1
|
Iriarte C, Yeh JE, Alloo A, Boull C, Carlberg VM, Coughlin CC, Lara-Corrales I, Levy R, Nguyen CV, Oza VS, Patel AB, Rotemberg V, Shah SD, Zheng L, Miller CH, Hlobik M, Daigneault J, Choi JN, Huang JT, Vivar KL. Mucocutaneous toxicities from MEK inhibitors: a scoping review of the literature. Support Care Cancer 2024; 32:610. [PMID: 39174797 DOI: 10.1007/s00520-024-08810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND MEK inhibitors cause a wide spectrum of mucocutaneous toxicities which can delay or interrupt life-saving therapy. PURPOSE To summarize the morphology, incidence, and clinical presentation of mucocutaneous toxicities from MEK inhibitors via a scoping review of the literature. METHODS We conducted a scoping review of the published literature, including clinical trials, retrospective and prospective studies, reviews, and case reports and series. All included literature was analyzed by a panel of pediatric and adult oncodermatologists. RESULTS Of 1626 initial citations, 227 articles met final inclusion criteria. Our review identified follicular reactions, ocular toxicities, xerosis, eczematous dermatitis, edema, and paronychia as the most common mucocutaneous side effects from MEK inhibitor therapy. Grade 1 and 2 reactions were the most prevalent and were typically managed while continuing treatment; however, grade 3 toxicities requiring dose reductions or treatment interruptions were also reported. CONCLUSION Mucocutaneous toxicities to MEK inhibitor therapy are common and most often mild in severity. Early recognition and treatment can mitigate disruptions in oncologic therapy.
Collapse
Affiliation(s)
- Christopher Iriarte
- Department of Dermatology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Gryzmish 522, Boston, MA, 02215, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | - Jennifer E Yeh
- Department of Dermatology, Stanford University School of Medicine, Redwood City, CA, USA
| | - Allireza Alloo
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christina Boull
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| | - Valerie M Carlberg
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Wisconsin, Milwaukee, WI, USA
| | - Carrie C Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Irene Lara-Corrales
- Division of Dermatology, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Rebecca Levy
- Division of Dermatology, Hospital for Sick Children, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Cuong V Nguyen
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vikash S Oza
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anisha B Patel
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas Health Science Center- Houston, Houston, TX, USA
| | - Veronica Rotemberg
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sonal D Shah
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lida Zheng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Corinne H Miller
- Galter Health Sciences Library and Learning Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madeline Hlobik
- Dermatology Section, Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Jaclyn Daigneault
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer N Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Jennifer T Huang
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Dermatology Section, Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Karina L Vivar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Pediatric Dermatology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Perrone C, Angioli R, Luvero D, Giannini A, Di Donato V, Cuccu I, Muzii L, Raspagliesi F, Bogani G. Targeting BRAF pathway in low-grade serous ovarian cancer. J Gynecol Oncol 2024; 35:e104. [PMID: 38768941 PMCID: PMC11262891 DOI: 10.3802/jgo.2024.35.e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Mutations in genes encoding for proteins along the RAS-RAF-MEK-ERK pathway have been detected in a variety of tumor entities including ovarian carcinomas. In the recent years, several inhibitors of this pathway have been developed, whose antitumor potential is currently being assessed in different clinical trials. Low grade serous ovarian carcinoma, is a rare gynecological tumor which shows favorable overall survival, compared to the general ovarian cancer population, but worrying resistance to conventional chemotherapies. The clinical behavior of low grade serous ovarian carcinoma reflects the different gene profile compared to high-grade serous carcinoma: KRAS/BRAF mutations. BRAF inhibitors as single agents were approved for the treatment of BRAF mutated tumors. Nevertheless, many patients face progressive disease. The understanding of the mechanisms of resistance to BRAF inhibitors therapy and preclinical studies showing that BRAF and mitogen-activated protein kinase kinase (MEK) inhibitors combined therapy delays the onset of resistance compared to BRAF inhibitor single agent, led to the clinical investigation of combined therapy. The aim of this paper is to review the efficacy and safety of the combination of BRAF plus MEK inhibitors on ovarian carcinomas, in particularly focusing on low grade serous ovarian carcinoma.
