1
|
Sun X, Liu C, Zhang C, Zhang Z. Nomogram for predicting postoperative ileus after radical cystectomy and urinary diversion: a retrospective single-center study. Ann Med 2024; 56:2329125. [PMID: 38498939 PMCID: PMC10949833 DOI: 10.1080/07853890.2024.2329125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE To predict the incidence of postoperative ileus in bladder cancer patients after radical cystectomy. METHODS We retrospectively analyzed the perioperative data of 452 bladder cancer patients who underwent radical cystectomy with urinary diversion at the Second Hospital of Tianjin Medical University between 2016 and 2021. Univariate and multivariate logistic regression were used to identify the risk factors for postoperative ileus. Finally, a nomogram model was established and verified based on the independent risk factors. RESULTS Our study revealed that 96 patients (21.2%) developed postoperative ileus. Using multivariate logistic regression analysis, we found that the independent risk factors for postoperative ileus after radical cystectomy included age > 65.0 years, high or low body mass index, constipation, hypoalbuminemia, and operative time. We established a nomogram prediction model based on these independent risk factors. Validation by calibration curves, concordance index, and decision curve analysis showed a strong correlation between predicted and actual probabilities of occurrence. CONCLUSION Our nomogram prediction model provides surgeons with a simple tool to predict the incidence of postoperative ileus in bladder cancer patients undergoing radical cystectomy.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chang Liu
- Department of Urology, Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Ahmed TM, Zhu Z, Yasrab M, Blanco A, Kawamoto S, He J, Fishman EK, Chu L, Javed AA. Preoperative Prediction of Lymph Node Metastases in Nonfunctional Pancreatic Neuroendocrine Tumors Using a Combined CT Radiomics-Clinical Model. Ann Surg Oncol 2024; 31:8136-8145. [PMID: 39179862 DOI: 10.1245/s10434-024-16064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND PanNETs are a rare group of pancreatic tumors that display heterogeneous histopathological and clinical behavior. Nodal disease has been established as one of the strongest predictors of patient outcomes in PanNETs. Lack of accurate preoperative assessment of nodal disease is a major limitation in the management of these patients, in particular those with small (< 2 cm) low-grade tumors. The aim of the study was to evaluate the ability of radiomic features (RF) to preoperatively predict the presence of nodal disease in pancreatic neuroendocrine tumors (PanNETs). PATIENTS AND METHODS An institutional database was used to identify patients with nonfunctional PanNETs undergoing resection. Pancreas protocol computed tomography was obtained, manually segmented, and RF were extracted. These were analyzed using the minimum redundancy maximum relevance analysis for hierarchical feature selection. Youden index was used to identify the optimal cutoff for predicting nodal disease. A random forest prediction model was trained using RF and clinicopathological characteristics and validated internally. RESULTS Of the 320 patients included in the study, 92 (28.8%) had nodal disease based on histopathological assessment of the surgical specimen. A radiomic signature based on ten selected RF was developed. Clinicopathological characteristics predictive of nodal disease included tumor grade and size. Upon internal validation the combined radiomics and clinical feature model demonstrated adequate performance (AUC 0.80) in identifying nodal disease. The model accurately identified nodal disease in 85% of patients with small tumors (< 2 cm). CONCLUSIONS Non-invasive preoperative assessment of nodal disease using RF and clinicopathological characteristics is feasible.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Zhuotun Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Mohammad Yasrab
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alejandra Blanco
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ammar A Javed
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NYU Langone Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Sarkar S, Wu T, Harwood M, Silva AC. A Transfer Learning-Based Framework for Classifying Lymph Node Metastasis in Prostate Cancer Patients. Biomedicines 2024; 12:2345. [PMID: 39457657 PMCID: PMC11504638 DOI: 10.3390/biomedicines12102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Prostate cancer is the second most common new cancer diagnosis in the United States. It is usually slow-growing, and when it is low-grade and confined to the prostate gland, it can be treated either conservatively (through active surveillance) or with surgery. However, if the cancer has spread beyond the prostate, such as to the lymph nodes, then that indicates a more aggressive cancer, and surgery may not be adequate. Methods: The challenge is that it is often difficult for radiologists reading prostate-specific imaging such as magnetic resonance images (MRIs) to differentiate malignant lymph nodes from non-malignant ones. An emerging field is the development of artificial intelligence (AI) models, including machine learning and deep learning, for medical imaging to assist in diagnostic tasks. Earlier research focused on implementing texture algorithms to extract imaging features used in classification models. More recently, researchers began studying the use of deep learning for both stand-alone feature extraction and end-to-end classification tasks. In order to tackle the challenges inherent in small datasets, this study was designed as a scalable hybrid framework utilizing pre-trained ResNet-18, a deep learning model, to extract features that were subsequently fed into a machine learning classifier to automatically identify malignant lymph nodes in patients with prostate cancer. For comparison, two texture algorithms were implemented, namely the gray-level co-occurrence matrix (GLCM) and Gabor. Results: Using an institutional prostate lymph node dataset (42 positives, 84 negatives), the proposed framework achieved an accuracy of 76.19%, a sensitivity of 79.76%, and a specificity of 69.05%. Using GLCM features, the classification achieved an accuracy of 61.90%, a sensitivity of 74.07%, and a specificity of 42.86%. Using Gabor features, the classification achieved an accuracy of 65.08%, a sensitivity of 73.47%, and a specificity of 52.50%. Conclusions: Our results demonstrate that a hybrid approach, i.e., using a pre-trainined deep learning model for feature extraction, followed by a machine learning classifier, is a viable solution. This hybrid approach is especially useful in medical-imaging-based applications with small datasets.
Collapse
Affiliation(s)
- Suryadipto Sarkar
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Teresa Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA;
| | - Matthew Harwood
- Mayo Clinic, Department of Radiology, Phoenix, AZ 85259, USA; (M.H.); (A.C.S.)
| | - Alvin C. Silva
- Mayo Clinic, Department of Radiology, Phoenix, AZ 85259, USA; (M.H.); (A.C.S.)
| |
Collapse
|
4
|
Liu Y, Jin Z, Fu S. Threshold and combined effects of heavy metals on the risk of phenotypic age acceleration among U.S. adults. Biometals 2024; 37:1279-1288. [PMID: 38819692 DOI: 10.1007/s10534-024-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Accumulation of heavy metals in the body has been shown to affect the phenotypic age (PhenoAge). However, the combined and threshold effects of blood heavy metals on the risk of PhenoAge acceleration (PhenoAgeAccel) are not well understood. A cross-sectional study was conducted using blood heavy metal data (N = 7763, age ≥18 years) from the 2015-2018 National Health and Nutrition Examination Survey. PhenoAgeAccel was calculated from actual age and nine biomarkers. Multiple regression equations were used to describe the relationship between heavy metals and PhenoAgeAccel. Least Absolute Shrinkage and Selection Operator (LASSO) regression modeling was used to explore the relationship between the combined effects of heavy metals and PhenoAgeAccel. Threshold effect and multiple regression analyses were performed to explore the linear and nonlinear relationships between heavy metals and PhenoAgeAccel. Threshold effect analysis showed that blood mercury (Hg) concentration was linearly associated with PhenoAgeAccel. In contrast, lead (Pb), cadmium (Cd), manganese (Mn), and combined exposure were nonlinearly associated with PhenoAgeAccel. In addition, the combination of Pb, Cd, Hg, and Mn significantly affected PhenoAgeAccel. The risk of PhenoAgeAccel was increased by 207% (P < 0.0001). Meanwhile, a threshold relationship was found between blood Pb, Cd, Mn, and the occurrence of PhenoAgeAccel. Overall, our results indicate that combined exposure to heavy metals may increase the risk of PhenoAgeAccel. This study underscores the need to reduce heavy metal pollution in the environment and provides a reference threshold for future studies.
Collapse
Affiliation(s)
- Yalan Liu
- Nanan District Center for Disease Control and Prevention, Chongqing, 401336, China
| | - Zhaofeng Jin
- Kweichow Moutai Hospital, Renhuai, 564500, Guizhou, China
| | - Shihao Fu
- Nanan District Center for Disease Control and Prevention, Chongqing, 401336, China.
| |
Collapse
|
5
|
Zhou H, Zhao Q, Xie Q, Peng Y, Chen M, Huang Z, Lin Z, Yao T. Preoperative prediction model of lymph node metastasis in the inguinal and femoral region based on radiomics and artificial intelligence. Int J Gynecol Cancer 2024; 34:1437-1444. [PMID: 39089728 DOI: 10.1136/ijgc-2024-005580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE To predict preoperative inguinal lymph node metastasis in vulvar cancer patients using a machine learning model based on imaging features and clinical data from pelvic magnetic resonance imaging (MRI). METHODS 52 vulvar cancer patients were divided into a training set (n=37) and validation set (n=15). Clinical data and MRI images were collected, and regions of interest were delineated by experienced radiologists. A total of 1688 quantitative imaging features were extracted using the Radcloud platform. Dimensionality reduction and feature selection were applied, resulting in a radiomics signature. Clinical characteristics were screened, and a combined model integrating the radiomics signature and significant clinical features was constructed using logistic regression. Four machine learning classifiers (K nearest neighbor, random forest, adaptive boosting, and latent dirichlet allocation) were trained and validated. Model performance was evaluated using the receiver operating characteristic curve and the area under the curve (AUC), as well as decision curve analysis. RESULTS The radiomics score significantly differentiated between lymph node metastasis positive and negative patients in both the training and validation sets. The combined model demonstrated excellent discrimination, with AUC values of 0.941 and 0.933 in the training and validation sets, respectively. The calibration curve and decision curve analysis confirmed the model's high predictive accuracy and clinical utility. Among the machine learning classifiers, latent dirichlet allocation and random forest models achieved AUC values >0.7 in the validation set. Integrating all four classifiers resulted in a total model with an AUC of 0.717 in the validation set. CONCLUSION Radiomics combined with artificial intelligence can provide a new method for prediction of inguinal lymph node metastasis of vulvar cancer before surgery.
Collapse
Affiliation(s)
- Haijian Zhou
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingsheng Xie
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Peng
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengjie Chen
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zixin Huang
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Zhang T, Li J, Wang G, Li H, Song G, Deng K. Application of computed tomography-based radiomics analysis combined with lung cancer serum tumor markers in the identification of lung squamous cell carcinoma and lung adenocarcinoma. J Cancer Res Ther 2024; 20:1186-1194. [PMID: 39206980 DOI: 10.4103/jcrt.jcrt_79_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To establish a prediction model of lung cancer classification by computed tomography (CT) radiomics with the serum tumor markers (STM) of lung cancer. MATERIALS AND METHODS Two-hundred NSCLC patients were enrolled in our study. Clinical data including age, sex, and STM (squamous cell carcinoma [SCC], neuron-specific enolase [NSE], carcinoembryonic antigen [CEA], pro-gastrin-releasing peptide [PRO-GRP], and cytokeratin 19 fragment [cYFRA21-1]) were collected. A radiomics signature was generated from the training set using the least absolute shrinkage and selection operator (LASSO) algorithm. The risk factors were identified using multivariate logistic regression analysis, and a radiomics nomogram based on the radiomics signature and clinical features was constructed. The capability of the nomogram was evaluated using the training set and validated using the validation set. A correction curve and the Hosmer-Lemeshow test were used to evaluate the predictive performance of the radiomics model for the training and test sets. RESULTS Twenty-nine of 1234 radiomics parameters were screened as important factors for establishing the radiomics model. The training (area under the curve [AUC] = 0.925; 95% confidence interval [CI]: 0.885-0.966) and validation sets (AUC = 0.921; 95% CI: 0.854-0.989) showed that the CT radiomics signature, combined with STM, accurately predicted lung squamous cell carcinoma and lung adenocarcinoma. Moreover, the logistic regression model showed good performance based on the Hosmer-Lemeshow test in the training (P = 0.954) and test sets (P = 0.340). Good calibration curve consistency also indicated the good performance of the nomogram. CONCLUSION The combination of the CT radiomics signature and lung cancer STM performed well for the pathological classification of NSCLC. Compared with the radiomics signature method, the nomogram based on the radiomics signature and clinical factors had better performance for the differential diagnosis of NSCLC.
Collapse
Affiliation(s)
- Tongrui Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Graduate, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jun Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangli Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huafeng Li
- Organization of Personnel Division, Shandong Medical College, Jinan, China
| | - Gesheng Song
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Kai Deng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
7
|
Ai Y, Zhu X, Zhang Y, Li W, Li H, Zhao Z, Zhang J, Ning B, Li C, Zheng Q, Zhang J, Jin J, Li Y, Xie C, Jin X. MRI radiomics nomogram integrating postoperative adjuvant treatments in recurrence risk prediction for patients with early-stage cervical cancer. Radiother Oncol 2024; 197:110328. [PMID: 38761884 DOI: 10.1016/j.radonc.2024.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND PURPOSE Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC. MATERIAL AND METHODS 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts. Their clinical data, pretreatment T2-weighted images (T2WI) were retrieved and analyzed. Radiomics models were constructed using machine learning methods with features extracted and screen from sagittal and axial T2WI. A nomogram for recurrence prediction was build and evaluated using multivariable logistic regression analysis integrating radiomic signature and adjuvant treatments. RESULTS A total of 8 radiomic features were screened out of 1020 extracted features. The extreme gradient boosting (XGboost) model based on MRI radiomic features performed best in recurrence prediction with an area under curve (AUC) of 0.833, 0.822 in the internal and external validation cohorts, respectively. The nomogram integrating radiomic signature and clinical factors achieved an AUC of 0.806, 0.718 in the internal and external validation cohorts, respectively, for recurrence risk prediction for ESCC. CONCLUSION In this study, the nomogram integrating T2WI radiomic signature and clinical factors is valuable to predict the recurrence risk, thereby allowing timely planning for effective treatments for ESCC with high risk of recurrence.
