1
|
Shi Y, Men X, Wang F, Li X, Zhang B. Role of long non-coding RNAs (lncRNAs) in gastric cancer metastasis: A comprehensive review. Pathol Res Pract 2024; 262:155484. [PMID: 39180802 DOI: 10.1016/j.prp.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
One of the greatest frequent types of malignancy is gastric cancer (GC). Metastasis, an essential feature of stomach cancer, results in a high rate of mortality and a poor prognosis. However, metastasis biological procedures are not well recognized. Long non-coding RNAs (lncRNAs) have a role in numerous gene regulation pathways via epigenetic modification as well as transcriptional and post-transcriptional control. LncRNAs have a role in a variety of disorders, such as cardiovascular disease, Alzheimer's, and cancer. LncRNAs are substantially related to GC incidence, progression, metastasis and drug resistance. Several research released information on the molecular processes of lncRNAs in GC pathogenesis. By interacting with a gene's promoter or enhancer region to influence gene expression, lncRNAs can operate as an oncogene or a tumor suppressor. This review includes the lncRNAs associated with metastasis of GC, which may give insights into the processes as well as potential clues for GC predicting and tracking.
Collapse
Affiliation(s)
- Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| | - Xiaoping Men
- Department of Clinical Laboratory, The First Affiliated Hospital to Changchun University of Chinese Medicine, Jilin 130021, PR China.
| | - Fang Wang
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| | - Xueting Li
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China.
| | - Biao Zhang
- School of Health Management, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| |
Collapse
|
2
|
Elimam H, Moussa R, Radwan AF, Hatawsh A, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Aborehab NM, Zaki MB, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Doghish AS. LncRNAs orchestration of gastric cancer - particular emphasis on the etiology, diagnosis, and treatment resistance. Funct Integr Genomics 2024; 24:175. [PMID: 39325107 DOI: 10.1007/s10142-024-01450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Gastric cancer (GC) remains a major public health challenge worldwide. Long non-coding RNAs (lncRNAs) play important roles in the development, progression, and resistance to the treatment of GC, as shown by recent developments in molecular characterization. Still, an in-depth investigation of the lncRNA landscape in GC is absent. However, The objective of this systematic review is to evaluate our present understanding of the role that lncRNA dysregulation plays in the etiology of GC and treatment resistance, with a focus on the underlying mechanisms and clinical implications. Research that described the functions of lncRNA in angiogenesis, stemness, epigenetics, metastasis, apoptosis, development, and resistance to key treatments was given priority. In GC, it has been discovered that a large number of lncRNAs, including MALAT1, HOTAIR, H19, and ANRIL, are aberrantly expressed and are connected with disease-related outcomes. Through various methods such as chromatin remodeling, signal transduction pathways, and microRNA sponging, they modulate hallmark cancer capabilities. Through the activation of stemness programs, epithelial-mesenchymal transition (EMT), and survival signaling, LncRNAs also control resistance to immunotherapy, chemotherapy, and targeted therapies. By clarifying their molecular roles further, we may be able to identify new treatment targets and ways to overcome resistance. This article aims to explore the interplay between lncRNAs, and GC. Specifically, the focus is on understanding how lncRNAs contribute to the etiology of GC and influence treatment resistance in patients with this disease.
Collapse
Affiliation(s)
- Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nora M Aborehab
- Member of Institutional Animal Care and Use Committee (IACUC), Cairo University, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
3
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
4
|
Huanjie Z, Bukhari I, Fazhan L, Wen H, Wang J, Wanqing W, Yuming F, Youcai T, AlJowaie RM, Aziz IM, Xiufeng C, Yang M, Pengyuan Z. P53-associated lncRNAs regulate immune functions and RNA-modifiers in gastric cancer. Heliyon 2024; 10:e35228. [PMID: 39166030 PMCID: PMC11334848 DOI: 10.1016/j.heliyon.2024.e35228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
TP53, a guardian of the genome, suppresses or enhances tumors through various regulatory pathways. However, the role of p53-related long non-coding RNAs (lncRNAs) in immune regulation of tumor microenvironment and prognosis of gastric cancer (GC) is so far unelucidated. We analyzed the role of TP53-associated lncRNAs (obtained from the TP53LNC-DB database) in immune regulation, immune cell infiltration and RNA modification in gastric cancer. Firstly, using multivariate COX regression analysis, we identified eight lncRNAs related to the prognosis of GC. Furthermore, based on the expression of the lncRNA signature and risk score, the GC patients were divided into high-risk and low-risk groups. We found that M2-macrophages have significantly higher infiltration in the high-risk group. Similarly, significant differences in immune function (APC_co_stimulation, CCR, and checkpoint) and m6A modification (FTO, ZC3H13, YTHDC1, and RBM15), and m5C modification (NOP2 and TET1) between both groups were also observed. These signature lncRNAs were also positively associated with oxidative stress-related genes (MPO, MAPK14, HMOX1, and APP). Additionally, we found that high expression of GAS5 and low expression of MALAT1 in Helicobacter pylori (H-pylori) positive GC patients. Finally, GC patients in the low-risk group showed higher resistance to immunotherapy while patients in the high-risk group were more sensitive to various chemotherapy drugs. Based on these findings, we conclude that p53-associated lncRNAs signature could potentially predict the immune status and overall survival, and may also be used for risk management and planning immunotherapy for gastric cancer patients.
Collapse
Affiliation(s)
- Zhao Huanjie
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
| | - Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Li Fazhan
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
| | - Huijuan Wen
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
| | - Jingyun Wang
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Wu Wanqing
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Fu Yuming
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Tang Youcai
- Department of Pediatrics, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Reem M. AlJowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chu Xiufeng
- Department of Oncology, the Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
| | - Mi Yang
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhongyuan, 450001, Zhengzhou, Henan China, China
- Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Sciences, Zhengzhou, Henan, China
| | - Zheng Pengyuan
- Henan Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, ErQi 450052, Zhengzhou, Henan, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, ErQi, 450052, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhongyuan, 450001, Zhengzhou, Henan China, China
- Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Sciences, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Jin W, Jia J, Si Y, Liu J, Li H, Zhu H, Wu Z, Zuo Y, Yu L. Identification of Key lncRNAs Associated with Immune Infiltration and Prognosis in Gastric Cancer. Biochem Genet 2024:10.1007/s10528-024-10801-w. [PMID: 38658494 DOI: 10.1007/s10528-024-10801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Long non-coding RNAs (lncRNAs), as promising novel biomarkers for cancer treatment and prognosis, can function as tumor suppressors and oncogenes in the occurrence and development of many types of cancer, including gastric cancer (GC). However, little is known about the complex regulatory system of lncRNAs in GC. In this study, we systematically analyzed lncRNA and miRNA transcriptomic profiles of GC based on bioinformatics methods and experimental validation. An lncRNA-miRNA interaction network related to GC was constructed, and the nine crucial lncRNAs were identified. These 9 lncRNAs were found to be associated with the prognosis of GC patients by Cox proportional hazards regression analysis. Among them, the expression of lncRNA SNHG14 can affect the survival of GC patients as a potential prognostic marker. Moreover, it was shown that SNHG14 was involved in immune-related pathways and significantly correlated with immune cell infiltration in GC. Meanwhile, we found that SNHG14 affected immune function in many cancers, such as breast cancer and esophageal carcinoma. Such information revealed that SNHG14 may serve as a potential target for cancer immunotherapy. As well, our study could provide practical and theoretical guiding significance for clinical application of non-coding RNAs.
Collapse
Affiliation(s)
- Wen Jin
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Yangming Si
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | - Jianli Liu
- School of Water Resource and Environment Engineering, China University of Geosciences, Beijing, 100083, China
| | - Hanshuang Li
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hao Zhu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhouying Wu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Yongchun Zuo
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot, 010010, China.
- Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China.
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People's Hospital, Hohhot, 010010, China.
- Department of Endocrine and Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
6
|
Qi J, Wu W, Chen J, Han X, Hao Z, Han Y, Xu Y, Lai J, Chen J. Development and validation of a novel prognostic lncRNA signature based on the APOBEC3 family genes in gastric cancer. Heliyon 2024; 10:e28307. [PMID: 38560679 PMCID: PMC10979227 DOI: 10.1016/j.heliyon.2024.e28307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Gastric Cancer (GC) refers to a prevalent malignant cancer accompanied by a weak prognosis. The APOBEC3 family genes and lncRNAs are linked with cancer progression. Nevertheless, there is still a scarcity of data concerning the prognostic value of APOBEC3-related lncRNAs in GC. Methods We extracted the data from GC samples, including transcriptome as well as clinical data, obtained from the TCGA database. Then, we screened for lncRNAs that were correlated with the APOBEC3 family genes and constructed an APOBEC3-related lncRNA prognostic signature (LPS) by utilizing univariate Cox and lasso regression analysis. Furthermore, we validated our constructed signature and evaluated it thoroughly, including analysis of its function, immunity, mutations, and clinical applications via multiple methods, including Metascape, GSEA, and analyses including TIC and TME, immune checkpoints, CNV and SNPs, Kaplan-Meier survival curves, nomogram, decision tree and drug prediction analysis. Finally, we overexpressed LINC01094 to evaluate the impacts on the proliferation as well as migration with regards to KATO-2 cells. Results We selected eight lncRNAs for our APOBEC3-related LPS, which is demonstrated as a valuable tool in predicting the individual GC patients' prognosis. Subsequently, we segregated the samples into subgroups of high-as well as low-risk relying on the risk score with regards to APOBEC3-related LPS. By performing functional analysis, we have shown that immune-as well as tumor-related pathways were enriched in high- and low-risk GC patients. Furthermore, immune analysis revealed a robust correlation between the APOBEC3-related LPS and immunity. We found that immune checkpoints were significantly associated with the APOBEC3-related LPS and were greatly exhibited in GC tumor and high-risk samples. Mutational analysis suggested that the mutational rate was greater in low-risk samples. Furthermore, we predicted small molecular drugs displayed greater sensitivity in patients categorized as high-risk. Moreover, the immune response was also better in high-risk patients. Of these drugs, dasatinib was significant in both methods and might be considered a potential novel drug for treating high-risk GC patients. Finally, we found that LINC01094 has the potential to enhance the migration, proliferation as well as inhibit apoptosis of KATO-2 in GC cells. And Dasatinib has an inhibitory effect on the migration as well as proliferation in GC cells. Conclusion We created a novel APOBEC3-related LPS in predicting the prognosis with regards to individual GC patients. Importantly, this APOBEC3-related LPS was closely associated with immunity and might guide clinical treatment.
