1
|
Ng L, Li HS, Man ATK, Chow AKM, Foo DCC, Lo OSH, Pang RWC, Law WL. High Expression of a Cancer Stemness-Related Gene, Chromobox 8 (CBX8), in Normal Tissue Adjacent to the Tumor (NAT) Is Associated with Poor Prognosis of Colorectal Cancer Patients. Cells 2022; 11:cells11111852. [PMID: 35681547 PMCID: PMC9180723 DOI: 10.3390/cells11111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Several studies have demonstrated that the molecular profile of normal tissue adjacent to the tumor (NAT) is prognostic for recurrence in patients with different cancers. This study investigated the clinical significance of CBX8 gene expression, a cancer stemness-related gene, in tumor and NAT tissue of colorectal cancer (CRC) patients. Methods: The gene level of CBX8 in paired CRC and NAT specimens from 95 patients was determined by quantitative PCR. CBX8 protein level in CRC and NAT specimens from 66 patients was determined by immunohistochemistry. CBX8 gene and protein levels were correlated with the patients’ clinicopathological parameters and circulatory immune cell profiles. The association between CBX8 and pluripotency-associated genes was analyzed using the TCGA database. Results: NAT CBX8 gene level positively correlated with TNM stage, tumor invasion, lymph node metastasis and distant metastasis, indicating its association with tumor progression and metastasis. There was no correlation between NAT CBX8 protein level and clinicopathological parameters. Moreover, a high level of CBX8 gene and protein in NAT both correlated with poor DFS and OS. There was an inverse correlation between CBX8 gene level and post-operative platelet counts and platelet to lymphocyte level, suggesting its association with systematic inflammation. Finally, TCGA analysis showed that CBX8 level was correlated with a couple of pluripotency-associated genes, supporting its association with cancer stemness. Conclusions: High NAT CBX8 is a poor prognostic factor for tumor progression and survival in CRC patients.
Collapse
Affiliation(s)
- Lui Ng
- Correspondence: (L.N.); (W.-L.L.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Hernández-Lemus E, Martínez-García M. Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics. Front Oncol 2021; 10:605680. [PMID: 33520715 PMCID: PMC7841291 DOI: 10.3389/fonc.2020.605680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a set of complex pathologies that has been recognized as a major public health problem worldwide for decades. A myriad of therapeutic strategies is indeed available. However, the wide variability in tumor physiology, response to therapy, added to multi-drug resistance poses enormous challenges in clinical oncology. The last years have witnessed a fast-paced development of novel experimental and translational approaches to therapeutics, that supplemented with computational and theoretical advances are opening promising avenues to cope with cancer defiances. At the core of these advances, there is a strong conceptual shift from gene-centric emphasis on driver mutations in specific oncogenes and tumor suppressors-let us call that the silver bullet approach to cancer therapeutics-to a systemic, semi-mechanistic approach based on pathway perturbations and global molecular and physiological regulatory patterns-we will call this the shrapnel approach. The silver bullet approach is still the best one to follow when clonal mutations in driver genes are present in the patient, and when there are targeted therapies to tackle those. Unfortunately, due to the heterogeneous nature of tumors this is not the common case. The wide molecular variability in the mutational level often is reduced to a much smaller set of pathway-based dysfunctions as evidenced by the well-known hallmarks of cancer. In such cases "shrapnel gunshots" may become more effective than "silver bullets". Here, we will briefly present both approaches and will abound on the discussion on the state of the art of pathway-based therapeutic designs from a translational bioinformatics and computational oncology perspective. Further development of these approaches depends on building collaborative, multidisciplinary teams to resort to the expertise of clinical oncologists, oncological surgeons, and molecular oncologists, but also of cancer cell biologists and pharmacologists, as well as bioinformaticians, computational biologists and data scientists. These teams will be capable of engaging on a cycle of analyzing high-throughput experiments, mining databases, researching on clinical data, validating the findings, and improving clinical outcomes for the benefits of the oncological patients.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
3
|
Shenoy A, Belugali Nataraj N, Perry G, Loayza Puch F, Nagel R, Marin I, Balint N, Bossel N, Pavlovsky A, Barshack I, Kaufman B, Agami R, Yarden Y, Dadiani M, Geiger T. Proteomic patterns associated with response to breast cancer neoadjuvant treatment. Mol Syst Biol 2020; 16:e9443. [PMID: 32960509 PMCID: PMC7507992 DOI: 10.15252/msb.20209443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
Tumor relapse as a consequence of chemotherapy resistance is a major clinical challenge in advanced stage breast tumors. To identify processes associated with poor clinical outcome, we took a mass spectrometry-based proteomic approach and analyzed a breast cancer cohort of 113 formalin-fixed paraffin-embedded samples. Proteomic profiling of matched tumors before and after chemotherapy, and tumor-adjacent normal tissue, all from the same patients, allowed us to define eight patterns of protein level changes, two of which correlate to better chemotherapy response. Supervised analysis identified two proteins of proline biosynthesis pathway, PYCR1 and ALDH18A1, that were significantly associated with resistance to treatment based on pattern dominance. Weighted gene correlation network analysis of post-treatment samples revealed that these proteins are associated with tumor relapse and affect patient survival. Functional analysis showed that knockdown of PYCR1 reduced invasion and migration capabilities of breast cancer cell lines. PYCR1 knockout significantly reduced tumor burden and increased drug sensitivity of orthotopically injected ER-positive tumor in vivo, thus emphasizing the role of PYCR1 in resistance to chemotherapy.