Collapse
Affiliation(s)
- Chiara Perrone
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Angioli
- Department of Gynecology, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Daniela Luvero
- Department of Gynecology, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Andrea Giannini
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Violante Di Donato
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilaria Cuccu
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovico Muzii
- Department of Gynecological, Obstetrical and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Raspagliesi
- Gynecologic Oncologic Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giorgio Bogani
- Gynecologic Oncologic Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| |
Collapse
|
3
|
Peacock BC, Tripathy S, Hanania HL, Wang HY, Sadighi Z, Patel AB. Cutaneous toxicities of mitogen-activated protein kinase inhibitors in children and young adults with neurofibromatosis-1. J Neurooncol 2024; 167:515-522. [PMID: 38443692 DOI: 10.1007/s11060-024-04617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder which commonly causes neoplasms leading to disfigurement or dysfunction. Mitogen-activated protein kinase inhibitors (MEKi) are generally well-tolerated treatments which target neural tumor progression in patients with NF1. However, cutaneous adverse events (CAEs) are common and may hinder patients' abilities to remain on treatment, particularly in children. We aim to characterize CAEs secondary to MEKi treatment in pediatric and young adult patients with NF1. METHODS We reviewed institutional medical records of patients under 30 years with a diagnosis of "NF1," "NF2," or "other neurofibromatoses" on MEKi therapy between January 1, 2019 and June 1, 2022. We recorded the time-to-onset, type, and distribution of CAEs, non-cutaneous adverse events (AEs), AE management, and tumor response. RESULTS Our cohort consisted of 40 patients with NF1 (median age, 14 years). Tumor types included low-grade gliomas (51%) and plexiform neurofibromas (38%). MEKi used included selumetinib (69%), trametinib (25%), and mirdametinib (6%). A total of 74 CAEs occurred, with 28 cases of acneiform rash (38%). Other common CAEs were paronychia, seborrheic dermatitis, eczema, xerosis, and oral mucositis. The most common treatments included oral antibiotics and topical corticosteroids. Most patients had clinical (stable or improved) tumor response (71%) while 29% had tumor progression while on a MEKi. There was no significant association between CAE presence and tumor response (p = 0.39). CONCLUSIONS Improvement in characterization of MEKi toxicities and their management is important to develop treatment guidelines for pediatric and young adult patients with NF1 on MEKi therapy.
Collapse
Affiliation(s)
- Brianna C Peacock
- Texas A&M University School of Engineering Medicine, Houston, TX, USA
| | - Sanjna Tripathy
- McGovern Medical School, The University of Texas Health Sciences Center, Houston, TX, USA
| | | | | | - Zsila Sadighi
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anisha B Patel
- Department of Dermatology, Internal Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 1452, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Chen Y, Huang M, Lu J, Zhang Q, Wu J, Peng S, Chen S, Zhang Y, Cheng L, Lin T, Chen X, Huang J. Establishment of a prognostic model to predict chemotherapy response and identification of RAC3 as a chemotherapeutic target in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:509-528. [PMID: 37310098 DOI: 10.1002/tox.23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Cisplatin-based chemotherapy is considered the primary treatment option for patients with advanced bladder cancer (BCa). However, the objective response rate to chemotherapy is often unsatisfactory, leading to a poor 5-year survival rate. Furthermore, current strategies for evaluating chemotherapy response and prognosis are limited and inefficient. In this study, we aimed to address these challenges by establishing a chemotherapy response type gene (CRTG) signature consisting of 9 genes and verified the prognostic value of this signature using TCGA and GEO BCa cohorts. The risk scores based on the CRTG signature were found to be associated with advanced clinicopathological status and demonstrated favorable predictive power for chemotherapy response in the TCGA cohort. Meanwhile, tumors with high risk scores exhibited a tendency toward a "cold tumor" phenotype. These tumors showed a low abundance of T cells, CD8+ T cells and cytotoxic lymphocytes, along with a high abundance of cancer-associated fibroblasts. Moreover, they displayed higher mRNA levels of these immune checkpoints: CD200, CD276, CD44, NRP1, PDCD1LG2 (PD-L2), and TNFSF9. Furthermore, we developed a nomogram that integrated the CRTG signature with clinicopathologic risk factors. This nomogram proved to be a more effective tool for predicting the prognosis of BCa patients. Additionally, we identified Rac family small GTPase 3 (RAC3) as a biomarker in our model. RAC3 was found to be overexpressed in chemoresistant BCa tissues and enhance the chemotherapeutic resistance of BCa cells in vitro and in vivo by regulating the PAK1-ERK1/2 pathway. In conclusion, our study presents a novel CRTG model for predicting chemotherapy response and prognosis in BCa. We also highlight the potential of combining chemotherapy with immunotherapy as a promising strategy for chemoresistant BCa and that RAC3 might be a latent target for therapeutic intervention.