Collapse
Affiliation(s)
- Jia Qi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Wenxuan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Xiaying Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Zhixing Hao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yaxuan Han
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Yewei Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| | - Jun Lai
- Department of Cardiology Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong, China
| | - Jian Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
7
|
Li C, Sun C, Mahapatra KD, Riihilä P, Knuutila J, Nissinen L, Lapins J, Kähäri VM, Homey B, Sonkoly E, Pivarcsi A. Long noncoding RNA plasmacytoma variant translocation 1 is overexpressed in cutaneous squamous cell carcinoma and exon 2 is critical for its oncogenicity. Br J Dermatol 2024; 190:415-426. [PMID: 37930852 DOI: 10.1093/bjd/ljad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is one of the most common and fastest increasing forms of cancer worldwide with metastatic potential. Long noncoding RNAs (lncRNAs) are a group of RNA molecules with essential regulatory functions in both physiological and pathological processes. OBJECTIVES To investigate the function and mode of action of lncRNA plasmacytoma variant translocation 1 (PVT1) in cSCC. METHODS Quantitative reverse transcriptase polymerase chain reaction and single-molecule in situ hybridization were used to quantify the expression level of PVT1 in normal skin, premalignant skin lesions, actinic keratosis (AK) and primary and metastatic cSCCs. The function of PVT1 in cSCC was investigated both in vivo (tumour xenografts) and in vitro (competitive cell growth assay, 5-ethynyl-2'-deoxyuridine incorporation assay, colony formation assay and tumour spheroid formation assay) upon CRISPR-Cas9-mediated knockout of the entire PVT1 locus, the knockout of exon 2 of PVT1, and locked nucleic acid (LNA) gapmer-mediated PVT1 knockdown. RNA sequencing analysis was conducted to identify genes and processes regulated by PVT1. RESULTS We identified PVT1 as a lncRNA upregulated in cSCC in situ and cSCC, associated with the malignant phenotype of cSCC. We showed that the expression of PVT1 in cSCC was regulated by MYC. Both CRISPR-Cas9 deletion of the entire PVT1 locus and LNA gapmer-mediated knockdown of PVT1 transcript impaired the malignant behaviour of cSCC cells, suggesting that PVT1 is an oncogenic transcript in cSCC. Furthermore, knockout of PVT1 exon 2 inhibited cSCC tumour growth both in vivo and in vitro, demonstrating that exon 2 is a critical element for the oncogenic role of PVT1. Mechanistically, we showed that PVT1 was localized in the cell nucleus and its deletion resulted in cellular senescence, increased cyclin-dependent kinase inhibitor 1 (p21/CDKN1A) expression and cell cycle arrest. CONCLUSIONS Our study revealed a previously unrecognized role for exon 2 of PVT1 in its oncogenic role and that PVT1 suppresses cellular senescence in cSCC. PVT1 may be a potential biomarker and therapeutic target in cSCC.
Collapse
Affiliation(s)
- Chen Li
- Department of Medical Biochemistry and Microbiology (IMBIM)
| | - Chengxi Sun
- Department of Medical Biochemistry and Microbiology (IMBIM)
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | | | - Pilvi Riihilä
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Jan Lapins
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Veli-Matti Kähäri
- Department of Dermatology
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Bernhard Homey
- Department of Dermatology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Enikö Sonkoly
- Department of Medical Biochemistry and Microbiology (IMBIM)
- Dermatology and Venereology Division, Department of Medicine Solna
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andor Pivarcsi
- Department of Medical Biochemistry and Microbiology (IMBIM)
- Dermatology and Venereology Division, Department of Medicine Solna
- Dermatology and Venereology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Jasim SA, Majeed AA, Uinarni H, Alshuhri M, Alzahrani AA, Ibrahim AA, Alawadi A, Abed Al-Abadi NK, Mustafa YF, Ahmed BA. Long non-coding RNA (lncRNA) PVT1 in drug resistance of cancers: Focus on pathological mechanisms. Pathol Res Pract 2024; 254:155119. [PMID: 38309019 DOI: 10.1016/j.prp.2024.155119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
According to estimates, cancer will be the leading cause of death globally in 2022, accounting for 9.6 million deaths. At present, the three main therapeutic modalities utilized to treat cancer are radiation therapy, chemotherapy, and surgery. However, during treatment, tumor cells resistant to chemotherapy may arise. Drug resistance remains a major oppose since it often leads to therapeutic failure. Furthermore, the term "acquired drug resistance" describes the situation where tumor cells already display drug resistance before undergoing chemotherapy. However, little is still known about the basic mechanisms underlying chemotherapy-induced drug resistance. The development of new technologies and bioinformatics has led to the discovery of additional genes associated with drug resistance. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been linked to an increased risk of cancer, according to a growing body of research. Apart from biological functions associated with cell division, development, pluripotency, and cell cycle, lncRNA PVT1 contributes significantly to the regulation of various aspects of genome function, such as transcription, splicing, and epigenetics. The article will address the mechanism by which lncRNA PVT1 influences drug resistance in cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Anbar, Iraq; Biotechnology department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Ali A Majeed
- Department of Pathological Analyses, Faculty of Science, University of Kufa, Najaf, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital, Jakarta, Indonesia.
| | - Mohammed Alshuhri
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Sauadi Arabia
| | | | - Abeer A Ibrahim
- Inorganic Chemistry Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
9
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
10
|
Huang L, Wang Z, Liao C, Zhao Z, Gao H, Huang R, Chen J, Wu F, Zeng F, Zhang Y, Jiang T, Hu H. PVT1 promotes proliferation and macrophage immunosuppressive polarization through STAT1 and CX3CL1 regulation in glioblastoma multiforme. CNS Neurosci Ther 2024; 30:e14566. [PMID: 38287522 PMCID: PMC10805395 DOI: 10.1111/cns.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
AIMS This study aimed to investigate the role of plasmacytoma variant translocation 1 (PVT1), a long non-coding RNA, in glioblastoma multiforme (GBM) and its impact on the tumor microenvironment (TME). METHODS We assessed aberrant PVT1 expression in glioma tissues and its impact on GBM cell growth in vitro and in vivo. Additionally, we investigated PVT1's role in influencing glioma-associated macrophages. To understand PVT1's role in cell growth and the immunosuppressive TME, we performed a series of comprehensive experiments. RESULTS PVT1 was overexpressed in GBM due to copy number amplification, correlating with poor prognosis. Elevated PVT1 promoted GBM cell proliferation, while its downregulation inhibited growth in vitro and in vivo. PVT1 inhibited type I interferon-stimulated genes (ISGs), with STAT1 as the central hub. PVT1 correlated with macrophage enrichment and regulated CX3CL1 expression, promoting recruitment and M2 phenotype polarization of macrophages. PVT1 localized to the cell nucleus and bound to DHX9, enriching at the promoter regions of STAT1 and CX3CL1, modulating ISGs and CX3CL1 expression. CONCLUSION PVT1 plays a significant role in GBM, correlating with poor prognosis, promoting cell growth, and shaping an immunosuppressive TME via STAT1 and CX3CL1 regulation. Targeting PVT1 may hold therapeutic promise for GBM patients.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Pathophysiology, Beijing Neurosurgical InstituteCapital Medical UniversityChina
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chihyi Liao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Hua Gao
- Department of Cell Biology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Chen
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Center of Brain TumorBeijing Institute for Brain DisordersBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Glioma Genome Atlas Network and Asian Glioma Genome Atlas NetworkBeijingChina
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Li Z, Tian JM, Chu Y, Zhu HY, Wang JJ, Huang J. Long non-coding RNA PVT1 (PVT1) affects the expression of CCND1 and promotes doxorubicin resistance in osteosarcoma cells. J Bone Oncol 2023; 43:100512. [PMID: 38021073 PMCID: PMC10665705 DOI: 10.1016/j.jbo.2023.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acquired drug-resistance is the major risk factor for poor prognosis and short-term survival in patients with osteosarcoma (OS). Accumulating evidence has revealed that long noncoding RNAs (lncRNAs), including plasmacytoma variant translocation 1 (PVT1), play potential regulatory roles in the malignant development of OS. Considering the subcellular distribution of PVT1 as both nuclear and cytoplasmic lncRNA, a thorough exploration of its extensive mechanisms becomes essential. Methods The GEO database was utilized for the acquisition of gene expression data, which was subsequently analyzed to fulfill the research objectives. The subcellular localization of PVT1 in OS cells was determined using fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the sensitivity of OS cells to doxorubicin was comprehensively evaluated through measurements of cell viability, site-specific proliferation capacity, and the relative expression abundance of multidrug resistance-related proteins (MRPs). In order to investigate the differential response of OS cells with varying levels of PVT1 expression to doxorubicin, pulmonary metastasis mice models were established for in vivo studies. Molecular interactions were further examined using the dual-luciferase assay and RNA immunoprecipitation assay (RIP) to analyze the binding sites of miR-15a-5p and miR-15b-5p on PVT1 and G1/S-specific cyclinD1 (CCND1) mRNA. Furthermore, the chromatin immunoprecipitation (ChIP) and dual-luciferase assay were employed to assess the transcriptional activation of the proto-oncogene c-myc (MYC) on the CCND1 promoter and identify the corresponding binding sites. Results In doxorubicin resistant OS cells, transcription levels of PVT1, MYC and CCND1 were significantly higher than those in original cells. In vivo experiments demonstrated that OS cells rich in PVT1 expression exhibited enhanced tumorigenicity and resistance to doxorubicin. In vitro experiments, it has been observed that overexpression of PVT1 in OS cells is accompanied by an upregulation of CCND1, thereby facilitating resistance to doxorubicin. Nonetheless, this PVT1-induced resistance can be effectively attenuated by the knockdown of CCND1. Mechanistically, PVT1 functions as a competitive endogenous RNA (ceRNA) that influences the expression of CCND1 by inhibiting the degradation function of miR-15a-5p and miR-15b-5p on CCND1 mRNA. Additionally, as a neighboring gene of MYC, PVT1 plays a role in maintaining MYC protein stability, which further enhances MYC-dependent CCND1 transcriptional activity. Conclusion The resistance of OS cells to doxorubicin is facilitated by PVT1, which enhances the expression of CCND1 through a dual mechanism. This findings offer a novel perspective for comprehending the intricate regulatory mechanisms of long non-coding RNA in influencing the expression of coding genes.