Collapse
Affiliation(s)
- Yao Ai
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyang Zhu
- Department of Radiotherapy, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, China
| | - Yu Zhang
- Department of Information Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenlong Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Heng Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeshuo Zhao
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jicheng Zhang
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Boda Ning
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenyu Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao Zheng
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juebin Jin
- Department of Medical Engineering, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiran Li
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiance Jin
- Radiotherapy Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
8
|
Li X, Yang L, Jiang F, Jiao X. Integration of Radiomics and Immune-Related Genes Signatures for Predicting Axillary Lymph Node Metastasis in Breast Cancer. Clin Breast Cancer 2024:S1526-8209(24)00179-4. [PMID: 39019727 DOI: 10.1016/j.clbc.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND To develop a radiogenomics nomogram for predicting axillary lymph node (ALN) metastasis in breast cancer and reveal underlying associations between radiomics features and biological pathways. MATERIALS AND METHODS This study included 1062 breast cancer patients, 90 patients with both DCE-MRI and gene expression data. The optimal immune-related genes and radiomics features associated with ALN metastasis were firstly calculated, and corresponding feature signatures were constructed to further validate their performances in predicting ALN metastasis. The radiogenomics nomogram for predicting the risk of ALN metastasis was established by integrating radiomics signature, immune-related genes (IRG) signature, and critical clinicopathological factors. Gene modules associated with key radiomics features were identified by weighted gene co-expression network analysis (WGCNA) and submitted to functional enrichment analysis. Gene set variation analysis (GSVA) and correlation analysis were performed to investigate the associations between radiomics features and biological pathways. RESULTS The radiogenomics nomogram showed promising predictive power for predicting ALN metastasis, with AUCs of 0.973 and 0.928 in the training and testing groups, respectively. WGCNA and functional enrichment analysis revealed that gene modules associated with key radiomics features were mainly enriched in breast cancer metastasis-related pathways, such as focal adhesion, ECM-receptor interaction, and cell adhesion molecules. GSVA also identified pathway activities associated with radiomics features such as glycogen synthesis, integration of energy metabolism. CONCLUSION The radiogenomics nomogram can serve as an effective tool to predict the risk of ALN metastasis. This study provides further evidence that radiomics phenotypes may be driven by biological pathways related to breast cancer metastasis.
Collapse
Affiliation(s)
- Xue Li
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, China
| | - Lifeng Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong, Shanxi, China
| | - Fa Jiang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, China
| | - Xiong Jiao
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, China.
| |
Collapse
|
9
|
Li S, Fan Z, Guo J, Li D, Chen Z, Zhang X, Wang Y, Li Y, Yang G, Wang X. Compressed sensing 3D T2WI radiomics model: improving diagnostic performance in muscle invasion of bladder cancer. BMC Med Imaging 2024; 24:148. [PMID: 38886638 PMCID: PMC11181529 DOI: 10.1186/s12880-024-01318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Preoperative discrimination between non-muscle-invasive bladder cancer (NMIBC) and the muscle invasive bladder cancer (MIBC) is a determinant of management. The purpose of this research is to employ radiomics to evaluate the diagnostic value in determining muscle invasiveness of compressed sensing (CS) accelerated 3D T2-weighted-SPACE sequence with high resolution and short acquisition time. METHODS This prospective study involved 108 participants who underwent preoperative 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and T2-weighted sequences. The cohort was divided into training and validation cohorts in a 7:3 ratio. In the training cohort, a Rad-score was constructed based on radiomic features selected by intraclass correlation coefficients, pearson correlation coefficient and least absolute shrinkage and selection operator . Multivariate logistic regression was used to develop a nomogram combined radiomics and clinical indices. In the validation cohort, the performances of the models were evaluated by ROC, calibration, and decision curves. RESULTS In the validation cohort, the area under ROC curve of 3D-CS-T2-weighted-SPACE, 3D-T2-weighted-SPACE and T2-weighted models were 0.87(95% confidence interval (CI):0.73-1.00), 0.79(95%CI:0.63-0.96) and 0.77(95%CI:0.60-0.93), respectively. The differences in signal-to-noise ratio and contrast-to-noise ratio between 3D-CS-T2-weighted-SPACE and 3D-T2-weighted-SPACE sequences were not statistically significant(p > 0.05). While the clinical model composed of three clinical indices was 0.74(95%CI:0.55-0.94) and the radiomics-clinical nomogram model was 0.88(95%CI:0.75-1.00). The calibration curves confirmed high goodness of fit, and the decision curve also showed that the radiomics model and combined nomogram model yielded higher net benefits than the clinical model. CONCLUSION The radiomics model based on compressed sensing 3D T2WI sequence, which was acquired within a shorter acquisition time, showed superior diagnostic efficacy in muscle invasion of bladder cancer. Additionally, the nomogram model could enhance the diagnostic performance.
Collapse
Affiliation(s)
- Shuo Li
- Department of Radiology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, P.R. China
| | - Zhichang Fan
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Junting Guo
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Ding Li
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Zeke Chen
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Xiaoyue Zhang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Yongfang Wang
- Department of Radiology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, P.R. China
| | - Yan Li
- Department of Radiology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, P.R. China
| | - Guoqiang Yang
- Department of Radiology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, P.R. China
| | - Xiaochun Wang
- Department of Radiology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, 030001, Shanxi Province, P.R. China.
| |
Collapse
|
10
|
Ji J, Zhang T, Zhu L, Yao Y, Mei J, Sun L, Zhang G. Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma. BMC Cancer 2024; 24:725. [PMID: 38872141 PMCID: PMC11170799 DOI: 10.1186/s12885-024-12467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated with radical cystectomy (RC). METHODS We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each variable to LNM. RESULTS A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% confidence interval [CI]: 0.903-0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777-0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in imaging contributed the most to the prediction of LNM in BUC patients. CONCLUSIONS We developed and validated the ML models to preoperatively predict LNM in BUC patients treated with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical applicability.
Collapse
Affiliation(s)
- Junjie Ji
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianwei Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Zhu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingchang Mei
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Liu L, Xu L, Wu D, Zhu Y, Li X, Xu C, Chen K, Lin Y, Lao J, Cai P, Li X, Luo Y, Li X, Huang J, Lin T, Zhong W. Impact of tumour stroma-immune interactions on survival prognosis and response to neoadjuvant chemotherapy in bladder cancer. EBioMedicine 2024; 104:105152. [PMID: 38728838 PMCID: PMC11090066 DOI: 10.1016/j.ebiom.2024.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The tumour stroma is associated with unfavourable prognosis in diverse solid tumours, but its prognostic and predictive value in bladder cancer (BCa) is unclear. METHODS In this multicentre, retrospective study, we included 830 patients with BCa from six independent cohorts. Differences in overall survival (OS) and cancer-specific survival (CSS) were investigated between high-tumour stroma ratio (TSR) and low-TSR groups. Multi-omics analyses, including RNA sequencing, immunohistochemistry, and single-cell RNA sequencing, were performed to study stroma-immune interactions. TSR prediction models were developed based on pelvic CT scans, and the best performing model was selected based on receiver operator characteristic analysis. FINDINGS Compared to low-TSR tumours, high-TSR tumours were significantly associated with worse OS (HR = 1.193, 95% CI: 1.046-1.361, P = 0.008) and CSS (HR = 1.337, 95% CI: 1.139-1.569, P < 0.001), and lower rate of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). High-TSR tumours exhibited higher infiltration of immunosuppressive cells, including Tregs and tumour-associated neutrophils, while low-TSR tumours exhibited higher infiltration of immune-activating cells such as CD8+ Teff and XCR1+ dendritic cells. The TSR prediction model was developed by combining the intra-tumour and tumour base radiomics features, and showed good performance to predict high-TSR, as indicted by area under the curve of 0.871 (95% CI: 0.821-0.921), 0.821 (95% CI: 0.731-0.911), and 0.801 (95% CI: 0.737-0.865) in the training, internal validation, and external validation cohorts, respectively. In patients with low predicted TSR, 92.3% (12/13) achieved pCR, while only 35.3% (6/17) of patients with high predicted TSR achieved pCR. INTERPRETATION The tumour stroma was found to be significantly associated with clinical outcomes in patients with BCa as a result of tumour stroma-immune interactions. The radiomics prediction model provided non-invasive evaluation of TSR and was able to predict pCR in patients receiving NAC for BCa. FUNDING This work was supported by National Natural Science Foundation of China (Grant No. 82373254 and 81961128027), Guangdong Provincial Natural Science Foundation (Grant No. 2023A1515010258), Science and Technology Planning Project of Guangdong Province (Grant No. 2023B1212060013). Science and Technology Program of Guangzhou (SL2022A04J01754), Sun Yat-Sen Memorial Hospital Clinical Research 5010 Program (Grant No. SYS-5010Z-202401).
Collapse
Affiliation(s)
- Libo Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Longhao Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Daqin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Yingying Zhu
- Clinical Research Design Division, Clinical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoyang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Yi Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Jianwen Lao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Peicong Cai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, PR China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Xiang Li
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China.
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China.
| |
Collapse
|
12
|
Qian H, Huang Y, Xu L, Fu H, Lu B. Role of peritumoral tissue analysis in predicting characteristics of hepatocellular carcinoma using ultrasound-based radiomics. Sci Rep 2024; 14:11538. [PMID: 38773179 PMCID: PMC11109225 DOI: 10.1038/s41598-024-62457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Predicting the biological characteristics of hepatocellular carcinoma (HCC) is essential for personalized treatment. This study explored the role of ultrasound-based radiomics of peritumoral tissues for predicting HCC features, focusing on differentiation, cytokeratin 7 (CK7) and Ki67 expression, and p53 mutation status. A cohort of 153 patients with HCC underwent ultrasound examinations and radiomics features were extracted from peritumoral tissues. Subgroups were formed based on HCC characteristics. Predictive modeling was carried out using the XGBOOST algorithm in the differentiation subgroup, logistic regression in the CK7 and Ki67 expression subgroups, and support vector machine learning in the p53 mutation status subgroups. The predictive models demonstrated robust performance, with areas under the curves of 0.815 (0.683-0.948) in the differentiation subgroup, 0.922 (0.785-1) in the CK7 subgroup, 0.762 (0.618-0.906) in the Ki67 subgroup, and 0.849 (0.667-1) in the p53 mutation status subgroup. Confusion matrices and waterfall plots highlighted the good performance of the models. Comprehensive evaluation was carried out using SHapley Additive exPlanations plots, which revealed notable contributions from wavelet filter features. This study highlights the potential of ultrasound-based radiomics, specifically the importance of peritumoral tissue analysis, for predicting HCC characteristics. The results warrant further validation of peritumoral tissue radiomics in larger, multicenter studies.
Collapse
Affiliation(s)
- Hongwei Qian
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, 568 Zhongxing North Road, Shaoxing, 312000, People's Republic of China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People's Republic of China
| | - Yanhua Huang
- Department of Ultrasound, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Luohang Xu
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, People's Republic of China
| | - Hong Fu
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, 568 Zhongxing North Road, Shaoxing, 312000, People's Republic of China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People's Republic of China
| | - Baochun Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, 568 Zhongxing North Road, Shaoxing, 312000, People's Republic of China.
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, People's Republic of China.
| |
Collapse
|
13
|
Li Z, Zhong Y, Lv Y, Zheng J, Hu Y, Yang Y, Li Y, Sun M, Liu S, Guo Y, Zhang M, Zhou L. A CT based radiomics analysis to predict the CN0 status of thyroid papillary carcinoma: a two- center study. Cancer Imaging 2024; 24:62. [PMID: 38750551 PMCID: PMC11094940 DOI: 10.1186/s40644-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/16/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES To develop and validate radiomics model based on computed tomography (CT) for preoperative prediction of CN0 status in patients with papillary thyroid carcinoma (PTC). METHODS A total of 548 pathologically confirmed LNs (243 non-metastatic and 305 metastatic) two distinct hospitals were retrospectively assessed. A total of 396 radiomics features were extracted from arterial-phase CT images, where the strongest features containing the most predictive potential were further selected using the least absolute shrinkage and selection operator (LASSO) regression method. Delong test was used to compare the AUC values of training set, test sets and cN0 group. RESULTS The Rad-score showed good discriminating performance with Area Under the ROC Curve (AUC) of 0.917(95% CI, 0.884 to 0.950), 0.892 (95% CI, 0.833 to 0.950) and 0.921 (95% CI, 868 to 0.973) in the training, internal validation cohort and external validation cohort, respectively. The test group of CN0 with a AUC of 0.892 (95% CI, 0.805 to 0.979). The accuracy was 85.4% (sensitivity = 81.3%; specificity = 88.9%) in the training cohort, 82.9% (sensitivity = 79.0%; specificity = 88.7%) in the internal validation cohort, 85.4% (sensitivity = 89.7%; specificity = 83.8%) in the external validation cohort, 86.7% (sensitivity = 83.8%; specificity = 91.3%) in the CN0 test group.The calibration curve demonstrated a significant Rad-score (P-value in H-L test > 0.05). The decision curve analysis indicated that the rad-score was clinically useful. CONCLUSIONS Radiomics has shown great diagnostic potential to preoperatively predict the status of cN0 in PTC.
