-insensitive PDAC cells, we identified a key role for elevated m6A modification of the master G0-G1 regulator FZR1 in regulating gemcitabine sensitivity. Targeting FZR1 m6A modification augmented the response to gemcitabine treatment in gemcitabine-resistant PDAC cells both in vitro and in vivo. Mechanistically, GEMIN5 was identified as a novel m6A mediator that specifically bound to m6A-modified FZR1 and recruited the eIF3 translation initiation complex to accelerate FZR1 translation. FZR1 upregulation maintained the G0-G1 quiescent state and suppressed gemcitabine sensitivity in PDAC cells. Clinical analysis further demonstrated that both high levels of FZR1 m6A modification and FZR1 protein corresponded to poor response to gemcitabine. These findings reveal the critical function of m6A modification in regulating gemcitabine sensitivity in PDAC and identify the FZR1-GEMIN5 axis as a potential target to enhance gemcitabine response. SIGNIFICANCE Increased FZR1 translation induced by m6A modification engenders a gemcitabine-resistant phenotype by inducing a quiescent state and confers a targetable vulnerability to improve treatment response in PDAC.
Collapse
Affiliation(s)
- Jiachun Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Laboratory Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rui Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ziming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shaoqiu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongzhe Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lingxing Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilan Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sihan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yifan Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaowei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunling Xue
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruihong Bai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lisha Zhuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Quanbo Zhou
- Department of Pancreaticobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rufu Chen
- Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xudong Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dongxin Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jialiang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
4
|
Guenther M, Surendran SA, Haas M, Heinemann V, von Bergwelt-Baildon M, Engel J, Werner J, Boeck S, Ormanns S. TPX2 expression as a negative predictor of gemcitabine efficacy in pancreatic cancer. Br J Cancer 2023:10.1038/s41416-023-02295-x. [PMID: 37142730 DOI: 10.1038/s41416-023-02295-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Targeting protein for Xenopus kinesin-like protein 2 (TPX2) overexpression in human tumours is associated with increased malignancy. Its effect on gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) has not been studied yet. METHODS The prognostic impact of TPX2 expression was examined in the tumour tissue of 139 patients with advanced PDAC (aPDAC) treated within the AIO-PK0104 trial or translational trials and of 400 resected PDAC (rPDAC) patients. The findings were validated using RNAseq data of 149 resected PDAC patients. RESULTS In the aPDAC cohorts, 13.7% of all samples showed high TPX2 expression, conferring significantly shorter progression-free survival (PFS, HR 5.25, P < 0.001) and overall survival times (OS, HR 4.36, P < 0.001) restricted to gemcitabine-based treated patients (n = 99). In the rPDAC cohort, 14.5% of all samples showed high TPX2 expression, conferring significantly shorter disease-free survival times (DFS, HR 2.56, P < 0.001) and OS times (HR 1.56, P = 0.04) restricted to patients treated with adjuvant gemcitabine. RNAseq data from the validation cohort confirmed the findings. CONCLUSIONS High TPX2 expression may serve as a negative predictor of gemcitabine-based palliative and adjuvant chemotherapy in PDAC and could be used to inform clinical therapy decisions. CLINICAL TRIAL REGISTRY The clinical trial registry identifier is NCT00440167.
Collapse
Affiliation(s)
- Michael Guenther
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
| | - Sai Agash Surendran
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Haas
- Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Volker Heinemann
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Michael von Bergwelt-Baildon
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jutta Engel
- Munich Cancer Registry (MCR), Munich Tumor Centre (TZM), Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Boeck
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany
- Department of Internal Medicine III, Grosshadern University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany.
| |
Collapse
|
5
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
6
|
microRNAs Associated with Gemcitabine Resistance via EMT, TME, and Drug Metabolism in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15041230. [PMID: 36831572 PMCID: PMC9953943 DOI: 10.3390/cancers15041230] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Despite extensive research, pancreatic cancer remains a lethal disease with an extremely poor prognosis. The difficulty in early detection and chemoresistance to therapeutic agents are major clinical concerns. To improve prognosis, novel biomarkers, and therapeutic strategies for chemoresistance are urgently needed. microRNAs (miRNAs) play important roles in the development, progression, and metastasis of several cancers. During the last few decades, the association between pancreatic cancer and miRNAs has been extensively elucidated, with several miRNAs found to be correlated with patient prognosis. Moreover, recent evidence has revealed that miRNAs are intimately involved in gemcitabine sensitivity and resistance through epithelial-to-mesenchymal transition, the tumor microenvironment, and drug metabolism. Gemcitabine is the gold standard drug for pancreatic cancer treatment, but gemcitabine resistance develops easily after chemotherapy initiation. Therefore, in this review, we summarize the gemcitabine resistance mechanisms associated with aberrantly expressed miRNAs in pancreatic cancer, especially focusing on the mechanisms associated with epithelial-to-mesenchymal transition, the tumor microenvironment, and metabolism. This novel evidence of gemcitabine resistance will drive further research to elucidate the mechanisms of chemoresistance and improve patient outcomes.
Collapse
|
7
|
High Glucose Promotes Pancreatic Ductal Adenocarcinoma Gemcitabine Resistance and Invasion through Modulating ROS/MMP-3 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3243647. [PMID: 36211828 PMCID: PMC9536998 DOI: 10.1155/2022/3243647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is often concomitant with diabetes mellitus, which mainly manifests as an increased blood glucose level. Previous studies revealed that diabetic status reduced the survival and blunted gemcitabine sensitivity in PDA patients. This study is aimed at analyzing the mechanism of elevated gemcitabine resistance and cancer invasion ability under high glucose environment. We selected 129 patients with 22 surgical resected samples from 2015 to 2021, who underwent pancreatic surgery in Huashan Hospital. The gene expression and clinical data of PDA were obtained from The Cancer Genome Atlas (TCGA) website and were analyzed by R software. Cell viability assays and flow cytometry were applied to detect gemcitabine sensitivity and apoptosis levels in pancreatic cancer cells. Wound healing and Transwell tests were used to analyze the invasion and metastasis of cancer cells. Streptozotocin (STZ) was used to establish a hyperglycemic mouse model for the in vivo study. In this study, diabetic PDA gemcitabine users showed reduced survival compared to euglycemic PDA gemcitabine users. Clinical samples and laboratory studies revealed that MMP-3 expression was associated with glucose concentration and diabetic status. Elevated MMP-3 expression was positively related to cancer invasion and gemcitabine resistance in PDA cells and gemcitabine resistant PDA cells. Blocking MMP-3 expression inhibited gemcitabine resistance and cancer progression in cellular and animal models. MMP-3 was closely related to the expression of RRM1, a gemcitabine metabolism-related gene. Reactive oxygen species (ROS) level increased under higher glucose concentrations and was mediated by NOX4. ROS determined the MMP-3 expression in pancreatic cancer cells. Inhibiting NOX4 expression effectively suppressed MMP-3 expression, gemcitabine resistance, and cancer invasion. In conclusion, a high glucose environment induces gemcitabine resistance and cancer invasion via ROS/MMP-3 signaling pathway. MMP-3 can be a potential novel target for suppressing gemcitabine resistance and invasion in PDA.
Collapse
|
8
|
Wang Z, Chen Y, Li X, Zhang Y, Zhao X, Zhou H, Lu X, Zhao L, Yuan Q, Shi Y, Zhao J, Dong Z, Jiang Y, Liu K. Tegaserod Maleate Suppresses the Growth of Gastric Cancer In Vivo and In Vitro by Targeting MEK1/2. Cancers (Basel) 2022; 14:cancers14153592. [PMID: 35892850 PMCID: PMC9332868 DOI: 10.3390/cancers14153592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global incidence and fourth in mortality. The current treatments for GC include surgery, chemotherapy and radiotherapy. Although treatment strategies for GC have been improved over the last decade, the overall five-year survival rate remains less than 30%. Therefore, there is an urgent need to find novel therapeutic or preventive strategies to increase GC patient survival rates. In the current study, we found that tegaserod maleate, an FDA-approved drug, inhibited the proliferation of gastric cancer cells, bound to MEK1/2 and suppressed MEK1/2 kinase activity. Moreover, tegaserod maleate inhibited the progress of gastric cancer by depending on MEK1/2. Notably, we found that tegaserod maleate suppressed tumor growth in the patient-derived gastric xenograft (PDX) model. We further compared the effect between tegaserod maleate and trametinib, which is a clinical MEK1/2 inhibitor, and confirmed that tegaserod maleate has the same effect as trametinib in inhibiting the growth of GC. Our findings suggest that tegaserod maleate inhibited GC proliferation by targeting MEK1/2.