Collapse
Affiliation(s)
- Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Li R, Huang D, Ju M, Chen HY, Luan C, Zhang JA, Chen K. The long non-coding RNA PVT1 promotes tumorigenesis of cutaneous squamous cell carcinoma via interaction with 4EBP1. Cell Death Discov 2023; 9:101. [PMID: 36944636 PMCID: PMC10030977 DOI: 10.1038/s41420-023-01380-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) plays an oncogenic role in multiple cancers due to its high expression. However, the expression and associated regulatory mechanisms of PVT1 in cutaneous squamous cell carcinoma (cSCC) remain unclear. Our results revealed that PVT1 was highly upregulated in cSCC tissues and cSCC cell lines. To determine the functional role of PVT1 in cSCC, we constructed a stable knockdown cell model of PVT1 in the A431 and COLO16 cell lines using a lentiviral approach. Xenograft tumor experiments of nude mice in vivo, and colony formation, CCK-8, and EdU assays in vitro demonstrated that knockdown of PVT1 could widely suppress cell proliferation in vivo and in vitro. In addition, PVT1 knockdown induced cell cycle arrest and promoted apoptosis, as detected by flow cytometry analysis. Wound healing and transwell assays revealed that PVT1 knockdown significantly inhibited the migration and invasion of CSCC cell lines. To gain insight into the tumorigenic mechanism and explore the potential target molecules of PVT1, we employed label-free quantitative proteomic analysis. The GO, KEGG enrichment, and protein-protein interaction (PPI) networks suggested that 4E-binding protein 1 (4EBP1) is the possible downstream target effector of PVT1, which was validated by western blot analysis. PVT1 silencing markedly decreased 4EBP1 protein expression levels and directly bound 4EBP1 in the cytoplasm of cSCC cells. 4EBP1 overexpression counteracted the effects of PVT1 knockdown on tumorigenesis in cSCC cells, including cell proliferation, apoptosis, migration, and invasion. Our findings provide strong evidence that PVT1 is an oncogene which plays a role in tumorigenesis of cSCC, that PVT1 may interact with 4EBP1 in the cytoplasm as an underlying mechanism in cSCC carcinogenesis, and that PVT1 combined with 4EBP1 may serve as a potential new therapeutic target for cSCC.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Dan Huang
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Mei Ju
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Hong-Ying Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
| | - Chao Luan
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Jia-An Zhang
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China.
| |
Collapse
|
13
|
Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med 2023; 55:22-31. [PMID: 36653445 PMCID: PMC9898530 DOI: 10.1038/s12276-023-00926-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers in the world. It is a multifactorial disease highly influenced by environmental factors, which include radiation, smoking, diet, and infectious pathogens. Accumulating evidence suggests that epigenetic regulators are frequently altered in GC, playing critical roles in gastric tumorigenesis. Epigenetic regulation involves DNA methylation, histone modification, and noncoding RNAs. While it is known that environmental factors cause widespread alterations in DNA methylation, promoting carcinogenesis, the chromatin- and noncoding RNA-mediated mechanisms of gastric tumorigenesis are still poorly understood. In this review, we focus on discussing recent discoveries addressing the roles of histone modifiers and noncoding RNAs and the mechanisms of their interactions in gastric tumorigenesis. A better understanding of epigenetic regulation would likely facilitate the development of novel therapeutic approaches targeting specific epigenetic regulators in GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lexin Zhu
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
14
|
Comprehensive analysis of immune subtypes reveals the prognostic value of cytotoxicity and FAP + fibroblasts in stomach adenocarcinoma. Cancer Immunol Immunother 2023; 72:1763-1778. [PMID: 36650362 DOI: 10.1007/s00262-023-03368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
BACKGROUND The heterogeneity limits the effective application of immune checkpoint inhibitors for patients with stomach adenocarcinoma (STAD). Precise immunotyping can help select people who may benefit from immunotherapy and guide postoperative management by describing the characteristics of tumor microenvironment. METHODS Gene expression profiles and clinical information of patients were collected from ACRG and TCGA-STAD datasets. The immune subtypes (ISs) were identified by consensus clustering analysis. The tumor immune microenvironments (TIME) of each IS were characterized using a series of immunogenomics methods and further confirmed by multiplex immunohistochemistry (mIHC) staining in clinical samples. Two online datasets and one in-house dataset were utilized to construct and validate a prognostic immune-related gene (IRG) signature. RESULTS STAD patients were stratified into five reproducible ISs. IS1 (immune deserve subtype) had low immune infiltration and the highest degree of HER2 gene mutation. With abundant CD8+ T cells infiltration and activated cytotoxicity reaction, patients in the IS2 (immune-activated subtype) had the best overall survival (OS). IS3 and IS4 subtypes were both in the reactive stroma state and indicated the worst prognosis. However, IS3 (immune-inhibited subtype) was characterized by enrichment of FAP+ fibroblasts and upregulated TGF-β signaling pathway, while IS4 (activated stroma subtype) was characterized by enrichment of ACTA2+ fibroblasts. In addition, mIHC staining confirmed that TGF-β upregulated FAP+ fibroblasts were independent risk factor of OS. IS5 (chronic inflammation subtype) displayed moderate immune cells infiltration and had a relatively good survival. Lastly, we developed a nine-IRG signature model with a robust performance on overall survival prognostication. CONCLUSIONS The immunotyping is indicative for characterize the TIME heterogeneity and the prediction of tumor prognosis for STADs, which may provide valuable stratification for the design of future immunotherapy.
Collapse
|
15
|
Akbari A, Abbasi S, Borumandnia N, Eshkiki ZS, Sedaghat M, Tabaeian SP, Kashani AF, Talebi A. Epigenetic regulation of gastrointestinal cancers mediated by long non-coding RNAs. Cancer Biomark 2022; 35:359-377. [PMID: 36404536 DOI: 10.3233/cbm-220142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNAs), as well-known modulator of the epigenetic processes, have been shown to contribute to normal cellular physiological and pathological conditions such as cancer. Through the interaction with epigenetic regulators, an aberrant regulation of gene expression can be resulted due to their dysregulation, which in turn, can be involved in tumorigenesis. In the present study, we reviewed the lncRNAs' function and mechanisms that contributed to aberrant epigenetic regulation, which is directly related to gastrointestinal cancer (GI) development and progression. Findings indicated that epigenetic alterations may involve in tumorigenesis and are valuable biomarkers in case of diagnosing, assessing of risk factors, and predicting of GI cancers. This review summarized the accumulated evidence for biological and clinical application to use lncRNAs in GI cancers, including colorectal, gastric, oral, liver, pancreatic and oesophageal cancer.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Abbasi
- Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Nasrin Borumandnia
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Talebi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Li Z, Yang HY, Zhang XL, Zhang X, Huang YZ, Dai XY, Shi L, Zhou GR, Wei JF, Ding Q. Kinesin family member 23, regulated by FOXM1, promotes triple negative breast cancer progression via activating Wnt/β-catenin pathway. J Exp Clin Cancer Res 2022; 41:168. [PMID: 35524313 PMCID: PMC9077852 DOI: 10.1186/s13046-022-02373-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is highly malignant and has a worse prognosis, compared with other subtypes of breast cancer due to the absence of therapeutic targets. KIF23 plays a crucial role in the tumorigenesis and cancer progression. However, the role of KIF23 in development of TNBC and the underlying mechanism remain unknown. The study aimed to elucidate the biological function and regulatory mechanism of KIF23 in TNBC. Methods Quantitative real-time PCR and Western blot were used to determine the KIF23 expression in breast cancer tissues and cell lines. Then, functional experiments in vitro and in vivo were performed to investigate the effects of KIF23 on tumor growth and metastasis in TNBC. Chromatin immunoprecipitation assay was conducted to illustrate the potential regulatory mechanisms of KIF23 in TNBC. Results We found that KIF23 was significantly up-regulated and associated with poor prognosis in TNBC. KIF23 could promote TNBC proliferation, migration and invasion in vitro and in vivo. KIF23 could activate Wnt/β-catenin pathway and promote EMT progression in TNBC. In addition, FOXM1, upregulated by WDR5 via H3K4me3 modification, directly bound to the promoter of KIF23 gene to promote its transcription and accelerated TNBC progression via Wnt/β-catenin pathway. Both of small inhibitor of FOXM1 and WDR5 could inhibit TNBC progression. Conclusions Our findings elucidate WDR5/FOXM1/KIF23/Wnt/β-catenin axis is associated with TNBC progression and may provide a novel and promising therapeutic target for TNBC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02373-7.