Collapse
Affiliation(s)
- Zongbao Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
- Department of Radiology, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yifan Zhong
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yan Lv
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Jianzhong Zheng
- Department of Radiology, The People's Hospital of Bao'an, Shenzhen University, Shenzhen, 518101, China
| | - Yu Hu
- Department of Radiology, The People's Hospital of Bao'an, Shenzhen University, Shenzhen, 518101, China
| | - Yanyan Yang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yunxi Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Meng Sun
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Siqian Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yan Guo
- Life Sciences, GE Healthcare, Shenyang, 110000, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China.
| | - Le Zhou
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
14
|
Liu J, Dong L, Zhang X, Wu Q, Yang Z, Zhang Y, Xu C, Wu Q, Wang M. Radiomics analysis for prediction of lymph node metastasis after neoadjuvant chemotherapy based on pretreatment MRI in patients with locally advanced cervical cancer. Front Oncol 2024; 14:1376640. [PMID: 38779088 PMCID: PMC11109452 DOI: 10.3389/fonc.2024.1376640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background This study aims to develop and validate a pretreatment MRI-based radiomics model to predict lymph node metastasis (LNM) following neoadjuvant chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC). Methods Patients with LACC who underwent NACT from two centers between 2013 and 2022 were enrolled retrospectively. Based on the lymph node (LN) status determined in the pathology reports after radical hysterectomy, patients were categorized as LN positive or negative. The patients from center 1 were assigned as the training set while those from center 2 formed the validation set. Radiomics features were extracted from pretreatment sagittal T2-weighted imaging (Sag-T2WI), axial diffusion-weighted imaging (Ax-DWI), and the delayed phase of dynamic contrast-enhanced sagittal T1-weighted imaging (Sag-T1C) for each patient. The K-best and least absolute shrinkage and selection operator (LASSO) methods were employed to reduce dimensionality, and the radiomics features strongly associated with LNM were selected and used to construct three single-sequence models. Furthermore, clinical variables were incorporated through multivariate regression analysis and fused with the selected radiomics features to construct the clinical-radiomics combined model. The diagnostic performance of the models was assessed using receiver operating characteristic (ROC) curve analysis. The clinical utility of the models was evaluated by the area under the ROC curve (AUC) and decision curve analysis (DCA). Results A total of 282 patients were included, comprising 171 patients in the training set, and 111 patients in the validation set. Compared to the Sag-T2WI model (AUC, 95%CI, training set, 0.797, 0.722-0.782; validation set, 0.648, 0.521-0.776) and the Sag-T1C model (AUC, 95%CI, training set, 0.802, 0.723-0.882; validation set, 0.630, 0.505-0.756), the Ax-DWI model exhibited the highest diagnostic performance with AUCs of 0.855 (95%CI, 0.791-0.919) in training set, and 0.753 (95%CI, 0.638-0.867) in validation set, respectively. The combined model, integrating selected features from three sequences and FIGO stage, surpassed predictive ability compared to the single-sequence models, with AUC of 0.889 (95%CI, 0.833-0.945) and 0.859 (95%CI, 0.781-0.936) in the training and validation sets, respectively. Conclusions The pretreatment MRI-based radiomics model, integrating radiomics features from three sequences and clinical variables, exhibited superior performance in predicting LNM following NACT in patients with LACC.
Collapse
Affiliation(s)
- Jinjin Liu
- Department of Medical Imaging, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
| | - Linxiao Dong
- Department of Medical Imaging, People’s Hospital of Henan University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
| | - Xiaoxian Zhang
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qingxia Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, United Imaging Intelligence Co., Ltd., Beijing, China
| | - Zihan Yang
- Department of Medical Imaging, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
| | - Yuejie Zhang
- Department of Medical Imaging, People’s Hospital of Henan University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
| | - Chunmiao Xu
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Qingxia Wu
- Department of Medical Imaging, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
- Department of Medical Imaging, People’s Hospital of Henan University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Medical Imaging, People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
- Department of Medical Imaging, People’s Hospital of Henan University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Science, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Xu L, Huang G, Wang Y, Huang G, Liu J, Chen R. 2-[ 18F]FDG PET-based quantification of lymph node metabolic heterogeneity for predicting lymph node metastasis in patients with colorectal cancer. Eur J Nucl Med Mol Imaging 2024; 51:1729-1740. [PMID: 38150017 DOI: 10.1007/s00259-023-06578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND AND PURPOSE The pre-surgical estimation of lymph node (LN) metastasis in colorectal cancer (CRC) poses a significant diagnostic predicament. The associations between LN morphology, density, and metabolic heterogeneity and LN metastasis status in CRCs have been seldomly examined through the lens of radiomics. This research aimed to assess 2-[18F]FDG PET-based quantification of intratumoral metabolic heterogeneity for predicting lymph node metastasis in patients with colorectal cancer. MATERIALS AND METHODS The construction of the model utilized data from 264 CRC patients, all of whom underwent preoperative 2-[18F]FDG PET/CT. Radiomic features were extracted from PET and CT images of LNs. Least absolute shrinkage and selection operator (LASSO) regression was implemented for selecting pertinent imaging features with a tenfold cross-validation. The predictive accuracy for LN metastasis status was juxtaposed against traditional methodologies (comprising CT-reported LN status and PET/CT-reported LN status) by deploying the receiver operating characteristic (ROC) curve analysis. The radiomics signature was evaluated based on discrimination, calibration, and clinical utility parameters. The model was further subjected to validation using an independent cohort of 132 patients from the period of January 2012 to June 2020. RESULTS The radiomics model was composed of eight significant radiomic features (five from PET and three from CT), encapsulating metabolic and density heterogeneity. The radiomics signature (area under the curve (AUC), 0.908) showcased a significantly superior performance compared to CT-reported LN status (AUC, 0.563, P < 0.001) and PET/CT-reported LN status (AUC, 0.64, P < 0.001) for predicting LN-positive or LN-negative status. The radiomics signature (AUC, 0.885) also showcased a significantly superior performance compared to CT-reported LN status (AUC, 0.587, P < 0.001) and PET/CT-reported LN status (AUC, 0.621, P < 0.001) to identify N1 and N2. This signature maintained its independence from clinical risk factors and exhibited robustness in the validation test set. Decision curve analysis attested to the clinical utility of the radiomics signature. CONCLUSIONS The radiomics signature based on 2-[18F]FDG PET/CT, which derived image features directly from LNs irrespective of clinical risk factors, displayed enhanced diagnostic performance compared to conventional CT or PET/CT-reported LN status. This allows for the identification of pre-surgical LN metastasis status and facilitates a patient-specific prediction of LN metastasis status in CRC patients.
Collapse
Affiliation(s)
- Lian Xu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200000, China
| | - Gan Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200000, China
| | - Yining Wang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200000, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200000, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200000, China.
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200000, China.
| |
Collapse
|
16
|
Zhou Y, Zheng X, Sun Z, Wang B. Analysis of Bladder Cancer Staging Prediction Using Deep Residual Neural Network, Radiomics, and RNA-Seq from High-Definition CT Images. Genet Res (Camb) 2024; 2024:4285171. [PMID: 38715622 PMCID: PMC11074870 DOI: 10.1155/2024/4285171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 06/30/2024] Open
Abstract
Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosis and therapeutic guidance of bladder cancer. This study focuses on evaluating the potential of high-definition computed tomography (CT) imagery coupled with RNA-sequencing analysis to accurately predict bladder tumor stages, utilizing deep residual networks. Data for this study, including CT images and RNA-Seq datasets for 82 high-grade bladder cancer patients, were sourced from the TCIA and TCGA databases. We employed Cox and lasso regression analyses to determine radiomics and gene signatures, leading to the identification of a three-factor radiomics signature and a four-gene signature in our bladder cancer cohort. ROC curve analyses underscored the strong predictive capacities of both these signatures. Furthermore, we formulated a nomogram integrating clinical features, radiomics, and gene signatures. This nomogram's AUC scores stood at 0.870, 0.873, and 0.971 for 1-year, 3-year, and 5-year predictions, respectively. Our model, leveraging radiomics and gene signatures, presents significant promise for enhancing diagnostic precision in bladder cancer prognosis, advocating for its clinical adoption.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingju Zheng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhucheng Sun
- Interventional Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Wang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
17
|
Yang R, He J, Luo W, Xiang R, Zou G, Zhang X, Liu H, Deng J. Comprehensive analysis and prognostic assessment of senescence-associated genes in bladder cancer. Discov Oncol 2024; 15:130. [PMID: 38668876 PMCID: PMC11052743 DOI: 10.1007/s12672-024-00987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The prevalence and mortality of bladder cancer (BLCA) present a significant medical challenge. While the function of senescence-related genes in tumor development is recognized, their prognostic significance in BLCA has not been thoroughly explored. METHODS BLCA transcriptome datasets were sourced from the TCGA and GEO repositories. Gene groupings were determined through differential gene expression and non-negative matrix factorization (NMF) methodologies. Key senescence-linked genes were isolated using singular and multivariate Cox regression analyses, combined with lasso regression. Validation was undertaken with GEO database information. Predictive models, or nomograms, were developed by merging risk metrics with clinical records, and their efficacy was gauged using ROC curve methodologies. The immune response's dependency on the risk metric was assessed through the immune phenomenon score (IPS). Additionally, we estimated IC50 metrics for potential chemotherapeutic agents. RESULTS Reviewing 406 neoplastic and 19 standard tissue specimens from the TCGA repository facilitated the bifurcation of subjects into two unique clusters (C1 and C2) according to senescence-related gene expression. After a stringent statistical evaluation, a set of ten pivotal genes was discerned and applied for risk stratification. Validity tests for the devised nomograms in forecasting 1, 3, and 5-year survival probabilities for BLCA patients were executed via ROC and calibration plots. IC50 estimations highlighted a heightened responsiveness in the low-risk category to agents like cisplatin, cyclopamine, and sorafenib. CONCLUSIONS In summation, our research emphasizes the prospective utility of risk assessments rooted in senescence-related gene signatures for enhancing BLCA clinical oversight.
Collapse
Affiliation(s)
- Ruilin Yang
- Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou, 511400, China
- Andrology Clinic, The Affiliated Panyu Central Hospital of Guangzhou Medical University, 8 East Fuyu Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Jieling He
- Ultrasonography Department, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, China
| | - Renyang Xiang
- Department of Surgery, The University of HongKong-Shenzhen Hospital, Shenzhen, 518053, Guangdong, China
| | - Ge Zou
- Urology Department, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, China
| | - Xintao Zhang
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 511400, China.
| | - Huang Liu
- National Health Commission (NHC) Key Laboratory of Male Reproduction and Genetics, Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Human Sperm Bank of Guangdong Province, Guangzhou, China.
| | - Junhong Deng
- Department of Andrology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China.
| |
Collapse
|
18
|
Yang G, Bai J, Hao M, Zhang L, Fan Z, Wang X. Enhancing recurrence risk prediction for bladder cancer using multi-sequence MRI radiomics. Insights Imaging 2024; 15:88. [PMID: 38526620 DOI: 10.1186/s13244-024-01662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE We aimed to develop a radiomics-clinical nomogram using multi-sequence MRI to predict recurrence-free survival (RFS) in bladder cancer (BCa) patients and assess its superiority over clinical models. METHODS A retrospective cohort of 229 BCa patients with preoperative multi-sequence MRI was divided into a training set (n = 160) and a validation set (n = 69). Radiomics features were extracted from T2-weighted images, diffusion-weighted imaging, apparent diffusion coefficient, and dynamic contrast-enhanced images. Effective features were identified using the least absolute shrinkage and selection operator (LASSO) method. Clinical risk factors were determined via univariate and multivariate Cox analysis, leading to the creation of a radiomics-clinical nomogram. Kaplan-Meier analysis and log-rank tests assessed the relationship between radiomics features and RFS. We calculated the net reclassification improvement (NRI) to evaluate the added value of the radiomics signature and used decision curve analysis (DCA) to assess the nomogram's clinical validity. RESULTS Radiomics features significantly correlated with RFS (log-rank p < 0.001) and were independent of clinical factors (p < 0.001). The combined model, incorporating radiomics features and clinical data, demonstrated the best prognostic value, with C-index values of 0.853 in the training set and 0.832 in the validation set. Compared to the clinical model, the radiomics-clinical nomogram exhibited superior calibration and classification (NRI: 0.6768, 95% CI: 0.5549-0.7987, p < 0.001). CONCLUSION The radiomics-clinical nomogram, based on multi-sequence MRI, effectively assesses the BCa recurrence risk. It outperforms both the radiomics model and the clinical model in predicting BCa recurrence risk. CRITICAL RELEVANCE STATEMENT The radiomics-clinical nomogram, utilizing multi-sequence MRI, holds promise for predicting bladder cancer recurrence, enhancing individualized clinical treatment, and performing tumor surveillance. KEY POINTS • Radiomics plays a vital role in predicting bladder cancer recurrence. • Precise prediction of tumor recurrence risk is crucial for clinical management. • MRI-based radiomics models excel in predicting bladder cancer recurrence.
Collapse
Affiliation(s)
- Guoqiang Yang
- Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Bai
- Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Hao
- Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lu Zhang
- Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhichang Fan
- Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaochun Wang
- Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
19
|
Zhou J, Peng ZF, Yang LC, Liu SZ, Song P, Liu ZH, Wang LC, Chen JH, Ma K, Yu YF, Liu LR, Dong Q. Nomogram predicting the efficacy of transurethral surgery in benign prostatic hyperplasia patients. Aging Clin Exp Res 2024; 36:71. [PMID: 38485798 PMCID: PMC10940401 DOI: 10.1007/s40520-024-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE This study aimed to develop and validate a nomogram for predicting the efficacy of transurethral surgery in benign prostatic hyperplasia (BPH) patients. METHODS Patients with BPH who underwent transurethral surgery in the West China Hospital and West China Shang Jin Hospital were enrolled. Patients were retrospectively involved as the training group and were prospectively recruited as the validation group for the nomogram. Logistic regression analysis was utilized to generate nomogram for predicting the efficacy of transurethral surgery. The discrimination of the nomogram was assessed using the area under the receiver operating characteristic curve (AUC) and calibration plots were applied to evaluate the calibration of the nomogram. RESULTS A total of 426 patients with BPH who underwent transurethral surgery were included in the study, and they were further divided into a training group (n = 245) and a validation group (n = 181). Age (OR 1.07, 95% CI 1.02-1.15, P < 0.01), the compliance of the bladder (OR 2.37, 95% CI 1.20-4.67, P < 0.01), the function of the detrusor (OR 5.92, 95% CI 2.10-16.6, P < 0.01), and the bladder outlet obstruction (OR 2.21, 95% CI 1.07-4.54, P < 0.01) were incorporated in the nomogram. The AUC of the nomogram was 0.825 in the training group, and 0.785 in the validation group, respectively. CONCLUSION The nomogram we developed included age, the compliance of the bladder, the function of the detrusor, and the severity of bladder outlet obstruction. The discrimination and calibration of the nomogram were confirmed by internal and external validation.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhu-Feng Peng
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu-Chen Yang
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Sheng-Zhuo Liu
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Song
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zheng-Huan Liu
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lin-Chun Wang
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun-Hao Chen
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Kai Ma
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yun-Fei Yu
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liang-Ren Liu
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, People's Republic of China.