Collapse
Affiliation(s)
- Zitong Wang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
| | - Yingying Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
| | - Xiaoyu Li
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
| | - Yuhan Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
| | - Xiaokun Zhao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
| | - Hao Zhou
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
| | - Xuebo Lu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
| | - Lili Zhao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
| | - Qiang Yuan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
| | - Yunshu Shi
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
| | - Jimin Zhao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
- Basic Medicine Research Center, Zhengzhou University, Zhengzhou 450001, China
| | - Ziming Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
- Basic Medicine Research Center, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
- Basic Medicine Research Center, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.J.); (K.L.)
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.W.); (Y.C.); (X.L.); (Y.Z.); (X.Z.); (H.Z.); (X.L.); (L.Z.); (Q.Y.); (Y.S.); (J.Z.); (Z.D.)
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
- Basic Medicine Research Center, Zhengzhou University, Zhengzhou 450001, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450001, China
- Correspondence: (Y.J.); (K.L.)
| |
Collapse
|
9
|
Diverse and precision therapies open new horizons for patients with advanced pancreatic ductal adenocarcinoma. Hepatobiliary Pancreat Dis Int 2022; 21:10-24. [PMID: 34538570 DOI: 10.1016/j.hbpd.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer-related death, and most patients are with advanced disease when diagnosed. At present, despite a variety of treatments have been developed for PDAC, few effective treatment options are available; on the other hand, PDAC shows significant resistance to chemoradiotherapy, targeted therapy, and immunotherapy due to its heterogeneous genetic profile, molecular signaling pathways, and complex tumor immune microenvironment. Nevertheless, over the past decades, there have been many new advances in the key theory and understanding of the intrinsic mechanisms and complexity of molecular biology and molecular immunology in pancreatic cancer, based on which more and more diverse new means and reasonable combination strategies for PDAC treatment have been developed and preliminary breakthroughs have been made. With the continuous exploration, from surgical local treatment to comprehensive medical management, the research-diagnosis-management system of pancreatic cancer is improving. This review focused on the variety of treatments for advanced PDAC, including traditional chemotherapy, targeted therapy, immunotherapy, microenvironment matrix regulation as well as the treatment targeting epigenetics, metabolism and cancer stem cells. We pointed out the current research bottlenecks and future exploration directions.
Collapse
|
10
|
Pancreatic Cancer Organoids in the Field of Precision Medicine: A Review of Literature and Experience on Drug Sensitivity Testing with Multiple Readouts and Synergy Scoring. Cancers (Basel) 2022; 14:cancers14030525. [PMID: 35158794 PMCID: PMC8833348 DOI: 10.3390/cancers14030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary New treatments are urgently needed for pancreatic ductal adenocarcinoma because it is one of the most aggressive and lethal cancers, detected too late and resistant to conventional chemotherapy. Tumors in most patients feature a similar set of core mutations but so far it has not been possible to design a one-fits-all treatment strategy. Instead, efforts are underway to personalize the therapies. To find the treatments that might work the best for each patient, entirely new experimental platforms based on living miniature tumors, organoids, have been developed. We review here the latest international findings in designing personalized treatments pancreatic cancer patients using organoids as testing beds. Our own work adds important clues about how such testing could, and perhaps should, be conducted. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a silent killer, often diagnosed late. However, it is also dishearteningly resistant to nearly all forms of treatment. New therapies are urgently needed, and with the advent of organoid culture for pancreatic cancer, an increasing number of innovative approaches are being tested. Organoids can be derived within a short enough time window to allow testing of several anticancer agents, which opens up the possibility for functional precision medicine for pancreatic cancer. At the same time, organoid model systems are being refined to better mimic the cancer, for example, by incorporation of components of the tumor microenvironment. We review some of the latest developments in pancreatic cancer organoid research and in novel treatment design. We also summarize our own current experiences with pancreatic cancer organoid drug sensitivity and resistance testing (DSRT) in 14 organoids from 11 PDAC patients. Our data show that it may be necessary to include a cell death read-out in ex vivo DSRT assays, as metabolic viability quantitation does not capture actual organoid killing. We also successfully adapted the organoid platform for drug combination synergy discovery. Lastly, live organoid culture 3D confocal microscopy can help identify individual surviving tumor cells escaping cell death even during harsh combination treatments. Taken together, the organoid technology allows the development of novel precision medicine approaches for PDAC, which paves the way for clinical trials and much needed new treatment options for pancreatic cancer patients.
Collapse
|
11
|
Chen Y, Zhang Y, Chen S, Liu W, Lin Y, Zhang H, Yu F. NSAIDs Sensitize Melanoma Cells to MEK Inhibition and Inhibit Metastasis and Relapse by Inducing Degradation of AXL. Pigment Cell Melanoma Res 2021; 35:238-251. [PMID: 34748282 DOI: 10.1111/pcmr.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Melanoma is highly heterogeneous with diverse genomic alterations and partial therapeutic responses. Emergence of drug-resistant tumor cell clones accompanied with high AXL expression level is one of the major challenges for anti-tumor clinical care. Recent studies have demonstrated that high AXL expression in melanoma cells mediated drug-resistance, epithelial-mesenchymal transition (EMT) and elevated survival of cancer stem cells (CSCs). Given that we have identified several non-steroidal anti-inflammatory drugs (NSAIDs) including Aspirin potently induce the degradation of AXL, we questioned whether NSAIDs could counteract the AXL-mediated neoplastic phenotypes. Here we found NSAIDs downregulate PKA activity via the PGE2 /EP2/cAMP/PKA signaling pathway and interrupt the PKA-dependent interaction between CDC37 and HSP90, resulting in an incorrect AXL protein folding and finally AXL degradation through the ubiquitination-proteasome system (UPS) pathway. Furthermore, NSAIDs not only sensitized the MEK inhibitor treatment, but also reduced EMT and relapse mediate by AXL in tumor tissue. Our findings suggest that the combination of inhibitors and NSAIDs, especially Aspirin, could be a simple but efficient modality to treat melanoma in which AXL is a key factor for drug-resistance, metastasis, and relapse.
Collapse
Affiliation(s)
- Yingshi Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Siqi Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiwei Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingtong Lin
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Fei Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Jain A, Bhardwaj V. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities. World J Gastroenterol 2021; 27:6527-6550. [PMID: 34754151 PMCID: PMC8554400 DOI: 10.3748/wjg.v27.i39.6527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths in the United States. Although chemotherapeutic regimens such as gemcitabine+ nab-paclitaxel and FOLFIRINOX (FOLinic acid, 5-Fluroruracil, IRINotecan, and Oxaliplatin) significantly improve patient survival, the prevalence of therapy resistance remains a major roadblock in the success of these agents. This review discusses the molecular mechanisms that play a crucial role in PDAC therapy resistance and how a better understanding of these mechanisms has shaped clinical trials for pancreatic cancer chemotherapy. Specifically, we have discussed the metabolic alterations and DNA repair mechanisms observed in PDAC and current approaches in targeting these mechanisms. Our discussion also includes the lessons learned following the failure of immunotherapy in PDAC and current approaches underway to improve tumor's immunological response.