Collapse
|
17
|
Sun H, Wang X, Zhang X, Wang X, Tan C, Weng W, Zhang M, Ni S, Wang L, Huang D, Xu M, Sheng W. Multiplexed immunofluorescence analysis of CAF-markers, EZH2 and FOXM1 in gastric tissue: associations with clinicopathological parameters and clinical outcomes. BMC Cancer 2022; 22:1188. [DOI: 10.1186/s12885-022-10312-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
The aim of this study is to explore the expression and clinical relevance of CAF-associated markers, EZH2 and FOXM1 in gastric samples.
Methods
Protein expression were detected and evaluated by multi-plex immunofluorescence (mIF) in 93 cases of gastric cancer (GC) and 31 cases of gastric intraepithelial neoplasia (GIN). The correlation among their expression, and the relationship of them with clinicopathological parameters and prognosis in GC were then analyzed.
Results
FAP was specific expressed in the CAFs of GC samples, and thus be utilized as a CAF-associated marker in our subsequently analysis. The immunostaining of EZH2, FOXM1 and FAP were significantly upregulated in patients with GC tissues than in those normal gastric mucosa or GIN tissues. The average fluorescence intensity of FAP was slightly positively correlated with EZH2 in GC, GIN and normal samples, whereas the percentage of FAP positive cells has no correlation with that of EZH2. Both the percentage of positive cells and the average fluorescence intensity of FOXM1 were positively correlated with that of FAP and EZH2 in GC, GIN and normal samples, except for FOXM1 and EZH2 expression in normal tissue samples. No significant association was observed between FAP expression and any clinicopathological parameters, whereas the positive frequency of EZH2 and FOXM1 were correlated with tumor location significantly and tumor invasion depth, respectively. In addition, there was strong positive correlations between FAP protein expression and overall survival (OS) and disease-free survival (DFS), and EZH2 expression was positively associated with OS in patients with GC. Furthermore, EZH2 and FAP protein expression was an independent prognostic factor for OS and DFS, respectively.
Conclusions
These results suggest that both EZH2 and FOXM1 expression was positively associated with CAFs abundance in GC. They may be potential cellular target for therapeutic intervention, especially in patients with a large number of CAFs.
Collapse
|
18
|
Wang MN, Lei LL, He W, Ding DW. SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA–miRNA interactions. Front Genet 2022; 13:1032428. [DOI: 10.3389/fgene.2022.1032428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicated that the interaction between lncRNA and miRNA is crucial for gene regulation, which can regulate gene transcription, further affecting the occurrence and development of many complex diseases. Accurate identification of interactions between lncRNAs and miRNAs is helpful for the diagnosis and therapeutics of complex diseases. However, the number of known interactions of lncRNA with miRNA is still very limited, and identifying their interactions through biological experiments is time-consuming and expensive. There is an urgent need to develop more accurate and efficient computational methods to infer lncRNA–miRNA interactions. In this work, we developed a matrix completion approach based on structural perturbation to infer lncRNA–miRNA interactions (SPCMLMI). Specifically, we first calculated the similarities of lncRNA and miRNA, including the lncRNA expression profile similarity, miRNA expression profile similarity, lncRNA sequence similarity, and miRNA sequence similarity. Second, a bilayer network was constructed by integrating the known interaction network, lncRNA similarity network, and miRNA similarity network. Finally, a structural perturbation-based matrix completion method was used to predict potential interactions of lncRNA with miRNA. To evaluate the prediction performance of SPCMLMI, five-fold cross validation and a series of comparison experiments were implemented. SPCMLMI achieved AUCs of 0.8984 and 0.9891 on two different datasets, which is superior to other compared methods. Case studies for lncRNA XIST and miRNA hsa-mir-195–5-p further confirmed the effectiveness of our method in inferring lncRNA–miRNA interactions. Furthermore, we found that the structural consistency of the bilayer network was higher than that of other related networks. The results suggest that SPCMLMI can be used as a useful tool to predict interactions between lncRNAs and miRNAs.
Collapse
|
19
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
20
|
Han J, Nie M, Chen C, Cheng X, Guo T, Huangfu L, Li X, Du H, Xing X, Ji J. SDCBP‐AS1 destabilizes β‐catenin by regulating ubiquitination and SUMOylation of hnRNP K to suppress gastric tumorigenicity and metastasis. Cancer Commun (Lond) 2022; 42:1141-1161. [DOI: 10.1002/cac2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/24/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jing Han
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Menglin Nie
- Department of Radiation Oncology Beijing Tiantan Hospital Capital Medical University Beijing 100070 P. R. China
| | - Cong Chen
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Xiaojing Cheng
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Ting Guo
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Longtao Huangfu
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Xiaomei Li
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Hong Du
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
- Department of Gastrointestinal Surgery Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| |
Collapse
|
21
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
22
|
Wang Y, Chen X, Jiang F, Shen Y, Fang F, Li Q, Yang C, Dong Y, Shen X. A prognostic signature of pyroptosis-related lncRNAs verified in gastric cancer samples to predict the immunotherapy and chemotherapy drug sensitivity. Front Genet 2022; 13:939439. [PMID: 36147488 PMCID: PMC9485603 DOI: 10.3389/fgene.2022.939439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pyroptosis is a recently identified mode of programmed inflammatory cell death that has remarkable implications for cancer development. lncRNAs can be involved in cellular regulation through various pathways and play a critical role in gastric cancer (GC). However, pyroptosis -related lncRNAs (PRlncRNAs) have been rarely studied in GC. Methods: Pyroptosis-related gene were abstracted from the literature and GSEA Molecular Signatures data resource. PRlncRNAs were obtained using co-expression analysis. LASSO Cox regression assessment was employed to build a risk model. Kaplan-Meier (KM), univariate along with multivariate Cox regression analysis were adopted to verify the predictive efficiency of the risk model in terms of prognosis. qRT-PCR was adopted to validate the expression of PRlncRNAs in GC tissues. In addition, immune cell infiltration assessment and ESTIMATE score evaluation were adopted for assessing the relationship of the risk model with the tumor immune microenvironment (TME). Finally, immune checkpoint gene association analysis and chemotherapy drug sensitivity analysis were implemented to assess the worthiness of our risk model in immunotherapy and chemotherapy of GC. Results: We identified 3 key PRlncRNAs (PVT1, CYMP-AS1 and AC017076.1) and testified the difference of their expression levels in GC tumor tissues and neighboring non-malignant tissues (p < 0.05). PRlncRNAs risk model was able to successfully estimate the prognosis of GC patients, and lower rate of survival was seen in the high-GC risk group relative to the low-GC risk group (p < 0.001). Other digestive system tumors such as pancreatic cancer further validated our risk model. There was a dramatic difference in TMB level between high-GC and low-GC risk groups (p < 0.001). Immune cell infiltration analysis and ESTIMATE score evaluation demonstrated that the risk model can be adopted as an indicator of TME status. Besides, the expressions of immunodetection site genes in different risk groups were remarkably different (CTLA-4 (r = −0.14, p = 0.010), VISTA (r = 0.15, p = 0.005), and B7-H3 (r = 0.14, p = 0.009)). PRlncRNAs risk model was able to effectively establish a connection with the sensitivity of chemotherapeutic agents. Conclusion: The 3 PRlncRNAs identified in this study could be utilized to predict disease outcome in GC patients. It may also be a potential therapeutic target in GC therapy, including immunotherapy and chemotherapy.