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Xu C, Cao J, Zhou T. Radiogenomics uncovers an interplay between angiogenesis and clinical outcomes in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:1374-1387. [PMID: 37975603 DOI: 10.1002/tox.24038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Precision medicine has become a promising clinical treatment strategy for various cancers, including bladder cancer, where angiogenesis plays a critical role in cancer progression. However, the relationship between angiogenesis, immune cell infiltration, clinical outcomes, chemotherapy, and targeted therapy remains unclear. METHODS We conducted a comprehensive evaluation of angiogenesis-related genes (ARGs) to identify their association with immune cell infiltration, transcription patterns, and clinical outcomes in bladder cancer. An ARG score was constructed to identify angiogenic subgroups in each sample and we evaluated their predictive performance for overall survival rate and treatment response. In addition, we optimized existing clinical detection protocols by performing image data processing. RESULTS Our study revealed the genomic-level mutant landscape and expression patterns of ARGs in bladder cancer specimens. Using analysis, we identified three molecular subgroups where ARG mutations correlated with patients' pathological features, clinical outcomes, and immune cell infiltration. To facilitate clinical applicability, we constructed a precise nomogram based on the ARG score, which significantly correlated with stem cell index and drug sensitivity. Finally, we proposed the radiogenomics model, which combines the precision of genomics with the convenience of radiomics. CONCLUSION Our study sheds light on the prognostic characteristics of ARGs in bladder cancer and provides insights into the tumor environment's characteristics to explore more effective immunotherapy strategies. The findings have significant implications for the development of personalized treatment approaches in bladder cancer and pave the way for future studies in this field.
Collapse
Affiliation(s)
- Chentao Xu
- Radiology Department, Changxing People's Hospital, Huzhou, China
| | - Jincheng Cao
- Radiology Department, Changxing People's Hospital, Huzhou, China
| | - Tianjin Zhou
- Radiology Department, Changxing People's Hospital, Huzhou, China
| |
Collapse
|
21
|
You Y, Wang Y, Yu X, Gao F, Li M, Li Y, Wang X, Jia L, Shi G, Yang L. Prediction of lymph node metastasis in advanced gastric adenocarcinoma based on dual-energy CT radiomics: focus on the features of lymph nodes with a short axis diameter ≥6 mm. Front Oncol 2024; 14:1369051. [PMID: 38496754 PMCID: PMC10940341 DOI: 10.3389/fonc.2024.1369051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Objective To explore the value of the features of lymph nodes (LNs) with a short-axis diameter ≥6 mm in predicting lymph node metastasis (LNM) in advanced gastric adenocarcinoma (GAC) based on dual-energy CT (DECT) radiomics. Materials and methods Data of patients with GAC who underwent radical gastrectomy and LN dissection were retrospectively analyzed. To ensure the correspondence between imaging and pathology, metastatic LNs were only selected from patients with pN3, nonmetastatic LNs were selected from patients with pN0, and the short-axis diameters of the enrolled LNs were all ≥6 mm. The traditional features of LNs were recorded, including short-axis diameter, long-axis diameter, long-to-short-axis ratio, position, shape, density, edge, and the degree of enhancement; univariate and multivariate logistic regression analyses were used to establish a clinical model. Radiomics features at the maximum level of LNs were extracted in venous phase equivalent 120 kV linear fusion images and iodine maps. Intraclass correlation coefficients and the Boruta algorithm were used to screen significant features, and random forest was used to build a radiomics model. To construct a combined model, we included the traditional features with statistical significance in univariate analysis and radiomics scores (Rad-score) in multivariate logistic regression analysis. Receiver operating curve (ROC) curves and the DeLong test were used to evaluate and compare the diagnostic performance of the models. Decision curve analysis (DCA) was used to evaluate the clinical benefits of the models. Results This study included 114 metastatic LNs from 36 pN3 cases and 65 nonmetastatic LNs from 28 pN0 cases. The samples were divided into a training set (n=125) and a validation set (n=54) at a ratio of 7:3. Long-axis diameter and LN shape were independent predictors of LNM and were used to establish the clinical model; 27 screened radiomics features were used to build the radiomics model. LN shape and Rad-score were independent predictors of LNM and were used to construct the combined model. Both the radiomics model (area under the curve [AUC] of 0.986 and 0.984) and the combined model (AUC of 0.970 and 0.977) outperformed the clinical model (AUC of 0.772 and 0.820) in predicting LNM in both the training and validation sets. DCA showed superior clinical benefits from radiomics and combined models. Conclusion The models based on DECT LN radiomics features or combined traditional features have high diagnostic performance in determining the nature of each LN with a short-axis diameter of ≥6 mm in advanced GAC.
Collapse
Affiliation(s)
- Yang You
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianbo Yu
- CT Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Fengxiao Gao
- Department of Computed Tomography and Magnetic Resonance, Xing Tai People’s Hospital, Xingtai, China
| | - Min Li
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Li
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangming Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Litao Jia
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaofeng Shi
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Yang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
22
|
Lv H, Zhou X, Liu Y, Liu Y, Chen Z. Feasibility analysis of arterial CT radiomics model to predict the risk of local and metastatic recurrence after radical cystectomy for bladder cancer. Discov Oncol 2024; 15:40. [PMID: 38369583 PMCID: PMC10874920 DOI: 10.1007/s12672-024-00880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
PURPOSE To construct a radiomics-clinical nomogram model for predicting the risk of local and metastatic recurrence within 3 years after radical cystectomy (RC) of bladder cancer (BCa) based on the radiomics features and important clinical risk factors for arterial computed tomography (CT) images and to evaluate its efficacy. METHODS Preoperative CT datasets of 134 BCa patients (24 recurrent) who underwent RC were collected and divided into training (n = 93) and validation sets (n = 41). Radiomics features were extracted from a 1.5 mm CT layer thickness image in the arterial phase. A radiomics score (Rad-Score) model was constructed using the feature dimension reduction method and a logistic regression model. Combined with important clinical factors, including gender, age, tumor size, tumor number and grade, pathologic T stage, lymph node stage and histology type of the archived lesion, and CT image signs, a radiomics-clinical nomogram was developed, and its performance was evaluated in the training and validation sets. Decision curve analyses (DCA) the potential clinical usefulness. RESULTS The radiomics model is finally linear combined by 8 features screened by LASSO regression, and after coefficient weighting, achieved good predictive results. The radiomics nomogram developed by combining two independent predictors, Rad-Score and pathologic T stage, was developed in the training set [AUC, 0.840; 95% confidence interval (CI) 0.743-0.937] and validation set (AUC, 0.883; 95% CI 0.777-0.989). The calibration curve showed good agreement between the predicted probability of the radiomics-clinical model and the actual recurrence rate within 3 years after RC for BCa. DCA show the clinical application value of the radiomics-clinical model. CONCLUSION The radiomics-clinical nomogram model constructed based on the radiomics features of arterial CT images and important clinical risk factors is potentially feasible for predicting the risk of recurrence within 3 years after RC for BCa.
Collapse
Affiliation(s)
- Huawang Lv
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaozhou Zhou
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuan Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuting Liu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
23
|
Wang T, Li YY, Ma NN, Wang PA, Zhang B. A MRI radiomics-based model for prediction of pelvic lymph node metastasis in cervical cancer. World J Surg Oncol 2024; 22:55. [PMID: 38365759 PMCID: PMC10873981 DOI: 10.1186/s12957-024-03333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Cervical cancer (CC) is a common malignancy of the female reproductive tract, and preoperative prediction of lymph node metastasis (LNM) is essential. This study aims to design and validate a magnetic resonance imaging (MRI) radiomics-based predictive model capable of detecting LNM in patients diagnosed with CC. METHODS This retrospective analysis incorporated 86 and 38 CC patients into the training and testing groups, respectively. Radiomics features were extracted from MRI T2WI, T2WI-SPAIR, and axial apparent diffusion coefficient (ADC) sequences. Selected features identified in the training group were then used to construct a radiomics scoring model, with relevant LNM-related risk factors having been identified through univariate and multivariate logistic regression analyses. The resultant predictive model was then validated in the testing cohort. RESULTS In total, 16 features were selected for the construction of a radiomics scoring model. LNM-related risk factors included worse differentiation (P < 0.001), more advanced International Federation of Gynecology and Obstetrics (FIGO) stages (P = 0.03), and a higher radiomics score from the combined MRI sequences (P = 0.01). The equation for the predictive model was as follows: -0.0493-2.1410 × differentiation level + 7.7203 × radiomics score of combined sequences + 1.6752 × FIGO stage. The respective area under the curve (AUC) values for the T2WI radiomics score, T2WI-SPAIR radiomics score, ADC radiomics score, combined sequence radiomics score, and predictive model were 0.656, 0.664, 0.658, 0.835, and 0.923 in the training cohort, while these corresponding AUC values were 0.643, 0.525, 0.513, 0.826, and 0.82 in the testing cohort. CONCLUSIONS This MRI radiomics-based model exhibited favorable accuracy when used to predict LNM in patients with CC. Relative to the use of any individual MRI sequence-based radiomics score, this predictive model yielded superior diagnostic accuracy.
Collapse
Affiliation(s)
- Tao Wang
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yan-Yu Li
- Department of Gynaecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China
| | - Nan-Nan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Pei-An Wang
- Hospital Administration Office, Xuzhou Central Hospital, Xuzhou, China.
| | - Bei Zhang
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Gynaecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, China.
| |
Collapse
|
24
|
Peiliang Wang MD, Yikun Li MM, Mengyu Zhao MM, Jinming Yu MD, Feifei Teng MD. Distinguishing immune checkpoint inhibitor-related pneumonitis from radiation pneumonitis by CT radiomics features in non-small cell lung cancer. Int Immunopharmacol 2024; 128:111489. [PMID: 38266450 DOI: 10.1016/j.intimp.2024.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE To develop a CT-based model to classify pneumonitis etiology in patients with non-small cell lung cancer(NSCLC) after radiotherapy(RT) and Immune checkpoint inhibitors(ICIs). METHODS We retrospectively identified 130 NSCLC patients who developed pneumonitis after receipt of ICIs only (n = 50), thoracic RT only (n = 50) (ICIs only + thoracic RT only, the training cohort, n = 100), and RT + ICIs (the test cohort, n = 30). Clinical and CT radiomics features were described and compared between different groups. We constructed a random forest (RF) classifier and a linear discriminant analysis (LDA) classifier by CT radiomics to discern pneumonitis etiology. RESULTS The patients in RT + ICIs group have more high grade (grade 3-4) pneumonitis compared to patients in ICIs only or RT only group (p < 0.05). Pneumonitis after the combined therapy was not a simple superposition mode of RT-related pneumonitis(RP) and ICI-related pneumonitis(CIP), resulting in the distinct characteristics of both RT and ICIs-related pneumonitis. The RF classifier showed favorable discrimination between RP and CIP with an area under the receiver operating curve (AUC) of 0.859 (95 %CI: 0.788-0.929) in the training cohort and 0.851 (95 % CI: 0.700-1) in the test cohort. The LDA classifier achieved an AUC of 0.881 (95 %CI: 0.815-0.947) in the training cohort and 0.842 (95 %CI: 0.686-0.997) in the test cohort. Our analysis revealed four principal CT-based features shared across both models:original_glrlm_LongRunLowGrayLevelEmphasis, wavelet-HLL_firstorder_Median, wavelet-LLL_ngtdm_Busyness, and wavelet-LLL_glcm_JointAverage. CONCLUSION CT radiomics-based classifiers could provide a noninvasive method to identify the predominant etiology in NSCLC patients who developed pneumonitis after RT alone, ICIs alone or RT + ICIs.
Collapse
Affiliation(s)
- M D Peiliang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan 250117, China
| | - M M Yikun Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - M M Mengyu Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - M D Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan 250117, China
| | - M D Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan 250117, China.
| |
Collapse
|
25
|
Venishetty N, Taylor J, Xi Y, Howard JM, Ng YS, Wong D, Woldu SL, De Leon AD, Pedrosa I, Margulis V, Bagrodia A. Testicular Radiomics To Predict Pathology At Time of Postchemotherapy Retroperitoneal Lymph Node Dissection for Nonseminomatous Germ Cell Tumor. Clin Genitourin Cancer 2024; 22:33-37. [PMID: 37468341 DOI: 10.1016/j.clgc.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Testicular germ cell tumors are the most common malignancy in young adult males. Patients with metastatic disease receive standard of care chemotherapy followed by retroperitoneal lymph node dissection for residual masses >1cm. However, there is a need for better preoperative tools to discern which patients will have persistent disease after chemotherapy given low rates of metastatic germ cell tumor after chemotherapy. The purpose of this study was to use radiomics to predict which patients would have viable germ cell tumor or teratoma after chemotherapy at time of retroperitoneal lymph node dissection. PATIENTS AND METHODS Patients with nonseminomatous germ cell tumor undergoing postchemotherapy retroperitoneal lymph node dissection (PC-RPLND) between 2008 and 2019 were queried from our institutional database. Patients were included if prechemotherapy computed tomography (CT) scan and postchemotherapy imaging were available. Semiqualitative and quantitative features of residual masses and nodal regions of interest and radiomic feature extractions were performed by 2 board certified radiologists. Radiomic feature analysis was used to extract first order, shape, and second order statistics from each region of interest. Post-RPLND pathology was compared to the radiomic analysis using multiple t-tests. RESULTS 45 patients underwent PC-RPLND at our institution, with the majority (28 patients) having stage III disease. 24 (53%) patients had teratoma on RPLND pathology, while 2 (4%) had viable germ cell tumor. After chemotherapy, 78%, 53%, and 33% of patients had cystic regions, fat stranding, and local infiltration present on imaging. After radiomic analysis, first order statistics mean, median, 90th percentile, and root mean squares were significant. Strong correlations were observed between these 4 features;a lower signal was associated with positive pathology at RPND. CONCLUSIONS Testicular radiomics is an emerging tool that may help predict persistent disease after chemotherapy.
