1
|
Dou D, Zhang X, Wang J, Wumaier G, Qiao Y, Xie L, Jiang W, Sha W, Li W, Mei W, Zhang C, He H, Wang C, Wu L, Diao Y, Zhu L, Zhao Z, Chen Z, Xu Y, Li S, Li H. Design, synthesis, and biological evaluation of diphenyl ether substituted quinazolin-4-amine derivatives as potent EGFR L858R/T790M/C797S inhibitors. Eur J Med Chem 2024; 279:116858. [PMID: 39278125 DOI: 10.1016/j.ejmech.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a validated target for non-small-cell lung cancer (NSCLC). However, the treatment for EGFR-C797S mutation induced by third-generation EGFR inhibitors remains a concern. Therefore, the development of the fourth-generation EGFR inhibitors to overcome the EGFR-C797S mutation has great potential for clinical treatment. In this article, we designed and synthesized a series of diphenyl ether substituted quinazolin-4-amine derivatives that simultaneously occupy the ATP binding pocket and the allosteric site of EGFR. Among the newly synthesized compounds, 9d displayed excellent kinase activity against EGFRL858R/T790M/C797S with an IC50 value of 0.005 μM, and exhibited anti-proliferation activity in BaF3-EGFRL858R/T790M/C797S cells with the IC50 value of 0.865 μM. Furthermore, 9d could suppress phosphorylation of EGFR and induce cell apoptosis and cycle arrest at G2 phase in a dose-dependent manner in BaF3-EGFRL858R/T790M/C797S cells. More importantly, 9d displayed significant antitumor effects in BaF3-EGFRL858R/T790M/C797S xenograft mouse model (30 mg/kg, TGI = 71.14 %). All the results indicated compound 9d might be a novel fourth-generation EGFR inhibitor for further development in overcoming the EGFR-C797S resistance mutation.
Collapse
Affiliation(s)
- Dou Dou
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xingsen Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunjin Qiao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lijuan Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenzhe Jiang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Sha
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Huan He
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Caolin Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingkang Wu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Corvaja C, Passaro A, Attili I, Aliaga PT, Spitaleri G, Signore ED, de Marinis F. Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat Rev 2024; 130:102824. [PMID: 39366135 DOI: 10.1016/j.ctrv.2024.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Third-generation EGFR tyrosine kinase inhibitor (TKIs) have revolutionized the treatment landscape for patients with non-small cell lung cancer (NSCLC) harboring EGFR activating mutations, with improved long-term outcomes compared to first-generation TKIs. Nevertheless, disease progression inevitably occurs, limiting osimertinib long-term efficacy. Indeed, the molecular biology underlying acquired resistance to first-line osimertinib is multifaceted and includes the emergence of on-target and off-target alterations. EGFR-C797S mutation represents the most frequent mechanism of on-target resistance and hinders drug binding to the target site. EGFR-independent resistance includes the activation of alternative signaling pathways, such as MET amplification and HER2 mutations, and histological transformation. In this setting, chemotherapy is the current therapeutic option, with modest clinical outcomes. Therefore, the development of novel therapeutic strategies to overcome resistance to osimertinib is a major challenge. In this setting, fourth-generation TKIs are emerging as an interesting therapeutic option to overcome on-target resistance. Preclinical drug development has led to the discovery of thiazole-amid inhibitors, which activity is mediated by the allosteric inhibition of EGFR, resulting in high specificity towards mutant-EGFR. Early phase 1/2 clinical trials are ongoing to elucidate their activity also in the clinical setting. Aim of this review is to provide a state-of-the-art analysis on preclinical development of fourth-generation EGFR-TKIs and promising preliminary clinical data.
Collapse
Affiliation(s)
- Carla Corvaja
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy.
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Ester Del Signore
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Via G. Ripamonti, 435 - 20141 Milan, Italy
| |
Collapse
|
3
|
Cordani N, Nova D, Sala L, Abbate MI, Colonese F, Cortinovis DL, Canova S. Proteolysis Targeting Chimera Agents (PROTACs): New Hope for Overcoming the Resistance Mechanisms in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:11214. [PMID: 39456995 PMCID: PMC11508910 DOI: 10.3390/ijms252011214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in early and advanced stages. While the introduction of powerful TKIs increases the ratio of potentially curable patients, the disease does develop resistance over time through either secondary mutations or bypass activating tracks. Therefore, new treatment strategies are being developed to either overcome this inevitable resistance or to prevent it, and proteolysis targeting chimera agents (PROTACs) are among them. They consist of two linked molecules that bind to a target protein and an E3 ubiquitin ligase that causes ubiquitination and degradation of proteins of interest. In this paper, we review the rationale for PROTAC therapy and the current development of PROTACs for oncogene-addicted lung cancer. Moreover, we critically analyze the strengths and limitations of this promising technique that may help pave the way for future perspectives.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniele Nova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Luca Sala
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Maria Ida Abbate
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Francesca Colonese
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Diego Luigi Cortinovis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Stefania Canova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| |
Collapse
|
4
|
Hsu PC, Chang JWC, Chiu LC, Yang CT, Kuo SCH, Fang YF, Wu CE. Analysis of genomic alternations in epidermal growth factor receptor (EGFR)-T790M-mutated non-small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03727-7. [PMID: 39317868 DOI: 10.1007/s12094-024-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND OBJECTIVES Genomic alterations after resistance to osimertinib therapy in advanced T790M-mutated non-small cell lung cancer (NSCLC) are complex and poorly understood. In this study, we aimed to detect these genomic alternations via comprehensive next-generation sequencing (NGS) of tissue and liquid biopsies. PATIENTS AND METHODS From September 2020 to June 2021, 31 stage IIIB/IV T790M-mutated NSCLC patients who exhibited progressive disease after osimertinib therapy and provided written informed consent were recruited. Liquid and tissue biopsy samples for NGS testing were collected from 31 and 18 patients, respectively. Eighteen study patients had paired NGS data from tissue and liquid biopsies. RESULTS With respect to the T790M mutation status, the preservation and loss rates were 33% and 67%, respectively, in both liquid and tissue biopsy samples. Five patients (16.1%) had the C797S mutation (4 liquid samples and 1 tissue sample). Two (6.5%) had MET mutations, 3 (9.7%) had BRAF-V600E mutations, and 1 (3.2%) had a KRAS-G12C mutation. Among the 18 patients who underwent tissue rebiopsies, those with preserved T790M mutation had significantly longer progression-free survival (PFS) with osimertinib therapy than those with T790M mutation loss (10.8 vs. 5.0 months, P = 0.045). Among all patients, those with T790M mutation loss in liquid biopsy samples had longer PFS after osimertinib therapy (10.8 vs. 7.5 months, P = 0.209) and postprogression survival (17.7 vs. 9.6 months, P = 0.132) than those with preserved T790M mutation based on liquid biopsies. CONCLUSIONS NGS using either tissue or liquid biopsy samples from advanced T790M-mutated NSCLC patients with acquired resistance to osimertinib therapy can detect various genomic alternations. Future studies focusing on subsequent tailored therapies on the basis of NGS results are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - John Wen-Cheng Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan
| | - Li-Chung Chiu
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan, 33378, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yueh-Fu Fang
- Division of Thoracic Oncology, Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chiao-En Wu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, 5, Fu-Hsing Street, Kwei-Shan, Taoyuan, 33305, Taiwan.
| |
Collapse
|
5
|
Simoni-Nieves A, Lindzen M, Giri S, Gupta N, Chatterjee R, Selvadurai BR, Van Daele M, Love D, Haga Y, Romaniello D, Salame TM, Zerbib M, Oren R, Tsutsumi Y, Lauriola M, Marrocco I, Yarden Y. A bispecific antibody targeting EGFR and AXL delays resistance to osimertinib. Cell Rep Med 2024; 5:101703. [PMID: 39216477 PMCID: PMC11528239 DOI: 10.1016/j.xcrm.2024.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Activating EGFR (epidermal growth factor receptor) mutations can be inhibited by specific tyrosine kinase inhibitors (TKIs), which have changed the landscape of lung cancer therapy. However, due to secondary mutations and bypass receptors, such as AXL (AXL receptor tyrosine kinase), drug resistance eventually emerges in most patients treated with the first-, second-, or third-generation TKIs (e.g., osimertinib). To inhibit AXL and resistance to osimertinib, we compare two anti-AXL drugs, an antibody (mAb654) and a TKI (bemcentinib). While no pair of osimertinib and an anti-AXL drug is able to prevent relapses, triplets combining osimertinib, cetuximab (an anti-EGFR antibody), and either anti-AXL drug are initially effective. However, longer monitoring uncovers superiority of the mAb654-containing triplet, possibly due to induction of receptor endocytosis, activation of immune mechanisms, or disabling intrinsic mutators. Hence, we constructed a bispecific antibody that engages both AXL and EGFR. When combined with osimertinib, the bispecific antibody consistently inhibits tumor relapses, which warrants clinical trials.
