1
|
Leitch HA. Iron Overload, Oxidative Stress, and Somatic Mutations in MDS: What Is the Association? Eur J Haematol 2025. [PMID: 39876029 DOI: 10.1111/ejh.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited. METHODS The literature was reviewed on how IOL and oxidative stress interact with specific SM in MDS to influence cellular physiology. PubMed searches included keywords of each specific mutation combined with iron, oxidative stress, and reactive oxygens species (ROS). Papers relevant to hematopoietic stem/progenitor cells, the bone marrow microenvironment, MDS, AML or other myeloid disorders were preferred. Included were the most frequent SM in MDS, SM of the International Prognostic Scoring System-Molecular (IPSS-M), of familial predisposing conditions and the CMML PSS-molecular. RESULTS About 31 SM plus four familial conditions were searched. Discussed are the frequency of each SM, whether function is gained or lost, early or late SM status, a function of the unmutated gene, and function considering iron and oxidative stress. DISCUSSION Given limited effective MDS therapies, considering how IOL and ROS interact with SM to influence cellular physiology in the hematopoietic system, increasing bone marrow failure progression or malignant transformation may be of benefit and support optimization of measures to reduce IOL or neutralize ROS.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Dehghan Z, Mirmotalebisohi SA, Mozafar M, Sameni M, Saberi F, Derakhshanfar A, Moaedi J, Zohrevand H, Zali H. Deciphering the similarities and disparities of molecular mechanisms behind respiratory epithelium response to HCoV-229E and SARS-CoV-2 and drug repurposing, a systems biology approach. Daru 2024; 32:215-235. [PMID: 38652363 PMCID: PMC11087451 DOI: 10.1007/s40199-024-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saberi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Javad Moaedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Zohrevand
- Student Research Committee, Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Oka S, Ono K. Successful ixazomib treatment for relapsed and refractory acute myeloid leukemia transformed from myelodysplastic syndrome. Clin Case Rep 2021; 9:e04287. [PMID: 34194792 PMCID: PMC8222761 DOI: 10.1002/ccr3.4287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Elevated NF-kB levels have been identified in primitive bone marrow cells from patients with MDS/AML, suggesting NF-kB as a therapeutic target in MDS/AML. We herein describe an MDS patient ineligible for SCT who, following treatment with azacitidine and bortezomib, transformed to leukemia, but maintained complete remission after monotherapy with ixazomib.
Collapse
Affiliation(s)
- Satoko Oka
- Division of HematologyJapanese Red Cross Society Wakayama Medical CenterWakayamaJapan
| | - Kazuo Ono
- Division of PathologyJapanese Red Cross Society Wakayama Medical CenterWakayamaJapan
| |
Collapse
|
4
|
Rodriguez N, Lee J, Flynn L, Murray F, Devlin SM, Soto C, Cho C, Dahi P, Giralt S, Perales MA, Sauter C, Ponce DM. Oral Proteasome Inhibitor Ixazomib for Switch-Maintenance Prophylaxis of Recurrent or Late Acute and Chronic Graft-versus-Host Disease after Day 100 in Allogeneic Stem Cell Transplantation. Transplant Cell Ther 2021; 27:920.e1-920.e9. [PMID: 34029766 DOI: 10.1016/j.jtct.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Graft-versus-host disease (GVHD) is a frequent complication in the first year after allogeneic stem cell transplantation (allo-HCT). Recipients of reduced-intensity (RI) or nonmyeloablative (NMA) conditioning combined with calcineurin inhibitor (CNI)-based GVHD prophylaxis frequently develop GVHD in the context of immunosuppression taper. Ixazomib is an oral proteasome inhibitor with a wide safety profile that has demonstrated immunomodulatory properties, inhibition of pro-inflammatory cytokines, and anti-tumor activity. We hypothesized that switch-maintenance GVHD prophylaxis using ixazomib would facilitate CNI taper without increased GVHD frequency and severity while maintaining graft-versus-tumor (GVT) effect and an acceptable safety profile. We conducted an open-label, prospective, single-center pilot study in patients with hematologic malignancies who received an RI or NMA conditioning and CNI-based GVHD prophylaxis that were within day 100 to 150 after HCT (n = 18). Patients were treated with ixazomib once weekly on a 28-day cycle (3 weeks on, 1 week off). Treatment was safe; most adverse events were grade 1 or 2, with cytopenia and elevation in transaminases the most common. Five patients were removed from the study because of toxicity or side effects. Only 5 of 18 patients developed GVHD during the study, and its severity was driven by acute manifestations while chronic involvement was mild. The cumulative incidence of grade II-IV acute and chronic GVHD at 1-year after HCT was 33% (95% confidence interval [CI], 13-55). No patients died during the study, and only 1 had malignant relapse. An additional patient relapsed after completion of the study but within 1 year after HCT. The probability of progression-free survival and GVHD-free/relapse-free survival (composite endpoint) at 1 year were 89% (95% CI, 75-100) and 78% (95% CI, 61-100), respectively. Immune reconstitution analysis showed a rapid and sustained recovery in T-cell subpopulations and B cell reconstitution, and vaccine response in a subset of patients demonstrated continuing or de novo positive protective antibody titers. This study demonstrated low incidence of recurrent and late acute and chronic GVHD within 1 year after HCT possible associated with switch-maintenance GVHD prophylaxis using ixazomib. This approach allowed for CNI taper while preserving GVT effect, without aggravating GVHD. Our findings support further development of this approach and provide a proof-of-concept for switch-maintenance GVHD prophylaxis.