Collapse
Affiliation(s)
- Anjana Shenoy
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | | | - Gili Perry
- Sheba Medical CenterCancer Research CenterTel‐HashomerIsrael
| | | | - Remco Nagel
- Netherlands Cancer InstituteAmsterdamNetherlands
| | - Irina Marin
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Nora Balint
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Noa Bossel
- Weizmann Institute of ScienceRehovotIsrael
| | - Anya Pavlovsky
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Iris Barshack
- Sheba Medical CenterPathology InstituteTel‐HashomerIsrael
| | - Bella Kaufman
- Sheba Medical CenterOncology InstituteTel‐HashomerIsrael
| | - Reuven Agami
- Netherlands Cancer InstituteAmsterdamNetherlands
| | | | - Maya Dadiani
- Sheba Medical CenterCancer Research CenterTel‐HashomerIsrael
| | - Tamar Geiger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
4
|
Zhao M, Xu P, Liu Z, Zhen Y, Chen Y, Liu Y, Fu Q, Deng X, Liang Z, Li Y, Lin X, Fang W. Dual roles of miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing Wnt/β-catenin signaling in non-small-cell lung cancer. Cell Death Dis 2018; 9:78. [PMID: 29362431 PMCID: PMC5833350 DOI: 10.1038/s41419-017-0103-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022]
Abstract
MiR-374a appears to play a complex role in non-small-cell lung cancer (NSCLC). Here, we demonstrate a dual role for miR-374a in NSCLC pathogenesis. The effects and modulatory mechanisms of miR-374a on cell growth, migration, invasion, and in vivo tumorigenesis and metastasis in nude mice were also analyzed. The expression of miR-374a was examined in NSCLC and non-cancerous lung tissues by quantitative real-time reverse transcription-PCR (qRT-PCR), and in situ hybridization, respectively. miR-374a directly targets CCND1 and inactivates PI3K/AKT and Ras-mediated cell cycle signalings, as well as epithelial–mesenchymal transition (EMT). This not only dramatically suppressed cell growth, migration, invasion,and metastasis, but also elevated A549 and pc-9 NSCLC cell sensitivity to cisplatin (DDP) while increasing survival time of tumor-bearing mice. Interestingly, miR-374a serves an inverse function in SPCA-1 and H1975 NSCLC cells by directly targeting PTEN to activate Wnt/β-catenin and Ras signalings and its downstream cascade signals. Surprisingly, transcription factor c-Jun bound to the promoter region of human miR-374a and suppressed miR-374a in A549 and pc-9 cells while inducing it in SPCA-1 and H1975 cells. Increased levels of miR-374a appeared to serve a protective role by targeting CCND1 in early-stage NSCLC (Stages I and II). Inversely, increased miR-374a was an unfavorable factor when targeting PTEN in more advanced staged NSCLC patients. Our studies are the first to demonstrate that miR-374a plays divergent roles in NSCLC pathogenesis at different stages of the disease and implicate the potential application of miR-374a targeting for cancer therapy.
Collapse
Affiliation(s)
- Mengyang Zhao
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.,Department of Oncology, The People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.,Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China
| | - Zhen Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yan Zhen
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Yiyu Chen
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Qiaofen Fu
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zixi Liang
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Yonghao Li
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional, Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
5
|
Fu Q, Song X, Liu Z, Deng X, Luo R, Ge C, Li R, Li Z, Zhao M, Chen Y, Lin X, Zhang Q, Fang W. miRomics and Proteomics Reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc Feedback Loop Modulated by HDGF/DDX5/β-catenin Complex in Lung Adenocarcinoma. Clin Cancer Res 2017; 23:6336-6350. [PMID: 28751441 DOI: 10.1158/1078-0432.ccr-16-2813] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Purpose: This study was performed to identify the detailed mechanisms by which miR-296-3p functions as a tumor suppressor to prevent lung adenocarcinoma (LADC) cell growth, metastasis, and chemoresistance.Experimental Design: The miR-296-3p expression was examined by real-time PCR and in situ hybridization. MTT, EdU incorporation, Transwell assays, and MTT cytotoxicity were respectively performed for cell proliferation, metastasis, and chemoresistance; Western blotting was performed to analyze the pathways by miR-296-3p and HDGF/DDX5 complex. The miRNA microarray and luciferase reporter assays were respectively used for the HDGF-mediated miRNAs and target genes of miR-296-3p. The ChIP, EMSA assays, and coimmunoprecipitation combined with mass spectrometry and GST pull-down were respectively designed to analyze the DNA-protein complex and HDGF/DDX5/β-catenin complex.Results: We observed that miR-296-3p not only controls cell proliferation and metastasis, but also sensitizes LADC cells to cisplatin (DDP) in vitro and in vivo Mechanistic studies demonstrated that miR-296-3p directly targets PRKCA to suppress FAK-Ras-c-Myc signaling, thus stimulating its own expression in a feedback loop that blocks cell cycle and epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed that suppression of HDGF-β-catenin-c-Myc signaling activates miR-296-3p, ultimately inhibiting the PRKCA-FAK-Ras pathway. Finally, we found that DDX5 directly interacts with HDGF and induces β-catenin-c-Myc, which suppresses miR-296-3p and further activates PRKCA-FAK-Ras, cell cycle, and EMT signaling. In clinical samples, reduced miR-296-3p is an unfavorable factor that inversely correlates with HDGF/DDX5, but not PRKCA.Conclusions: Our study provides a novel mechanism that the miR-296-3p-PRKCA-FAK-Ras-c-Myc feedback loop modulated by HDGF/DDX5/β-catenin complex attenuates cell growth, metastasis, and chemoresistance in LADC. Clin Cancer Res; 23(20); 6336-50. ©2017 AACR.
Collapse
Affiliation(s)
- Qiaofen Fu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Xin Song
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Liu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Mengyang Zhao
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yiyu Chen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qianbing Zhang
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|