Collapse
Affiliation(s)
- Nikit Venishetty
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX
| | - Jacob Taylor
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Yee Seng Ng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel Wong
- Department of Urology, Washington University School of Medicine, St. Louis, MO
| | - Solomon L Woldu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alberto Diaz De Leon
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivan Pedrosa
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Urology, University of California San Diego Health, San Diego, CA.
| |
Collapse
|
26
|
Chen Z, Yu Y, Liu S, Du W, Hu L, Wang C, Li J, Liu J, Zhang W, Peng X. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma. Clin Oral Investig 2023; 28:39. [PMID: 38151672 DOI: 10.1007/s00784-023-05423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES In this study, we constructed and validated models based on deep learning and radiomics to facilitate preoperative diagnosis of cervical lymph node metastasis (LNM) using contrast-enhanced computed tomography (CECT). MATERIALS AND METHODS CECT scans of 100 patients with OSCC (217 metastatic and 1973 non-metastatic cervical lymph nodes: development set, 76 patients; internally independent test set, 24 patients) who received treatment at the Peking University School and Hospital of Stomatology between 2012 and 2016 were retrospectively collected. Clinical diagnoses and pathological findings were used to establish the gold standard for metastatic cervical LNs. A reader study with two clinicians was also performed to evaluate the lymph node status in the test set. The performance of the proposed models and the clinicians was evaluated and compared by measuring using the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE). RESULTS A fusion model combining deep learning with radiomics showed the best performance (ACC, 89.2%; SEN, 92.0%; SPE, 88.9%; and AUC, 0.950 [95% confidence interval: 0.908-0.993, P < 0.001]) in the test set. In comparison with the clinicians, the fusion model showed higher sensitivity (92.0 vs. 72.0% and 60.0%) but lower specificity (88.9 vs. 97.5% and 98.8%). CONCLUSION A fusion model combining radiomics and deep learning approaches outperformed other single-technique models and showed great potential to accurately predict cervical LNM in patients with OSCC. CLINICAL RELEVANCE The fusion model can complement the preoperative identification of LNM of OSCC performed by the clinicians.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yao Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Wen Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Leihao Hu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Congwei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jiaqi Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jianbo Liu
- Huafang Hanying Medical Technology Co., Ltd, No.19, West Bridge Road, Miyun District, Beijing, 101520, People's Republic of China
| | - Wenbo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
27
|
Chen G, Fan X, Wang T, Zhang E, Shao J, Chen S, Zhang D, Zhang J, Guo T, Yuan Z, Tang H, Yu Y, Chen J, Wang X. A machine learning model based on MRI for the preoperative prediction of bladder cancer invasion depth. Eur Radiol 2023; 33:8821-8832. [PMID: 37470826 DOI: 10.1007/s00330-023-09960-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVES To construct and validate a prediction model based on full-sequence MRI for preoperatively evaluating the invasion depth of bladder cancer. METHODS A total of 445 patients with bladder cancer were divided into a seven-to-three training set and test set for each group. The radiomic features of lesions were extracted automatically from the preoperative MRI images. Two feature selection methods were performed and compared, the key of which are the Least Absolute Shrinkage and Selection Operator (LASSO) and the Max Relevance Min Redundancy (mRMR). The classifier of the prediction model was selected from six advanced machine-learning techniques. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were applied to assess the efficiency of the models. RESULTS The models with the best performance for pathological invasion prediction and muscular invasion prediction consisted of LASSO as the feature selection method and random forest as the classifier. In the training set, the AUC of the pathological invasion model and muscular invasion model were 0.808 and 0.828. Furthermore, with the mRMR as the feature selection method, the external invasion model based on random forest achieved excellent discrimination (AUC, 0.857). CONCLUSIONS The full-sequence models demonstrated excellent accuracy for preoperatively predicting the bladder cancer invasion status. CLINICAL RELEVANCE STATEMENT This study introduces a full-sequence MRI model for preoperative prediction of the depth of bladder cancer infiltration, which could help clinicians to recognise pathological features associated with tumour infiltration prior to invasive procedures. KEY POINTS • Full-sequence MRI prediction model performed better than Vesicle Imaging-Reporting and Data System (VI-RADS) for preoperatively evaluating the invasion status of bladder cancer. • Machine learning methods can extract information from T1-weighted image (T1WI) sequences and benefit bladder cancer invasion prediction.
Collapse
Affiliation(s)
- Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Encheng Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jialiang Shao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Siteng Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
| | - Dongliang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jian Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhihao Yuan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Heting Tang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yaoyu Yu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jinyuan Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
28
|
Xie Z, Zhang Q, Wang X, Chen Y, Deng Y, Lin H, Wu J, Huang X, Xu Z, Chi P. Development and validation of a novel radiomics nomogram for prediction of early recurrence in colorectal cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107118. [PMID: 37844471 DOI: 10.1016/j.ejso.2023.107118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Early recurrence (ER) is a significant concern following curative resection of advanced colorectal cancer (CRC) and is linked to poor long-term survival. Reliable prediction of ER is challenging, necessitating the development of a novel radiomics-based nomogram for CRC patients. METHODS We enrolled 405 patients, with 298 in the training set and 107 in the external test set. Radiomic features were extracted from preoperative venous-phase computed tomography (CT) images. A radiomics signature was created using univariate logistic regression analyses and the least absolute shrinkage and selection operator algorithm. Clinical factors were integrated into the analyses to develop a comprehensive predictive tool in a multivariate logistic regression model, resulting in a radiomics nomogram. Subsequently, the calibration, discrimination, and clinical usefulness of the nomogram were evaluated. RESULTS The radiomics signature, consisting of four selected CT features, was significantly associated with ER in both the training and test datasets (P < 0.05). Independent predictors of ER included TNM stage, carcinoembryonic antigen level and differentiation grade were identified. The radiomics nomogram, incorporating all these predictors, exhibited good predictive ability in both the training set with an area under the curve (AUC) of 0.82 (95 % confidence interval (CI), 0.74-0.90) and the test set with an AUC of 0.85 (95 % CI, 0.72-0.99), surpassing the performance of any single candidate factor alone. Furthermore, additional analysis demonstrated that the nomogram was clinically useful. CONCLUSIONS We have developed a radiomics-based nomogram that effectively predicts early recurrence in CRC patients, enhancing the potential for timely intervention and improved outcomes.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qingwei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yongchun Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Deng
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hanbin Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiashu Wu
- Department of Science and Technology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinming Huang
- Department of Radiology, Union Hospital, Fujian Medical University, Fuzhou, China.
| | - Zongbin Xu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
29
|
Saleh M, Virarkar M, Mahmoud HS, Wong VK, Gonzalez Baerga CI, Parikh M, Elsherif SB, Bhosale PR. Radiomics analysis with three-dimensional and two-dimensional segmentation to predict survival outcomes in pancreatic cancer. World J Radiol 2023; 15:304-314. [PMID: 38058604 PMCID: PMC10696186 DOI: 10.4329/wjr.v15.i11.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Radiomics can assess prognostic factors in several types of tumors, but considering its prognostic ability in pancreatic cancer has been lacking. AIM To evaluate the performance of two different radiomics software in assessing survival outcomes in pancreatic cancer patients. METHODS We retrospectively reviewed pretreatment contrast-enhanced dual-energy computed tomography images from 48 patients with biopsy-confirmed pancreatic ductal adenocarcinoma who later underwent neoadjuvant chemoradiation and surgery. Tumors were segmented using TexRad software for 2-dimensional (2D) analysis and MIM software for 3D analysis, followed by radiomic feature extraction. Cox proportional hazard modeling correlated texture features with overall survival (OS) and progression-free survival (PFS). Cox regression was used to detect differences in OS related to pretreatment tumor size and residual tumor following treatment. The Wilcoxon test was used to show the relationship between tumor volume and the percent of residual tumor. Kaplan-Meier analysis was used to compare survival in patients with different tumor densities in Hounsfield units for both 2D and 3D analysis. RESULTS 3D analysis showed that higher mean tumor density [hazard ratio (HR) = 0.971, P = 0.041)] and higher median tumor density (HR = 0.970, P = 0.037) correlated with better OS. 2D analysis showed that higher mean tumor density (HR = 0.963, P = 0.014) and higher mean positive pixels (HR = 0.962, P = 0.014) correlated with better OS; higher skewness (HR = 3.067, P = 0.008) and higher kurtosis (HR = 1.176, P = 0.029) correlated with worse OS. Higher entropy correlated with better PFS (HR = 0.056, P = 0.036). Models determined that patients with increased tumor size greater than 1.35 cm were likely to have a higher percentage of residual tumors of over 10%. CONCLUSION Several radiomics features can be used as prognostic tools for pancreatic cancer. However, results vary between 2D and 3D analyses. Mean tumor density was the only variable that could reliably predict OS, irrespective of the analysis used.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Mayur Virarkar
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Hagar S Mahmoud
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Vincenzo K Wong
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Carlos Ignacio Gonzalez Baerga
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Miti Parikh
- Keck School of Medicine, University of South California, Los Angeles, CA 90033, United States
| | - Sherif B Elsherif
- Department of Diagnostic Radiology, The University of Florida College of Medicine, Jacksonville, FL 32209, United States
| | - Priya R Bhosale
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
30
|
Zhou S, Sun D, Mao W, Liu Y, Cen W, Ye L, Liang F, Xu J, Shi H, Ji Y, Wang L, Chang W. Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study. EClinicalMedicine 2023; 65:102271. [PMID: 37869523 PMCID: PMC10589780 DOI: 10.1016/j.eclinm.2023.102271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Accurate tumour response prediction to targeted therapy allows for personalised conversion therapy for patients with unresectable colorectal cancer liver metastases (CRLM). In this study, we aimed to develop and validate a multi-modal deep learning model to predict the efficacy of bevacizumab in patients with initially unresectable CRLM using baseline PET/CT, clinical data, and colonoscopy biopsy specimens. Methods In this multicentre cohort study, we retrospectively collected data of 307 patients with CRLM from the BECOME study (NCT01972490) (Zhongshan Hospital of Fudan University, Shanghai) and two independent Chinese cohorts (internal validation cohort from January 1, 2018 to December 31, 2018 at Zhongshan Hospital of Fudan University; external validation cohort from January 1, 2020 to December 31, 2020 at Zhongshan Hospital-Xiamen, Shanghai, and the First Hospital of Wenzhou Medical University, Wenzhou). The main inclusion criteria were that patients with CRLM had pre-treatment PET/CT images as well as colonoscopy specimens. After extracting PET/CT features with deep neural networks (DNN) and selecting related clinical factors using LASSO analysis, a random forest classifier was built as the Deep Radiomics Bevacizumab efficacy predicting model (DERBY). Furthermore, by combining histopathological biomarkers into DERBY, we established DERBY+. The performance of model was evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value. Findings DERBY achieved promising performance in predicting bevacizumab sensitivity with an AUC of 0.77 and 95% confidence interval (CI) [0.67-0.87]. After combining histopathological features, we developed DERBY+, which had more robust accuracy for predicting tumour response in external validation cohort (AUC 0.83 and 95% CI [0.75-0.92], sensitivity 80.4%, specificity 76.8%). DERBY+ also had prognostic value: the responders had longer progression-free survival (median progression-free survival: 9.6 vs 6.3 months, p = 0.002) and overall survival (median overall survival: 27.6 vs 18.5 months, p = 0.010) than non-responders. Interpretation This multi-modal deep radiomics model, using PET/CT, clinical data and histopathological data, was able to identify patients with bevacizumab-sensitive CRLM, providing a favourable approach for precise patient treatment. To further validate and explore the clinical impact of this work, future prospective studies with larger patient cohorts are warranted. Funding The National Natural Science Foundation of China; Fujian Provincial Health Commission Project; Xiamen Science and Technology Agency Program; Clinical Research Plan of SHDC; Shanghai Science and Technology Committee Project; Clinical Research Plan of SHDC; Zhejiang Provincial Natural Science Foundation of China; and National Science Foundation of Xiamen.
Collapse
Affiliation(s)
- Shizhao Zhou
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dazhen Sun
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Cen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Lechi Ye
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Fei Liang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianmin Xu
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lisheng Wang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenju Chang
- Department of General Surgery, Department of Colorectal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, Fujian, 361015, China
| |
Collapse
|
31
|
Toader C, Eva L, Tataru CI, Covache-Busuioc RA, Bratu BG, Dumitrascu DI, Costin HP, Glavan LA, Ciurea AV. Frontiers of Cranial Base Surgery: Integrating Technique, Technology, and Teamwork for the Future of Neurosurgery. Brain Sci 2023; 13:1495. [PMID: 37891862 PMCID: PMC10605159 DOI: 10.3390/brainsci13101495] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The landscape of cranial base surgery has undergone monumental transformations over the past several decades. This article serves as a comprehensive survey, detailing both the historical and current techniques and technologies that have propelled this field into an era of unprecedented capabilities and sophistication. In the prologue, we traverse the historical evolution from rudimentary interventions to the state-of-the-art neurosurgical methodologies that define today's practice. Subsequent sections delve into the anatomical complexities of the anterior, middle, and posterior cranial fossa, shedding light on the intricacies that dictate surgical approaches. In a section dedicated to advanced techniques and modalities, we explore cutting-edge evolutions in minimally invasive procedures, pituitary surgery, and cranial base reconstruction. Here, we highlight the seamless integration of endocrinology, biomaterial science, and engineering into neurosurgical craftsmanship. The article emphasizes the paradigm shift towards "Functionally" Guided Surgery facilitated by intraoperative neuromonitoring. We explore its historical origins, current technologies, and its invaluable role in tailoring surgical interventions across diverse pathologies. Additionally, the digital era's contributions to cranial base surgery are examined. This includes breakthroughs in endoscopic technology, robotics, augmented reality, and the potential of machine learning and AI-assisted diagnostic and surgical planning. The discussion extends to radiosurgery and radiotherapy, focusing on the harmonization of precision and efficacy through advanced modalities such as Gamma Knife and CyberKnife. The article also evaluates newer protocols that optimize tumor control while preserving neural structures. In acknowledging the holistic nature of cranial base surgery, we advocate for an interdisciplinary approach. The ecosystem of this surgical field is presented as an amalgamation of various medical disciplines, including neurology, radiology, oncology, and rehabilitation, and is further enriched by insights from patient narratives and quality-of-life metrics. The epilogue contemplates future challenges and opportunities, pinpointing potential breakthroughs in stem cell research, regenerative medicine, and genomic tailoring. Ultimately, the article reaffirms the ethos of continuous learning, global collaboration, and patient-first principles, projecting an optimistic trajectory for the field of cranial base surgery in the coming decade.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Catalina-Ioana Tataru
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Hospital of Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (D.-I.D.); (H.P.C.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
32
|
Huang XW, Ding J, Zheng RR, Ma JY, Cai MT, Powell M, Lin F, Yang YJ, Jin C. An ultrasound-based radiomics model for survival prediction in patients with endometrial cancer. J Med Ultrason (2001) 2023; 50:501-510. [PMID: 37310510 PMCID: PMC10955020 DOI: 10.1007/s10396-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
PURPOSE To establish a nomogram integrating radiomics features based on ultrasound images and clinical parameters for predicting the prognosis of patients with endometrial cancer (EC). MATERIALS AND METHODS A total of 175 eligible patients with ECs were enrolled in our study between January 2011 and April 2018. They were divided into a training cohort (n = 122) and a validation cohort (n = 53). Least absolute shrinkage and selection operator (LASSO) regression were applied for selection of key features, and a radiomics score (rad-score) was calculated. Patients were stratified into high risk and low-risk groups according to the rad-score. Univariate and multivariable COX regression analysis was used to select independent clinical parameters for disease-free survival (DFS). A combined model based on radiomics features and clinical parameters was ultimately established, and the performance was quantified with respect to discrimination and calibration. RESULTS Nine features were selected from 1130 features using LASSO regression in the training cohort, which yielded an area under the curve (AUC) of 0.823 and 0.792 to predict DFS in the training and validation cohorts, respectively. Patients with a higher rad-score were significantly associated with worse DFS. The combined nomogram, which was composed of clinically significant variables and radiomics features, showed a calibration and favorable performance for DFS prediction (AUC 0.893 and 0.885 in the training and validation cohorts, respectively). CONCLUSION The combined nomogram could be used as a tool in predicting DFS and may assist individualized decision making and clinical treatment.