Collapse
Affiliation(s)
- Natasia Rodriguez
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jasme Lee
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lisa Flynn
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fiona Murray
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cristina Soto
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Cho
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Parastoo Dahi
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Sergio Giralt
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Craig Sauter
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Doris M Ponce
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| |
Collapse
|
5
|
Roeten MS, van Meerloo J, Kwidama ZJ, ter Huizen G, Segerink WH, Zweegman S, Kaspers GJ, Jansen G, Cloos J. Pre-Clinical Evaluation of the Proteasome Inhibitor Ixazomib against Bortezomib-Resistant Leukemia Cells and Primary Acute Leukemia Cells. Cells 2021; 10:665. [PMID: 33802801 PMCID: PMC8002577 DOI: 10.3390/cells10030665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
At present, 20-30% of children with acute leukemia still relapse from current chemotherapy protocols, underscoring the unmet need for new treatment options, such as proteasome inhibition. Ixazomib (IXA) is an orally available proteasome inhibitor, with an improved safety profile compared to Bortezomib (BTZ). The mechanism of action (proteasome subunit inhibition, apoptosis induction) and growth inhibitory potential of IXA vs. BTZ were tested in vitro in human (BTZ-resistant) leukemia cell lines. Ex vivo activity of IXA vs. BTZ was analyzed in 15 acute lymphoblastic leukemia (ALL) and 9 acute myeloid leukemia (AML) primary pediatric patient samples. BTZ demonstrated more potent inhibitory effects on constitutive β5 and immunoproteasome β5i proteasome subunit activity; however, IXA more potently inhibited β1i subunit than BTZ (70% vs. 29% at 2.5 nM). In ALL/AML cell lines, IXA conveyed 50% growth inhibition at low nanomolar concentrations, but was ~10-fold less potent than BTZ. BTZ-resistant cells (150-160 fold) displayed similar (100-fold) cross-resistance to IXA. Finally, IXA and BTZ exhibited anti-leukemic effects for primary ex vivo ALL and AML cells; mean LC50 (nM) for IXA: 24 ± 11 and 30 ± 8, respectively, and mean LC50 for BTZ: 4.5 ± 1 and 11 ± 4, respectively. IXA has overlapping mechanisms of action with BTZ and showed anti-leukemic activity in primary leukemic cells, encouraging further pre-clinical in vivo evaluation.
Collapse
Affiliation(s)
- Margot S.F. Roeten
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Johan van Meerloo
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Zinia J. Kwidama
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Giovanna ter Huizen
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Wouter H. Segerink
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Sonja Zweegman
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| | - Gertjan J.L. Kaspers
- Princess Maxima Center of Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, 1105 AZ Amsterdam, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands;
| | - Jacqueline Cloos
- Cancer Center Amsterdam, Department of Hematology, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (M.S.F.R.); (J.v.M.); (Z.J.K.); (G.t.H.); (W.H.S.); (S.Z.)