Collapse
|
23
|
Cao D, Ou X, Li W, Ur-Rehman U. lncRNA PVT1 Targeting miR-423-5p Regulates Biological Behavior of Gastric Carcinoma Cells. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1613.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
25
|
Tabury K, Monavarian M, Listik E, Shelton AK, Choi AS, Quintens R, Arend RC, Hempel N, Miller CR, Györrfy B, Mythreye K. PVT1 is a stress-responsive lncRNA that drives ovarian cancer metastasis and chemoresistance. Life Sci Alliance 2022; 5:5/11/e202201370. [PMID: 35820706 PMCID: PMC9275596 DOI: 10.26508/lsa.202201370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Kevin Tabury
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC, USA,Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium,Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Mehri Monavarian
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Eduardo Listik
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Abigail K Shelton
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Alex Seok Choi
- Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Rebecca C Arend
- Department of Gynecology Oncology, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology Oncology, University of Pittsburgh School of Medicine Pittsburgh, PA, USA,Department of Pharmacology, and Obstetrics and Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology, O’Neal Comprehensive Cancer Center, Comprehensive Neuroscience Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Balázs Györrfy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA,Division of Molecular Cellular Pathology, Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama Heersink School of Medicine, Birmingham, AL, USA,Correspondence:
| |
Collapse
|
26
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
27
|
Wu F, Zhu Y, Zhou C, Gui W, Li H, Lin X. Regulation mechanism and pathogenic role of lncRNA plasmacytoma variant translocation 1 (PVT1) in human diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
28
|
Li X, Liu W, Tao W. LINC00174 promotes cell proliferation and metastasis in renal clear cell carcinoma by regulating miR-612/FOXM1 axis. Immunopharmacol Immunotoxicol 2022; 44:746-756. [PMID: 35616230 DOI: 10.1080/08923973.2022.2082303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is the most common pathological subtype of kidney tumor. Reportedly, LINC00174 is a key regulator in cancer progression. This study aims to clarify the role and molecular mechanism of LINC00174 in the progression of KIRC. METHODS LINC00174 expression in KIRC and its prognostic value were analyzed by bioinformatics. LINC00174, miR-612 and FOXM1 mRNA expression levels in KIRC clinical samples and cell lines were detected by qRT-PCR. After LINC00174 was overexpressed or knocked down, CCK-8, BrdU and Transwell assays were adopted to evaluate the proliferation and metastatic potential of KIRC cells. Bioinformatics and dual luciferase reporter assays were employed to validate the targeting relationship between miR-612 and LINC00174 or FOXM1 mRNA, respectively. Western blot assay was performed to detect FOXM1 protein expression in KIRC cells. RESULTS LINC00174 expression and FOXM1 expression were up-regulated in 42 cases of KIRC tissues (P < 0.001), while miR-612 expression was down-regulated (P < 0.001). LINC00174 overexpression or miR-612 inhibitor promoted the viability and proliferation of KIRC cells (P < 0.01). Migration and invasion of KIRC cells were promoted when the cells were transfected with LINC00174 overexpression or miR-612 inhibitor (P < 0.05). LINC00174 can competitively bind with miR-612 to repress the expression of miR-612, in turn up-regulate the expression of FOXM1 mRNA. CONCLUSION LINC00174 facilitates the proliferation and metastatic potential of KIRC cells via regulating the miR-612/FOXM1 axis.
Collapse
Affiliation(s)
- Xiaoshan Li
- Department of Urology, Yangtze River Shipping General Hospital, Wuhan 430010, Hubei, China
| | - Wei Liu
- Department of Urology, Yangtze River Shipping General Hospital, Wuhan 430010, Hubei, China
| | - Weixiong Tao
- Department of Urology, Yangtze River Shipping General Hospital, Wuhan 430010, Hubei, China
| |
Collapse
|
29
|
LncRNA PVT1 Promotes Cell Proliferation, Invasion, and Migration and Inhibits Cell Apoptosis by Phosphorylating YAP. Can J Gastroenterol Hepatol 2022; 2022:5332129. [PMID: 35664988 PMCID: PMC9162823 DOI: 10.1155/2022/5332129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) as a serious global health problem is a threat to human longevity. Plasmacytoma variant translocation 1 (PVT1) participates in the formation and progression of various cancers, including GC. The aim of this study is to investigate the mechanism underlying the functions of PVT1 and explore a novel target for the diagnosis and treatment of GC. Analysis of the TCGA dataset using the R software identified that the lncRNA PVT1 was greatly upregulated in GC tissues. Twenty pairs of GC and adjacent normal tissues were acquired from patients with GC, and the expression of PVT1 was evaluated using RT-qPCR. Furthermore, PVT1 expression was knocked down in GC cells using siRNA, and the GC cells were divided into control, negative control (NC), and siRNA groups. Cell proliferation ability was analyzed using Cell Counting Kit-8 (CCK8) and colony formation assays, whereas cell migration and invasion ability were investigated through wound healing and Transwell assays. Moreover, Western blotting was used to analyze the expression of Yes-associated protein (YAP) and epithelial-to-mesenchymal transition (EMT) proteins. We also found that PVT1 and YAP expressions were upregulated in the GC tissues compared with those in the adjacent nontumor tissues. Knockdown of PVT1 was found to inhibit the proliferation, invasion, and migration and promote apoptosis of GC cells. Furthermore, knockdown of PVT1 downregulated YAP and promoted phosphorylation of YAP, suggesting that PVT1 exerts actions on GC cells by targeting YAP and inhibits cell apoptosis in vitro. The EMT process was also inhibited by the knockdown of PVT1. In summary, lncRNA PVT1 facilitated cell proliferation, invasion, and migration and suppressed cell apoptosis by targeting YAP. This study suggests that the expressions of PVT1 and YAP could be used for the early detection of GC and the occurrence and development of GC could be inhibited by interfering the interaction of PVT1 and YAP, which will provide new insights for the diagnosis, treatment, and prognosis of GC.
Collapse
|
30
|
Cui H, Li H, Wu H, Du F, Xie X, Zeng S, Zhang Z, Dong K, Shang L, Jing C, Li L. A novel 3'tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis 2022; 13:471. [PMID: 35585048 PMCID: PMC9117658 DOI: 10.1038/s41419-022-04930-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
At present, it is commonly believed that tRFs and tiRNAs are formed by the specific and selective shear of tRNAs under certain pressure stimulation, rather than by random degradation of tRNA. tRFs and tiRNAs have been reported to contribute to the biological process of a variety of human cancers. However, the evidence for the mechanisms of tRFs and tiRNAs in the occurrence and development of gastric cancer (GC) is still insufficient. Here, we aimed to explore the carcinogenic roles of tRFs and tiRNAs in GC with RNA-sequencing technique, and found a novel 3'tRNA-derived fragment tRF-Val was significantly upregulated in GC tissues and cell lines. tRF-Val expression was positively correlated with tumor size and the depth of tumor invasion in GC tissues. Functionally, tRF-Val promoted proliferation and invasion, and inhibited apoptosis in GC cells. Mechanistically, tRF-Val directly bound to the chaperone molecule EEF1A1, mediated its transport into the nucleus and promoted its interaction with MDM2 (a specific p53 E3 ubiquitin ligase), thus inhibiting the downstream molecular pathway of p53 and promoting GC progression. These findings provided a new potential therapeutic target for GC and a new explanation for the occurrence of GC.
Collapse
Affiliation(s)
- Huaiping Cui
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Han Li
- grid.452422.70000 0004 0604 7301Department of Gastrointestinal Surgery, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, 250013 Jinan, Shandong China
| | - Hao Wu
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Fengying Du
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Xiaozhou Xie
- grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China
| | - Shujie Zeng
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Zihao Zhang
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Kangdi Dong
- grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China
| | - Liang Shang
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Changqing Jing
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Leping Li
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| |
Collapse
|
31
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
32
|
An Immunity-Associated lncRNA Signature for Predicting Prognosis in Gastric Adenocarcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3035073. [PMID: 35509706 PMCID: PMC9061059 DOI: 10.1155/2022/3035073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Background Gastric adenocarcinoma (GAD) is one of the most common tumors in the world and the prognosis is still very poor. Objective We sought to identify reliable prognostic biomarkers for the progression of GAD and the sensitivity to drug therapy. Method The RNA sequencing data of GAD was downloaded from the Cancer Genome Atlas (TCGA) database and used for analysis. Differentially expressed, immune-related lncRNA (DEIRlncRNA) was characterized by differential analysis and correlation analysis. Univariate Cox regression analysis was used to identify DEIRlncRNA associated with prognosis. Least absolute shrinkage and selection operator (LASSO) regression analysis allowed us to determine a signature composed of eight IRlncRNAs. Based on this signature, we further performed gene set enrichment analysis (GSEA) and somatic mutation analysis to evaluate the ability of this signature to predict prognosis. Results In total, 72 immune-related lncRNAs (DEIRlncRNAs) with prognostic value were identified. These lncRNAs were used to construct a model containing eight immune-related lncRNAs (8-IRlncRNAs). Based on this risk model, we divided GAD patients into high-risk and low-risk groups. The analysis showed that the prognosis of the two groups was different and that the high-risk group had worse overall survival (OS). Immune cell infiltration analysis showed that the proportion of memory B cells increased in the high-risk group while the proportion of macrophages M1, T cells, CD4 memory-activated cells, and T cell follicular helpers decreased. GSEA results showed that 8-IRlncRNA was significantly enriched in tumorigenesis pathways such as myc. The results of somatic mutation analysis showed that the CDH1 gene was significantly mutated in the high-risk group. Conclusion A prognostic signature of 8-IRlncRNAs in GAD was established and this signature was able to predict the prognosis of GAD patients.