Collapse
Affiliation(s)
- Aditi Jain
- The Jefferson Pancreas, Biliary and Related Cancer Center, Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Vikas Bhardwaj
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
13
|
Pook H, Pauklin S. Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:4834. [PMID: 34638318 PMCID: PMC8508208 DOI: 10.3390/cancers13194834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer that is strongly associated with poor prognosis and short median survival times. In stark contrast to the progress seen in other cancer types in recent decades, discoveries of new treatments in PDAC have been few and far between and there has been little improvement in overall survival (OS). The difficulty in treating this disease is multifactorial, contributed to by late presentation, difficult access to primary tumour sites, an 'immunologically cold' phenotype, and a strong tendency of recurrence likely driven by cancer stem cell (CSC) populations. Furthermore, apparently contrasting roles of tumour components (such as fibrotic stroma) and intracellular pathways (such as autophagy and TGFβ) have made it difficult to distinguish beneficial from detrimental drug targets. Despite this, progress has been made in the field, including the determination of mFOLFIRINOX as the standard-of-care adjuvant therapy and the discovery of KRASG12C mutant inhibitors. Moreover, new research, as outlined in this review, has highlighted promising new approaches including the targeting of the tumour microenvironment, enhancement of immunotherapies, epigenetic modulation, and destruction of CSCs.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
14
|
Zhang Z, Ji S, Hu Q, Zhuo Q, Liu W, Xu W, Liu W, Liu M, Ye Z, Fan G, Xu X, Yu X, Qin Y. Improved tumor control with antiangiogenic therapy after treatment with gemcitabine and nab-paclitaxel in pancreatic cancer. Clin Transl Med 2021; 11:e398. [PMID: 34459132 PMCID: PMC8387784 DOI: 10.1002/ctm2.398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Ray P, Dutta D, Haque I, Nair G, Mohammed J, Parmer M, Kale N, Orr M, Jain P, Banerjee S, Reindl KM, Mallik S, Kambhampati S, Banerjee SK, Quadir M. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Mol Pharm 2020; 18:87-100. [PMID: 33231464 DOI: 10.1021/acs.molpharmaceut.0c00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiyan Mohammed
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Meredith Parmer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Pooja Jain
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
16
|
Tang Q, Wu L, Xu M, Yan D, Shao J, Yan S. Osalmid, a Novel Identified RRM2 Inhibitor, Enhances Radiosensitivity of Esophageal Cancer. Int J Radiat Oncol Biol Phys 2020; 108:1368-1379. [PMID: 32763454 DOI: 10.1016/j.ijrobp.2020.07.2322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Esophageal cancer (EC) is an aggressive malignancy and is often resistant to currently available therapies. Inhibition of ribonucleotide reductase small subunit M2 (RRM2) in tumors is speculated to mediate chemosensitization. Previous studies have reported that Osalmid could act as an RRM2 inhibitor. We explored whether RRM2 was involved in radioresistance and the antitumor effects of Osalmid in EC. METHODS AND MATERIALS RRM2 expression was detected by immunohistochemistry in EC tissues. The effects of Osalmid on cell proliferation, apoptosis, and cell cycle were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphhenyl tetrazolium, colony formation, and flow cytometry assays. DNA damage, cell apoptosis, and senescence induced by Osalmid or ionizing radiation (IR) alone, or both, were detected with immunofluorescence, flow cytometry, Western blot, and β-galactosidase staining. A xenograft mouse model of EC was used to investigate the potential synergistic effects of Osalmid and IR in vivo. RESULTS The expression of RRM2 in treatment-resistant EC tissues is much higher than in treatment-sensitive EC, and strong staining of RRM2 was correlated with shorter overall survival. We observed direct cytotoxicity of Osalmid in EC cells. Osalmid also produced inhibition of the ERK1/2 signal transduction pathway and substantially enhanced IR-induced DNA damage, apoptosis, and senescence. Furthermore, treatment with Osalmid and IR significantly suppressed tumor growth in xenograft EC models without additional toxicity to the hematologic system and internal organs. CONCLUSIONS Our study revealed that RRM2 played a vital role in radioresistance in EC, and Osalmid synergized with IR to exert its antitumor effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiuying Tang
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Mengyou Xu
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Danfang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jimin Shao
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China.
| | - Senxiang Yan
- Department of Radiation Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Department of Pathology & Pathophysiology of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Vena F, Bayle S, Nieto A, Quereda V, Aceti M, Frydman SM, Sansil SS, Grant W, Monastyrskyi A, McDonald P, Roush WR, Teng M, Duckett D. Targeting Casein Kinase 1 Delta Sensitizes Pancreatic and Bladder Cancer Cells to Gemcitabine Treatment by Upregulating Deoxycytidine Kinase. Mol Cancer Ther 2020; 19:1623-1635. [PMID: 32430484 PMCID: PMC7415672 DOI: 10.1158/1535-7163.mct-19-0997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Although gemcitabine is the cornerstone of care for pancreatic ductal adenocarcinoma (PDA), patients lack durable responses and relapse is inevitable. While the underlying mechanisms leading to gemcitabine resistance are likely to be multifactorial, there is a strong association between activating gemcitabine metabolism pathways and clinical outcome. This study evaluated casein kinase 1 delta (CK1δ) as a potential therapeutic target for PDA and bladder cancer, in which CK1δ is frequently overexpressed. We assessed the antitumor effects of genetically silencing or pharmacologically inhibiting CK1δ using our in-house CK1δ small-molecule inhibitor SR-3029, either alone or in combination with gemcitabine, on the proliferation and survival of pancreatic and bladder cancer cell lines and orthotopic mouse models. Genetic studies confirmed that silencing CK1δ or treatment with SR-3029 induced a significant upregulation of deoxycytidine kinase (dCK), a rate-limiting enzyme in gemcitabine metabolite activation. The combination of SR-3029 with gemcitabine induced synergistic antiproliferative activity and enhanced apoptosis in both pancreatic and bladder cancer cells. Furthermore, in an orthotopic pancreatic tumor model, we observed improved efficacy with combination treatment concomitant with increased dCK expression. This study demonstrates that CK1δ plays a role in gemcitabine metabolism, and that the combination of CK1δ inhibition with gemcitabine holds promise as a future therapeutic option for metastatic PDA as well as other cancers with upregulated CK1δ expression.
Collapse
Affiliation(s)
- Francesca Vena
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Simon Bayle
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Ainhoa Nieto
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - Victor Quereda
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | | | - Sylvia M Frydman
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Samer S Sansil
- Translational Research Core, Moffitt Cancer Center, Tampa, Florida
| | - Wayne Grant
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
18
|
Ni D, Li Y, Qiu Y, Pu J, Lu S, Zhang J. Combining Allosteric and Orthosteric Drugs to Overcome Drug Resistance. Trends Pharmacol Sci 2020; 41:336-348. [PMID: 32171554 DOI: 10.1016/j.tips.2020.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Historically, most drugs target protein orthosteric sites. The gradual emergence of resistance hampers their therapeutic effectiveness, posing a challenge to drug development. Coadministration of allosteric and orthosteric drugs provides a revolutionary strategy to circumvent drug resistance, as drugs targeting the topologically distinct allosteric sites can restore or even enhance the efficacy of orthosteric drugs. Here, we comprehensively review the latest successful examples of such combination treatments against drug resistance, with a focus on their modes of action and the underlying structural mechanisms. Our work supplies an innovative insight into such promising methodology against the recalcitrant drug resistance conundrum and will be instructive for future clinical therapeutics.
Collapse
Affiliation(s)
- Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yun Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuran Qiu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Pu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
19
|
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res 2020; 155:104740. [PMID: 32135247 DOI: 10.1016/j.phrs.2020.104740] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a fatal disease. The five-year survival for patients with all stages of this tumor type is less than 10%, with a majority of patients dying from drug resistant, metastatic disease. Gemcitabine has been a standard of care for the treatment of pancreatic cancer for over 20 years, but as a single agent gemcitabine is not curative. Since the only therapeutic option for the over 80 percent of pancreatic cancer patients ineligible for surgical resection is chemotherapy with or without radiation, the last few decades have seen a significant effort to develop effective therapy for this disease. This review addresses preclinical and clinical efforts to identify agents that target molecular characteristics common to pancreatic tumors and to develop mechanism-based combination approaches to therapy. Some of the most promising combinations include agents that inhibit transcription dependent on BET proteins (BET bromodomain inhibitors) or that inhibit DNA repair mediated by PARP (PARP inhibitors).