Collapse
Affiliation(s)
- Arturo Simoni-Nieves
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshit Lindzen
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Suvendu Giri
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nitin Gupta
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rishita Chatterjee
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boobash-Raj Selvadurai
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marieke Van Daele
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Danielle Love
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Yosef Yarden
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Li W, Lv R, Wang W. Toxicity profiles associated with EGFR-TKIs combined with angiogenesis inhibitors in non-small cell lung cancer: an epidemiological surveillance analysis of the FDA adverse event reporting system. Expert Opin Drug Saf 2024:1-10. [PMID: 39262117 DOI: 10.1080/14740338.2024.2399082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/11/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Ongoing studies are evaluating the efficacy and toxicity profiles of combining epidermal growth factor receptor inhibitors (EGFR-TKIs) with antiangiogenic agents in non-small cell lung cancer (NSCLC). However, the complete toxicity profiles remain elusive. RESEARCH DESIGN AND METHODS This study conducted an extensive pharmacovigilance analysis utilizing the FDA Adverse Event Reporting System database. The analysis focused on identifying and characterizing adverse events (AEs) associated with the concurrent use of EGFR-TKIs and antiangiogenic inhibitors in patients with NSCLC. RESULTS The study identified significant occurrences of AEs linked to the combination therapy, particularly impacting general disorders, skin and subcutaneous tissue conditions, and vascular disorders. Frequently reported AEs included rash, diarrhea, fatigue, nausea, decreased appetite, and anemia. Notably, the combination of EGFR-TKIs with antiangiogenic inhibitors resulted in an increased incidence of AEs across multiple organ systems compared to EGFR-TKIs alone, with some adverse effects, such as anemia, arrhythmia, and ulcerative keratitis, persisting beyond one year in a subset of patients. CONCLUSIONS The combination of EGFR-TKIs and antiangiogenic inhibitors in NSCLC treatment presents a distinct and substantial AE profile, often with delayed onset. This finding underscores the necessity for rigorous and ongoing monitoring protocols to mitigate potential long-term adverse effects.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruxue Lv
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Yao H, Ren Y, Wu F, Liu J, Li J, Cao L, Yan M, Li X. Discovery of new cyclopropane sulfonamide derivatives as EGFR inhibitors to overcome C797S-mediated resistance and EGFR double mutation. Eur J Med Chem 2024; 275:116590. [PMID: 38908104 DOI: 10.1016/j.ejmech.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
The C797S mutation of EGFR leads to Osimertinib resistance by blocking the covalent binding of Cys797. To develop new agents that can overcome EGFR mutation resistance, thirty seven new cyclopropane sulfonamide derivatives were synthesized and evaluated as EGFRL858R/T790M/C797S or EGFRDel19/T790M/C797S inhibitors by structure-based screening. Most of the synthesized compounds exhibit good to excellent anti proliferation activity against to BaF3-EGFR L858R/T790M/C797S and BaF3-C797S/Del19/T790M cancer cell lines. Representative compounds 8l showed inhibitory activity against the two cancer cell lines with the IC50 values of 0.0012 and 0.0013 μM, respectively. Another compound 8h, exhibited slightly lower activity (0.0042 and 0.0034 μM of the IC50 values) to both of the two tri-mutation cell lines, but excellent activities against H1975 and PC9 cells with IC50 values of 13 and 19 nM, respectively. Considering the acquired drug resistance of tumors is a gradual process, we chose 8h for further in vivo and mechanism study. 8h was demonstrated significantly inhibited tumor growth with 72.1 % of the TGI in the BaF3/EGFR-TM xenograft tumor model and 83.5 % in the H1975-DM xenograft tumor model. Compound 8h was confirmed to be safe with no significant side effects as showed by the results of in vitro assay of human normal cells and the sections of animals major organs. Mechanism studies showed that in addition to inhibiting EGFR mutations, 8h can also target the tumor microenvironment and induce tumor cell apoptosis. All these results indicate that 8h deserves further investigation as an EGFR inhibitor to overcome C797S-mediated resistance.
Collapse
Affiliation(s)
- Han Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Ren
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiadai Liu
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Jianheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Longcai Cao
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China.
| |
Collapse
|
8
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Cai F, Zhao Y, Song S, Zhao D, Zheng Z, Xu L. Icotinib in a lung adenocarcinoma patient with acquired EGFR 19del/C797S mutation-mediated resistance to osimertinib: a case report. Anticancer Drugs 2024; 35:764-768. [PMID: 38848248 DOI: 10.1097/cad.0000000000001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Based on the FLAURA and AURA III trials, compared to first- and second-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), osimertinib provides a longer overall survival benefit for patients with untreated EGFR mutated non-small cell lung cancer. Similar to other EGFR-TKIs, drug resistance is, however, inevitable. The most common mechanism of acquired resistance to first-line osimertinib therapy is the C797S mutation, which accounts for 6% of cases. In view of the current challenges of the development of the next generation of EGFR inhibitors, the mechanism of third-generation targeted drug resistances and targeted strategies are key for further exploration. Our case report discusses a female patient with advanced lung adenocarcinoma carrying the EGFR exon19 E746_A750delinsIP mutation who received osimertinib as first-line therapy and acquired C797S resistance during treatment. The patient was then treated with icotinib for 8 months until the disease progressed. Icotinib may be effective in patients with the EGFR 19del-C797S resistant mutation acquired after osimertinib treatment.
Collapse
Affiliation(s)
| | - Yuanyuan Zhao
- Outpatient Department, General Hospital of Northern Theater Command, Shenyang, China
| | | | | | | | | |
Collapse
|
10
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
11
|
Onda N, Nakamichi S, Hirao M, Matsuda K, Matsumoto M, Miyanaga A, Noro R, Gemma A, Seike M. Afatinib plus PEM and CBDCA overcome osimertinib resistance in EGFR-mutated NSCLC with high thrombospondin-1 expression. Cancer Sci 2024; 115:2718-2728. [PMID: 38941131 PMCID: PMC11309943 DOI: 10.1111/cas.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
Osimertinib induces a marked response in non-small-cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) gene mutations. However, acquired resistance to osimertinib remains an inevitable problem. In this study, we aimed to investigate osimertinib-resistant mechanisms and evaluate the combination therapy of afatinib and chemotherapy. We established osimertinib-resistant cell lines (PC-9-OR and H1975-OR) from EGFR-mutant lung adenocarcinoma cell lines PC-9 and H1975 by high exposure and stepwise method. Combination therapy of afatinib plus carboplatin (CBDCA) and pemetrexed (PEM) was effective in both parental and osimertinib-resistant cells. We found that expression of thrombospondin-1 (TSP-1) was upregulated in resistant cells using cDNA microarray analysis. We demonstrated that TSP-1 increases the expression of matrix metalloproteinases through integrin signaling and promotes tumor invasion in both PC-9-OR and H1975-OR, and that epithelial-to-mesenchymal transition (EMT) was involved in H1975-OR. Afatinib plus CBDCA and PEM reversed TSP-1-induced invasion ability and EMT changes in resistant cells. In PC-9-OR xenograft mouse models (five female Balb/c-Nude mice in each group), combination therapy strongly inhibited tumor growth compared with afatinib monotherapy (5 mg/kg, orally, five times per week) or CBDCA (75 mg/kg, intraperitoneally, one time per week) + PEM (100 mg/kg, intraperitoneally, one time per week) over a 28-day period. These results suggest that the combination of afatinib plus CBDCA and PEM, which effectively suppresses TSP-1 expression, may be a promising option in EGFR-mutated NSCLC patients after the acquisition of osimertinib resistance.
Collapse
Affiliation(s)
- Naomi Onda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
12
|
Papa B, Dorwal P, Htain P, Robin J, Tan CP, Singhal N. Acquired EGFR Resistance Mutation C797S in Pancreatic Adenocarcinoma Following Partial Response to Third-Generation EGFR Inhibitor Therapy. JCO Precis Oncol 2024; 8:e2400132. [PMID: 39074344 DOI: 10.1200/po.24.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Brigitte Papa
- Department of Anatomical Pathology, Monash Health, Melbourne, Australia
| | - Pranav Dorwal
- Department of Anatomical Pathology, Monash Health, Melbourne, Australia
- Diagnostic Genomics, Monash Health, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Pamela Htain
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Julie Robin
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - C P Tan
- Cancer Centre, Royal Adelaide Hospital and School of Medicine, University of Adelaide, South Australia, Australia
| | - Nimit Singhal
- Cancer Centre, Royal Adelaide Hospital and School of Medicine, University of Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Combarel D, Dousset L, Bouchet S, Ferrer F, Tetu P, Lebbe C, Ciccolini J, Meyer N, Paci A. Tyrosine kinase inhibitors in cancers: Treatment optimization - Part I. Crit Rev Oncol Hematol 2024; 199:104384. [PMID: 38762217 DOI: 10.1016/j.critrevonc.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
A multitude of TKI has been developed and approved targeting various oncogenetic alterations. While these have provided improvements in efficacy compared with conventional chemotherapies, resistance to targeted therapies occurs. Mutations in the kinase domain result in the inability of TKI to inactivate the protein kinase. Also, gene amplification, increased protein expression and downstream activation or bypassing of signalling pathways are commonly reported mechanisms of resistance. Improved understanding of mechanisms involved in TKI resistance has resulted in the development of new generations of targeted agents. In a race against time, the search for new, more potent and efficient drugs, and/or combinations of drugs, remains necessary as new resistance mechanisms to the latest generation of TKI emerge. This review examines the various generations of TKI approved to date and their common mechanisms of resistance, focusing on TKI targeting BCR-ABL, epidermal growth factor receptor, anaplastic lymphoma kinase and BRAF/MEK tyrosine kinases.
Collapse
Affiliation(s)
- David Combarel
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France
| | - Léa Dousset
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Stéphane Bouchet
- Département de Pharmacologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Florent Ferrer
- Department of Pharmacology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France; SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Pauline Tetu
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Céleste Lebbe
- Department of Dermatology, APHP Dermatology, Paris 7 Diderot University, INSERM U976, Hôpital Saint-Louis, Paris, France
| | - Joseph Ciccolini
- SMARTc Unit, CRCM Inserm U1068, Aix Marseille Univ and APHM, Marseille, France
| | - Nicolas Meyer
- Université Paul Sabatier-Toulouse III, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1037-CRCT, Toulouse, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, Villejuif 94805, France; Service de Pharmacocinétique, Faculté de Pharmacie, Université Paris Saclay, Châtenay-Malabry 92 296, France.