| |
Collapse
|
6
|
Kaweme NM, Zhou S, Changwe GJ, Zhou F. The significant role of redox system in myeloid leukemia: from pathogenesis to therapeutic applications. Biomark Res 2020; 8:63. [PMID: 33292641 PMCID: PMC7661181 DOI: 10.1186/s40364-020-00242-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Excessive generation of reactive oxygen species (ROS) in the presence of a defective antioxidant system can induce cellular damage and disrupt normal physiological functions. Several studies have revealed the unfavorable role of ROS in promoting the growth, proliferation, migration, and survival of leukemia cells. In this review study, we summarize the mechanisms of ROS production and its role in leukemogenesis, counteractive effects of antioxidants, and implicate the current ROS-dependent anticancer therapies in acute myeloid leukemia. BODY: The dysregulation of the redox system is known to play a significant role in the pathogenesis of leukemia. Leukemia cells generate high levels of ROS, which further increases the levels through extra pathways, including mitochondrial deoxyribonucleic mutation, leukemic oncogene activation, increased nicotinamide adenine phosphate hydrogen (NADPH), and cytochrome P450 activities. Aforementioned pathways once activated have shown to promote genomic instability, induce drug resistance to leukemia medical therapy, disease relapse and reduce survival period. The current standard of treatment with chemotherapy employs the pro-oxidant approach to induce apoptosis and promote tumor regression. However, this approach retains several deleterious effects on the subject resulting in degradation of the quality of life. Nevertheless, the addition of an antioxidant as an adjuvant drug to chemotherapy alleviates treatment-related toxicity, increases chemotherapeutic efficacy, and improves survival rates of a patient. CONCLUSION Acute myeloid leukemia remains a daunting challenge to clinicians. The desire to achieve the maximum benefit of chemotherapy but also improve patient outcomes is investigated. ROS generated through several pathways promotes leukemogenesis, drug resistance, and disease relapse. Chemotherapy, the mainstay of treatment, further upregulates ROS levels. Therefore, the addition of an antioxidant to leukemia medical therapy alleviates toxicity and improves patient outcomes.
Collapse
Affiliation(s)
- Natasha Mupeta Kaweme
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Shu Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Geoffrey Joseph Changwe
- School of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan, 250012, P.R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China.
| |
Collapse
|
7
|
CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells. Biomaterials 2020; 230:119651. [DOI: 10.1016/j.biomaterials.2019.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
8
|
Inhibition of Xanthine Oxidoreductase Enhances the Potential of Tyrosine Kinase Inhibitors against Chronic Myeloid Leukemia. Antioxidants (Basel) 2020; 9:antiox9010074. [PMID: 31952182 PMCID: PMC7022995 DOI: 10.3390/antiox9010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the expression of the oncogenic kinase BCR-ABL. Although tyrosine kinase inhibitors (TKIs) against BCR-ABL represent the standard therapeutic option for CML, resistances to TKIs can be a serious problem. Thus, the search for novel therapeutic approaches is still needed. CML cells show an increased ROS production, which is required for maintaining the BCR-ABL signaling cascade active. In line with that, reducing ROS levels could be an interesting therapeutic strategy for the clinical management of resistant CML. To analyze the therapeutic potential of xanthine oxidoreductase (XOR) in CML, we tested the effect of XOR inhibitor allopurinol. Here, we show for the first time the therapeutic potential of allopurinol against BCR-ABL-positive CML cells. Allopurinol reduces the proliferation and clonogenic ability of the CML model cell lines K562 and KCL22. More importantly, the combination of allopurinol with imatinib or nilotinib reduced cell proliferation in a synergistic manner. Moreover, the co-treatment arms hampered cell clonogenic capacity and induced cell death more strongly than each single-agent arm. The reduction of intracellular ROS levels and the attenuation of the BCR-ABL signaling cascade may explain these effects. Finally, the self-renewal potential of primary bone marrow cells from CML patients was also severely reduced especially by the combination of allopurinol with TKIs. In summary, here we show that XOR inhibition is an interesting therapeutic option for CML, which can enhance the effectiveness of the TKIs currently used in clinics.