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham AL, 35294 USA.
| |
Collapse
|
20
|
Ma Q, Wu H, Xiao Y, Liang Z, Liu T. Upregulation of exosomal microRNA‑21 in pancreatic stellate cells promotes pancreatic cancer cell migration and enhances Ras/ERK pathway activity. Int J Oncol 2020; 56:1025-1033. [PMID: 32319558 DOI: 10.3892/ijo.2020.4986] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/20/2020] [Indexed: 11/05/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are typically activated in pancreatic ductal adenocarcinoma (PDAC) and release exosomes containing high levels of microRNA‑21 (miR‑21). However, the specific roles of exosomal miR‑21 in regulating the PDAC malignant phenotype remain unknown. The present study aimed to determine the effects of exosomal miR‑21 on the migratory ability of PDAC cells and explore the potential underlying molecular mechanism. Weighted gene correlation network and The Cancer Genome Atlas database analysis revealed that high miR‑21 levels were associated with a poor prognosis in patients with pancreatic adenocarcinoma, and that the Ras/ERK signaling pathway may be a potential target of miR‑21. In vitro, PDAC cells were demonstrated to internalize the PSC-derived exosome, resulting in high miR‑21 levels, which subsequently promoted cell migration, induced epithelial‑to‑mesenchymal transition (EMT) and increased matrix metalloproteinase‑2/9 activity. In addition, exosomal miR‑21 increased the levels of ERK1/2 and Akt phosphorylation in PDAC cells. Collectively, these results suggested that PSC‑derived exosomal miR‑21 may promote PDAC cell migration and EMT and enhance Ras/ERK signaling activity. Thus, miR‑21 may be a potential cause of poor prognosis in patients with pancreatic cancer and a new treatment target.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Ying Xiao
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Tonghua Liu
- Department of Pathology, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| |
Collapse
|
21
|
Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat Rev Clin Oncol 2020; 17:108-123. [PMID: 31705130 DOI: 10.1038/s41571-019-0281-6] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Improvements in the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have lagged behind advances made in the treatment of many other malignancies over the past few decades. For most patients with PDAC, cytotoxic chemotherapy remains the mainstay of treatment. For patients with resectable disease, modified 5-fluorouracil, leucovorin, irinotecan and oxaliplatin (mFOLFIRINOX) is the standard-of-care adjuvant therapy, although data from several randomized trials have shown improved outcomes with neoadjuvant treatment strategies. For patients with advanced-stage or metastatic disease, comprehensive genomic profiling has revealed several potentially actionable alterations in small subsets of patients and the feasibility of implementing such strategies is beginning to be confirmed. Novel therapies targeting certain aberrations, most notably BRCA1/2 mutations, mismatch repair (MMR) deficiencies or NTRK1-3 fusions, have shown considerable activity in clinical trials, and larotrectinib, entrectinib and pembrolizumab have received FDA approval for the treatment of patients with tumours harbouring NTRK fusions and MMR deficiencies, respectively, regardless of primary tumour histology. In this Review, we describe the available data on the activity of these and other agents in patients with PDAC. Our discussion is structured according to the acronym 'PRIME' to organize the various treatment strategies currently undergoing evaluation in clinical trials: Pathway inhibition, alteration of DNA Repair pathways, Immunotherapy, cancer Metabolism and targeting the Extracellular tumour microenvironment.
Collapse
Affiliation(s)
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Shen W, Xu T, Chen D, Tan X. Targeting SREBP1 chemosensitizes colorectal cancer cells to gemcitabine by caspase-7 upregulation. Bioengineered 2019; 10:459-468. [PMID: 31601152 PMCID: PMC6802928 DOI: 10.1080/21655979.2019.1676485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Biomarkers for predicting chemotherapy response are important for treatment of colorectal cancer (CRC) patients.SREBP1is involved in cancer cell chemoresistance, but the biological consequences of this activity in CRC are poorly understood. We set up biochemical and cell biology analyzes to analyze SREBP1 expression and chemoresistance. We found that SREBP1 was overexpressed in chemoresistant CRC samples, and that SREBP1 overexpression was correlated with poorer patient survival. Targeting SREBP1 increased chemosensitivity to gemcitabine (Gem) in CRC cells. Additionally, SREBP1 overexpression increased chemoresistance to Gem in CRC cells. SREBP1 overexpression downregulated caspase-7 and decreased CRC cell sensitivity to Gem. Low SREBP1 expression was correlated with high caspase-7 expression in CRC patient samples. Low caspase-7 expression was correlated with poor patient survival. Our findings indicated that upregulation of caspase-7 caused by downregulation of SREBP1 may be a novel prognostic biomarker, and may represent a new therapeutic target in CRC.
Collapse
Affiliation(s)
- Wenlong Shen
- Department of Anorectal, Qilu Hospital of Shandong University, Qingdao, Shandong, PR China
| | - Ting Xu
- Department of Geratology, The 971th Hospital of PLA, Qingdao, Shandong, China
| | - Dong Chen
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaojie Tan
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
23
|
Xie F, Li C, Zhang X, Peng W, Wen T. MiR-143-3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS. Biomed Pharmacother 2019; 119:109424. [PMID: 31521891 DOI: 10.1016/j.biopha.2019.109424] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with high mortality and metastasis, which is difficult to diagnose and treat. MicroRNA-143-3p (miR-143-3p) acts as a tumor suppressor in various cancers. However, its role in pancreatic ductal adenocarcinoma has not been explored. Here we examined the potential role and mechanism of miR-143-3p in PDAC. METHODS The levels of miR-143-3p and KRAS mRNA in matched PDAC and normal tissues as well as PDAC cell lines were determined by quantitative RT-PCR. The effect of miR-143-3p on cell proliferation was evaluated by Cell Counting Kit-8 assay, colony-forming assay and a mouse subcutaneous transplantation model. Transwell assay, wound healing assay and a mouse orthotopic implantation model were conducted to examine the role of miR-143-3p on cell migratory and invasive capacities. The target gene and mechanisms of miR-143-3p were explored by qRT-PCR, western blot and luciferase assays. RESULTS The expression of miR-143-3p was down-regulated in PDAC tissues compared with the paired adjacent normal tissues. Cell proliferative, migratory and invasive capacities in PDAC cells were significantly decreased by miR-143-3p up-regulation. Moreover, we identified KRAS as a direct target of miR-143-3p, revealed its expression to be inversely correlated with miR-143-3p in PDAC samples. Up-regulated expression of KRAS partially reversed the phenotypes induced by miR-143-3p overexpression. What's more, KRAS could activate the ERK signaling pathway, which is associated with tumorigenesis. CONCLUSIONS MiR-143-3p may suppress tumorigenesis in PDAC by targeting KRAS. This might provide a theoretical basis for miR-143-3p in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Fei Xie
- Department of Liver Surgery & Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chuan Li
- Department of Liver Surgery & Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoyun Zhang
- Department of Liver Surgery & Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Peng
- Department of Liver Surgery & Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tianfu Wen
- Department of Liver Surgery & Liver Transplantation Centre, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
25
|
Zou Y, Li W, Zhou J, Zhang J, Huang Y, Wang Z. ERK Inhibitor Enhances Everolimus Efficacy through the Attenuation of dNTP Pools in Renal Cell Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:550-561. [PMID: 30771617 PMCID: PMC6374702 DOI: 10.1016/j.omtn.2019.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/10/2023]
Abstract
The clinical efficiency of everolimus, an mammalian target of rapamycin (mTOR) inhibitor, is palliative as sequential or second-line therapy for renal cell carcinoma (RCC). However, the limited response of everolimus in RCC remains uncertain. In the present study, everolimus-resistant RCC models were established to understand the mechanisms and to seek combination approaches. Consequently, the activation of ERK was found to contribute toward everolimus-acquired resistance and poor prognosis in patients with RCC. In addition, the efficacy and mechanism of combination treatment underlying RCC using everolimus and ERK inhibitors was investigated. The ERK inhibitor in combination with everolimus synergistically inhibited the proliferation of RCC cells by arresting the cell cycle in the G1 phase. The combination treatment markedly attenuated the deoxyribonucleoside triphosphate (dNTP) pools by downregulating the mRNA expression of RRM1 and RRM2 through E2F1. The overexpression of E2F1 or supplementation of dNTP rescued the anti-proliferation activity of the everolimus-SCH772984 combination. The antitumor efficacy of combination therapy was reiterated in RCC xenograft models. Thus, the current findings provided evidence that the everolimus-ERK inhibitor combination is a preclinical therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wenzhi Li
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Juan Zhou
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhong Wang
- Department of Urology and Andrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
26
|