| |
Collapse
|
14
|
He W, Tong L, Yang W, Yuan Y, Li Y, Tang W. Case report: Sustained remission after combined sintilimab, anti-VEGF therapy, and chemotherapy in a patient with non-small cell lung cancer harboring acquired EGFR 19Del/T790M/ cis-C797S mutation resistance. Front Oncol 2024; 14:1298389. [PMID: 38903714 PMCID: PMC11187085 DOI: 10.3389/fonc.2024.1298389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are highly effective against tumors harboring the T790M mutation. However, patients treated with these inhibitors ultimately develop resistance, and the most common mechanism is the emergence of the EGFR C797S mutation. Few treatment regimens have been reported for this condition. In this report, we present a successful combination treatment with the programmed cell death 1 (PD-1) inhibitor sintilimab, anti-vascular endothelial growth factor (VEGF) therapy, and chemotherapy with pemetrexed and cisplatin in a patient with non-small cell lung cancer (NSCLC) who developed acquired resistance with EGFR 19 exon deletion (19Del)/T790M/cis-C797S mutation following progression with ametinib therapy. This regimen was well tolerated, and the patient has remained progression-free for 15 months. Our case provides clinical evidence that the combination of PD-1 inhibitor, anti-VEGF therapy, and chemotherapy may be an efficacious therapeutic strategy for NSCLC patients with acquired EGFR 19Del/T790M/cis-C797S mutation resistance following progression with EGFR TKI therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wubing Tang
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| |
Collapse
|
15
|
Favorito V, Ricciotti I, De Giglio A, Fabbri L, Seminerio R, Di Federico A, Gariazzo E, Costabile S, Metro G. Non-small cell lung cancer: an update on emerging EGFR-targeted therapies. Expert Opin Emerg Drugs 2024; 29:139-154. [PMID: 38572595 DOI: 10.1080/14728214.2024.2331139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Current research in EGFR-mutated NSCLC focuses on the management of drug resistance and uncommon mutations, as well as on the opportunity to extend targeted therapies' field of action to earlier stages of disease. AREAS COVERED We conducted a review analyzing literature from the PubMed database with the aim to describe the current state of art in the management of EGFR-mutated NSCLC, but also to explore new strategies under investigation. To this purpose, we collected recruiting phase II-III trials registered on Clinicaltrials.govand conducted on EGFR-mutated NSCLC both in early and advanced stage. EXPERT OPINION With this review, we want to provide an exhaustive overview of current and new potential treatments in EGFR-mutated NSCLC, with emphasis on the most promising newly investigated strategies, such as association therapies in the first-line setting involving EGFR-TKIs and chemotherapy (FLAURA2) or drugs targeting different driver pathways (MARIPOSA). We also aimed at unearthing challenges to achieve in this field, specifically the need to fully exploit already available compounds while developing new ones, the management of new emerging toxicities and the necessity to improve our biological understanding of the disease to design trials with a solid scientific rationale and to allow treatment personalization such in case of uncommon mutations.
Collapse
Affiliation(s)
- Valentina Favorito
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Renata Seminerio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eleonora Gariazzo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Costabile
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
16
|
Di Pressa F, Perrone F, Benini A, Lohr F, Tiseo M, Bruni A. Management of oligometastatic and oligoprogressive epidermal growth factor receptor mutated non-small cell lung cancer patients: state of the art of a combined approach. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:449-464. [PMID: 38966183 PMCID: PMC11220311 DOI: 10.37349/etat.2024.00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/04/2024] [Indexed: 07/06/2024] Open
Abstract
Recently, the development of targeted therapy approaches such as those based on tyrosine kinase inhibitor (TKI) greatly improved the clinical outcomes of patients affected by oncogene addicted advanced non-small cell lung cancer (NSCLC). Similarly, the improvement of radiation therapy techniques has permitted to deliver high radiation doses to a limited number of metastatic target lesions (oligopersistent or oligoprogressive), with limited high-dose normal tissue exposure that leads to low severe toxicity rates. The aim of this narrative review was to provide an overview of the currently established definition of oligometastatic and oligoprogressive disease, to define first line and subsequent lines targeted therapies and the role of consolidative non-invasive local ablative treatments (LATs) in these settings. The potential benefit of local treatment (LT) such as radiotherapy (RT) or surgery might be represented by an overall reduction of switching to subsequent systemic treatments lowering the risk of further systemic dissemination. Further randomized clinical trials will clarify the role of LT and their correct timing in relation to systemic targeted therapies.
Collapse
Affiliation(s)
- Francesca Di Pressa
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Fabiana Perrone
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Anna Benini
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Frank Lohr
- Proton Therapy Unit, APSS Trento and CISMed, University of Trento, 38100 Trento, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| | - Alessio Bruni
- Radiation Therapy Unit, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
17
|
Zhang X, He J, Xu S, Fu L, Zheng P, Xu S, Pan Q, Zhu W. Insights into the Overcoming EGFR Del19/T790M/C797S Mutation: A Perspective on the 2-Aryl-4-aminothienopyrimidine Backbone. ChemMedChem 2024; 19:e202300634. [PMID: 38351876 DOI: 10.1002/cmdc.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Indexed: 03/08/2024]
Abstract
The epithelial growth factor receptor (EGFR) signaling pathway has been proposed to benefit non-small cell lung cancer (NSCLC) treatment. In this manuscript, we investigated the modification of 2-aryl-4-aminoquinazoline, the classical backbone of the fourth-generation EGFR inhibitors, in addition to obtaining a series of novel 2-aryl-4-aminothienopyrimidine derivatives (A1~A45), we also gained further understanding of the modification of this framework. Derivatives were tested for cytotoxicity against cancer cell lines (cervical cancer cell line Hela, lung cancer cell lines A549, H1975, and PC-9, Ba/F3-EGFRDel19/T790M/C797S cells, and human normal hepatocytes LO2) as well as for the derivative's inhibitory activity against EGFRWT, EGFRL858R/T790M, and EGFRDel19/T790M/C797S kinase inhibitory activities. The results showed that most of the target compounds showed moderate to excellent activity against one or more cancer cell lines. Among them, the antitumor activity (IC50) of the most promising A9 against A549 and H1975 cell lines was 0.77±0.08 μM, 6.90±0.83 μM, respectively. At concentration of 10 μM, A9 can be employed as the fourth-generation of EGFR inhibitors with the ability to overcome the C797S drug resistance since it can suppress EGFRDel19/T790M/C797S cells and kinase by 98.90 % and 85.88 %, respectively. Moreover, the tumor-bearing nude mice experiment further shows that A9 can significantly inhibit the growth of tumor in vivo, with the tumor inhibition rate (TIR) of 55.92 %, which was equivalent to the positive group. After that, from the result of HE staining experiment and blood biochemical analysis experiment, A9 show low toxicity and good safety, which is worthy of further research and development.
Collapse
Affiliation(s)
- Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Jie He
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shidi Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Li Fu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, China
| |
Collapse
|
18
|
Hu B, Wiesehofer M, de Miguel FJ, Liu Z, Chan LH, Choi J, Melnick MA, Estape AA, Walther Z, Zhao D, Lopez-Giraldez F, Wurtz A, Cai G, Fan R, Gettinger S, Xiao A, Yan Q, Homer R, Nguyen DX, Politi K. ASCL1 Drives Tolerance to Osimertinib in EGFR Mutant Lung Cancer in Permissive Cellular Contexts. Cancer Res 2024; 84:1303-1319. [PMID: 38359163 PMCID: PMC11142404 DOI: 10.1158/0008-5472.can-23-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The majority of EGFR mutant lung adenocarcinomas respond well to EGFR tyrosine kinase inhibitors (TKI). However, most of these responses are partial, with drug-tolerant residual disease remaining even at the time of maximal response. This residual disease can ultimately lead to relapses, which eventually develop in most patients. To investigate the cellular and molecular properties of residual tumor cells in vivo, we leveraged patient-derived xenograft (PDX) models of EGFR mutant lung cancer. Subcutaneous EGFR mutant PDXs were treated with the third-generation TKI osimertinib until maximal tumor regression. Residual tissue inevitably harbored tumor cells that were transcriptionally distinct from bulk pretreatment tumor. Single-cell transcriptional profiling provided evidence of cells matching the profiles of drug-tolerant cells present in the pretreatment tumor. In one of the PDXs analyzed, osimertinib treatment caused dramatic transcriptomic changes that featured upregulation of the neuroendocrine lineage transcription factor ASCL1. Mechanistically, ASCL1 conferred drug tolerance by initiating an epithelial-to-mesenchymal gene-expression program in permissive cellular contexts. This study reveals fundamental insights into the biology of drug tolerance, the plasticity of cells through TKI treatment, and why specific phenotypes are observed only in certain tumors. SIGNIFICANCE Analysis of residual disease following tyrosine kinase inhibitor treatment identified heterogeneous and context-specific mechanisms of drug tolerance in lung cancer that could lead to the development of strategies to forestall drug resistance. See related commentary by Rumde and Burns, p. 1188.
Collapse
Affiliation(s)
- Bomiao Hu
- Department of Pathology, Yale School of Medicine, New Haven CT
| | | | | | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Lok-Hei Chan
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Present address: Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | - Anna Arnal Estape
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Dejian Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis (YCGA) Yale School of Medicine, New Haven CT
| | - Francesc Lopez-Giraldez
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis (YCGA) Yale School of Medicine, New Haven CT
| | - Anna Wurtz
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Guoping Cai
- Department of Pathology, Yale School of Medicine, New Haven CT
| | - Rong Fan
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut
| | - Scott Gettinger
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| | - Andrew Xiao
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
| | - Don X. Nguyen
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven CT
- Yale Cancer Center, Yale School of Medicine, New Haven CT
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven CT
| |
Collapse
|
19
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Chung C, Umoru G. Prognostic and predictive biomarkers with therapeutic targets in nonsmall-cell lung cancer: A 2023 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2024:10781552241242684. [PMID: 38576390 DOI: 10.1177/10781552241242684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND Since the publication of the original work in 2014, significant progress has been made in the characterization of genomic alterations that drive oncogenic addiction of nonsmall cell lung cancer (NSCLC) and how the immune system can leverage non-oncogenic pathways to modulate therapeutic outcomes. This update evaluates and validates the recent and emerging data for prognostic and predictive biomarkers with therapeutic targets in NSCLC. DATA SOURCES We performed a literature search from January 2015 to October 2023 using the keywords non-small cell lung cancer, clinical practice guidelines, gene mutations, genomic assay, immune cancer therapy, circulating tumor DNA, predictive and prognostic biomarkers, and targeted therapies. STUDY SELECTION AND DATA EXTRACTION We identified, reviewed, and evaluated relevant clinical trials, meta-analyses, seminal articles, and published clinical practice guidelines in the English language. DATA SYNTHESIS Regulatory-approved targeted therapies include those somatic gene alterations of EGFR ("classic" mutations, exon 20 insertion, and rare EGFR mutations), ALK, ROS1, BRAF V600, RET, MET, NTRK, HER2, and KRAS G12C. Data for immunotherapy and circulating tumor DNA in next-generation sequencing are considered emerging, whereas the predictive role for PIK3CA gene mutation is insufficient. CONCLUSIONS Advances in sequencing and other genomic technologies have led to identifying novel oncogenic drivers, novel resistance mechanisms, and co-occurring mutations that characterize NSCLC, creating further therapeutic opportunities. The benefits associated with immunotherapy in the perioperative setting hold initial promise, with their long-term results awaiting.