Collapse
Affiliation(s)
- Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Junlin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Qiang Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jilin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Siting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yangjie Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, PR China
| |
Collapse
|
5
|
Nasioudis D, Fernandez ML, Wong N, Powell DJ, Mills GB, Westin S, Fader AN, Carey MS, Simpkins F. The spectrum of MAPK-ERK pathway genomic alterations in gynecologic malignancies: Opportunities for novel therapeutic approaches. Gynecol Oncol 2023; 177:86-94. [PMID: 37657193 DOI: 10.1016/j.ygyno.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE To investigate the incidence of MAPK/ERK pathway genomic alterations among patients with gynecologic malignancies. METHODS We accessed the American Association of Cancer Research Genomics Evidence of Neoplasia Information Exchange publicly available dataset (v13.0). Patients with malignant tumors of the ovary, uterus, and cervix were identified. Following stratification by tumor site and histology, we examined the prevalence of MAPK/ERK pathway gene alterations (somatic mutation, and/or structural chromosome alterations). We included the following RAS-MAPK pathway genes known to be implicated in the dysregulation of the pathway; KRAS, NRAS, BRAF, HRAS, MAP2K1, RAF1, PTPN11, NF1, and ARAF. Data from the OncoKB database, as provided by cBioPortal, were utilized to determine pathogenic gene alterations. RESULTS We identified a total of 10,233 patients with gynecologic malignancies; 48.2% (n = 4937) with ovarian, 45.2% (n = 4621) with uterine and 6.6% (n = 675) with cervical cancer respectively. The overall incidence of MAPK pathway gene alterations was 21%; the most commonly altered gene was KRAS (13%), followed by NF1 (7%), NRAS (1.3%), and BRAF (1.2%). The highest incidence was observed among patients with mucinous ovarian (71%), low-grade serous ovarian (48%), endometrioid ovarian (37%), and endometrioid endometrial carcinoma (34%). CONCLUSIONS Approximately 1 in 5 patients with a gynecologic tumor harbor a MAPK/ERK pathway genomic alteration. Novel treatment strategies capitalizing on these alterations are warranted.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Llaurado Fernandez
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nelson Wong
- Department of Experimental Therapeutics, BC Cancer, BC, Canada
| | - Daniel J Powell
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark S Carey
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Saltos AN, Creelan BC, Tanvetyanon T, Chiappori AA, Antonia SJ, Shafique MR, Ugrenovic-Petrovic M, Sansil S, Neuger A, Ozakinci H, Boyle TA, Kim J, Haura EB, Gray JE. A phase I/IB trial of binimetinib in combination with erlotinib in NSCLC harboring activating KRAS or EGFR mutations. Lung Cancer 2023; 183:107313. [PMID: 37499521 DOI: 10.1016/j.lungcan.2023.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Activating mutations in EGFR or KRAS are highly prevalent in NSCLC, share activation of the MAPK pathway and may be amenable to combination therapy to prevent negative feedback activation. METHODS In this phase 1/1B trial, we tested the combination of binimetinib and erlotinib in patients with advanced NSCLC with at least 1 prior line of treatment (unless with activating EGFR mutation which could be treatment-naïve). A subsequent phase 1B expansion accrued patients with either EGFR- or KRAS-mutation using the recommended phase 2 dose (RP2D) from Phase 1. The primary objective was to evaluate the safety of binimetinib plus erlotinib and establish the RP2D. RESULTS 43 patients enrolled (dose-escalation = 23; expansion = 20). 17 harbored EGFR mutation and 22 had KRAS mutation. The RP2D was erlotinib 100 mg daily and binimetinib 15 mg BID × 5 days/week. Common AEs across all doses included diarrhea (69.8%), rash (44.2%), fatigue (32.6%), and nausea (32.6%), and were primarily grade 1/2. Among KRAS mutant patients, 1 (5%) had confirmed partial response and 8 (36%) achieved stable disease as best overall response. Among EGFR mutant patients, 9 were TKI-naïve with 8 (89%) having partial response, and 8 were TKI-pretreated with no partial responses and 1 (13%) stable disease as best overall response. CONCLUSIONS Binimetinib plus erlotinib demonstrated a manageable safety profile and modest efficacy including one confirmed objective response in a KRAS mutant patient. While clinical utility of this specific combination was limited, these results support development of combinations using novel small molecule inhibitors of RAS, selective EGFR- and other MAPK pathway inhibitors, many of which have improved therapeutic indices. CLINICAL TRIAL REGISTRATION NCT01859026.