Collapse
Affiliation(s)
- Xiao-Wan Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jie Ding
- Department of Ultrasound Imaging, Yueqing Hospital of Wenzhou Medical University, Wenzhou, 325015, People's Republic of China
| | - Ru-Ru Zheng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jia-Yao Ma
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Meng-Ting Cai
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Martin Powell
- Nottingham Treatment Centre, Nottingham University Affiliated Hospital, Nottingham, NG7 2FT, UK
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yun-Jun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chu Jin
- Wenzhou Medical University Renji College, University Town, Chashan, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
33
|
Gao J, Bai Y, Miao F, Huang X, Schwaiger M, Rominger A, Li B, Zhu H, Lin X, Shi K. Prediction of synchronous distant metastasis of primary pancreatic ductal adenocarcinoma using the radiomics features derived from 18F-FDG PET and MRI. Clin Radiol 2023; 78:746-754. [PMID: 37487840 DOI: 10.1016/j.crad.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
AIM To explore the potential of the joint radiomics analysis of positron-emission tomography (PET) and magnetic resonance imaging (MRI) of primary tumours for predicting the risk of synchronous distant metastasis (SDM) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS 18F-FDG PET and MRI images of PDAC patients from January 2011 to December 2020 were collected retrospectively. Patients (n=66) who received 18F-FDG PET/CT and MRI were included in a development group. Patients (n=25) scanned with hybrid PET/MRI were incorporated in an external test group. A radiomics signature was constructed using the least absolute shrinkage and selection operator algorithm to select PET-MRI radiomics features of primary PDAC tumours. A radiomics nomogram was developed by combining the radiomics signature and important clinical indicators using univariate and multivariate analysis to assess patients' metastasis risk. The nomogram was verified with the employment of an external test group. RESULTS Regarding the development cohort, the radiomics nomogram was found to be better for predicting the risk of distant metastasis (area under the curve [AUC]: 0.93, sensitivity: 87%, specificity: 85%) than the clinical model (AUC: 0.70, p<0.001; sensitivity:70%, specificity: 65%) and the radiomics signature (AUC: 0.89, p>0.05; sensitivity: 65%, specificity:100%). Concerning the external test cohort, the radiomics nomogram yielded an AUC of 0.85. CONCLUSION PET-MRI based radiomics analysis exhibited effective prediction of the risk of SDM for preoperative PDAC patients and may offer complementary information and provide hints for cancer staging.
Collapse
Affiliation(s)
- J Gao
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Bai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - F Miao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - M Schwaiger
- Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Rominger
- Department of Nuclear Medicine, University of Bern, Switzerland
| | - B Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Zhu
- Department of Diagnostic Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - X Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - K Shi
- Department of Nuclear Medicine, University of Bern, Switzerland; Department of Informatics, Technical University of Munich, Germany
| |
Collapse
|
34
|
Lee J, Chun J, Kim H, Kim JS, Park SY. Development and evaluation of an integrated model based on a deep segmentation network and demography-added radiomics algorithm for segmentation and diagnosis of early lung adenocarcinoma. Comput Med Imaging Graph 2023; 109:102299. [PMID: 37729827 DOI: 10.1016/j.compmedimag.2023.102299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Non-invasive early detection and differentiation grading of lung adenocarcinoma using computed tomography (CT) images are clinically important for both clinicians and patients, including determining the extent of lung resection. However, these are difficult to accomplish using preoperative images, with CT-based diagnoses often being different from postoperative pathologic diagnoses. In this study, we proposed an integrated detection and classification algorithm (IDCal) for diagnosing ground-glass opacity nodules (GGN) using CT images and other patient informatics, and compared its performance with that of other diagnostic modalities. All labeling was confirmed by a thoracic surgeon by referring to the patient's CT image and biopsy report. The detection phase was implemented via a modified FC-DenseNet to contour the lesions as elaborately as possible and secure the reliability of the classification phase for subsequent applications. Then, by integrating radiomics features and other patients' general information, the lesions were dichotomously reclassified into "non-invasive" (atypical adenomatous hyperplasia, adenocarcinoma in situ, and minimally invasive adenocarcinoma) and "invasive" (invasive adenocarcinoma). Data from 168 GGN cases were used to develop the IDCal, which was then validated in 31 independent CT scans. IDCal showed a high accuracy of GGN detection (sensitivity, 0.970; false discovery rate, 0.697) and classification (accuracy, 0.97; f1-score, 0.98; ROAUC, 0.96). In conclusion, the proposed IDCal detects and classifies GGN with excellent performance. Thus, it can be suggested that our multimodal prediction model has high potential as an auxiliary diagnostic tool of GGN to help clinicians.
Collapse
Affiliation(s)
- Juyoung Lee
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06531, South Korea; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | | | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Oncosoft Inc., Seoul, South Korea; Medical Physics and Biomedical Engineering Lab (MPBEL), Yonsei University College of Medicine, Seoul 03722, South Korea.
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06531, South Korea.
| |
Collapse
|
35
|
Song H, Yang S, Yu B, Li N, Huang Y, Sun R, Wang B, Nie P, Hou F, Huang C, Zhang M, Wang H. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Cancer Imaging 2023; 23:89. [PMID: 37723572 PMCID: PMC10507832 DOI: 10.1186/s40644-023-00609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND To construct and assess a computed tomography (CT)-based deep learning radiomics nomogram (DLRN) for predicting the pathological grade of bladder cancer (BCa) preoperatively. METHODS We retrospectively enrolled 688 patients with BCa (469 in the training cohort, 219 in the external test cohort) who underwent surgical resection. We extracted handcrafted radiomics (HCR) features and deep learning (DL) features from three-phase CT images (including corticomedullary-phase [C-phase], nephrographic-phase [N-phase] and excretory-phase [E-phase]). We constructed predictive models using 11 machine learning classifiers, and we developed a DLRN by combining the radiomic signature with clinical factors. We assessed performance and clinical utility of the models with reference to the area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS The support vector machine (SVM) classifier model based on HCR and DL combined features was the best radiomic signature, with AUC values of 0.953 and 0.943 in the training cohort and the external test cohort, respectively. The AUC values of the clinical model in the training cohort and the external test cohort were 0.752 and 0.745, respectively. DLRN performed well on both data cohorts (training cohort: AUC = 0.961; external test cohort: AUC = 0.947), and outperformed the clinical model and the optimal radiomic signature. CONCLUSION The proposed CT-based DLRN showed good diagnostic capability in distinguishing between high and low grade BCa.
Collapse
Affiliation(s)
- Hongzheng Song
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Boyang Yu
- Qingdao No.58 High School of Shandong Province, Qingdao, Shandong, China
| | - Na Li
- Department of Radiology, The People's Hospital of Zhangqiu Area, Jinan, Shandong, China
| | - Yonghua Huang
- Department of Radiology, The Puyang Oilfield General Hospital, Puyang, Henan, China
| | - Rui Sun
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Bo Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Pei Nie
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China
| | - Feng Hou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chencui Huang
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China
| | - Meng Zhang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China.
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong, China.
| |
Collapse
|
36
|
Hou J, Wen X, Qu G, Chen W, Xu X, Wu G, Ji R, Wei G, Liang T, Huang W, Xiong L. A multicenter study on the application of artificial intelligence radiological characteristics to predict prognosis after percutaneous nephrolithotomy. Front Endocrinol (Lausanne) 2023; 14:1184608. [PMID: 37780621 PMCID: PMC10541026 DOI: 10.3389/fendo.2023.1184608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background A model to predict preoperative outcomes after percutaneous nephrolithotomy (PCNL) with renal staghorn stones is developed to be an essential preoperative consultation tool. Objective In this study, we constructed a predictive model for one-time stone clearance after PCNL for renal staghorn calculi, so as to predict the stone clearance rate of patients in one operation, and provide a reference direction for patients and clinicians. Methods According to the 175 patients with renal staghorn stones undergoing PCNL at two centers, preoperative/postoperative variables were collected. After identifying characteristic variables using PCA analysis to avoid overfitting. A predictive model was developed for preoperative outcomes after PCNL in patients with renal staghorn stones. In addition, we repeatedly cross-validated their model's predictive efficacy and clinical application using data from two different centers. Results The study included 175 patients from two centers treated with PCNL. We used a training set and an external validation set. Radionics characteristics, deep migration learning, clinical characteristics, and DTL+Rad-signature were successfully constructed using machine learning based on patients' pre/postoperative imaging characteristics and clinical variables using minimum absolute shrinkage and selection operator algorithms. In this study, DTL-Rad signal was found to be the outstanding predictor of stone clearance in patients with renal deer antler-like stones treated by PCNL. The DTL+Rad signature showed good discriminatory ability in both the training and external validation groups with AUC values of 0.871 (95% CI, 0.800-0.942) and 0.744 (95% CI, 0.617-0.871). The decision curve demonstrated the radiographic model's clinical utility and illustrated specificities of 0.935 and 0.806, respectively. Conclusion We found a prediction model combining imaging characteristics, neural networks, and clinical characteristics can be used as an effective preoperative prediction method.
Collapse
Affiliation(s)
- Jian Hou
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Xiangyang Wen
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Genyi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Wenwen Chen
- Department of Radiology, Zixing First People's Hospital, Chenzhou, China
| | - Xiang Xu
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Guoqing Wu
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Ruidong Ji
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Genggeng Wei
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Tuo Liang
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Wenyan Huang
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| | - Lin Xiong
- Division of Urology, Department of Surgery, The University of Hongkong-Shenzhen Hosipital, ShenZhen, China
| |
Collapse
|
37
|
Ji J, Yao Y, Sun L, Yang Q, Zhang G. Development and validation of a preoperative nomogram to predict lymph node metastasis in patients with bladder urothelial carcinoma. J Cancer Res Clin Oncol 2023; 149:10911-10923. [PMID: 37318590 PMCID: PMC10423104 DOI: 10.1007/s00432-023-04978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Predicting lymph node metastasis (LNM) in patients with bladder urothelial carcinoma (BUC) before radical cystectomy aids clinical decision making. Here, we aimed to develop and validate a nomogram to preoperatively predict LNM in BUC patients. METHODS Patients with histologically confirmed BUC, who underwent radical cystectomy and bilateral lymphadenectomy, were retrospectively recruited from two institutions. Patients from one institution were enrolled in the primary cohort, while those from the other were enrolled in the external validation cohort. Patient demographic, pathological (using transurethral resection of the bladder tumor specimens), imaging, and laboratory data were recorded. Univariate and multivariate logistic regression analyses were performed to explore the independent preoperative risk factors and develop the nomogram. Internal and external validation was conducted to assess nomogram performance. RESULTS 522 and 215 BUC patients were enrolled in the primary and external validation cohorts, respectively. We identified tumor grade, infiltration, extravesical invasion, LNM on imaging, tumor size, and serum creatinine levels as independent preoperative risk factors, which were subsequently used to develop the nomogram. The nomogram showed a good predictive accuracy, with area under the receiver operator characteristic curve values of 0.817 and 0.825 for the primary and external validation cohorts, respectively. The corrected C-indexes, calibration curves (after 1000 bootstrap resampling), decision curve analysis results, and clinical impact curves demonstrated that the nomogram performed well in both cohorts and was highly clinically applicable. CONCLUSION We developed a nomogram to preoperatively predict LNM in BUC, which was highly accurate, reliable, and clinically applicable.
Collapse
Affiliation(s)
- Junjie Ji
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingya Yang
- Department of Urology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China.
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
38
|
Basran PS, Shcherban N, Forman M, Chang J, Nelissen S, Recchia BK, Porter IR. Combining ultrasound radiomics, complete blood count, and serum biochemical biomarkers for diagnosing intestinal disorders in cats using machine learning. Vet Radiol Ultrasound 2023; 64:890-903. [PMID: 37394240 DOI: 10.1111/vru.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 07/04/2023] Open
Abstract
This retrospective analytical observational cohort study aimed to model and predict the classification of feline intestinal diseases from segmentations of a transverse section from small intestine ultrasound (US) image, complete blood count (CBC), and serum biochemical profile data using a variety of machine-learning approaches. In 149 cats from three institutions, images were obtained from cats with biopsy-confirmed small cell epitheliotropic lymphoma (lymphoma), inflammatory bowel disease (IBD), no pathology ("healthy"), and other conditions (warrant a biopsy for further diagnosis). CBC, blood serum chemistry, small intestinal ultrasound, and small intestinal biopsy were obtained within a 2-week interval. CBC and serum biomarkers and radiomic features were combined for modeling. Four classification schemes were investigated: (1) normal versus abnormal; (2) warranting or not warranting a biopsy; (3) lymphoma, IBD, healthy, or other conditions; and (4) lymphoma, IBD, or other conditions. Two feature selection methods were used to identify the top 3, 5, 10, and 20 features, and six machine learning models were trained. The average (95% CI) performance of models for all combinations of features, numbers of features, and types of classifiers was 0.886 (0.871-0.912) for Model 1 (normal vs. abnormal), 0.751 (0.735-0.818) for Model 2 (biopsy vs. no biopsy), 0.504 (0.450-0.556) for Model 3 (lymphoma, IBD, healthy, or other), and 0.531 (0.426-0.589), for Model 4 (lymphoma, IBD, or other). Our findings suggest model accuracies above 0.85 can be achieved in Model 1 and 2, and that including CBC and biochemistry data with US radiomics data did not significantly improve accuracy in our models.