Collapse
Affiliation(s)
- Clement Chung
- Department of Pharmacy, Houston Methodist West Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
21
|
Lu C, Wei XW, Wang Z, Zhou Z, Liu YT, Zheng D, He Y, Xie ZH, Li Y, Zhang Y, Zhang YC, Huang ZJ, Mei SQ, Liu JQ, Guan XH, Deng Y, Chen ZH, Tu HY, Xu CR, Chen HJ, Zhong WZ, Yang JJ, Zhang XC, Mok TSK, Wu YL, Zhou Q. Allelic Context of EGFR C797X-Mutant Lung Cancer Defines Four Subtypes With Heterogeneous Genomic Landscape and Distinct Clinical Outcomes. J Thorac Oncol 2024; 19:601-612. [PMID: 37981218 DOI: 10.1016/j.jtho.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION EGFR C797X (C797S or C797G) mutation is the most frequent on-target mechanism of resistance to osimertinib. The hypothesis that the allelic context of C797X/T790M has implications for treatment is on the basis of sporadic reports and needs validation with larger cohorts. METHODS We identified patients with EGFR C797X-mutant NSCLC from nine centers who progressed on osimertinib, all analyzed in a single laboratory through next-generation sequencing. We analyzed genomic profiles and assessed associations between clinical outcomes and C797X status. RESULTS A total of 365 EGFR C797X-mutant cases were categorized into four subtypes on the basis of allelic context: in cis (75.3%), in trans (6.4%), cis&trans (10.4%), and C797X-only (7.9%). Genomically, the cis&trans subtype displayed the highest frequency of concurrent alterations at osimertinib resistance sites (21.1%), while the in cis subtype had the lowest (8.4%). Clinically, cis&trans patients exhibited the worst progression-free survival (PFS) on both previous (median 7.7 mo) and subsequent treatment (median 1.0 mo) and overall survival (median 3.9 mo). In subsequent treatments, in cis patients exhibited superior PFS with combined brigatinib and cetuximab (median 11.0 mo) compared with other regimens (p = 0.005), while in trans patients exhibited variable outcomes with combined first or second- and third-generation EGFR inhibitor (PFS range: 0.7-8.1 mo, median 2.6 mo). Notably, subtype switching was observed after subsequent treatments, predominantly toward the in cis subtype. CONCLUSIONS Allelic context could define four EGFR C797X-mutant NSCLC subtypes with heterogeneous genetic landscapes and distinct clinical outcomes. Subsequent treatments further complicate the scenario through subtype switching.
Collapse
Affiliation(s)
- Chang Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xue-Wu Wei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Wang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhen Zhou
- Shanghai Chest Hosptial, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Tao Liu
- Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Di Zheng
- Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhan-Hong Xie
- National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou, People's Republic of China
| | - Yong Li
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Yan Zhang
- The Fourth Department of Oncology, People's Hospital of Shijiazhuang City, Shijiazhuang, People's Republic of China
| | - Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zi-Jian Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Shi-Qi Mei
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Jia-Qi Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xu-Hui Guan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Yu Deng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Hai-Yan Tu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Tony S K Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Shen J, Chen L, Liu J, Li A, Zheng L, Chen S, Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem Biol Drug Des 2024; 103:e14517. [PMID: 38610074 DOI: 10.1111/cbdd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.
Collapse
Affiliation(s)
- Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jihu Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Anzhi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lüyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Sheng Chen
- Jiangxi Chiralsyn Biological Medicine Co., Ltd, Ganzhou, Jiangxi, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Choi MG, Son GW, Choi MY, Jung JS, Rho JK, Ji W, Yoon BG, Jo JM, Kim YM, Ko DH, Lee JC, Choi CM. Safety and efficacy of SNK01 (autologous natural killer cells) in combination with cytotoxic chemotherapy and/or cetuximab after failure of prior tyrosine kinase inhibitor in non-small cell lung cancer: non-clinical mouse model and phase I/IIa clinical study. J Immunother Cancer 2024; 12:e008585. [PMID: 38538093 PMCID: PMC10982808 DOI: 10.1136/jitc-2023-008585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Choosing treatments for epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) patients with osimertinib resistance is challenging. We evaluated the safety and efficacy of SNK01 (autologous natural killer (NK) cells) in combination with cytotoxic chemotherapy and/or cetuximab (an anti-EGFR monoclonal antibody) in treating EGFR-mutated NSCLC in this non-clinical and phase I/IIa clinical trial. METHODS We developed a cell line-derived xenograft-humanized mouse model with an osimertinib-resistant lung cancer cell line. The mice were divided into four groups based on treatment (no treatment, cetuximab, SNK01, and combination groups) and treated weekly for 5 weeks. In the clinical study, 12 patients with EGFR-mutated NSCLC who failed prior tyrosine kinase inhibitor (TKI) received SNK01 weekly in combination with gemcitabine/carboplatin (n=6) or cetuximab/gemcitabine/carboplatin (n=6) and dose escalation of SNK01 following the "3+3" design. RESULTS In the non-clinical study, an increase in NK cells in the blood and enhanced NK cell tumor infiltration were observed in the SNK01 group. The volume of tumor extracted after treatment was the smallest in the combination group. In the clinical study, 12 patients (median age, 60.9 years; all adenocarcinoma cases) received SNK01 weekly for 7-8 weeks (4×109 cells/dose (n=6); 6×109 cells/dose (n=6)). The maximum feasible dose of SNK01 was 6×109 cells/dose without dose-limiting toxicity. Efficacy outcomes showed an objective response rate of 25%, disease control rate of 100%, and median progression-free survival of 143 days. CONCLUSION SNK01 in combination with cytotoxic chemotherapy, including cetuximab, for EGFR-mutated NSCLC with TKI resistance was safe and exerted a potential antitumor effect. TRIAL REGISTRATION NUMBER NCT04872634.
Collapse
Affiliation(s)
- Myeong Geun Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | | - Jin Kyung Rho
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chang-Min Choi
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Ermini L, Driguez P. The Application of Long-Read Sequencing to Cancer. Cancers (Basel) 2024; 16:1275. [PMID: 38610953 PMCID: PMC11011098 DOI: 10.3390/cancers16071275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer is a multifaceted disease arising from numerous genomic aberrations that have been identified as a result of advancements in sequencing technologies. While next-generation sequencing (NGS), which uses short reads, has transformed cancer research and diagnostics, it is limited by read length. Third-generation sequencing (TGS), led by the Pacific Biosciences and Oxford Nanopore Technologies platforms, employs long-read sequences, which have marked a paradigm shift in cancer research. Cancer genomes often harbour complex events, and TGS, with its ability to span large genomic regions, has facilitated their characterisation, providing a better understanding of how complex rearrangements affect cancer initiation and progression. TGS has also characterised the entire transcriptome of various cancers, revealing cancer-associated isoforms that could serve as biomarkers or therapeutic targets. Furthermore, TGS has advanced cancer research by improving genome assemblies, detecting complex variants, and providing a more complete picture of transcriptomes and epigenomes. This review focuses on TGS and its growing role in cancer research. We investigate its advantages and limitations, providing a rigorous scientific analysis of its use in detecting previously hidden aberrations missed by NGS. This promising technology holds immense potential for both research and clinical applications, with far-reaching implications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Patrick Driguez
- Bioscience Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Blagosklonny MV. From osimertinib to preemptive combinations. Oncotarget 2024; 15:232-237. [PMID: 38497774 PMCID: PMC10946407 DOI: 10.18632/oncotarget.28569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Here, I suggest that while first-line osimertinib extends median progression-free survival (PFS) in EGFR-mutant lung cancer compared to first-generation TKIs, it reduces individual PFS in 15-20% of patients compared to first-generation TKIs. Since detecting a single resistant cell before treatment is usually impossible, osimertinib must be used in all patients as a first-line treatment, raising median PFS overall but harming some. The simplest remedy is a preemptive combination (PC) of osimertinib and gefitinib. A comprehensive PC (osimertinib, afatinib/gefitinib, and capmatinib) could dramatically increase PFS for 80% of patients compared to osimertinib alone, without harming anyone. This article also explores PCs for MET-driven lung cancer.
Collapse
|
26
|
Del Re M, Luculli GI, Petrini I, Sbrana A, Scotti V, Perez DDM, Livi L, Crucitta S, Iannopollo M, Mazzoni F, Ruglioni M, Tibaldi C, Olmetto E, Stasi I, Baldini E, Allegrini G, Antonuzzo L, Morelli F, Pierini A, Panzeri N, Fogli S, Chella A, Rolfo C, Danesi R. Clinical utility of Next Generation Sequencing of plasma cell-free DNA for the molecular profiling of patients with NSCLC at diagnosis and disease progression. Transl Oncol 2024; 41:101869. [PMID: 38290249 PMCID: PMC10859238 DOI: 10.1016/j.tranon.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The present study evaluates the utility of NGS analysis of circulating free DNA (cfDNA), which incorporates small amounts of tumor DNA (ctDNA), at diagnosis or at disease progression (PD) in NSCLC patients. METHODS Comprehensive genomic profiling on cfDNA by NGS were performed in NSCLC patients at diagnosis (if tissue was unavailable/insufficient) or at PD to investigate potential druggable molecular aberrations. Blood samples were collected as routinary diagnostic procedures, DNA was extracted, and the NextSeq 550 Illumina platform was used to run the Roche Avenio ctDNA Expanded Kit for molecular analyses. Gene variants were classified accordingly to the ESCAT score. RESULTS A total of 106 patients were included in this study; 44 % of cases were requested because of tissue unavailability at the diagnosis and 56 % were requested at the PD. At least one driver alteration was observed in 62 % of cases at diagnosis. Driver druggable variants classified as ESCAT level I were detected in 34 % of patients, including ALK-EML4, ROS1-CD74, EGFR, BRAF, KRAS p.G12C, PI3KCA. In the PD group, most patients were EGFR-positive, progressing to a first line-therapy. Sixty-three percent of patients had at least one driver alteration detected in blood and 17 % of patients had a known biological mechanism of resistance allowing further therapeutic decisions. CONCLUSIONS The present study confirms the potential of liquid biopsy to detect tumour molecular heterogeneity in NSCLC patients at the diagnosis and at PD, demonstrating that a significant number of druggable mutations and mechanisms of resistance can be detected by NGS analysis on ctDNA.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Thoracic Oncology Center, Tisch Cancer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Andrea Sbrana
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Vieri Scotti
- Radiation Oncology Unit, Oncology Department, AOU Careggi Firenze, Firenze, Italy
| | - Diego de Miguel Perez
- Thoracic Oncology Center, Tisch Cancer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mauro Iannopollo
- Oncology Department, Oncology Unit, San Jacopo Hospital, Pistoia, Italy
| | | | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Emanuela Olmetto
- Radiation Oncology Unit, Oncology Department, AOU Careggi Firenze, Firenze, Italy
| | - Irene Stasi
- Department of Oncology, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | | | | | - Lorenzo Antonuzzo
- Medical Oncology, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Franco Morelli
- Medical Oncology Unit, Gemelli Hospital Molise, Campobasso, Italy
| | | | | | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Christian Rolfo
- Thoracic Oncology Center, Tisch Cancer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milano, Italy.