Collapse
Affiliation(s)
- Andreas N Saltos
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA.
| | - Ben C Creelan
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Tawee Tanvetyanon
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Alberto A Chiappori
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Scott J Antonia
- Center for Cancer Immunotherapy, Duke Cancer Institute, 20 Duke Medicine Cir., Durham, NC 27710, USA
| | - Michael R Shafique
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | | | - Samer Sansil
- Cancer Pharmacokinetics & Pharmacodynamics Core, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Anthony Neuger
- Cancer Pharmacokinetics & Pharmacodynamics Core, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Hilal Ozakinci
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Theresa A Boyle
- Department of Pathology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Eric B Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, 12902 Magnolia Dr., Tampa, FL 33612, USA
| |
Collapse
|
7
|
Banerjee S, Giannone G, Clamp AR, Ennis DP, Glasspool RM, Herbertson R, Krell J, Riisnaes R, Mirza HB, Cheng Z, McDermott J, Green C, Kristeleit RS, George A, Gourley C, Lewsley LA, Rai D, Banerji U, Hinsley S, McNeish IA. Efficacy and Safety of Weekly Paclitaxel Plus Vistusertib vs Paclitaxel Alone in Patients With Platinum-Resistant Ovarian High-Grade Serous Carcinoma: The OCTOPUS Multicenter, Phase 2, Randomized Clinical Trial. JAMA Oncol 2023; 9:675-682. [PMID: 36928279 PMCID: PMC10020933 DOI: 10.1001/jamaoncol.2022.7966] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/05/2022] [Indexed: 03/18/2023]
Abstract
Importance Patients with platinum-resistant or refractory ovarian high-grade serous carcinoma (PR-HGSC) have a poor prognosis and few therapeutic options. Preclinical studies support targeting PI3K/AKT/mTOR signaling in this setting, and a phase 1 study of the dual mTORC1/mTORC2 inhibitor vistusertib with weekly paclitaxel showed activity. Objective To evaluate whether the addition of vistusertib to weekly paclitaxel improves clinical outcomes in patients with PR-HGSC. Design, Setting, and Participants This phase 2, double-blind, placebo-controlled multicenter randomized clinical trial recruited patients from UK cancer centers between January 2016 and March 2018. Patients with PR-HGSC of ovarian, fallopian tube, or primary peritoneal origin and with measurable or evaluable disease (Response Evaluation Criteria in Solid Tumors version 1.1 and/or Gynecological Cancer Intergroup cancer antigen 125 criteria) were eligible. There were no restrictions on number of lines of prior therapy. Data analysis was performed from May 2019 to January 2022. Interventions Patients were randomized (1:1) to weekly paclitaxel (80 mg/m2 days 1, 8, and 15 of a 28-day cycle) plus oral vistusertib (50 mg twice daily) or placebo. Main Outcomes and Measures The primary end point was progression-free survival in the intention-to-treat population. Secondary end points included response rate, overall survival, and quality of life. Results A total of 140 patients (median [range] age, 63 [36-86] years; 17.9% with platinum-refractory disease; 53.6% with ≥3 prior therapies) were randomized. In the paclitaxel plus vistusertib vs paclitaxel plus placebo groups, there was no difference in progression-free survival (median, 4.5 vs 4.1 months; hazard ratio [HR], 0.84; 80% CI, 0.67-1.07; 1-sided P = .18), overall survival (median, 9.7 vs 11.1 months; HR, 1.21; 80% CI, 0.91-1.60) or response rate (odds ratio, 0.86; 80% CI, 0.55-1.36). Grade 3 to 4 adverse events were 41.2% (weekly paclitaxel plus vistusertib) vs 36.7% (weekly paclitaxel plus placebo), and there was no difference in quality of life. Conclusions and Relevance In this randomized clinical trial of weekly paclitaxel and dual mTORC1/2 inhibition in patients with PR-HGSC, vistusertib did not improve clinical activity of weekly paclitaxel. Trial Registration isrctn.org Identifier: ISRCTN16426935.