Wang H, Zhao Z, Lei S, Li S, Xiang Z, Wang X, Huang X, Xia G, Huang X. Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species. Cancer Cell Int 2019; 19:7. [PMID: 30627053 PMCID: PMC6321668 DOI: 10.1186/s12935-018-0705-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Background Gambogic acid is a natural component isolated from gamboge that possesses anticancer properties. Our previous study suggested that gambogic acid might be involved in autophagy; however, its role in pancreatic cancer remained unclear. Methods Cell viability and apoptosis of pancreatic cancer cell lines were determined using (4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan and flow cytometry. The effects of gambogic acid on autophagy was assessed by western blot, acridine orange staining, transmission electron microscopy, and measurement of autophagic flux through RFP-GFP-LC3 lentiviral transfection. The mitochondrial membrane potential was assessed by JC-1 staining. The production of reactive oxygen species was measured using CM-H2DCFDA staining. A xenograft tumor model of pancreatic cancer was created to determine the efficacy of gambogic acid and chloroquine. Results Gambogic acid induced the expression of LC3-II and Beclin-1 proteins in pancreatic cancer cells, whereas the expression of P62 showed a decline. Gambogic acid also increased the formation of both acidic vesicular organelles and autophagosomes, and increased autophagic flux. These findings indicated that gambogic acid induced the autophagic process. Furthermore, inhibition of autophagy by chloroquine or 3-methyladenine, or knockdown of Atg-7 all enhanced the cytotoxicity of gambogic acid, suggesting that gambogic acid-induced autophagy improves the survival of pancreatic cancer cells. Moreover, gambogic acid reduced the mitochondrial membrane potential and promoted ROS production, which contributed to the activation of autophagy. The inhibition of autophagy by chloroquine further reduced the mitochondrial membrane potential and increased the accumulation of ROS. This indicated that the inhibition of autophagy could mitigate the cellular protective effects induced by gambogic acid. The treatment combination of gambogic acid and chloroquine synergistically inhibited tumor growth in the xenograft tumor model. Conclusions These results demonstrate that gambogic acid induces cytoprotective autophagy in pancreatic cancer cells. The inhibition of autophagy promotes the cytotoxicity of gambogic acid by increasing the accumulation of ROS in pancreatic cancer cells. Combining chloroquine and gambogic acid may be a promising treatment for pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s12935-018-0705-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongcheng Wang
- 1Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233 China
| | - Zhi Zhao
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, China
| | - Shizhou Lei
- 1Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233 China
| | - Shaoli Li
- 3Department of Respiratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Xiang
- 4Department of Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wang
- 5Department of Endocrinology, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xiuyan Huang
- 1Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233 China
| | - Guanggai Xia
- 1Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233 China
| | - Xinyu Huang
- 1Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233 China
| |
Collapse
|
27
|
Van Cutsem E, Hidalgo M, Canon JL, Macarulla T, Bazin I, Poddubskaya E, Manojlovic N, Radenkovic D, Verslype C, Raymond E, Cubillo A, Schueler A, Zhao C, Hammel P. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer. Int J Cancer 2018; 143:2053-2064. [PMID: 29756206 DOI: 10.1002/ijc.31603] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 08/30/2023]
Abstract
The selective MEK1/2 inhibitor pimasertib has shown anti-tumour activity in a pancreatic tumour model. This phase I/II, two-part trial was conducted in patients with metastatic pancreatic adenocarcinoma (mPaCa) (NCT01016483). In the phase I part, oral pimasertib was given once daily discontinuously (5 days on/2 days off treatment) or twice daily continuously (n = 53) combined with weekly gemcitabine (1,000 mg/m2 ) in 28-day cycles to identify the recommended phase II dose (RP2D) of pimasertib. In the phase II part, patients were randomised to pimasertib (RP2D) or placebo plus weekly gemcitabine (n = 88) to investigate progression-free survival (PFS), overall survival (OS) and safety. The RP2D was determined to be 60 mg BID. PFS and OS outcomes did not indicate any treatment benefit for pimasertib over placebo in combination with gemcitabine (median PFS 3.7 and 2.8 months, respectively, HR = 0.91, 95% CI: 0.58-1.42: median OS 7.3 vs. 7.6 months, respectively). KRAS status did not influence PFS or OS. The incidence of grade ≥3 adverse events was 91.1% and 85.7% for pimasertib/gemcitabine and placebo/gemcitabine respectively, but there was a higher incidence of ocular events with pimasertib/gemcitabine (28.9% vs. 4.8% for placebo/gemcitabine). In conclusion, no clinical benefit was observed with first-line pimasertib plus gemcitabine compared with gemcitabine alone in patients with mPaCa.
Collapse
Affiliation(s)
- Eric Van Cutsem
- Gastroenterology/Digestive Oncology, University Hospitals Gasthuisberg/Leuven & KULeuven, Leuven, Belgium
| | - Manuel Hidalgo
- Centro Nacional Investigaciones Oncologicas, Madrid, Spain and START Madrid, Madrid, Spain
| | - Jean-Luc Canon
- Service d'Oncologie-Hématologie, Grand Hopital de Charleroi, Charleroi, Belgium
| | - Teresa Macarulla
- Gastrointestinal Cancer Unit, Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Barcelona, Spain
| | - Igor Bazin
- Department of Clinical Pharmacology and Chemotherapy, N.N. Blokhin Russian Cancer Research Center, and I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Poddubskaya
- Department of Clinical Pharmacology and Chemotherapy, N.N. Blokhin Russian Cancer Research Center, and I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nebojsa Manojlovic
- Clinic for Gastroenterology and Hepatology, Military Medical Academy of Serbia, Belgrade, Serbia
| | - Dejan Radenkovic
- First Surgical Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Chris Verslype
- Gastroenterology/Digestive Oncology, University Hospitals Gasthuisberg/Leuven & KULeuven, Leuven, Belgium
| | - Eric Raymond
- Medical Oncology Département, Saint Joseph Hospital, Paris, France
| | - Antonio Cubillo
- HM Universitario Sanchinarro, Centro Integral Oncológico Clara Campal (HM-CIOCC), and Departamento de Ciencias Médicas Clínicas, Universidad CEU San Pablo, Madrid, Spain
| | | | - Charles Zhao
- Clinical Oncology Early Development, EMD Serono, Billerica, MA
| | - Pascal Hammel
- Digestive Oncology Unit, Hôpital Beaujon, Clichy, France
| |
Collapse
|
28
|
Kong L, Wu Z, Zhao H, Cui H, Shen J, Chang J, Li H, He Y. Bioactive Injectable Hydrogels Containing Desferrioxamine and Bioglass for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30103-30114. [PMID: 30113159 DOI: 10.1021/acsami.8b09191] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic wound is hard to heal mainly because of the difficulty in vascularization in the wound area. Accumulating results have shown that desferrioxamine (DFO) can promote secretion of hypoxia inducible factor-1 (HIF-1α), thereby upregulating the expression of angiogenic growth factors and facilitating revascularization. Our preliminary study has demonstrated that Si ions in bioglass (BG) can upregulate vascular endothelial growth factor (VEGF) expression, thus promoting revascularization. It is hypothesized that the combined use of BG and DFO may have a synergistic effect in promoting VEGF expression and revascularization. To prove this, we first determined DFO concentration range that had no apparent cytotoxicity on human umbilical vein endothelial cells (HUVECs). Then, the optimal concentration of DFO promoting tube formation of HUVECs was determined by cell migration and tube formation assays. In addition, we demonstrated that combination use of BG and DFO improved the migration and tube formation of HUVECs as compared with the use of either BG or DFO alone as BG and DFO could synergistically upregulate VEGF expression. Furthermore, a sodium alginate hydrogel containing both BG and DFO was developed, and this hydrogel better facilitated diabetic skin wound healing than the use of either BG or DFO alone as BG and DFO in the hydrogels worked synergistically in promoting HIF-1α and VEGF expression and subsequently vascularization in the wound sites. Therefore, in this study, the synergistic effect in promoting revascularization between BG and DFO was first demonstrated and an injectable hydrogel simultaneously containing BG and DFO was developed for enhancing repair of diabetic chronic skin defects by taking advantages of the synergistic effects of BG and DFO in promoting revascularization. The study opens up a new prospect for the development of skin repair-promoting biomaterials.
Collapse
Affiliation(s)
- Lingzhi Kong
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | | | - Huakun Zhao
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Haomin Cui
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Ji Shen
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Jiang Chang
- State Key Laboratory of Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , China
| | | | - Yaohua He
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| |
Collapse
|
29
|
Xia G, Zhang H, Cheng R, Wang H, Song Z, Deng L, Huang X, Santos HA, Cui W. Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence. Adv Healthc Mater 2018; 7:e1800593. [PMID: 30062854 DOI: 10.1002/adhm.201800593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Indexed: 12/13/2022]
Abstract
The low radical surgery rate of pancreatic cancer leads to increased local recurrence and poor prognosis. Gemcitabine (GEM) is the preferred chemotherapeutic for pancreatic cancer. However, systemic chemotherapy with GEM has reached a bottleneck due to its serious side effects after frequent injections. In this study, GEM is successfully enwrapped into electrospun fibers via microsol electrospinning technology to form a stable core-shell fibrous structure. The GEM release rate can be adjusted by altering the thickness of the hyaluronan-sol inner fiber and the quantity of loaded GEM, and the release can be sustained for as long as three weeks. In vitro assays show that these electrospun fibers effectively inhibit pancreatic cancer cells and promote apoptosis. In vivo studies show that the fibrous membranes are better for inhibiting the growth of residual tumors than that of integrated tumors. Furthermore, immunohistochemistry results show that GEM-loaded fibers promote a higher cell apoptosis rate than does systemically injected GEM in residual tumors. In addition, the local delivery of GEM with fibers significantly reduces liver toxicity. In summary, a core-shell electrospun fiber for the controlled and localized delivery of GEM, which greatly improves the treatment of residual tumors and prevents pancreatic tumor recurrence, is developed.