| |
Collapse
|
27
|
Haratake N, Ozawa H, Morimoto Y, Yamashita N, Daimon T, Bhattacharya A, Wang K, Nakashoji A, Isozaki H, Shimokawa M, Kikutake C, Suyama M, Hashinokuchi A, Takada K, Takenaka T, Yoshizumi T, Mitsudomi T, Hata AN, Kufe D. MUC1-C Is a Common Driver of Acquired Osimertinib Resistance in NSCLC. J Thorac Oncol 2024; 19:434-450. [PMID: 37924972 PMCID: PMC10939926 DOI: 10.1016/j.jtho.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Osimertinib is an irreversible EGFR tyrosine kinase inhibitor approved for the first-line treatment of patients with metastatic NSCLC harboring EGFR exon 19 deletions or L858R mutations. Patients treated with osimertinib invariably develop acquired resistance by mechanisms involving additional EGFR mutations, MET amplification, and other pathways. There is no known involvement of the oncogenic MUC1-C protein in acquired osimertinib resistance. METHODS H1975/EGFR (L858R/T790M) and patient-derived NSCLC cells with acquired osimertinib resistance were investigated for MUC1-C dependence in studies of EGFR pathway activation, clonogenicity, and self-renewal capacity. RESULTS We reveal that MUC1-C is up-regulated in H1975 osimertinib drug-tolerant persister cells and is necessary for activation of the EGFR pathway. H1975 cells selected for stable osimertinib resistance (H1975-OR) and MGH700-2D cells isolated from a patient with acquired osimertinib resistance are found to be dependent on MUC1-C for induction of (1) phospho (p)-EGFR, p-ERK, and p-AKT, (2) EMT, and (3) the resistant phenotype. We report that MUC1-C is also required for p-EGFR, p-ERK, and p-AKT activation and self-renewal capacity in acquired osimertinib-resistant (1) MET-amplified MGH170-1D #2 cells and (2) MGH121 Res#2/EGFR (T790M/C797S) cells. Importantly, targeting MUC1-C in these diverse models reverses osimertinib resistance. In support of these results, high MUC1 mRNA and MUC1-C protein expression is associated with a poor prognosis for patients with EGFR-mutant NSCLCs. CONCLUSIONS Our findings reveal that MUC1-C is a common effector of osimertinib resistance and is a potential target for the treatment of osimertinib-resistant NSCLCs.
Collapse
Affiliation(s)
- Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Hiroki Ozawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Keyi Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Ayako Nakashoji
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Hideko Isozaki
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Mitsudomi
- Department of Surgery, Kindai University Hospital, Osaka-Sayama, Japan
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
28
|
Kurup S, Gesinski D, Assaad K, Reynolds A. Design, synthesis, and evaluation of dual EGFR/AURKB inhibitors as anticancer agents for non-small cell lung cancer. Bioorg Med Chem Lett 2024; 100:129612. [PMID: 38199330 PMCID: PMC10951975 DOI: 10.1016/j.bmcl.2024.129612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are first-line agents for mutant EGFR-positive (mEGFR+) NSCLC. However, secondary resistant mutations develop following therapy that prevent EGFR-TKI binding. The EGFR-TKIs are rendered ineffective in NSCLC expressing EGFR resistant mutations (rmEGFR+). Mutations in Kirsten rat sarcoma virus protein (mKRAS) support persistent signaling downstream of EGFR regardless of EGFR-TKI earlier in the signaling cascade. The EGFR-TKIs are ineffective in mKRAS+ NSCLC. Thus, newer anticancer agents are needed for rmEGFR+ and mKRAS+ NSCLC. Aurora kinase B (AURKB) is a mitosis related kinase that is overexpressed in NSCLC and supports cancer cell proliferation and survival. Literature reports have suggested that AURKB inhibitors if given concurrently with an EGFR-TKI could overcome EGFR-TKI resistance in mKRAS+ NSCLC and rmEGFR + NSCLC, and showed improved anticancer effects compared to current single-targeted EGFR-TKIs. Molecular modeling was used to identify similarities between the kinase pockets of EGFR and AURKB. An overlap was observed for the inactive conformation of EGFR and the active conformation of AURKB. Compounds 3-7 were synthesized as dual EGFR/AURKB inhibitors for mKRAS+ and rmEGFR+ NSCLC. Compounds 5, 6 and 7 were identified as dual EGFR/AURKB inhibitors. Compound 5 demonstrated modest micromolar inhibition of rmEGFR+ NSCLC. All investigated compounds showed moderate inhibition of mKRAS+ NSCLC cells. Compound 7 demonstrated single-digit micromolar inhibition of mKRAS+ NSCLC.
Collapse
Affiliation(s)
- Sonali Kurup
- College of Pharmacy, Ferris State University, United States.
| | - Dayna Gesinski
- College of Pharmacy, Ferris State University, United States
| | - Kaitlin Assaad
- College of Pharmacy, Ferris State University, United States
| | - Aidan Reynolds
- College of Pharmacy, Ferris State University, United States
| |
Collapse
|
29
|
Araki T, Kanda S, Obara M, Agatsuma T, Kakizaki Y, Hama M, Yamamoto H, Takada M, Yamamoto M, Matsuo A, Kondo D, Komatsu M, Sonehara K, Tateishi K, Hanaoka M, Koizumi T. EGFR-TKI rechallenge in patients with EGFR-mutated non-small-cell lung cancer who progressed after first-line osimertinib treatment: A multicenter retrospective observational study. Respir Investig 2024; 62:262-268. [PMID: 38245931 DOI: 10.1016/j.resinv.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Rechallenge therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) is known to confer some clinical benefit for patients with metastatic EGFR-mutated non-small cell lung cancer (NSCLC). However, little is known about the efficacy of EGFR-TKI rechallenge after resistance to first-line (1L) osimertinib. This study aimed to assess the efficacy and safety of EGFR-TKI rechallenge therapy after resistance to 1L osimertinib in a Japanese clinical setting. METHODS Between April 2018 and August 2022, 26 patients who progressed after treatment with 1L osimertinib and received EGFR-TKI rechallenge were included in this multicenter retrospective analysis. Patients in whom 1L osimertinib was discontinued owing to toxicity and had subsequent disease progression were also included in the analysis. RESULTS Overall, the objective response rate for rechallenge therapy was 23.1%. The disease control rate was 53.9%, and the median progression-free survival (PFS) was 3.4 months. Patients who discontinued 1L osimertinib for toxicity had a higher response rate (42.9% vs. 15.8%) and longer PFS than those who discontinued it due to disease progression (median: 11.4 vs. 2.7 months, P = 0.001). Three patients (11.5%) developed rechallenge therapy-associated pneumonitis, two of which were grade ≥3. CONCLUSIONS Rechallenge with EGFR-TKI after 1L osimertinib resistance showed limited clinical efficacy. However, it could be considered as a subsequent salvage therapeutic option for patients in whom 1L osimertinib was discontinued owing to toxicity.
Collapse
Affiliation(s)
- Taisuke Araki
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shintaro Kanda
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Miho Obara
- Department of Pharmacy, Shinshu University Hospital, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Toshihiko Agatsuma
- Department of Respiratory Medicine, Shinshu Ueda Medical Center, 1-27-21, Midorigaoka, Ueda, Nagano, 386-8610, Japan
| | - Yumiko Kakizaki
- Lung Cancer and Respiratory Disease Center, Yamanashi Prefectural Central Hospital, 1-1-1, Fujimi, Kofu, Yamanashi, 400-8506, Japan
| | - Mineyuki Hama
- Department of Respiratory Medicine, Japanese Red Cross Society Suwa Hospital, 5-11-50, Kogandori Suwa, Nagano, 390-0027, Japan
| | - Hiroshi Yamamoto
- Department of Respiratory Medicine, Iida Municipal Hospital, 438, Yawatamachi, Iida, 395-0814, Japan
| | - Munetake Takada
- Department of Respiratory Medicine, Jiseikai Aizawa Hospital, 2-5-1, Honjo, Matsumoto, Nagano, 390-8510, Japan
| | - Manabu Yamamoto
- Department of Respiratory Medicine, Japanese Red Cross Society Nagano Hospital, 5-22-1, Wakasato, Nagano, Nagano, 380-8582, Japan
| | - Akemi Matsuo
- Department of Respiratory Medicine, Minaminagano Medical Center, 666-1, Shinonoiai, Shinonoi General Hospital, 388-8004, Nagano, Japan
| | - Daichi Kondo
- Department of Respiratory Medicine, Hokushin General Hospital, 1-5-63, Nishi, Nakano, Nagano, 383-8505, Japan
| | - Masamichi Komatsu
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kei Sonehara
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kazunari Tateishi
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tomonobu Koizumi
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
30
|
Tan L, Brown C, Mersiades A, Lee CK, John T, Kao S, Newnham G, O'Byrne K, Parakh S, Bray V, Jasas K, Yip S, Wong SQ, Ftouni S, Guinto J, Chandrashekar S, Clarke S, Pavlakis N, Stockler MR, Dawson SJ, Solomon BJ. A Phase II trial of alternating osimertinib and gefitinib therapy in advanced EGFR-T790M positive non-small cell lung cancer: OSCILLATE. Nat Commun 2024; 15:1823. [PMID: 38418463 PMCID: PMC10902357 DOI: 10.1038/s41467-024-46008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/07/2024] [Indexed: 03/01/2024] Open
Abstract
In this phase II, single arm trial (ACTRN12617000720314), we investigate if alternating osimertinib and gefitinib would delay the development of resistance to osimertinib in advanced, non-small cell lung cancer (NSCLC) with the epidermal growth factor receptor (EGFR) T790M mutation (n = 47) by modulating selective pressure on resistant clones. The primary endpoint is progression free-survival (PFS) rate at 12 months, and secondary endpoints include: feasibility of alternating therapy, overall response rate (ORR), overall survival (OS), and safety. The 12-month PFS rate is 38% (95% CI 27.5-55), not meeting the pre-specified primary endpoint. Serial circulating tumor DNA (ctDNA) analysis reveals decrease and clearance of the original activating EGFR and EGFR-T790M mutations which are prognostic of clinical outcomes. In 73% of participants, loss of T790M ctDNA is observed at progression and no participants have evidence of the EGFR C797S resistance mutation following the alternating regimen. These findings highlight the challenges of treatment strategies designed to modulate clonal evolution and the clinical importance of resistance mechanisms beyond suppression of selected genetic mutations in driving therapeutic escape to highly potent targeted therapies.