Collapse
Affiliation(s)
- Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
- Department of Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Natalya Shcherban
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Marnin Forman
- Cornell University Veterinary Specialists, Stamford, Connecticut, USA
| | - Jasmine Chang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Sophie Nelissen
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Ian R Porter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
39
|
Zhang Y, Xu Z, Wu S, Zhu T, Hong X, Chi Z, Malla R, Jiang J, Huang Y, Xu Q, Wang Z, Zhang Y. Construction of 3D and 2D contrast-enhanced CT radiomics for prediction of CGB3 expression level and clinical prognosis in bladder cancer. Heliyon 2023; 9:e20335. [PMID: 37809854 PMCID: PMC10560067 DOI: 10.1016/j.heliyon.2023.e20335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Objective The purpose of this study was to construct a 3D and 2D contrast-enhanced computed tomography (CECT) radiomics model to predict CGB3 levels and assess its prognostic abilities in bladder cancer (Bca) patients. Methods Transcriptome data and CECT images of Bca patients were downloaded from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database. Clinical data of 43 cases from TCGA and TCIA were used for radiomics model evaluation. The Volume of interest (VOI) (3D) and region of interest (ROI) (2D) radiomics features were extracted. For the construction of predicting radiomics models, least absolute shrinkage and selection operator regression were used, and the filtered radiomics features were fitted using the logistic regression algorithm (LR). The model's effectiveness was measured using 10-fold cross-validation and the area under the receiver operating characteristic curve (AUC of ROC). Result CGB3 was a differential expressed prognosis-related gene and involved in the immune response process of plasma cells and T cell gamma delta. The high levels of CGB3 are a risk element for overall survival (OS). The AUCs of VOI and ROI radiomics models in the training set were 0.841 and 0.776, while in the validation set were 0.815 and 0.754, respectively. The Delong test revealed that the AUCs of the two models were not statistically different, and both models had good predictive performance. Conclusion The CGB3 expression level is an important prognosis factor for Bca patients. Both 3D and 2D CECT radiomics are effective in predicting CGB3 expression levels.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Zhuangyong Xu
- Department of Radiology,Shantou Central Hospital, Shantou, PR China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Tianxiang Zhu
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Shantou, PR China
| | - Xuwei Hong
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Zepai Chi
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Rujan Malla
- Department of Radiology, Nepal Medical Collage Teaching Hospital, Kathmandu, Nepal
| | - Jingqi Jiang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Yi Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, PR China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Key Laboratory of Urological Disease of Gansu Province, Clinical Center of Gansu Province for Nephron-Urology, Lanzhou, PR China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Shantou, PR China
| |
Collapse
|
40
|
Wu Y, Wang X, Gu C, Zhu J, Fang Y. Investigating predictors of progression from mild cognitive impairment to Alzheimer's disease based on different time intervals. Age Ageing 2023; 52:afad182. [PMID: 37740920 PMCID: PMC10518045 DOI: 10.1093/ageing/afad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is the early stage of AD, and about 10-12% of MCI patients will progress to AD every year. At present, there are no effective markers for the early diagnosis of whether MCI patients will progress to AD. This study aimed to develop machine learning-based models for predicting the progression from MCI to AD within 3 years, to assist in screening and prevention of high-risk populations. METHODS Data were collected from the Alzheimer's Disease Neuroimaging Initiative, a representative sample of cognitive impairment population. Machine learning models were applied to predict the progression from MCI to AD, using demographic, neuropsychological test and MRI-related biomarkers. Data were divided into training (56%), validation (14%) and test sets (30%). AUC (area under ROC curve) was used as the main evaluation metric. Key predictors were ranked utilising their importance. RESULTS The AdaBoost model based on logistic regression achieved the best performance (AUC: 0.98) in 0-6 month prediction. Scores from the Functional Activities Questionnaire, Modified Preclinical Alzheimer Cognitive Composite with Trails test and ADAS11 (Unweighted sum of 11 items from The Alzheimer's Disease Assessment Scale-Cognitive Subscale) were key predictors. CONCLUSION Through machine learning, neuropsychological tests and MRI-related markers could accurately predict the progression from MCI to AD, especially in a short period time. This is of great significance for clinical staff to screen and diagnose AD, and to intervene and treat high-risk MCI patients early.
Collapse
Affiliation(s)
- Yafei Wu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Xing Wang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Chenming Gu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Junmin Zhu
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Ya Fang
- School of Public Health, Xiamen University, Xiamen, Fujian, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen University, Xiamen, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
41
|
Chen Y, Huang X, Wu S, Guo P, Huang J, Zhou L, Tan X. Machine-learning predictive model of pregnancy-induced hypertension in the first trimester. Hypertens Res 2023; 46:2135-2144. [PMID: 37160966 DOI: 10.1038/s41440-023-01298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 03/17/2023] [Indexed: 05/11/2023]
Abstract
In the first trimester of pregnancy, accurately predicting the occurrence of pregnancy-induced hypertension (PIH) is important for both identifying high-risk women and adopting early intervention. In this study, we used four machine-learning models (LASSO logistic regression, random forest, backpropagation neural network, and support vector machines) to predict the occurrence of PIH in a prospective cohort. Candidate features for predicting the occurrence of middle and late PIH were acquired using a LASSO algorithm. The performance of predictive models was assessed using receiver operating characteristic analysis. Finally, a nomogram was established with the model scores, age, and nulliparity. Calibration, clinical usefulness, and internal validation were used to assess the performance of the nomogram. In the training set (2258 pregnant women), eleven candidate factors in the first trimester were significantly associated with the occurrence of PIH (P < 0.001 in the training set). Four models showed AUCs from 0.780 to 0.816 in the training set. For the validation set (939 pregnant women), AUCs varied from 0.516 to 0.795. The nomogram showed good discrimination, with an AUC of 0.847 (95% CI: 0.805-0.889) in the training set and 0.753 (95% CI: 0.653-0.853) in the validation set. Decision curve analysis suggested that the model was clinically useful. The model developed using LASSO logistic regression achieved the best performance in predicting the occurrence of PIH. The derived nomogram, which incorporates the model score and maternal risk factors, can be used to predict PIH in clinical practice. We develop a model with good performance for clinical prediction of PIH in the first trimester.
Collapse
Affiliation(s)
- Yequn Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiru Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Shiwan Wu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Pi Guo
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ju Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Li Zhou
- Cancer Hospital Of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China.
- Shantou University Medical College, Shantou, Guangdong, 515041, China.
| |
Collapse
|
42
|
Qian H, Shen Z, Zhou D, Huang Y. Intratumoral and peritumoral radiomics model based on abdominal ultrasound for predicting Ki-67 expression in patients with hepatocellular cancer. Front Oncol 2023; 13:1209111. [PMID: 37711208 PMCID: PMC10498123 DOI: 10.3389/fonc.2023.1209111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Background Hepatocellular cancer (HCC) is one of the most common tumors worldwide, and Ki-67 is highly important in the assessment of HCC. Our study aimed to evaluate the value of ultrasound radiomics based on intratumoral and peritumoral tissues in predicting Ki-67 expression levels in patients with HCC. Methods We conducted a retrospective analysis of ultrasonic and clinical data from 118 patients diagnosed with HCC through histopathological examination of surgical specimens in our hospital between September 2019 and January 2023. Radiomics features were extracted from ultrasound images of both intratumoral and peritumoral regions. To select the optimal features, we utilized the t-test and the least absolute shrinkage and selection operator (LASSO). We compared the area under the curve (AUC) values to determine the most effective modeling method. Subsequently, we developed four models: the intratumoral model, the peritumoral model, combined model #1, and combined model #2. Results Of the 118 patients, 64 were confirmed to have high Ki-67 expression while 54 were confirmed to have low Ki-67 expression. The AUC of the intratumoral model was 0.796 (0.649-0.942), and the AUC of the peritumoral model was 0.772 (0.619-0.926). Furthermore, combined model#1 yielded an AUC of 0.870 (0.751-0.989), and the AUC of combined model#2 was 0.762 (0.605-0.918). Among these models, combined model#1 showed the best performance in terms of AUC, accuracy, F1-score, and decision curve analysis (DCA). Conclusion We presented an ultrasound radiomics model that utilizes both intratumoral and peritumoral tissue information to accurately predict Ki-67 expression in HCC patients. We believe that incorporating both regions in a proper manner can enhance the diagnostic performance of the prediction model. Nevertheless, it is not sufficient to include both regions in the region of interest (ROI) without careful consideration.
Collapse
Affiliation(s)
- Hongwei Qian
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People’s Hospital, Shaoxing, China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, China
| | - Zhihong Shen
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People’s Hospital, Shaoxing, China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, China
| | - Difan Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People’s Hospital, Shaoxing, China
- Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, China
| | - Yanhua Huang
- Department of Ultrasound, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
43
|
Jiang S, Locatello LG, Maggiore G, Gallo O. Radiomics-Based Analysis in the Prediction of Occult Lymph Node Metastases in Patients with Oral Cancer: A Systematic Review. J Clin Med 2023; 12:4958. [PMID: 37568363 PMCID: PMC10419487 DOI: 10.3390/jcm12154958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Tumor extension and metastatic cervical lymph nodes' (LNs) number and dimensions are major prognostic factors in patients with oral squamous cell carcinoma (OSCC). Radiomics-based models are being integrated into clinical practice in the prediction of LN status prior to surgery in order to optimize the treatment, yet their value is still debated. METHODS A systematic review of the literature was conducted according to the PRISMA guideline. Baseline study characteristics, and methodological items were extracted and summarized. RESULTS A total of 10 retrospective studies were included into the present study, each of them exploiting a single imaging modality. Data from a cohort of 1489 patients were analyzed: the highest AUC value was 99.5%, ACC ranges from 68% to 97.5%, and sensibility and specificity were over 0.65 and 0.70, respectively. CONCLUSION Radiomics may be a noninvasive tool to predict occult LN metastases (LNM) in OSCC patients prior to treatment; further prospective studies are warranted to create a reproducible and reliable method for the detection of LNM in OSCC.
Collapse
Affiliation(s)
- Serena Jiang
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Luca Giovanni Locatello
- Department of Otorhinolaryngology, University Hospital “Santa Maria Della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy;
| | - Giandomenico Maggiore
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
44
|
Zheng Q, Jian J, Wang J, Wang K, Fan J, Xu H, Ni X, Yang S, Yuan J, Wu J, Jiao P, Yang R, Chen Z, Liu X, Wang L. Predicting Lymph Node Metastasis Status from Primary Muscle-Invasive Bladder Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study. Cancers (Basel) 2023; 15:cancers15113000. [PMID: 37296961 DOI: 10.3390/cancers15113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Accurate prediction of lymph node metastasis (LNM) status in patients with muscle-invasive bladder cancer (MIBC) before radical cystectomy can guide the use of neoadjuvant chemotherapy and the extent of pelvic lymph node dissection. We aimed to develop and validate a weakly-supervised deep learning model to predict LNM status from digitized histopathological slides in MIBC. METHODS We trained a multiple instance learning model with an attention mechanism (namely SBLNP) from a cohort of 323 patients in the TCGA cohort. In parallel, we collected corresponding clinical information to construct a logistic regression model. Subsequently, the score predicted by the SBLNP was incorporated into the logistic regression model. In total, 417 WSIs from 139 patients in the RHWU cohort and 230 WSIs from 78 patients in the PHHC cohort were used as independent external validation sets. RESULTS In the TCGA cohort, the SBLNP achieved an AUROC of 0.811 (95% confidence interval [CI], 0.771-0.855), the clinical classifier achieved an AUROC of 0.697 (95% CI, 0.661-0.728) and the combined classifier yielded an improvement to 0.864 (95% CI, 0.827-0.906). Encouragingly, the SBLNP still maintained high performance in the RHWU cohort and PHHC cohort, with an AUROC of 0.762 (95% CI, 0.725-0.801) and 0.746 (95% CI, 0.687-0.799), respectively. Moreover, the interpretability of SBLNP identified stroma with lymphocytic inflammation as a key feature of predicting LNM presence. CONCLUSIONS Our proposed weakly-supervised deep learning model can predict the LNM status of MIBC patients from routine WSIs, demonstrating decent generalization performance and holding promise for clinical implementation.
Collapse
Affiliation(s)
- Qingyuan Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Jian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingsong Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kai Wang
- Department of Urology, People's Hospital of Hanchuan City, Xiaogan 432300, China
| | - Junjie Fan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Trusted Computing and Information Assurance Laboratory, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
| | - Huazhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinmiao Ni
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Song Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiejun Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Panpan Jiao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rui Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
45
|
Fournier C, Leguillette C, Leblanc E, Le Deley MC, Carnot A, Pasquier D, Escande A, Taieb S, Ceugnart L, Lebellec L. Diagnostic Value of the Texture Analysis Parameters of Retroperitoneal Residual Masses on Computed Tomographic Scan after Chemotherapy in Non-Seminomatous Germ Cell Tumors. Cancers (Basel) 2023; 15:cancers15112997. [PMID: 37296963 DOI: 10.3390/cancers15112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
After chemotherapy, patients with non-seminomatous germ cell tumors (NSGCTs) with residual masses >1 cm on computed tomography (CT) undergo surgery. However, in approximately 50% of cases, these masses only consist of necrosis/fibrosis. We aimed to develop a radiomics score to predict the malignant character of residual masses to avoid surgical overtreatment. Patients with NSGCTs who underwent surgery for residual masses between September 2007 and July 2020 were retrospectively identified from a unicenter database. Residual masses were delineated on post-chemotherapy contrast-enhanced CT scans. Tumor textures were obtained using the free software LifeX. We constructed a radiomics score using a penalized logistic regression model in a training dataset, and evaluated its performance on a test dataset. We included 76 patients, with 149 residual masses; 97 masses were malignant (65%). In the training dataset (n = 99 residual masses), the best model (ELASTIC-NET) led to a radiomics score based on eight texture features. In the test dataset, the area under the curve (AUC), sensibility, and specificity of this model were respectively estimated at 0.82 (95%CI, 0.69-0.95), 90.6% (75.0-98.0), and 61.1% (35.7-82.7). Our radiomics score may help in the prediction of the malignant nature of residual post-chemotherapy masses in NSGCTs before surgery, and thus limit overtreatment. However, these results are insufficient to simply select patients for surgery.