Collapse
|
9
|
Hong AL, Tseng YY, Wala JA, Kim WJ, Kynnap BD, Doshi MB, Kugener G, Sandoval GJ, Howard TP, Li J, Yang X, Tillgren M, Ghandi M, Sayeed A, Deasy R, Ward A, McSteen B, Labella KM, Keskula P, Tracy A, Connor C, Clinton CM, Church AJ, Crompton BD, Janeway KA, Van Hare B, Sandak D, Gjoerup O, Bandopadhayay P, Clemons PA, Schreiber SL, Root DE, Gokhale PC, Chi SN, Mullen EA, Roberts CW, Kadoch C, Beroukhim R, Ligon KL, Boehm JS, Hahn WC. Renal medullary carcinomas depend upon SMARCB1 loss and are sensitive to proteasome inhibition. eLife 2019; 8:44161. [PMID: 30860482 PMCID: PMC6436895 DOI: 10.7554/elife.44161] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one SMARCB1 allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of SMARCB1 for survival. Through integration of RNAi and CRISPR-Cas9 loss-of-function genetic screens and a small-molecule screen, we found that the ubiquitin-proteasome system (UPS) was essential in RMC. Inhibition of the UPS caused a G2/M arrest due to constitutive accumulation of cyclin B1. These observations extend across cancers that harbor SMARCB1 loss, which also require expression of the E2 ubiquitin-conjugating enzyme, UBE2C. Our studies identify a synthetic lethal relationship between SMARCB1-deficient cancers and reliance on the UPS which provides the foundation for a mechanism-informed clinical trial with proteasome inhibitors. Renal medullary carcinoma (RMC for short) is a rare type of kidney cancer that affects teenagers and young adults. These patients are usually of African descent and carry one of the two genetic changes that cause sickle cell anemia. RMC is an aggressive disease without effective treatments and patients survive, on average, for only six to eight months after their diagnosis. Recent genetic studies found that most RMC cells have mutations that prevent them from producing a protein called SMARCB1. SMARCB1 normally acts as a so-called tumor suppressor, preventing cells from becoming cancerous. However, it was not clear whether RMCs always have to lose SMARCB1 if they are to survive and grow. Often, diseases are studied using laboratory-grown cells and tissues that have certain features of the disease. No such models had been created for RMC, which has slowed efforts to understand how the disease develops and find new treatments for it. Hong et al. therefore worked with patients to develop new lines of cells that can be used to study RMC in the laboratory. These RMC cells started dying when they were given copies of the SMARCB1 gene, which supports the theory that RMCs have to lose SMARCB1 in order to grow. Hong et al. then used a set of genetic reagents that can suppress or delete genes that are targeted by drugs, and followed this by testing a range of drugs on the RMC cells. Drugs and genetic reagents that reduced the activity of the proteasome – the structure inside cells that gets rid of old or unwanted proteins – caused the RMC cells to die. These proteasome inhibitor drugs also killed other kinds of cancer cells with SMARCB1 mutations. Proteasome inhibitors are already used to treat different types of cancer. Potentially, a clinical trial could be run to see if they will treat patients whose cancers lack SMARCB1. Further work is also needed to determine the exact link between SMARCB1 and the proteasome.
Collapse
Affiliation(s)
- Andrew L Hong
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Yuen-Yi Tseng
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Jeremiah A Wala
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Won-Jun Kim
- Dana-Farber Cancer Institute, Boston, United States
| | | | - Mihir B Doshi
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Gabriel J Sandoval
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Ji Li
- Dana-Farber Cancer Institute, Boston, United States
| | - Xiaoping Yang
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Mahmhoud Ghandi
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Abeer Sayeed
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Rebecca Deasy
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Abigail Ward
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | - Brian McSteen
- Rare Cancer Research Foundation, Durham, United States
| | | | - Paula Keskula
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Adam Tracy
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Cora Connor
- RMC Support, North Charleston, United States
| | - Catherine M Clinton
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | | | - Brian D Crompton
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Katherine A Janeway
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | | | - David Sandak
- Rare Cancer Research Foundation, Durham, United States
| | - Ole Gjoerup
- Dana-Farber Cancer Institute, Boston, United States
| | - Pratiti Bandopadhayay
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Paul A Clemons
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, United States
| | | | - Susan N Chi
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | - Elizabeth A Mullen
- Boston Children's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | | | - Cigall Kadoch
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| | - Rameen Beroukhim
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Brigham and Women's Hospital, Boston, United States
| | - Keith L Ligon
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Brigham and Women's Hospital, Boston, United States
| | - Jesse S Boehm
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Brigham and Women's Hospital, Boston, United States
| |
Collapse
|
10
|
Prieto-Bermejo R, Romo-González M, Pérez-Fernández A, Ijurko C, Hernández-Hernández Á. Reactive oxygen species in haematopoiesis: leukaemic cells take a walk on the wild side. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:125. [PMID: 29940987 PMCID: PMC6019308 DOI: 10.1186/s13046-018-0797-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023]
Abstract
Oxidative stress is related to ageing and degenerative diseases, including cancer. However, a moderate amount of reactive oxygen species (ROS) is required for the regulation of cellular signalling and gene expression. A low level of ROS is important for maintaining quiescence and the differentiation potential of haematopoietic stem cells (HSCs), whereas the level of ROS increases during haematopoietic differentiation; thus, suggesting the importance of redox signalling in haematopoiesis. Here, we will analyse the importance of ROS for haematopoiesis and include evidence showing that cells from leukaemia patients live under oxidative stress. The potential sources of ROS will be described. Finally, the level of oxidative stress in leukaemic cells can also be harnessed for therapeutic purposes. In this regard, the reliance of front-line anti-leukaemia chemotherapeutics on increased levels of ROS for their mechanism of action, as well as the active search for novel compounds that modulate the redox state of leukaemic cells, will be analysed.