Collapse
|
33
|
Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinical Significance. Cancers (Basel) 2022; 14:cancers14092115. [PMID: 35565245 PMCID: PMC9100048 DOI: 10.3390/cancers14092115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Despite tremendous efforts devoted to research in pancreatic cancer (PC), the mechanism underlying the tumorigenesis and progression of PC is still not completely clear. Additionally, ideal biomarkers and satisfactory therapeutic strategies for clinical application in PC are still lacking. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) might participate in the pathogenesis of diverse cancers, including PC. The abnormal expression of lncRNAs in PC is considered a vital factor during tumorigenesis that affects tumor cell proliferation, migration, invasion, apoptosis, angiogenesis, and drug resistance. With this review of relevant articles published in recent years, we aimed to summarize the biogenesis mechanism, classifications, and modes of action of lncRNAs and to review the functions and mechanisms of lncRNAs in PC. Additionally, the clinical significance of lncRNAs in PC was discussed. Finally, we pointed out the questions remaining from recent studies and anticipated that further investigations would address these gaps in knowledge in this field.
Collapse
|
34
|
Major Role for Cellular MicroRNAs, Long Noncoding RNAs (lncRNAs), and the Epstein-Barr Virus-Encoded BART lncRNA during Tumor Growth
In Vivo. mBio 2022; 13:e0065522. [PMID: 35435703 PMCID: PMC9239068 DOI: 10.1128/mbio.00655-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study assessed the effects of Epstein-Barr virus (EBV) and one form of virally encoded BART long noncoding RNAs (lncRNAs) on cellular expression in epithelial cells grown in vitro and as tumors in vivo determined by high-throughput RNA sequencing of mRNA and small RNAs. Hierarchical clustering based on gene expression distinguished the cell lines from the tumors and distinguished the EBV-positive tumors and the BART tumors from the EBV-negative tumors. EBV and BART expression also induced specific expression changes in cellular microRNAs (miRs) and lncRNAs. Multiple known and predicted targets of the viral miRs, the induced cellular miRs, and lncRNAs were identified in the altered gene set. The changes in expression in vivo indicated that the suppression of growth pathways in vivo reflects increased expression of cellular miRs in all tumors. In the EBV and BART tumors, many of the targets of the induced miRs were not changed and the seed sequences of the nonfunctional miRs were found to have homologous regions within the BART lncRNA. The inhibition of these miR effects on known targets suggests that these induced miRs have reduced function due to sponging by the BART lncRNA. This composite analysis identified the effects of EBV on cellular miRs and lncRNAs with a functional readout through identification of the simultaneous effects on gene expression. Major shifts in gene expression in vivo are likely mediated by effects on cellular noncoding RNAs. Additionally, a predicted property of the BART lncRNA is to functionally inhibit the induced cellular miRs.
Collapse
|
35
|
Identification of Five N6-Methylandenosine-Related ncRNA Signatures to Predict the Overall Survival of Patients with Gastric Cancer. DISEASE MARKERS 2022; 2022:7765900. [PMID: 35774851 PMCID: PMC9239763 DOI: 10.1155/2022/7765900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/15/2022] [Indexed: 01/19/2023]
Abstract
Noncoding ribonucleic acids (ncRNAs) are involved in various functions in the formation and progression of different tumors. However, the association between N6-methyladenosine-related ncRNAs (m6A-related ncRNAs) and gastric cancer (GC) prognosis remains elusive. As such, this research was aimed at identifying m6A-related ncRNAs (lncRNAs and miRNAs) in GC and developing prognostic models of relevant m6A-related ncRNAs and identifying potential biomarkers regulated by m6A. In this study, the m6A2Target database, Starbase database, and The Cancer Genome Atlas (TCGA) were used to screen m6A-related ncRNAs. And then, we performed integrated bioinformatics analyses to determine prognosis-associated ncRNAs and to develop the m6A-related ncRNA prognostic signature (m6A-NPS) for GC patients. Finally, five m6A-related ncRNAs (including lnc-ARHGAP12, lnc-HYPM-1, lnc-WDR7-11, LINC02266, and lnc-PRIM2-7) were identified to establish m6A-NPS. The predictive power of m6A-NPS was better in the receiver operating characteristic (ROC) curve analysis of the training set (area under the curve (AUC), >0.6). The m6A-NPS could be utilized to classify patients into high- and low-risk cohorts, and the Kaplan-Meier analysis indicated that participants in the high-risk cohort had a poorer prognosis. The entire TCGA dataset substantiated the predictive value of m6A-NPS. Significant differences in TCGA molecular GC subtypes were observed between high- and low-risk cohorts. The ROC curve analysis indicated that m6A-NPS had better predictive power than other clinical characteristics of GC prognosis. Uni- and multivariate regression analyses indicated m6A-NPS as an independent prognostic factor. Furthermore, the m6A status between the low-risk cohort and high-risk cohort was significantly different. Differential genes between them were enriched in multiple tumor-associated signaling pathways. In summary, five m6A-related ncRNA signatures that could forecast the overall survival of patients with GC were identified.
Collapse
|
36
|
Wei Y, Gao L, Yang X, Xiang X, Yi C. Inflammation-Related Genes Serve as Prognostic Biomarkers and Involve in Immunosuppressive Microenvironment to Promote Gastric Cancer Progression. Front Med (Lausanne) 2022; 9:801647. [PMID: 35372408 PMCID: PMC8965837 DOI: 10.3389/fmed.2022.801647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a typical inflammatory-related malignant tumor which is closely related to helicobacter pylori infection. Tumor inflammatory microenvironment plays a crucial role in tumor progression and affect the clinical benefit from immunotherapy. In recent years, immunotherapy for gastric cancer has achieved promising outcomes, but not all patients can benefit from immunotherapy due to tumor heterogeneity. In our study, we identified 29 differentially expressed and prognostic inflammation-related genes in GC and normal samples. Based on those genes, we constructed a prognostic model using a least absolute shrinkage and selection operator (LASSO) algorithm, which categorized patients with GC into two groups. The high-risk group have the characteristics of "cold tumor" and have a poorer prognosis. In contrast, low-risk group was "hot tumor" and had better prognosis. Targeting inflammatory-related genes and remodeling tumor microenvironment to turn "cold tumor" into "hot tumor" may be a promising solution to improve the efficacy of immunotherapy for patients with GC.
Collapse
Affiliation(s)
- Yuanfeng Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Limin Gao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Xiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
38
|
Lv T, Jin Y, Miao Y, Xu T, Jia F, Feng H, Zhang X. LncRNA PVT1 promotes tumorigenesis of glioblastoma by recruiting COPS5 to deubiquitinate and stabilize TRIM24. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:109-121. [PMID: 34938610 PMCID: PMC8649109 DOI: 10.1016/j.omtn.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
LncRNA PVT1 has been implicated in numerous pathophysiological processes and diseases, especially cancers. However, the role and mechanism of PVT1 in the tumorigenesis of glioblastoma remain unclear. We investigated the alteration of PVT1 and its key functions in glioblastoma. PVT1 was upregulated and associated with poor prognosis in glioblastoma. We demonstrated that PVT1 silencing suppressed cell proliferation, colony formation, and orthotopic xenograft tumor growth. Mechanistic investigations found that PVT1 interacted with TRIM24 directly and increased its protein stability. PVT1 recruited COPS5 to deubiquitinate TRIM24; reciprocally, PVT1 depletion impaired the interaction between COPS5 and TRIM24, resulting in decreased expression of TRIM24. PVT1, TRIM24, and COPS5 coordinately contributed to the activation of STAT3 signaling and malignant phenotype of glioblastoma. Collectively, this study elucidates the essential role of PVT1 in the tumorigenesis of glioblastoma, which provides candidacy therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yichao Jin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yifeng Miao
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, Shanghai 201112, China
| | - Tianqi Xu
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
39
|
Xu Y, Wang D, Zhao G. Transcriptional activation of Proteasome 26S non-ATPase subunit 7 by forkhead box P3 participates in gastric cancer cell proliferation and apoptosis. Bioengineered 2022; 13:2525-2536. [PMID: 35037550 PMCID: PMC8974172 DOI: 10.1080/21655979.2021.2018097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteasome 26S non-ATPase subunit 7 (PSMD7) and forkhead box P3 (FOXP3) have been found to be both upregulated in gastric cancer tissues. FOXP3 was also predicted to have binding sites on PSMD7 promoter. Thus, this study investigated the relationship between PSMD7 and FOXP3 and their roles in gastric cancer. Bioinformatic databases predicted PSMD7 expression in non-cancerous gastric tissue and gastric cancer tissue, as well as the correlation between PSMD7 and the overall/disease free survival. PSMD7 expression in non-cancerous gastric tissue or cells and gastric cancer tissue or cells was detected by qPCR and Western blot. After PSMD7 downregulation by siRNA interference, cell viability, colony-forming capacity and cell apoptosis were analyzed with cell counting kit-8 assay, colony formation assay and terminal deoxynucleotidyl transferasemediated dUTP nick end-labeling. Proliferation and apoptosis markers were assayed by qPCR and Western blot. Dual-luciferase reporter and chromatin immunoprecipitation assays were performed to look at the binding relationship between FOXP3 and PSMD7 promoter. Cell proliferation and apoptosis were examined again after co-transfection of PSMD7 siRNA plasmid and FOXP3 overexpression plasmid. PSMD7 expression was much higher in gastric cancer tissue and cell lines. Interference with PSMD7 decreased gastric cancer cell viability, inhibited their proliferation and colony formation and promoted cell apoptosis. FOXP3 was found to bind to PSMD7 promoter and activate PSMD7 expression. Overexpression of FOXP3 could rescue the effects of PSMD7 knockdown on gastric cancer cells. PSMD7 is involved in the proliferation and apoptosis of gastric cancer cells and can be transcriptionally regulated by FOXP3.