Collapse
Affiliation(s)
- Clémence Fournier
- Department of Medical Oncology, Centre Hospitalier de Roubaix, 59100 Roubaix, France
| | | | - Eric Leblanc
- Department of Surgical Oncology, Centre Oscar Lambret, 59000 Lille, France
| | | | - Aurélien Carnot
- Department of Medical Oncology, Centre Oscar Lambret, 59000 Lille, France
| | - David Pasquier
- Academic Department of Radiation Oncology, Centre Oscar Lambret, 59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL, 59000 Lille, France
| | - Alexandre Escande
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL, 59000 Lille, France
- Department of Radiotherapy, Clinique Léonard de Vinci, 59187 Dechy, France
| | - Sophie Taieb
- Department of Radiology, Centre Oscar Lambret, 59000 Lille, France
| | - Luc Ceugnart
- Department of Radiotherapy, Clinique Léonard de Vinci, 59187 Dechy, France
| | - Loïc Lebellec
- Department of Medical Oncology, Centre Oscar Lambret, 59000 Lille, France
| |
Collapse
|
46
|
Wu J, Guo Q, Zhu J, Wu Y, Wang S, Liang S, Ju X, Wu X. Developing a nomogram for preoperative prediction of cervical cancer lymph node metastasis by multiplex immunofluorescence. BMC Cancer 2023; 23:485. [PMID: 37254049 PMCID: PMC10228122 DOI: 10.1186/s12885-023-10932-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Most traditional procedures can destroy tissue natural structure, and the information on spatial distribution and temporal distribution of immune milieu in situ would be lost. We aimed to explore the potential mechanism of pelvic lymph node (pLN) metastasis of cervical cancer (CC) by multiplex immunofluorescence (mIF) and construct a nomogram for preoperative prediction of pLN metastasis in patients with CC. METHODS Patients (180 IB1-IIA2 CC patients of 2009 FIGO (International Federation of Gynecology and Obstetrics)) were divided into two groups based on pLN status. Tissue microarray (TMA) was prepared and tumor-infiltrating immune markers were assessed by mIF. Multivariable logistic regression analysis and nomogram were used to develop the predicting model. RESULTS Multivariable logistic regression analysis constructs a predictive model and the area under the curve (AUC) can reach 0.843. By internal validation with the remaining 40% of cases, a new ROC curve has emerged and the AUC reached 0.888. CONCLUSIONS This study presents an immune nomogram, which can be conveniently used to facilitate the preoperative individualized prediction of LN metastasis in patients with CC.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Jun Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
| | - Siyuan Liang
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xingzhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, PR China.
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200000, PR China.
| |
Collapse
|
47
|
Tang N, Chen ZY, Yang Z, Shang HZ, Shi GJ. Development and verification of prognostic nomogram for ampullary carcinoma based on the SEER database. Front Oncol 2023; 13:1197626. [PMID: 37313462 PMCID: PMC10259652 DOI: 10.3389/fonc.2023.1197626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Background Ampullary carcinoma (AC) is a rare cancer of the digestive system that occurs in the ampulla at the junction of the bile duct and pancreatic duct. However, there is a lack of predictive models for overall survival (OS) and disease -specific survival (DSS) in AC. This study aimed to develop a prognostic nomogram for patients with AC using data from the Surveillance, Epidemiology, and End Results Program (SEER) database. Methods Data from 891 patients between 2004 and 2019 were downloaded and extracted from the SEER database. They were randomly divided into the development group (70%) and the verification group (30%), and then univariate and multivariate Cox proportional hazards regression, respectively, was used to explore the possible risk factors of AC. The factors significantly related to OS and DSS were used to establish the nomogram, which was assessed via the concordance index (C-index), and calibration curve. An internal validation was conducted to test the accuracy and effectiveness of the nomogram. Kaplan-Meier calculation was used to predict the further OS and DSS status of these patients. Results On multivariate Cox proportional hazards regression, the independent prognostic risk factors associated with OS were age, surgery, chemotherapy, regional node positive (RNP),extension range and distant metastasis with a moderate C-index of 0.731 (95% confidence interval (CI): 0.719-0.744) and 0.766 (95% CI: 0.747-0.785) in the development and verification groups, respectively. While, marital status, surgery, chemotherapy, regional node positive (RNP),extension range and distant metastasis were significantly linked to AC patients' DSS, which have a better C-index of 0.756 (95% confidence interval (CI): 0.741-0.770) and 0.781 (95% CI: 0.757-0.805) in the development and verification groups. Both the survival calibration curves of 3- and 5-year OS and DSS brought out a high consistency. Conclusion Our study yielded a satisfactory nomogram showing the survival of AC patients, which may help clinicians to assess the situation of AC patients and implement further treatment.
Collapse
Affiliation(s)
- Nan Tang
- Department of Hepatobiliary, Qingdao Chengyang District People’s Hospital, Qingdao, Shandong, China
- Dalian Medical University, Dalian, Liaoning, China
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Zeng-Yin Chen
- Department of Hepatobiliary, Qingdao Chengyang District People’s Hospital, Qingdao, Shandong, China
| | - Zhen Yang
- Department of Hepatopancreatobiliary Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - He-Zhen Shang
- Department of Hepatobiliary, Qingdao Chengyang District People’s Hospital, Qingdao, Shandong, China
| | - Guang-Jun Shi
- Department of Hepatobiliary and Pancreatic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| |
Collapse
|
48
|
Zeng C, Zhang W, Liu M, Liu J, Zheng Q, Li J, Wang Z, Sun G. Efficacy of radiomics model based on the concept of gross tumor volume and clinical target volume in predicting occult lymph node metastasis in non-small cell lung cancer. Front Oncol 2023; 13:1096364. [PMID: 37293586 PMCID: PMC10246750 DOI: 10.3389/fonc.2023.1096364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Objective This study aimed to establish a predictive model for occult lymph node metastasis (LNM) in patients with clinical stage I-A non-small cell lung cancer (NSCLC) based on contrast-enhanced CT. Methods A total of 598 patients with stage I-IIA NSCLC from different hospitals were randomized into the training and validation group. The "Radiomics" tool kit of AccuContour software was employed to extract the radiomics features of GTV and CTV from chest-enhanced CT arterial phase pictures. Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was applied to reduce the number of variables and develop GTV, CTV, and GTV+CTV models for predicting occult lymph node metastasis (LNM). Results Eight optimal radiomics features related to occult LNM were finally identified. The receiver operating characteristic (ROC) curves of the three models showed good predictive effects. The area under the curve (AUC) value of GTV, CTV, and GTV+CTV model in the training group was 0.845, 0.843, and 0.869, respectively. Similarly, the corresponding AUC values in the validation group were 0.821, 0.812, and 0.906. The combined GTV+CTV model exhibited a better predictive performance in the training and validation group by the Delong test (p<0.05). Moreover, the decision curve showed that the combined GTV+CTV predictive model was superior to the GTV or CTV model. Conclusion The radiomics prediction models based on GTV and CTV can predict occult LNM in patients with clinical stage I-IIA NSCLC preoperatively, and the combined GTV+CTV model is the optimal strategy for clinical application.
Collapse
Affiliation(s)
- Chao Zeng
- Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Clinical Medicine College, Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wei Zhang
- Department of Radiotherapy, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai, Shandong, China
| | - Meiyue Liu
- Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Clinical Medicine College, Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianping Liu
- Department of Chemoradiation, Tangshan People’s Hospital, Tangshan, Hebei, China
| | - Qiangxin Zheng
- Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Clinical Medicine College, Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianing Li
- Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Clinical Medicine College, Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhiwu Wang
- Department of Chemoradiation, Tangshan People’s Hospital, Tangshan, Hebei, China
| | - Guogui Sun
- Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, Clinical Medicine College, Affiliated Hospital, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
49
|
Wu S, Hong G, Xu A, Zeng H, Chen X, Wang Y, Luo Y, Wu P, Liu C, Jiang N, Dang Q, Yang C, Liu B, Shen R, Chen Z, Liao C, Lin Z, Wang J, Lin T. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: a retrospective, multicentre, diagnostic study. Lancet Oncol 2023; 24:360-370. [PMID: 36893772 DOI: 10.1016/s1470-2045(23)00061-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Accurate lymph node staging is important for the diagnosis and treatment of patients with bladder cancer. We aimed to develop a lymph node metastases diagnostic model (LNMDM) on whole slide images and to assess the clinical effect of an artificial intelligence-assisted (AI) workflow. METHODS In this retrospective, multicentre, diagnostic study in China, we included consecutive patients with bladder cancer who had radical cystectomy and pelvic lymph node dissection, and from whom whole slide images of lymph node sections were available, for model development. We excluded patients with non-bladder cancer and concurrent surgery, or low-quality images. Patients from two hospitals (Sun Yat-sen Memorial Hospital of Sun Yat-sen University and Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China) were assigned before a cutoff date to a training set and after the date to internal validation sets for each hospital. Patients from three other hospitals (the Third Affiliated Hospital of Sun Yat-sen University, Nanfang Hospital of Southern Medical University, and the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China) were included as external validation sets. A validation subset of challenging cases from the five validation sets was used to compare performance between the LNMDM and pathologists, and two other datasets (breast cancer from the CAMELYON16 dataset and prostate cancer from the Sun Yat-sen Memorial Hospital of Sun Yat-sen University) were collected for a multi-cancer test. The primary endpoint was diagnostic sensitivity in the four prespecified groups (ie, the five validation sets, a single-lymph-node test set, the multi-cancer test set, and the subset for a performance comparison between the LNMDM and pathologists). FINDINGS Between Jan 1, 2013 and Dec 31, 2021, 1012 patients with bladder cancer had radical cystectomy and pelvic lymph node dissection and were included (8177 images and 20 954 lymph nodes). We excluded 14 patients (165 images) with concurrent non-bladder cancer and also excluded 21 low-quality images. We included 998 patients and 7991 images (881 [88%] men; 117 [12%] women; median age 64 years [IQR 56-72]; ethnicity data not available; 268 [27%] with lymph node metastases) to develop the LNMDM. The area under the curve (AUC) for accurate diagnosis of the LNMDM ranged from 0·978 (95% CI 0·960-0·996) to 0·998 (0·996-1·000) in the five validation sets. Performance comparisons between the LNMDM and pathologists showed that the diagnostic sensitivity of the model (0·983 [95% CI 0·941-0·998]) substantially exceeded that of both junior pathologists (0·906 [0·871-0·934]) and senior pathologists (0·947 [0·919-0·968]), and that AI assistance improved sensitivity for both junior (from 0·906 without AI to 0·953 with AI) and senior (from 0·947 to 0·986) pathologists. In the multi-cancer test, the LNMDM maintained an AUC of 0·943 (95% CI 0·918-0·969) in breast cancer images and 0·922 (0·884-0·960) in prostate cancer images. In 13 patients, the LNMDM detected tumour micrometastases that had been missed by pathologists who had previously classified these patients' results as negative. Receiver operating characteristic curves showed that the LNMDM would enable pathologists to exclude 80-92% of negative slides while maintaining 100% sensitivity in clinical application. INTERPRETATION We developed an AI-based diagnostic model that did well in detecting lymph node metastases, particularly micrometastases. The LNMDM showed substantial potential for clinical applications in improving the accuracy and efficiency of pathologists' work. FUNDING National Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, and the Guangdong Provincial Clinical Research Centre for Urological Diseases.
Collapse
Affiliation(s)
- Shaoxu Wu
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou, Guangdong, China
| | - Guibin Hong
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Zeng
- Department of Pathology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xulin Chen
- Cells Vision Medical Technology, Guangzhou, Guangdong, China
| | - Yun Wang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Luo
- Sun Yat-sen Memorial Hospital and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiang Dang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bohao Liu
- Sun Yat-sen Memorial Hospital and Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Runnan Shen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zeshi Chen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chengxiao Liao
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen Lin
- Cells Vision Medical Technology, Guangzhou, Guangdong, China
| | - Jin Wang
- Cells Vision Medical Technology, Guangzhou, Guangdong, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Zhao X, Li W, Zhang J, Tian S, Zhou Y, Xu X, Hu H, Lei D, Wu F. Radiomics analysis of CT imaging improves preoperative prediction of cervical lymph node metastasis in laryngeal squamous cell carcinoma. Eur Radiol 2023; 33:1121-1131. [PMID: 35984515 DOI: 10.1007/s00330-022-09051-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To investigate the role of CT radiomics for preoperative prediction of lymph node metastasis (LNM) in laryngeal squamous cell carcinoma (LSCC). METHODS LSCC patients who received open surgery and lymphadenectomy were enrolled and randomized into primary and validation cohorts at a ratio of 7:3 (325 vs. 139). In the primary cohort, we extracted radiomics features from whole intratumoral regions on venous-phase CT images and constructed a radiomics signature by least absolute shrinkage and selection operator (LASSO) regression. A radiomics model incorporating the radiomic signature and independent clinical factors was established via multivariable logistic regression and presented as a nomogram. Nomogram performance was compared with a clinical model and traditional CT report with respect to its discrimination and clinical usefulness. The radiomics nomogram was internally tested in an independent validation cohort. RESULTS The radiomics signature, composed of 9 stable features, was associated with LNM in both the primary and validation cohorts (both p < .001). A radiomics model incorporating independent predictors of LNM (the radiomics signature, tumor subsite, and CT report) showed significantly better discrimination of nodal status than either the clinical model or the CT report in the primary cohort (AUC 0.91 vs. 0.84 vs. 0.68) and validation cohort (AUC 0.89 vs. 0.83 vs. 0.70). Decision curve analysis confirmed that the radiomics nomogram was superior to the clinical model and traditional CT report. CONCLUSIONS The CT-based radiomics nomogram may improve preoperative identification of nodal status and help in clinical decision-making in LSCC. KEY POINTS • The radiomics model showed favorable performance for predicting LN metastasis in LSCC patients. • The radiomics model may help in clinical decision-making and define patient subsets benefiting most from neck treatment.
Collapse
Affiliation(s)
- Xingguo Zhao
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, 250012, Shandong, China
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, 250012, Shandong, China.
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|