Collapse
Affiliation(s)
- Lavinia Tan
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Chris Brown
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Antony Mersiades
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Chee Khoon Lee
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- St George Hospital, Sydney, NSW, Australia
| | - Thomas John
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Steven Kao
- Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | | | | | - Sagun Parakh
- Austin Hospital, Olivia Newton John Cancer and Wellness and Research Centre, Melbourne, VIC, Australia
| | | | - Kevin Jasas
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Ftouni
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Jerick Guinto
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | | | - Stephen Clarke
- Royal North Shore Hospital, Sydney, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Nick Pavlakis
- Royal North Shore Hospital, Sydney, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Martin R Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia.
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Liang J, Bi G, Sui Q, Zhao G, Zhang H, Bian Y, Chen Z, Huang Y, Xi J, Shi Y, Wang Q, Zhan C. Transcription factor ZNF263 enhances EGFR-targeted therapeutic response and reduces residual disease in lung adenocarcinoma. Cell Rep 2024; 43:113771. [PMID: 38335093 DOI: 10.1016/j.celrep.2024.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) have achieved clinical success in lung adenocarcinoma (LUAD). However, tumors often show profound but transient initial response and then gain resistance. We identify transcription factor ZNF263 as being significantly decreased in osimertinib-resistant or drug-tolerant persister LUAD cells and clinical residual tumors. ZNF263 overexpression improves the initial response of cells and delays the formation of persister cells with osimertinib treatment. We further show that ZNF263 binds and recruits DNMT1 to the EGFR gene promoter, suppressing EGFR transcription with DNA hypermethylation. ZNF263 interacts with nuclear EGFR, impairing the EGFR-STAT5 interaction to enhance AURKA expression. Overexpressing ZNF263 also makes tumor cells with wild-type EGFR expression or refractory EGFR mutations more susceptible to EGFR inhibition. More importantly, lentivirus or adeno-associated virus (AAV)-mediated ZNF263 overexpression synergistically suppresses tumor growth and regrowth with osimertinib treatment in xenograft animal models. These findings suggest that enhancing ZNF263 may achieve complete response in LUAD with EGFR-targeted therapies.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junjie Xi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Suzuki M, Uchibori K, Oh-Hara T, Nomura Y, Suzuki R, Takemoto A, Araki M, Matsumoto S, Sagae Y, Kukimoto-Niino M, Kawase Y, Shirouzu M, Okuno Y, Nishio M, Fujita N, Katayama R. A macrocyclic kinase inhibitor overcomes triple resistant mutations in EGFR-positive lung cancer. NPJ Precis Oncol 2024; 8:46. [PMID: 38396251 PMCID: PMC10891166 DOI: 10.1038/s41698-024-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.
Collapse
Affiliation(s)
- Mai Suzuki
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Ken Uchibori
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomoko Oh-Hara
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yumi Nomura
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Ryusei Suzuki
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, Japan
| | - Shigeyuki Matsumoto
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, Japan
| | - Yukari Sagae
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | | | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
- Department of Medical Genome Science, Graduate School of Frontier Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
33
|
Wang A, Shuai W, Wu C, Pei J, Yang P, Wang X, Li S, Liu J, Wang Y, Wang G, Ouyang L. Design, Synthesis, and Biological Evaluation of Dual Inhibitors of EGFR L858R/T790M/ACK1 to Overcome Osimertinib Resistance in Nonsmall Cell Lung Cancers. J Med Chem 2024; 67:2777-2801. [PMID: 38323982 DOI: 10.1021/acs.jmedchem.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Activation of the alternative pathways and abnormal signaling transduction are frequently observed in third-generation EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors)-resistant patients. Wherein, hyperphosphorylation of ACK1 contributes to EGFR-TKIs acquired resistance. Dual inhibition of EGFRL858R/T790M and ACK1 might improve therapeutic efficacy and overcome resistance in lung cancers treatment. Here, we identified a EGFRL858R/T790M/ACK1 dual-targeting compound 21a with aminoquinazoline scaffold, which showed excellent inhibitory activities against EGFRL858R/T790M (IC50 = 23 nM) and ACK1 (IC50 = 263 nM). The cocrystal and docking analysis showed that 21a occupied the ATP binding pockets of EGFRL858R/T790M and ACK1. Moreover, 21a showed potent antiproliferative activities against the H1975 cells, MCF-7 cells and osimertinib-resistant cells AZDR. Further, 21a showed significant antitumor effects and good safety in ADZR xenograft-bearing mice. Taken together, 21a was a potent dual inhibitor of EGFRL858R/T790M/ACK1, which is deserved as a potential lead for overcoming acquired resistance to osimertinib during the EGFR-targeted therapy.
Collapse
Affiliation(s)
- Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Chengyong Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Shutong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Hoyt KW, Urul DA, Ogboo BC, Wittlinger F, Laufer SA, Schaefer EM, May EW, Heppner DE. Pitfalls and Considerations in Determining the Potency and Mutant Selectivity of Covalent Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2024; 67:2-16. [PMID: 38134304 DOI: 10.1021/acs.jmedchem.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Erik M Schaefer
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, The State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
35
|
Xu M, Sun Q, Lv X, Chen F, Su S, Wang L. Sinus metastasis of lung adenocarcinoma: a case report. Front Med (Lausanne) 2024; 10:1323222. [PMID: 38274460 PMCID: PMC10808735 DOI: 10.3389/fmed.2023.1323222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Metastatic carcinoma of the paranasal sinuses in lung cancer is an extremely uncommon condition. We report here a 57-year-old female patient with epidermal growth factor receptor (EGFR)-positive stage IV non-small cell lung cancer (NSCLC) with multiple bone metastases. After resistance to second- and third-generation EGFR-tyrosine kinase inhibitors (TKIs), the patient presented with headache accompanied by progressively enlarging lesions of the nasal cavity on CT scan. Further endoscopic sinus neoplasmectomy confirmed sinus metastasis of lung adenocarcinoma. Although subsequent chemotherapy and immunotherapy were both administered, the disease continued to progress, and the patient passed away 21 months after diagnosis. Combined with real-time dynamic next-generation sequencing (NGS) during the different generations of EGFR-TKI treatments and dynamic tumour microenvironment analysis, we discussed the clinical manifestations of sinus metastasis and the molecular biology and tumour immune microenvironment changes after resistance to the second-and third- generation of EGFR-TKI therapy.
Collapse
Affiliation(s)
- Mingyuan Xu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Xin Lv
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Fangjun Chen
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Shu Su
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| | - Lifeng Wang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
36
|
He P, Du L, Dai Q, Li G, Yu B, Chang L. Design, synthesis and biological evaluation of structurally new 4-indolyl quinazoline derivatives as highly potent, selective and orally bioavailable EGFR inhibitors. Bioorg Chem 2024; 142:106970. [PMID: 37984101 DOI: 10.1016/j.bioorg.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Targeting the epidermal growth factor receptor (EGFR) has been recognized as an effective strategy for treating non-small-cell lung cancer (NSCLC). Although several representative EGFR inhibitors have been approved for clinical use, it is highly desirable to develop highly potent and selective EGFR inhibitors with novel scaffolds because of the occurrence of acquired resistance after treatment. Here we first demonstrate that the 4-indolyl quinazoline derivatives could potently inhibit EGFR in vitro and in vivo, of which YS-67 effectively and selectively inhibits EGFR[WT] (IC50 = 5.2 nM), EGFR[d746-750] (IC50 = 9.6 nM) and EGFR[L858R] (IC50 = 1.9 nM). The TREEspot™ kinase interaction map further reveals the binding selectivity toward 468 kinases. YS-67 not only potently suppresses p-EGFR and p-AKT, but also effectively inhibits proliferation of A549 (IC50 = 4.1 μM), PC-9 (IC50 = 0.5 μM) and A431 cells (IC50 = 2.1 μM). YS-67 treatment also causes colony formation inhibition, arrests cell cycle progression at G0/G1 phases and induces apoptosis. More importantly, YS-67 is well tolerated in A431 xenograft model after oral administration, showing effective tumor growth suppression and low toxicity. Collectively, YS-67 represents an underexplored scaffold for developing new EGFR inhibitors.
Collapse
Affiliation(s)
- Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Linna Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Guobo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Bin Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang, Henan 453007 China.
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Provincial Key Laboratory of Anticancer Drug Research, Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
37
|
Ciardiello F, Hirsch FR, Pirker R, Felip E, Valencia C, Smit EF. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer. Cancer Treat Rev 2024; 122:102664. [PMID: 38064878 DOI: 10.1016/j.ctrv.2023.102664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/01/2024]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the current recommended option for the first-line treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC). Resistance to first-generation TKIs led to the development of second- and third-generation TKIs with improved clinical outcomes. However, sequential administration of TKIs has led to the emergence of new EGFR resistance mutations and persistent tumor cell survival. This evidence highlights the potential role of EGFR in transducing growth signals in NSCLC tumor cells. Therefore, dual inhibition of EGFR using combinations of anti-EGFR monoclonal antibodies (mAbs) and EGFR-TKIs may offer a unique treatment strategy to suppress tumor cell growth. Several clinical studies have demonstrated the benefits of dual blockade of EGFR using anti-EGFR mAbs coupled with EGFR-TKIs in overcoming treatment resistance in patients with EGFR-mutated NSCLC. However, a single treatment option may not result in the same clinical benefits in all patients with acquired resistance. Biomarkers, including EGFR overexpression, EGFR gene copy number, EGFR and KRAS mutations, and circulating tumor DNA, have been associated with improved clinical efficacy with anti-EGFR mAbs in patients with NSCLC and acquired resistance. Further investigation of biomarkers may allow patient selection for those who could benefit from anti-EGFR mAbs in combination with EGFR-TKIs. This review summarizes findings of recent studies of anti-EGFR mAbs in combination with EGFR-TKIs for the treatment of patients with EGFR-mutated NSCLC, as well as clinical evidence for potential biomarkers towards personalized targeted medicine.