Collapse
Affiliation(s)
- Yujie Xu
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan Province, China
| | - Dingmao Wang
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan Province, China
| | - Guodong Zhao
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan Province, China
| |
Collapse
|
40
|
Gu H, Zhong Y, Liu J, Shen Q, Wei R, Zhu H, Zhang X, Xia X, Yao M, Ni M. The Role of miR-4256/HOXC8 Signaling Axis in the Gastric Cancer Progression: Evidence From lncRNA-miRNA-mRNA Network Analysis. Front Oncol 2022; 11:793678. [PMID: 35111675 PMCID: PMC8801578 DOI: 10.3389/fonc.2021.793678] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer. In the present study, we mined The Cancer Genome Atlas (TCGA) database and analyzed the gene expression profiles between gastric cancer tissues and normal gastric tissues. A series of differentially expressed lncRNAs, miRNAs and mRNAs between gastric cancer tissues and normal gastric tissues were identified. Based on the differentially expressed genes, we constructed miRNA-mRNA network, lncRNA-mRNA network and transcriptional factors-mRNA-miRNA-lncRNA network. Furthermore, the Kaplan survival analysis showed that high expression levels of EVX1, GBX2, GCM1, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13 were all significantly correlated with shorter overall survival of the patients with gastric cancer. On the other hand, low expression level of HOXA13 was associated with shorter overall survival of patients with gastric cancer. Among these hub genes, we performed the in vitro functional studies of HOXC8 in the gastric cancer cells. Knockdown of HOXC8 and overexpression of miR-4256 both significantly repressed the gastric cancer cell proliferation and migration, and miR-4256 repressed the expression of HOXC8 via targeting its 3' untranslated region in gastric cancer cells. Collectively, our results revealed that a complex interaction networks of differentially expressed genes in gastric cancer, and further functional studies indicated that miR-4256/HOXC8 may be an important axis in regulating gastric cancer progression.
Collapse
Affiliation(s)
- Haijuan Gu
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yuejiao Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jibin Liu
- Institute of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qian Shen
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Rong Wei
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Haixia Zhu
- Clinical Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xunlei Zhang
- Department of Oncology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xianxian Xia
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Min Yao
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Meixin Ni
- Department of Pharmacy, Tumor Hospital Affiliated to Nantong University, Nantong, China
| |
Collapse
|
41
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
42
|
Prognostic Value of lncRNA PVT1 for Patients with Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2021; 2021:5595965. [PMID: 34900027 PMCID: PMC8660201 DOI: 10.1155/2021/5595965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Objective To evaluate the prognostic value of lncRNA PVT1 for patients with gastric cancer. Methods A comprehensive literature searching was performed in PubMed, Cochrane Library, Web of Science, Embase, CNKI, CBM, and Wanfang Database to identify published studies on the expression level of lncRNA PVT1 in human gastric cancer. STATA 12.0 was conducted to perform the meta-analysis. Clinical outcomes including patients' age, genders, TNM stage, OS, and DFS were assessed in the study. Results A total of 8 studies involving 747 patients were included in this meta-analysis. The results of meta-analysis showed that higher expression level of lncRNA PVT1 was associated with GC patients' gender (for male: OR = 2.27, 95% CI: 1.67~3.07, P = 0.000), invasion depth (for T3~4: OR = 3.98, 95% CI: 2.85~5.56, P = 0.000), poorer OS (HR = 1.68, 95% CI: 1.43~1.97, P = 0.000), and DFS (HR = 1.74, 95% CI: 1.44~2.08, P = 0.000). Conclusion Higher expression level of lncRNA PVT1 is significantly associated with GC patients' gender, invasion depth, poorer OS, and worse DFS. lncRNA PVT1 might act as a novel predictive biomarker of poor prognosis and clinicopathological characteristics for gastric cancer.
Collapse
|
43
|
Han C, Zhang C, Wang H, Li K, Zhao L. Angiogenesis-related lncRNAs predict the prognosis signature of stomach adenocarcinoma. BMC Cancer 2021; 21:1312. [PMID: 34876056 PMCID: PMC8653638 DOI: 10.1186/s12885-021-08987-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
Background Stomach adenocarcinoma (STAD), which accounts for approximately 95% of gastric cancer types, is a malignancy cancer with high morbidity and mortality. Tumor angiogenesis plays important roles in the progression and pathogenesis of STAD, in which long noncoding RNAs (lncRNAs) have been verified to be crucial for angiogenesis. Our study sought to construct a prognostic signature of angiogenesis-related lncRNAs (ARLncs) to accurately predict the survival time of STAD. Methods The RNA-sequencing dataset and corresponding clinical data of STAD were acquired from The Cancer Genome Atlas (TCGA). ARLnc sets were obtained from the Ensemble genome database and Molecular Signatures Database (MSigDB, Angiogenesis M14493, INTegrin pathway M160). A ARLnc-related prognostic signature was then constructed via univariate Cox and multivariate Cox regression analysis in the training cohort. Survival analysis and Cox regression were performed to assess the performance of the prognostic signature between low- and high-risk groups, which was validated in the validation cohort. Furthermore, a nomogram that combined the clinical pathological characteristics and risk score conducted to predict the overall survival (OS) of STAD. In addition, ARLnc-mRNA coexpression pairs were constructed with Pearson’s correlation analysis and visualized to infer the functional annotation of the ARLncs by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The expression of four ARLncs in STAD and their correlation with the angiogenesis markers, CD34 and CD105, were also validated by RT–qPCR in a clinical cohort. Results A prognostic prediction signature including four ARLncs (PVT1, LINC01315, AC245041.1, and AC037198.1) was identified and constructed. The OS of patients in the high-risk group was significantly lower than that of patients in the low-risk group (p < 0.001). The values of the time-dependent area under the curve (AUC) for the ARLnc signature for 1-, 3-, and 5- year OS were 0.683, 0.739, and 0.618 in the training cohort and 0.671, 0.646, and 0.680 in the validation cohort, respectively. Univariate and multivariate Cox regression analyses indicated that the ARLnc signature was an independent prognostic factor for STAD patients (p < 0.001). Furthermore, the nomogram and calibration curve showed accurate prediction of the survival time based on the risk score. In addition, 262 mRNAs were screened for coexpression with four ARLncs, and GO analysis showed that mRNAs were mainly involved in biological processes, including angiogenesis, cell adhesion, wound healing, and extracellular matrix organization. Furthermore, correlation analysis showed that there was a positive correlation between risk score and the expression of the angiogenesis markers, CD34 and CD105, in TCGA datasets and our clinical sample cohort. Conclusion Our study constructed a prognostic signature consisting of four ARLnc genes, which was closely related to the survival of STAD patients, showing high efficacy of the prognostic signature. Thus, the present study provided a novel biomarker and promising therapeutic strategy for patients with STAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08987-y.
Collapse
Affiliation(s)
- Chen Han
- Research Center, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, China
| | - Cong Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, China
| | - Huixia Wang
- Research Center, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, China
| | - Kexin Li
- Research Center, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, 050011, Shijiazhuang, China.