Collapse
Affiliation(s)
- Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Pharmaceutical Sciences Laboratory, Turku Centre for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| | - Ruoyu Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Hongcheng Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Ziliang Song
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xinyu Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, FI-00014, Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
30
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
31
|
Er JL, Goh PN, Lee CY, Tan YJ, Hii LW, Mai CW, Chung FFL, Leong CO. Identification of inhibitors synergizing gemcitabine sensitivity in the squamous subtype of pancreatic ductal adenocarcinoma (PDAC). Apoptosis 2018; 23:343-355. [PMID: 29740790 DOI: 10.1007/s10495-018-1459-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is a highly aggressive cancer with a high chance of recurrence, limited treatment options, and poor prognosis. A recent study has classified pancreatic cancers into four molecular subtypes: (1) squamous, (2) immunogenic, (3) pancreatic progenitor and (4) aberrantly differentiated endocrine exocrine. Among all the subtypes, the squamous subtype has the worst prognosis. This study aims to utilize large scale genomic datasets and computational systems biology to identify potential drugs targeting the squamous subtype of PDAC through combination therapy. Using the transcriptomic data available from the International Cancer Genome Consortium, Cancer Cell Line Encyclopedia and Connectivity Map, we identified 26 small molecules that could target the squamous subtype of PDAC. Among them include inhibitors targeting the SRC proto-oncogene (SRC) and the mitogen-activated protein kinase kinase 1/2 (MEK1/2). Further analyses demonstrated that the SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib) synergized gemcitabine sensitivity specifically in the squamous subtype of PDAC cells (SW1990 and BxPC3), but not in the PDAC progenitor cells (AsPC1). Further analysis revealed that the synergistic effects are dependent on SRC or MEK1/2 activities, as overexpression of SRC or MEK1/2 completely abrogated the synergistic effects SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib). In contrast, no significant toxicity was observed in the MRC5 human lung fibroblast and ARPE-19 human retinal pigment epithelial cells. Together, our findings suggest that combinations of SRC or MEK inhibitors with gemcitabine possess synergistic effects on the squamous subtype of PDAC cells and warrant further investigation.
Collapse
Affiliation(s)
- Jia Lin Er
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Pei Ni Goh
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chen Yuan Lee
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ying Jie Tan
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ling-Wei Hii
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chun Wai Mai
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organization, 150 Cours Albert Thomas, 69372, Lyon CEDEX 08, France
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, 126 Jalan 19/155B, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia.
| |
Collapse
|
32
|
Srinivas NR. Pharmacology of Pimasertib, A Selective MEK1/2 Inhibitor. Eur J Drug Metab Pharmacokinet 2018; 43:373-382. [PMID: 29488172 DOI: 10.1007/s13318-018-0466-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pimasertib belongs to the growing family of mitogen activated protein kinase (MEK1/2) inhibitors undergoing clinical development for various cancer indications. Since the MEK inhibition in several cell signalling transduction cascades within tumours was considered therapeutically beneficial, number of clinical investigations of pimasertib have been reported. Despite being orally bioavailable in cancer patients, pimasertib undergoes faster clearance with a short elimination half-life. In addition, due to occurrence of toxicity, the development of pimasertib appears to be stalled. Case studies are provided on the possible utilization of pimasertib in combination therapies with other approved drugs. Based on the review, it appeared that there was the need to identify the optimal dose and the dosing regimen of pimasertib to provide a balance between safety and efficacy when combined with approved therapies.
Collapse
|
33
|
Muralidharan-Chari V, Kohan HG, Asimakopoulos AG, Sudha T, Sell S, Kannan K, Boroujerdi M, Davis PJ, Mousa SA. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells. Oncotarget 2018; 7:50365-50379. [PMID: 27391262 PMCID: PMC5226588 DOI: 10.18632/oncotarget.10395] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
High mortality in pancreatic cancer patients is partly due to resistance to chemotherapy. We describe that human pancreatic cancer cells acquire drug resistance by a novel mechanism in which they expel and remove chemotherapeutic drugs from the microenvironment via microvesicles (MVs). Using human pancreatic cancer cells that exhibit varied sensitivity to gemcitabine (GEM), we show that GEM exposure triggers the cancer cells to release MVs in an amount that correlates with that cell line's sensitivity to GEM. The importance of MV-release in gaining drug resistance in GEM-resistant pancreatic cancer cells was confirmed when the inhibition of MV-release sensitized the cells to GEM treatment, both in vitro and in vivo. Mechanistically, MVs remove drugs that are internalized into the cells and that are in the microenvironment. The differences between the drug-resistant and drug-sensitive pancreatic cancer cell lines tested here are explained based on the variable content of influx/efflux proteins present on MVs, which directly dictates the ability of MVs either to trap GEM or to allow GEM to flow back to the microenvironment.
Collapse
Affiliation(s)
- Vandhana Muralidharan-Chari
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hamed Gilzad Kohan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, NY 12201, USA
| | - Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, NY 12201, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, NY 12201, USA
| | - Mehdi Boroujerdi
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
34
|
Vena F, Jia R, Esfandiari A, Garcia-Gomez JJ, Rodriguez-Justo M, Ma J, Syed S, Crowley L, Elenbaas B, Goodstal S, Hartley JA, Hochhauser D. MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models. Oncotarget 2018; 9:11592-11603. [PMID: 29545922 PMCID: PMC5837749 DOI: 10.18632/oncotarget.24294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. In vivo antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA-2 proficient cancers.
Collapse
Affiliation(s)
- Francesca Vena
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Ruochen Jia
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Arman Esfandiari
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Juan J. Garcia-Gomez
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | | | - Jianguo Ma
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Sakeena Syed
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Lindsey Crowley
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Brian Elenbaas
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Samantha Goodstal
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| |
Collapse
|
35
|
Schambach A, Schott JW, Morgan MA. Uncoupling the Oncogenic Engine. Cancer Res 2017; 77:6060-6064. [PMID: 29097608 DOI: 10.1158/0008-5472.can-17-2362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Inhibition of oncogenic signaling and correction of aberrant metabolic processes may be key paradigms to eliminate cancer cells. The high incidence of activating RAS mutations and hyperactivated ERK1/2 signaling observed in many human tumors and the lack of effective targeted therapies to elicit long-term inhibition of the RAS-ERK1/2 signaling pathway add to the importance of discovering novel strategies to treat malignancies characterized by elevated RAS-ERK1/2 signaling. In this review, we describe connections between oncogenic signaling and cancer cell metabolism and how these links may be exploited for novel modern molecular medicine approaches. Cancer Res; 77(22); 6060-4. ©2017 AACR.
Collapse
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Apaolaza I, San José-Eneriz E, Tobalina L, Miranda E, Garate L, Agirre X, Prósper F, Planes FJ. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism. Nat Commun 2017; 8:459. [PMID: 28878380 PMCID: PMC5587678 DOI: 10.1038/s41467-017-00555-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/07/2017] [Indexed: 02/02/2023] Open
Abstract
Synthetic lethality is a promising concept in cancer research, potentially opening new possibilities for the development of more effective and selective treatments. Here, we present a computational method to predict and exploit synthetic lethality in cancer metabolism. Our approach relies on the concept of genetic minimal cut sets and gene expression data, demonstrating a superior performance to previous approaches predicting metabolic vulnerabilities in cancer. Our genetic minimal cut set computational framework is applied to evaluate the lethality of ribonucleotide reductase catalytic subunit M1 (RRM1) inhibition in multiple myeloma. We present a computational and experimental study of the effect of RRM1 inhibition in four multiple myeloma cell lines. In addition, using publicly available genome-scale loss-of-function screens, a possible mechanism by which the inhibition of RRM1 is effective in cancer is established. Overall, our approach shows promising results and lays the foundation to build a novel family of algorithms to target metabolism in cancer. Exploiting synthetic lethality is a promising approach for cancer therapy. Here, the authors present an approach to identifying such interactions by finding genetic minimal cut sets (gMCSs) that block cancer proliferation, and apply it to study the lethality of RRM1 inhibition in multiple myeloma.