Collapse
Affiliation(s)
- Fortunato Ciardiello
- Department of Precision Medicine, The University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fred R Hirsch
- Center for Thoracic Oncology, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Robert Pirker
- Private Practice for Internal Medicine (Hemato-Oncology), Josefstädter Strasse 47-49, 1080 Vienna, Austria
| | - Enriqueta Felip
- Vall d'Hebron Universitary Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
38
|
Umar H, Wahab HA, Attiq A, Amjad MW, Bukhari SNA, Ahmad W. Platinum-based targeted chemotherapies and reversal of cisplatin resistance in non-small cell lung cancer (NSCLC). Mutat Res 2024; 828:111856. [PMID: 38520879 DOI: 10.1016/j.mrfmmm.2024.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Lung cancer is the one of the most prevalent cancer in the world. It kills more people from cancer than any other cause and is especially common in underdeveloped nations. With 1.2 million instances, it is also the most prevalent cancer in men worldwide, making about 16.7% of the total cancer burden. Surgery is the main form of curative treatment for early-stage lung cancer. However, the majority of patients had incurable advanced non-small cell lung cancer (NSCLC) recurrence after curative purpose surgery, which is indicative of the aggressiveness of the illness and the dismal outlook. The gold standard of treatment for NSCLC patients includes drug targeting of specific mutated genes drive in development of lung cancer. Furthermore, patients with advanced NSCLC and those with early-stage illness needing adjuvant therapy should use cisplatin as it is the more active platinum drug. So, this review encompasses the non-small cell lung cancer microenvironment, treatment approaches, and use of cisplatin as a first-line regimen for NSCLC, its mechanism of action, cisplatin resistance in NSCLC and also the prevention strategies to revert the drug resistance.
Collapse
Affiliation(s)
- Hassaan Umar
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia.
| | - Ali Attiq
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Waqas Ahmad
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia.
| |
Collapse
|
39
|
Shaban N, Kamashev D, Emelianova A, Buzdin A. Targeted Inhibitors of EGFR: Structure, Biology, Biomarkers, and Clinical Applications. Cells 2023; 13:47. [PMID: 38201251 PMCID: PMC10778338 DOI: 10.3390/cells13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling. While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance to current therapeutics, which highlights the need for deeper research in this field. Here, we tried to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules in development. We summarized the underlying mechanisms of resistance and available personalized predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and combination therapies, for overcoming cancer resistance to EGFR-specific drugs.
Collapse
Affiliation(s)
- Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aleksandra Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
40
|
Tsimberidou AM, Kahle M, Vo HH, Baysal MA, Johnson A, Meric-Bernstam F. Molecular tumour boards - current and future considerations for precision oncology. Nat Rev Clin Oncol 2023; 20:843-863. [PMID: 37845306 DOI: 10.1038/s41571-023-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Over the past 15 years, rapid progress has been made in developmental therapeutics, especially regarding the use of matched targeted therapies against specific oncogenic molecular alterations across cancer types. Molecular tumour boards (MTBs) are panels of expert physicians, scientists, health-care providers and patient advocates who review and interpret molecular-profiling results for individual patients with cancer and match each patient to available therapies, which can include investigational drugs. Interpretation of the molecular alterations found in each patient is a complicated task that requires an understanding of their contextual functional effects and their correlations with sensitivity or resistance to specific treatments. The criteria for determining the actionability of molecular alterations and selecting matched treatments are constantly evolving. Therefore, MTBs have an increasingly necessary role in optimizing the allocation of biomarker-directed therapies and the implementation of precision oncology. Ultimately, increased MTB availability, accessibility and performance are likely to improve patient care. The challenges faced by MTBs are increasing, owing to the plethora of identifiable molecular alterations and immune markers in tumours of individual patients and their evolving clinical significance as more and more data on patient outcomes and results from clinical trials become available. Beyond next-generation sequencing, broader biomarker analyses can provide useful information. However, greater funding, resources and expertise are needed to ensure the sustainability of MTBs and expand their outreach to underserved populations. Harmonization between practice and policy will be required to optimally implement precision oncology. Herein, we discuss the evolving role of MTBs and current and future considerations for their use in precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael Kahle
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet A Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Shah AA, Kumar N, Mohinder Singh Bedi P, Akhtar S. Molecular modeling, dynamic simulation, and metabolic reactivity studies of quinazoline derivatives to investigate their anti-angiogenic potential by targeting wild EGFR wt and mutant EGFR T790M receptor tyrosine kinases. J Biomol Struct Dyn 2023:1-23. [PMID: 37921704 DOI: 10.1080/07391102.2023.2274974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Non-small cell lung cancer, head and neck cancer, glioblastoma, and various other cancer types often demonstrate persistent elevation in EGFR tyrosine kinase activity due to acquired mutations in its kinase domain. Any alteration in the EGFR is responsible for triggering the upregulation of tumor angiogenic pathways, such as the PI3k-AKT-mTOR pathway, MAPK-ERK pathway and PLC-Ƴ pathway, which are critically involved in promoting tumor angiogenesis in cancer cells. The emergence of frequently occurring EGFR kinase domain mutations (L858R/T790M/C797S) that confer resistance to approved therapeutic agents has presented a significant challenge for researchers aiming to develop effective and well-tolerated treatments against tumor angiogenesis. In this study, we directed our efforts towards the rational design and development of novel quinazoline derivatives with the potential to act as antagonists against both wild-type and mutant EGFR. Our approach encompasing the application of advanced drug design strategies, including structure-based virtual screening, molecular docking, molecular dynamics, metabolic reactivity and cardiotoxicity prediction studies led to the identification of two prominent lead compounds: QU648, for EGFRwt inhibition and QU351, for EGFRmt antagonism. The computed binding energies of selected leads and their molecular dynamics simulations exhibited enhanced conformational stability of QU648 and QU351 when compared to standard drugs Erlotinib and Afatinib. Notably, the lead compounds also demonstrated promising pharmacokinetic properties, metabolic reactivity, and cardiotoxicity profiles. Collectively, the outcomes of our study provide compelling evidence supporting the potential of QU648 and QU351 as prominent anti-angiogenic agents, effectively inhibiting EGFR activity across various cancer types harboring diverse EGFR mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, India
- Novel Global Community Educational Foundation, Hebersham, Australia
| |
Collapse
|
42
|
Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochim Biophys Acta Rev Cancer 2023; 1878:188967. [PMID: 37657684 DOI: 10.1016/j.bbcan.2023.188967] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) actively involves in modulation of various cancer progression related mechanisms including angiogenesis, differentiation and migration. Therefore, targeting EGFR has surfaced as a prominent approach for the treatment of several types of cancers, including non-small cell lung cancer (NSCLC), pancreatic cancer, glioblastoma. Various first, second and third generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated effectiveness as an anti-cancer therapeutics. However, rapid development of drug resistance and mutations still remains a major challenge for the EGFR-TKIs therapy. Overcoming from intrinsic and acquired resistance caused by EGFR mutations warrants the further exploration of alternative strategies and discovery of novel inhibitors. In this review, we delve into the breakthrough discoveries have been made in previous 20 years, and discuss the currently ongoing efforts aimed to circumvent the chemo-resistance. We also highlight the new challenges, limitations and future directions for the development of improved therapeutic approaches such as fourth-generation EGFR-TKIs, peptides, nanobodies, PROTACs etc.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.
| |
Collapse
|
43
|
Russo A, Scilla KA, Mehra R, Gittens A, McCusker MG, de Miguel-Perez D, Gomez JE, Peleg A, Del Re M, Rolfo CD. Tracking Clonal Evolution of EGFR-Mutated Non-Small Cell Lung Cancer Through Liquid Biopsy: Management of C797S Acquired Mutation. Clin Lung Cancer 2023; 24:660-665. [PMID: 37487787 DOI: 10.1016/j.cllc.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Alessandro Russo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Onco-Hematology, Papardo Hospital, Messina, Italy
| | - Katherine A Scilla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Allison Gittens
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Michael G McCusker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Shenandoah Oncology Associates, Oncology Department, Winchester, VA
| | - Diego de Miguel-Perez
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jorge E Gomez
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ariel Peleg
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marzia Del Re
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY; Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Christian D Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
44
|
Wang LS, Chen SQ, Zhong X, Jiao XD, Liu K, Qin BD, Wu Y, Ling Y, Duan XP, Zang YS. Acquired EML4-ALK fusion and EGFR C797S in cis mutation as resistance mechanisms to osimertinib in a non-small cell lung cancer patient with EGFR L858R/T790M. Anticancer Drugs 2023; 34:1146-1150. [PMID: 36728908 DOI: 10.1097/cad.0000000000001489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) dramatically improve the clinical outcomes of non-small cell lung cancer (NSCLC) patients harboring EGFR -sensitive mutations. Despite the remarkable efficacy of first-and second-generation EGFR TKIs, disease relapse is inevitable. EGFR T790M mutation is a primary contributor to the acquired resistance to first- and second-generation EGFR TKIs. Osimertinib, which is an irreversible third-generation EGFR TKI, was designed for EGFR -activating mutations as well as the EGFR T790M mutation in patients with advanced NSCLC and has demonstrated a convincing efficacy. However, acquired resistance to osimertinib after treatment inevitably occurs. The acquired resistance mechanisms to osimertinib are highly complicated and not fully understood, encompassing EGFR -dependent as well as EGFR -independent mechanisms. Treatment approaches for patients progressing from osimertinib have not been established. We present a case of a stage IV lung adenocarcinoma patient harboring EGFR L858R, acquired T790M after treatment with first-line gefitinib. She then acquired a new EML4-ALK gene fusion after treatment with osimertinib. A combination targeted therapy of osimertinib plus alectinib was initiated, with a progression-free survival of 5 months without any serious adverse reaction. After disease progression, EGFR C797S in cis was detected with a loss of the EML4-ALK fusion by targeted next-generation sequencing. Then therapy was changed to pemetrexed combined with bevacizumab plus camrelizumab, but no obvious effect was observed. The patient had achieved an overall survival of 31 months. As far as we know, this was the first reported case that an EGFR -mutant NSCLC patient-acquired ALK fusion mediating resistance to osimertinib, and sequential EGFR C797S mutation mediating resistance to combined targeted therapy with osimertinib and alectinib. Our case shows that EML4-ALK fusion is a rare but critical resistance mechanism to osimertinib, and C797S mutation in cis may be an underlying mechanism of acquired resistance mutation in double TKIs therapy. Furthermore, molecular detection and rebiopsy play important roles in the selection of therapeutic strategies when the disease progresses.