| |
Collapse
|
44
|
Fujii Y, Amatya VJ, Kushitani K, Suzuki R, Kai Y, Kambara T, Takeshima Y. Downregulation of lncRNA PVT1 inhibits proliferation and migration of mesothelioma cells by targeting FOXM1. Oncol Rep 2021; 47:27. [PMID: 34859258 PMCID: PMC8674703 DOI: 10.3892/or.2021.8238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant mesothelioma is a highly aggressive tumor, and an effective strategy for its treatment is not yet available. Long non-coding RNAs (lncRNAs) have been reported to be associated with various biological processes, including the regulation of gene expression of cancer-related pathways. Among various lncRNAs, plasmacytoma variant translocation 1 (PVT1) acts as a tumor promoter in several human cancers, but its mechanism of action has not yet been elucidated. Increased PVT1 expression was identified in ACC-MESO-1, ACC-MESO-4, CRL-5915, and CRL-5946 mesothelioma cell lines. PVT1 expression was investigated in mesothelioma cell lines by reverse transcription-quantitative polymerase chain reaction and its functional analysis by cell proliferation, cell cycle, cell migration, and cell invasion assays, as well as western blot analysis of downstream target genes. Knockdown of PVT1 expression in these cell lines by small interfering RNA transfection resulted in decreased cell proliferation and migration and increased the proportion of cells in the G2/M phase. The results of reverse transcription-quantitative polymerase chain reaction analysis revealed that PVT1 knockdown in mesothelioma cell lines caused the downregulation of Forkhead box M1 (FOXM1) expression, while the results of western blot analysis revealed that this knockdown reduced FOXM1 expression at the protein level. In addition, combined knockdown of PVT1 and FOXM1 decreased the proliferation of mesothelioma cell lines. In conclusion, PVT1 and FOXM1 were involved in the proliferation of cancer cells. Therefore, PVT1-FOXM1 pathways may be considered as candidate targets for the treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- Yutaro Fujii
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Kei Kushitani
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Rui Suzuki
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yuichiro Kai
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Takahiro Kambara
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734‑8551, Japan
| |
Collapse
|
45
|
Park JH, Jin EH, Hong JH, Lee SI, Sung JK. The association between polymorphism of the long noncoding RNA, Plasmacytoma variant translocation 1, and the risk of gastric cancer. Medicine (Baltimore) 2021; 100:e27773. [PMID: 35049170 PMCID: PMC9191314 DOI: 10.1097/md.0000000000027773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Genetic polymorphisms of plasmacytoma variant translocation 1 can affect various tumors including gastro-intestinal, sexual hormone sensitive cancers and lymphoma. Accumulated evidence have shown that plasmacytoma variant translocation 1 acts as an oncogene and tumor suppressor in various cancers. In fact, the rs13255292 and rs2608053 single nucleotide polymorphisms of plasmacytoma variant translocation 1are known to affect lymphoma; however, their effects on gastric cancer are primarily unknown. In this study, we evaluated the association between these plasmacytoma variant translocation 1 polymorphisms and the risk of gastric cancer.In the present study, 462 patients diagnosed with gastric cancer and 377 cancer-free controls were enrolled. The TaqMan genotyping assay was used to analyze the association between rs13255292 and rs2608053 single nucleotide polymorphisms and the risk of gastric cancer.The rs2608053 dominant model (CT + TT) was associated with a decreased risk of gastric cancer in T3 + T4 (odds ratio [OR] = 0.61, confidence interval (CI) = 0.41 - 0.92, P = .019), and stage III Gastric cancer subgroups (OR = 0.59, 95% CI = 0.38 - 0.91, P = .017) compared to the CC genotype. When stratified analysis by sex was carried out, the rs13255292 dominant model (CT + TT) had a significant association with an increased risk of gastric cancer in the female negative lymph node metastasis gastric cancer subgroup, compared to the CC genotype (OR = 1.96, 95% CI = 1.16 - 3.30, P = .012). The recessive model (TT) of rs13255292 was associated with an increased risk of gastric cancer in the male T3 + T4 gastric cancer subgroups compared to the CC + CT genotype (OR = 3.82, 95% CI = 1.02 - 14.33, P = .047). The dominant model (CT + TT) of rs2608053 was related to a decreased risk of gastric cancer in male T3 + T4 (OR = 0.57, 95% CI = 0.33 - 0.98, P = .042) and stage III gastric cancer subgroups (OR = 0.49, 95% CI = 0.27 - 0.89, P = .020) compared to the CC genotype.The rs13255292 and rs2608053 single nucleotide polymorphisms in plasmacytoma variant translocation 1 may contribute to susceptibility of gastric cancer. Further studies with more subjects and different ethnic groups are needed to validate our results.
Collapse
Affiliation(s)
- Jae Ho Park
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Heui Jin
- Translational Immunology Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jang Hee Hong
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jae Kyu Sung
- Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
46
|
Mu L, Wang Y, Su H, Lin Y, Sui W, Yu X, Lv Z. HIF1A-AS2 Promotes the Proliferation and Metastasis of Gastric Cancer Cells Through miR-429/PD-L1 Axis. Dig Dis Sci 2021; 66:4314-4325. [PMID: 33555514 DOI: 10.1007/s10620-020-06819-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a common leading cause of cancer-related mortality of all malignancies. LncRNA hypoxia-inducible factor-1 alpha antisense RNA-2 (HIF1A-AS2) has been identified to involve in the development of GC. Therefore, we further explored the detailed molecular mechanism of HIF1A-AS2 in GC progression. METHODS The expression of HIF1A-AS2, microRNA-429 (miR-429), and programmed cell death ligand 1 (PD-L1) was measured using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell proliferation, migration, and invasion abilities were detected by Cell Counting Kit-8 (CCK-8) or transwell assay. The interaction between miR-429 and HIF1A-AS2 or PD-L1 was confirmed by luciferase reporter assay. Murine xenograft model was established to investigate the role of HIF1A-AS2 in vivo. RESULTS HIF1A-AS2 was elevated in GC tissues and cell lines. Functional experiments showed that HIF1A-AS2 knockdown inhibited GC cell proliferation, migration, and invasion in vitro, as well as hindered tumor growth in vivo. Moreover, HIF1A-AS2 directly bound to miR-429 based on bioinformatics prediction and luciferase assay, and inhibition of miR-429 abolished the effects of HIF1A-AS2 knockdown on GC cells. Furthermore, miR-429 directly targeted PD-L1, and overexpression of miR-429 suppressed GC tumorigenesis via PD-L1. Besides that, PD-L1 also performed an oncogenic role in GC cell proliferation and metastasis. Additionally, HIF1A-AS2 could indirectly regulate PD-L1 expression via sponging miR-429. CONCLUSION HIF1A-AS2 is a dependable predictor of malignancy and prognosis in GC and functions as an oncogene to promote GC cell proliferation and metastasis by regulating miR-429/PD-L1 axis, indicating a new insight into the search for novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Linsong Mu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shangdong, China
| | - Hailong Su
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Yang Lin
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Wu Sui
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Xiang Yu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China
| | - Zhongchuan Lv
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuding East Rd, Zhifu District, Yantai, 264000, Shangdong, China.
| |
Collapse
|
47
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
48
|
Xin L, Lu H, Liu C, Zeng F, Yuan YW, Wu Y, Wang JL, Wu DZ, Zhou LQ. Methionine deficiency promoted mitophagy via lncRNA PVT1-mediated promoter demethylation of BNIP3 in gastric cancer. Int J Biochem Cell Biol 2021; 141:106100. [PMID: 34678458 DOI: 10.1016/j.biocel.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The occurrence of recurrence and metastasis after treatment is a major challenge in the treatment of gastric cancer. This study was based on the methionine (Met)-dependent characteristics of gastric cancer cells to explore the effect of Met deficiency on the occurrence and development of gastric cancer. METHODS Human gastric cancer cell lines MKN45 and AGS and nude mice model were used to explore how Met affects gastric cancer by regulating lncRNA PVT1. RESULTS The levels of lncRNA PVT1 in gastric cancer cells and human gastric cancer xenografts of nude mice were down-regulated under the condition of Met deficiency. The cell viability and cell proliferation were declined after MKN45 and SGC-790 cells were cultured in Met-deficient medium. LncRNA PVT1 could affect BNIP3 promoter DNA methylation level through its interaction with DNMT1. Moreover, the silence of lncRNA PVT1 and the up-regulation of BNIP3 level inhibited the gastric cancer cell proliferation. Met deficiency could up-regulate BNIP3 expression by inhibiting the binding of lncRNA PVT1 to DNMT1, and activate mitophagy, thus inhibiting gastric cancer cell proliferation. CONCLUSION Our study suggested that Met deficiency could down-regulate the expression of lncRNA PVT1, further demethylated the promoter of BNIP3, thus inhibiting the proliferation of gastric cancer cells by activating mitophagy.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin-Liang Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Deng-Zhong Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
49
|
Chen D, Ping S, Xu Y, Wang M, Jiang X, Xiong L, Zhang L, Yu H, Xiong Z. Non-Coding RNAs in Gastric Cancer: From Malignant Hallmarks to Clinical Applications. Front Cell Dev Biol 2021; 9:732036. [PMID: 34805143 PMCID: PMC8595133 DOI: 10.3389/fcell.2021.732036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. However, the molecular mechanisms underlying gastric carcinogenesis remain largely unknown. Over the past decades, advances in RNA-sequencing techniques have greatly facilitated the identification of various non-coding RNAs (ncRNAs) in cancer cells, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Accumulating evidence has revealed that ncRNAs are essential regulators in GC occurrence and development. However, ncRNAs represent an emerging field of cancer research, and their complex functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets in GC, further studies should focus on elucidating the intricate relationships between ncRNAs and GC, which can be translated into clinical practice. In this review, we summarize recent research progress on how ncRNAs modulate the malignant hallmarks of GC, especially in tumor immune escape, drug resistance, and stemness. We also discuss the promising applications of ncRNAs as diagnostic biomarkers and therapeutic targets in GC, aiming to validate their practical value for clinical treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuang Xu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglu Yu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Mohammadzadeh A, Dastmalchi N, Hussen BM, Shadbad MA, Safaralizadeh R. An updated review on the therapeutic, diagnostic, and prognostic value of long non-coding RNAs in gastric cancer. Curr Med Chem 2021; 29:3471-3482. [PMID: 34781858 DOI: 10.2174/0929867328666211115121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
As a novel group of non-coding RNAs, long non-coding RNA (lncRNAs) can substantially regulate various biological processes. Downregulated tumor-suppressive lncRNAs and upregulated oncogenic lncRNAs (onco-lncRNAs) have been implicated in gastric cancer (GC) development. These dysregulations have been associated with decreased chemosensitivity, inhibited apoptosis, and increased tumor migration in GC. Besides, growing evidence indicates that lncRNAs can be a valuable diagnostic and prognostic biomarker, and their expression levels are substantially associated with the clinicopathological features of affected patients. The current study aims to review the recent findings of the tumor-suppressive lncRNAs and onco-lncRNAs in GC development and highlight their therapeutic, diagnostic, and prognostic values in treating GC cells. Besides, it intends to highlight the future direction of lncRNAs in treating GC.
Collapse
Affiliation(s)
- Alemeh Mohammadzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan, Kurdistan Region. Iraq
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| |
Collapse
|