Collapse
Affiliation(s)
- Rodrigo Prieto-Bermejo
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Marta Romo-González
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Alejandro Pérez-Fernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Carla Ijurko
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain.,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain
| | - Ángel Hernández-Hernández
- Department of Biochemistry and Molecular Biology, University of Salamanca, Lab. 122, Edificio Departamental, Plaza Doctores de la Reina s/n, 37007, Salamanca, Spain. .,IBSAL (Instituto de investigación Biomédica de Salamanca), Salamanca, Spain.
| |
Collapse
|
11
|
Liu GY, Shi JX, Shi SL, Liu F, Rui G, Li X, Gao LB, Deng XL, Li QF. Nucleophosmin Regulates Intracellular Oxidative Stress Homeostasis via Antioxidant PRDX6. J Cell Biochem 2017; 118:4697-4707. [PMID: 28513872 DOI: 10.1002/jcb.26135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) play both deleterious and beneficial roles in cancer cells. Nucleophosmin (NPM) is heavily implicated in cancers of diverse origins, being its gene over-expression in solid tumors or frequent mutations in hematological malignancies. However, the role and regulatory mechanism of NPM in oxidative stress are unclear. Here, we found that NPM regulated the expression of peroxiredoxin 6 (PRDX6), a member of thiol-specific antioxidant protein family, consequently affected the level and distribution of ROS. Our data indicated that NPM knockdown caused the increase of ROS and its relocation from cytoplasm to nucleoplasm. In contrast, overexpression or cytoplasmic localization of NPM upregulated PRDX6, and decreased ROS. In addition, NPM knockdown decreased peroxiredoxin family proteins, including PRDX1, PRDX4, and PRDX6. Co-immunoprecipitation further confirmed the interaction between PRDX6 and NPM. Moreover, NSC348884, an inhibitor specifically targeting NPM oligomerization, decreased PRDX6 and significantly upregulated ROS. These observations demonstrated that the expression and localization of NPM affected the homeostatic balance of oxidative stress in tumor cells via PRDX6 protein. The regulation axis of NPM/PRDX/ROS may provide a novel therapeutic target for cancer treatment. J. Cell. Biochem. 118: 4697-4707, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guo-Yan Liu
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University/ Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen 361102, P.R. China
| | - Jing-Xian Shi
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Song-Lin Shi
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Fan Liu
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361003, P.R. China
| | - Xiao Li
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Li-Bin Gao
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Xiao-Ling Deng
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| | - Qi-Fu Li
- Medical College of Xiamen University/Cancer Research Center of Xiamen University, Xiamen 361102, P.R. China
| |
Collapse
|
12
|
Box JK, Paquet N, Adams MN, Boucher D, Bolderson E, O'Byrne KJ, Richard DJ. Nucleophosmin: from structure and function to disease development. BMC Mol Biol 2016; 17:19. [PMID: 27553022 PMCID: PMC4995807 DOI: 10.1186/s12867-016-0073-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Nucleophosmin (NPM1) is a critical cellular protein that has been implicated in a number of pathways including mRNA transport, chromatin remodeling, apoptosis and genome stability. NPM1 function is a critical requirement for normal cellular biology as is underlined in cancer where NPM1 is commonly overexpressed, mutated, rearranged and sporadically deleted. Consistent with a multifunctional role within the cell, NPM1 can function not only as a proto-oncogene but also as a tumor suppressor. The aim of this review is to look at the less well-described role of NPM1 in the DNA repair pathways as well as the role of NPM1 in the regulation of apoptosis and its mutation in cancers.
Collapse
Affiliation(s)
- Joseph K Box
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Didier Boucher
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|