Collapse
Affiliation(s)
- Liang-Sheng Wang
- Department of Medical Oncology, Huainan Yangguangxinkang Hospital, Huainan
| | - Shi-Qi Chen
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xue Zhong
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ying Wu
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yan Ling
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiao-Peng Duan
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
45
|
Hirakawa T, Doi M, Hamai K, Katsura R, Miyake S, Fujita S, Ueno S, Masuda K, Tanimoto T, Nishisaka T, Hinoi T, Hirasawa A, Ishikawa N. Comprehensive genomic profiling of Japanese patients with thoracic malignancies: A single-center retrospective study. Respir Investig 2023; 61:746-754. [PMID: 37714093 DOI: 10.1016/j.resinv.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Few studies have been conducted on comprehensive genomic profiling (CGP) panels in Japanese patients with thoracic malignancies after completing standard treatment. Consequently, its value in clinical practice remains unclear. METHODS We conducted a retrospective study of Japanese patients with thoracic malignancies who underwent CGP between June 2019 and November 2022 at our hospital. We evaluated the detection rate of actionable genetic alterations and percentage of patients who received genomically-matched therapy. Furthermore, we examined the value of the CGP panel in patients who underwent multiplex gene-panel testing prior to their initial treatment. This study was performed in accordance with the principles of the Declaration of Helsinki. RESULTS The study included 56 patients, of whom 47 (83.9%) had actionable genetic alterations and 8 (14.3%) received genomically-matched therapy. Of these, four patients were treated with approved drugs and three patients were treated with investigational agents. In addition, one patient was treated with approved drugs using the patient-directed care system. Of the 17 patients who had multiplex gene-panel testing performed at the start of their initial therapy, two (11.8%) were newly identified by the CGP panel and subsequently received genomically-matched therapy. EGFR L718Q and MET amplification were observed in two of the seven patients with epidermal growth factor receptor-tyrosine kinase inhibitor resistance. CONCLUSIONS The CGP panel could identify genetic alterations, thereby facilitating genomically-matched therapy, even in patients with thoracic malignancies who could not be identified using multiplex gene-panel testing.
Collapse
Affiliation(s)
- Tetsu Hirakawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Mihoko Doi
- Department of Genomic Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Kosuke Hamai
- Department of Respiratory Medicine, Onomichi General Hospital, 1-10-23 Hirahara, Onomichi, Hiroshima, 7220018, Japan
| | - Ryo Katsura
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Shinya Miyake
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Suguru Fujita
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Sayaka Ueno
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Ken Masuda
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Takuya Tanimoto
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Takashi Nishisaka
- Department of Pathology and Laboratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan
| | - Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, Hiroshima, 7348551, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Okayama, 7008558, Japan
| | - Nobuhisa Ishikawa
- Department of Respiratory Medicine, Hiroshima Prefectural Hospital, 1-5-54 Ujina-kanda, Minami-ku, Hiroshima, Hiroshima, 7348530, Japan.
| |
Collapse
|
46
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
47
|
Song X, Lan Y, Zheng X, Zhu Q, Liao X, Liu K, Zhang W, Peng Q, Zhu Y, Zhao L, Chen X, Shu Y, Yang K, Hu J. Targeting drug-tolerant cells: A promising strategy for overcoming acquired drug resistance in cancer cells. MedComm (Beijing) 2023; 4:e342. [PMID: 37638338 PMCID: PMC10449058 DOI: 10.1002/mco2.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Drug resistance remains the greatest challenge in improving outcomes for cancer patients who receive chemotherapy and targeted therapy. Surmounting evidence suggests that a subpopulation of cancer cells could escape intense selective drug treatment by entering a drug-tolerant state without genetic variations. These drug-tolerant cells (DTCs) are characterized with a slow proliferation rate and a reversible phenotype. They reside in the tumor region and may serve as a reservoir for resistant phenotypes. The survival of DTCs is regulated by epigenetic modifications, transcriptional regulation, mRNA translation remodeling, metabolic changes, antiapoptosis, interactions with the tumor microenvironment, and activation of signaling pathways. Thus, targeting the regulators of DTCs opens a new avenue for the treatment of therapy-resistant tumors. In this review, we first provide an overview of common characteristics of DTCs and the regulating networks in DTCs development. We also discuss the potential therapeutic opportunities to target DTCs. Last, we discuss the current challenges and prospects of the DTC-targeting approach to overcome acquired drug resistance. Reviewing the latest developments in DTC research could be essential in discovering of methods to eliminate DTCs, which may represent a novel therapeutic strategy for preventing drug resistance in the future.
Collapse
Affiliation(s)
- Xiaohai Song
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Lan
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiuli Zheng
- Department of RadiologyHuaxi MR Research Center (HMRRC) and Critical Care MedicinePrecision Medicine Center, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Qianyu Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xuliang Liao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kai Liu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Weihan Zhang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - QiangBo Peng
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yunfeng Zhu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Linyong Zhao
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Xiaolong Chen
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Shu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Kun Yang
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jiankun Hu
- Department of General SurgeryGastric Cancer CenterLaboratory of Gastric CancerState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
48
|
Falk M, Schatz S, Reich FPM, Schmidt S, Galster M, Tiemann M, Ficker JH, Brueckl WM. Fluctuation of Acquired Resistance Mutations and Re-Challenge with EGFR TKI in Metastatic NSCLC: A Case Report. Curr Oncol 2023; 30:8865-8871. [PMID: 37887540 PMCID: PMC10605132 DOI: 10.3390/curroncol30100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Osimertinib has become the preferred first-line therapy for epidermal growth factor receptor (EGFR) mutation-positive metastatic non-small cell lung cancer (NSCLC) in recent years. Originally, it was approved for second-line treatment after epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) of the first and second generations had failed and EGFR T790M had emerged as a mode of resistance. Osimertinib itself provokes a wide array of on- and off-target molecular alterations that can limit therapeutic success. Liquid biopsy ctDNA (circulating tumor DNA) analysis by hybrid capture (HC) next-generation sequencing (NGS) can help to identify alterations in a minimally invasive way and allows for the detection of common as well as rare resistance alterations. We describe a young female patient who was initially diagnosed with metastatic EGFR L858R-positive NSCLC. She received EGFR TKI therapy at different timepoints during the course of the disease and developed sequential EGFR resistance alterations (EGFR T790M and C797S). In the course of her disease, resistance alteration became undetectable, and the tumor was successfully rechallenged with the original first-generation EGFR TKI as well as osimertinib and altogether showed prolonged response despite a prognostically negative TP53 alteration. To date, the patient has been alive for more than seven years, though initially diagnosed with a heavy metastatic burden.
Collapse
Affiliation(s)
- Markus Falk
- Institute for Hematopathology Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (M.F.); (S.S.); (S.S.); (M.T.)
| | - Stefanie Schatz
- Institute for Hematopathology Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (M.F.); (S.S.); (S.S.); (M.T.)
| | - Fabian P. M. Reich
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, General Hospital Nuremberg, Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany; (F.P.M.R.); (J.H.F.)
| | - Stefanie Schmidt
- Institute for Hematopathology Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (M.F.); (S.S.); (S.S.); (M.T.)
| | - Marco Galster
- Department of Radiology, Paracelsus Medical University, General Hospital Nuremberg, Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany; (M.F.); (S.S.); (S.S.); (M.T.)
| | - Joachim H. Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, General Hospital Nuremberg, Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany; (F.P.M.R.); (J.H.F.)
| | - Wolfgang M. Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, General Hospital Nuremberg, Ernst-Nathan-Str. 1, 90419 Nuremberg, Germany; (F.P.M.R.); (J.H.F.)
| |
Collapse
|
49
|
Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF, Recondo G. Tackling Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2023; 29:3579-3591. [PMID: 37093192 DOI: 10.1158/1078-0432.ccr-22-1912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The current landscape of targeted therapies directed against oncogenic driver alterations in non-small cell lung cancer (NSCLC) is expanding. Patients with EGFR-mutant NSCLC can derive significant benefit from EGFR tyrosine kinase inhibitor (TKI) therapy, including the third-generation EGFR TKI osimertinib. However, invariably, all patients will experience disease progression with this therapy mainly due to the adaptation of cancer cells through primary or secondary molecular mechanisms of resistance. The comprehension and access to tissue and cell-free DNA next-generation sequencing have fueled the development of innovative therapeutic strategies to prevent and overcome resistance to osimertinib in the clinical setting. Herein, we review the biological and clinical implications of molecular mechanisms of osimertinib resistance and the ongoing development of therapeutic strategies to overcome or prevent resistance.
Collapse
Affiliation(s)
- Juan Bautista Blaquier
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Laura Mezquita
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Andrés Felipe Cardona
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Cancer-CTIC, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Unit, Medical Oncology, Center for Medical Education and Clinical Research (CEMIC), Buenos Aires, Argentina
- Medical Oncology Department, Bradford Hill Clinical Research Center, Santiago, Chile
| |
Collapse
|
50
|
Crintea A, Constantin AM, Motofelea AC, Crivii CB, Velescu MA, Coșeriu RL, Ilyés T, Crăciun AM, Silaghi CN. Targeted EGFR Nanotherapy in Non-Small Cell Lung Cancer. J Funct Biomater 2023; 14:466. [PMID: 37754880 PMCID: PMC10532491 DOI: 10.3390/jfb14090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for novel therapeutic strategies. The present review explores the potential of targeted epidermal growth factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Alexandru C. Motofelea
- Department of Internal Medicine, University of Medicine and Pharmacy “Victor Babeș”, 300041 Timișoara, Romania;
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Maria A. Velescu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| | - Răzvan L. Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mureș, Romania;
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Alexandra M. Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| |
Collapse
|