Collapse
Affiliation(s)
- Iñigo Apaolaza
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Edurne San José-Eneriz
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Luis Tobalina
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.,Faculty of Medicine, Joint Research Centre for Computational Biomedicine, RWTH Aachen University, MTI2 Wendlingweg 2, D-52074, Aachen, Germany
| | - Estíbaliz Miranda
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Leire Garate
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Xabier Agirre
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain
| | - Felipe Prósper
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, 31008, Pamplona, Spain.
| | - Francisco J Planes
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain.
| |
Collapse
|
37
|
Yan T, Li HY, Wu JS, Niu Q, Duan WH, Han QZ, Ji WM, Zhang T, Lv W. Astaxanthin inhibits gemcitabine-resistant human pancreatic cancer progression through EMT inhibition and gemcitabine resensitization. Oncol Lett 2017; 14:5400-5408. [PMID: 29098031 PMCID: PMC5652142 DOI: 10.3892/ol.2017.6836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/16/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer rapidly acquires resistance to chemotherapy resulting in its being difficult to treat. Gemcitabine is the current clinical chemotherapy strategy; however, owing to gemcitabine resistance, it is only able to prolong the life of patients with pancreatic cancer for a limited number of months. Understanding the underlying molecular mechanisms of gemcitabine resistance and selecting a suitable combination of agents for the treatment of pancreatic cancer is required. Astaxanthin (ASX) is able to resensitize gemcitabine-resistant human pancreatic cancer cells (GR-HPCCs) to gemcitabine. ASX was identified to upregulate human equilibrative nucleoside transporter 1 (hENT1) and downregulate ribonucleoside diphosphate reductase (RRM) 1 and 2 to enhance gemcitabine-induced cell death in GR-HPCCs treated with gemcitabine, and also downregulates TWIST1 and ZEB1 to inhibit the gemcitabine-induced epithelial-mesenchymal transition (EMT) phenotype in GR-HPCCs and to mediate hENT1, RRM1 and RRM2. Furthermore, ASX acts through the hypoxia-inducible factor 1α/signal transducer and activator of transcription 3 signaling pathway to mediate TWIST1, ZEB1, hENT1, RRM1 and RRM2, regulating the gemcitabine-induced EMT phenotype and gemcitabine-induced cell death. Co-treatment with ASX and gemcitabine in a tumor xenograft model induced by GR-HPCCs supported the in vitro results. The results of the present study provide a novel therapeutic strategy for the treatment of gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Tao Yan
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Hai-Ying Li
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Jian-Song Wu
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Qiang Niu
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Wei-Hong Duan
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Qing-Zeng Han
- Surgical Department, Qinghe County Central Hospital, Qinghe, Xingtai, Hebei 054800, P.R. China
| | - Wang-Ming Ji
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Tao Zhang
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| | - Wei Lv
- Department of Hepatobiliary Surgery, The General Hospital of The PLA Rocket Force, Beijing 100088, P.R. China
| |
Collapse
|
38
|
Xia G, Wang H, Song Z, Meng Q, Huang X, Huang X. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:107. [PMID: 28797284 PMCID: PMC5553806 DOI: 10.1186/s13046-017-0579-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
Background Pancreatic cancer is susceptible to gemcitabine resistance, and patients receive less benefit from gemcitabine chemotherapy. Previous studies report that gambogic acid possesses antineoplastic properties; however, to our knowledge, there have been no specific studies on its effects in pancreatic cancer. Therefore, the purpose of this study was to explore whether increases the sensitivity of pancreatic cancer to gemcitabine, and determine the synergistic effects of gambogic acid and gemcitabine against pancreatic cancer. Methods The effects of gambogic acid on cell viability, the cell cycle, and apoptosis were assessed using 4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and flow cytometry in pancreatic cancer cell lines. Protein expression was detected by western blot analysis and mRNA expression was detected using q-PCR. A xenograft tumor model of pancreatic cancer was used to investigate the synergistic effects of gambogic acid and gemcitabine. Results Gambogic acid effectively inhibited the growth of pancreatic cancer cell lines by inducing S-phase cell cycle arrest and apoptosis. Synergistic activity of gambogic acid combined with gemcitabine was observed in PANC-1 and BxPC-3 cells based on the results of MTT, colony formation, and apoptosis assays. Western blot results demonstrated that gambogic acid sensitized gemcitabine-induced apoptosis by enhancing the expression of cleaved caspase-3, cleaved caspase-9, cleaved-PARP, and Bax, and reducing the expression of Bcl-2. In particular, gambogic acid reduced the expression of the ribonucleotide reductase subunit-M2 (RRM2) protein and mRNA, a trend that correlated with resistance to gemcitabine through inhibition of the extracellular signal-regulated kinase (ERK)/E2F1 signaling pathway. Treatment with gambogic acid and gemcitabine significantly repressed tumor growth in the xenograft pancreatic cancer model. Immunohistochemistry results demonstrated a downregulation of p-ERK, E2F1, and RRM2 in mice receiving gambogic acid treatment and combination treatment. Conclusions These results demonstrate that gambogic acid sensitizes pancreatic cancer cells to gemcitabine in vitro and in vivo by inhibiting the activation of the ERK/E2F1/RRM2 signaling pathway. The results also indicate that gambogic acid treatment combined with gemcitabine might be a promising chemotherapy strategy for pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guanggai Xia
- Department of general surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Hongcheng Wang
- Department of general surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Ziliang Song
- Department of general surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xiuyan Huang
- Department of general surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Xinyu Huang
- Department of general surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
39
|
Thiosemicarbazone derivatives, thiazolyl hydrazones, effectively inhibit leukemic tumor cell growth: Down-regulation of ribonucleotide reductase activity and synergism with arabinofuranosylcytosine. Food Chem Toxicol 2017; 108:53-62. [PMID: 28716444 DOI: 10.1016/j.fct.2017.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 02/03/2023]
Abstract
Cellular growth inhibition exerted by thiosemicarbazones is mainly attributed to down-regulation of ribonucleotide reductase (RNR) activity, with RNR being responsible for the rate-limiting step of de novo DNA synthesis. In this study, we investigated the antineoplastic effects of three newly synthesized thiosemicarbazone derivatives, thiazolyl hydrazones, in human HL-60 promyelocytic leukemia cells. The cytotoxicity of compounds alone and in combination with arabinofuranosylcytosine (AraC) was determined by growth inhibition assays. Effects on deoxyribonucleoside triphosphate (dNTP) concentrations were quantified by HPLC, and the incorporation of radio-labeled 14C-cytidine into nascent DNA was measured using a beta counter. Cell cycle distribution was analyzed by FACS, and protein levels of RNR subunits and checkpoint kinases were evaluated by Western blotting. VG12, VG19, and VG22 dose-dependently decreased intracellular dNTP concentrations, impaired cell cycle progression and, consequently, inhibited the growth of HL-60 cells. VG19 also lowered the protein levels of RNR subunits R1 and R2 and significantly diminished the incorporation of radio-labeled 14C-cytidine, being equivalent to an inhibition of DNA synthesis. Combination of thiazolyl hydrazones with AraC synergistically potentiated the antiproliferative effects seen with each drug alone and might therefore improve conventional chemotherapeutic regimens for the treatment of human malignancies such as acute promyelocytic or chronic myelogenous leukemia.
Collapse
|
40
|
Phase I single dose, two-period and two-sequence cross-over trial to evaluate the relative bioavailability of two oral pimasertib formulations in advanced cancer patients. Cancer Chemother Pharmacol 2017; 79:681-688. [DOI: 10.1007/s00280-017-3258-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
|
41
|
Furuse J, Nagashima F. Emerging protein kinase inhibitors for treating pancreatic cancer. Expert Opin Emerg Drugs 2017; 22:77-86. [PMID: 28253828 DOI: 10.1080/14728214.2017.1293648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Pancreatic cancer, the incidence and mortality of which are increasing around the world, has the most dismal prognosis among the commonly encountered cancers. Systemic chemotherapy plays an important role in the treatment of patients with pancreatic cancer, and development of more effective chemotherapies is being sought. Areas covered: This review article provides a summary about protein kinase inhibitors that have been investigated for the treatment of pancreatic cancer, not only existing agents targeting RAS, EGFR, VEGFR, MEK, etc., but also various compounds targeting, including the MAPK, PI3 K/Akt/mTOR, and JAK/STAT signaling pathways, trials of which are currently ongoing. To date, none has shown sufficient efficacy as to merit becoming established as a standard treatment agent for pancreatic cancer. Expert opinion: As the toxicities of protein kinase inhibitors usually differ from those of cytotoxic agents, it could be of value to use these agents in combination with gemcitabine plus nab-paclitaxel. It may be reasonable to identify a suitable disease and/or predictive markers for new compounds in proof of concept trials. It is an urgent need to conduct phase III trials, on the basis of the results obtained, in subpopulations with biomarkers to predict the efficacy of these drugs.
Collapse
Affiliation(s)
- Junji Furuse
- a Department of Medical Oncology , Kyorin University, Faculty of Medicine , Tokyo , Japan
| | - Fumio Nagashima
- a Department of Medical Oncology , Kyorin University, Faculty of Medicine , Tokyo , Japan
| |
Collapse
|
42
|
Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, Asaoka T, Noda T, Wada H, Kawamoto K, Gotoh K, Takeda Y, Tanemura M, Mori M, Doki Y. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep 2017; 7:42339. [PMID: 28198398 PMCID: PMC5309735 DOI: 10.1038/srep42339] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
The cancer drug gemcitabine (GEM) is a key drug for treating pancreatic ductal adenocarcinoma (PDAC), but PDAC cells develop chemoresistance after long-term administration. Since the tolerance was immediately spread to every PDAC tissue in a patient, it is assumed that some certain efficient mechanisms underlay in the development of chemoresistance. Changes in the levels of particular microRNAs or alterations in intercellular communication play a dominant role in chemoresistance development, and recent data also suggest that exosomes play an important role in this process. In this study, we revealed that the loop conferred chemoresistance in PDAC cells. The loop was as follows; 1, The long-term exposure of GEM increased miR-155 expression in PDAC cells. 2, The increase of miR-155 induced two different functions; exosome secretion and chemoresistance ability via facilitating the anti-apoptotic activity. 3, Exosome deliver the miR-155 into the other PDAC cells and induce the following function. The target therapy to miR-155 or the exosome secretion effectively attenuated the chemoresistance, and these results were validated with both clinical samples and in vivo experiments. This mechanism represents a novel therapeutic target in GEM treatment to PDAC.
Collapse
Affiliation(s)
- Manabu Mikamori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Hasegawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomoya Kishimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki, Hyogo, 660-8511, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Tennoji-ku Kitayamacho 10-31, Osaka, 543-0035, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
43
|
Chen S, Wang Y, Zhang WL, Dong MS, Zhang JH. Sclareolide enhances gemcitabine‑induced cell death through mediating the NICD and Gli1 pathways in gemcitabine‑resistant human pancreatic cancer. Mol Med Rep 2017; 15:1461-1470. [PMID: 28259943 PMCID: PMC5365005 DOI: 10.3892/mmr.2017.6182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a type of cancer, which rapidly develops resistance to chemotherapy. Gemcitabine is the treatment used clinically, however, gemcitabine resistance leads to limited efficacy and patient survival rates of only a few months following diagnosis. The aim of the present study was to investigate the mechanisms underlying gemcitabine resistance in pancreatic cancer and to select targeted agents combined with gemcitabine to promote the treatment of pancreatic cancer. Panc-1 and ASPC-1 human pancreatic cancer cells (HPCCs) were used to establish the experimental model, and HPCCs were exposed to gemcitabine of serially increased concentrations to generate gemcitabine-resistant cells (GR-HPCCs). The anticancer effect of gemcitabine combined with sclareolide was then assessed. Epithelial to mesenchymal transition (EMT), human equilibrative nucleoside transporter 1 (hENT1) and ribonucleoside diphosphate reductase 1 (RRM1) were detected in the HPCCs and GR-HPCCs, and the mechanisms were investigated. Sclareolide resensitized the GR-HPCCs to gemcitabine. The expression levels of hENT1 and RRM1 were lower and higher, respectively, in GR-HPCCs, compared with HPCCs. Sclareolide upregulated hENT1, downregulated RRM1 and inhibited gemcitabine-induced EMT through the TWIST1/Slug pathway in the GR-HPCCs. In addition, sclareolide mediated the NOTCH 1 intracellular cytoplasmic domain (NICD)/glioma-associated oncogene 1 (Gli1) pathway, which triggered TWIST1/Slug-hENT1/RRM1 signaling and resensitized GR-HPCCs to gemcitabine. Finally, sclareolide resensitized GR-HPCCs to gemcitabine through inducing apoptosis; in vivo, the co-administraion of sclareolide and gemcitabine effectively suppressed tumor growth. Sclareolide may be a novel agent in combination with gemcitabine for the treatment of gemcitabine-resistant pancreatic cancer, which resensitizes GR-HPCCs to gemcitabine through mediating NICD and Gli1.
Collapse
Affiliation(s)
- Sheng Chen
- Department of General Surgery, The General Hospital of the PLA Rocket Force, Beijing 100088, P.R. China
| | - Ye Wang
- Department of Pathology, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Wen-Long Zhang
- Department of General Surgery, The General Hospital of the PLA Rocket Force, Beijing 100088, P.R. China
| | - Mao-Sheng Dong
- Department of General Surgery, The General Hospital of the PLA Rocket Force, Beijing 100088, P.R. China
| | - Jian-Hua Zhang
- Department of General Surgery, The General Hospital of the PLA Rocket Force, Beijing 100088, P.R. China
| |
Collapse
|
44
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
45
|
Illiano M, Sapio L, Caiafa I, Chiosi E, Spina A, Naviglio S. Forskolin sensitizes pancreatic cancer cells to gemcitabine via Stat3 and Erk1/2 inhibition. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
46
|
Caparello C, Meijer LL, Garajova I, Falcone A, Le Large TY, Funel N, Kazemier G, Peters GJ, Vasile E, Giovannetti E. FOLFIRINOX and translational studies: Towards personalized therapy in pancreatic cancer. World J Gastroenterol 2016; 22:6987-7005. [PMID: 27610011 PMCID: PMC4988311 DOI: 10.3748/wjg.v22.i31.6987] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an extremely aggressive disease; although progress has been made in the last few years, the prognosis of these patients remains dismal. FOLFIRINOX is now considered a standard treatment in first-line setting, since it demonstrated an improved overall and progression-free survival vs gemcitabine alone. However, the enthusiasm over the benefit of this three-drug regimen is tempered by the associated increased toxicity profile, and many efforts have been made to improve the feasibility of this schedule. After a more recent phase III trial showing an improved outcome over gemcitabine, the combination of gemcitabine/nab-paclitaxel emerged as another standard first-line treatment. However, this treatment is also associated with more side effects. In addition, despite initial promising data on the predictive role of SPARC levels, recent studies showed that these levels are not associated with nab-paclitaxel efficacy. The choice to use this treatment over FOLFIRINOX is therefore a topic of debate, also because no validated biomarkers to guide FOLFIRINOX treatment are available. In the era of actionable mutations and target agents it would be desirable to identify molecular factors or biomarkers to predict response to therapy in order to maximize the efficacy of treatment and avoid useless toxic effects for non-responding patients. However, until today the milestone of treatment for pancreatic cancer remains chemotherapy combinations, without predictive or monitoring tools existing to optimize therapy. This review analyzes the state-of-the-art treatments, promises and limitations of targeted therapies, ongoing trials and future perspectives, including potential role of microRNAs as predictive biomarkers.
Collapse
|
47
|
Leon LG, Funel N, Peters GJ, Avan A, Vistoli F, Boggi U, Giovannetti E. The MEK1/2 Inhibitor Pimasertib Enhances Gemcitabine Efficacy-Letter. Clin Cancer Res 2016; 22:2594. [PMID: 27179113 DOI: 10.1158/1078-0432.ccr-16-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start-UP Unit, University of Pisa, Pisa, Italy. Instituto de Tecnologias Biomedicas, Center for Biomedical Research of the Canary Islands, University of La Laguna, La Laguna, Spain
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-UP Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Amir Avan
- Department of Modern Sciences and Technologies and Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabio Vistoli
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Ugo Boggi
- Division of General and Transplant Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start-UP Unit, University of Pisa, Pisa, Italy. Department of Medical Oncology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|