Collapse
Affiliation(s)
- Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Gaia Giannone
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Andrew R. Clamp
- The Christie NHS Foundation Trust and University of Manchester, Manchester, United Kingdom
| | - Darren P. Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Rebecca Herbertson
- Sussex Cancer Centre, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Jonathan Krell
- Medical Oncology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ruth Riisnaes
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Hasan B. Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Zhao Cheng
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Jacqueline McDermott
- Department of Histopathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Clare Green
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Rebecca S. Kristeleit
- Research Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom
- Now with Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Angela George
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Charlie Gourley
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Liz-Anne Lewsley
- CRUK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Debbie Rai
- CRUK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Udai Banerji
- Division of Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Samantha Hinsley
- CRUK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, United Kingdom
- Medical Oncology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
8
|
Hendrikse CSE, Theelen PMM, van der Ploeg P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe A, Lambrechts S, Bekkers RLM, Piek JMJ. The potential of RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 2023; 171:83-94. [PMID: 36841040 DOI: 10.1016/j.ygyno.2023.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/01/2023] [Accepted: 01/30/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND The RAS/RAF/MEK/ERK (MAPK) pathway plays a role in ovarian carcinogenesis. Low-grade serous ovarian carcinoma (LGSOC) frequently harbors activating MAPK mutations. MAPK inhibitors have been used in small subsets of ovarian carcinoma (OC) patients to control tumor growth. Therefore, we performed a meta-analysis to evaluate the effectiveness of MAPK inhibitors in OC patients. We aimed to determine the clinical benefit rate (CBR), the subgroup of MAPK inhibitors with the best CBR and overall response rate (ORR), and the most common adverse events. METHODS We conducted a search in PubMed, Embase via Ovid, the Cochrane library and clinicaltrials.gov on studies evaluating the efficacy of single MAPK pathway inhibition with MAPK pathway inhibitors in OC patients. Our primary outcome included the CBR, defined by the proportion of patients with stable disease (SD), complete (CR) and partial response (PR). Secondary outcomes included the ORR (including PR and CR) and grade 3 and 4 adverse events. Meta-analysis was performed using a random-effects model. RESULTS We included nine studies with a total of 319 OC patients, for which we determined a pooled CBR of 63% (95%-CI 39-84%, I2 = 92%). Combined treatment with Raf- and MEK inhibitors in in BRAFv600 mutated LGSOC (n = 6) had the greatest efficacy with a CBR of 100% and ORR of 83%. MEK inhibitors had the best efficacy as a single agent. Subgroup analysis by tumor histology demonstrated a significantly higher CBR and ORR in patients with LGSOC, with a pooled CBR and ORR of 87% (95%-CI 81-92%, I2 = 0%) and 27% (95%-CI 10-48%, I2 = 77%) respectively. Adverse events of grade 3 or higher were reported frequently: 123 in 167 patients. CONCLUSIONS MEK inhibitors are the most promising single agents in (LGS)OC. However, dual MAPK pathway inhibition should be considered in patients with a BRAFv600 mutation, or non-mutated OC with depleted treatment options due indications of higher efficacy and tolerable toxicity profiles.
Collapse
Affiliation(s)
- C S E Hendrikse
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - P M M Theelen
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - P van der Ploeg
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - H M Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - I A Boere
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - A M J Thijs
- Department of Internal Medicine and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - P B Ottevanger
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A van de Stolpe
- Drug Companion Diagnostics Company - Therapeutics (DCDC-Tx), Vught, the Netherlands
| | - S Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - R L M Bekkers
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - J M J Piek
- Department of Obstetrics and Gynecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
9
|
Skorda A, Bay ML, Hautaniemi S, Lahtinen A, Kallunki T. Kinase Inhibitors in the Treatment of Ovarian Cancer: Current State and Future Promises. Cancers (Basel) 2022; 14:6257. [PMID: 36551745 PMCID: PMC9777107 DOI: 10.3390/cancers14246257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer, the high-grade serous ovarian carcinoma (HGSC) being its most common and most aggressive form. Despite the latest therapeutical advancements following the introduction of vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors and poly-ADP-ribose-polymerase (PARP) inhibitors to supplement the standard platinum- and taxane-based chemotherapy, the expected overall survival of HGSC patients has not improved significantly from the five-year rate of 42%. This calls for the development and testing of more efficient treatment options. Many oncogenic kinase-signaling pathways are dysregulated in HGSC. Since small-molecule kinase inhibitors have revolutionized the treatment of many solid cancers due to the generality of the increased activation of protein kinases in carcinomas, it is reasonable to evaluate their potential against HGSC. Here, we present the latest concluded and on-going clinical trials on kinase inhibitors in HGSC, as well as the recent work concerning ovarian cancer patient organoids and xenograft models. We discuss the potential of kinase inhibitors as personalized treatments, which would require comprehensive assessment of the biological mechanisms underlying tumor spread and chemoresistance in individual patients, and their connection to tumor genome and transcriptome to establish identifiable subgroups of patients who are most likely to benefit from a given therapy.
Collapse
Affiliation(s)
- Aikaterini Skorda
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Marie Lund Bay
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Lahtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tuula Kallunki
- Cancer Invasion and Resistance Group, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Ethier JL, Fuh KC, Arend R, Konecny GE, Konstantinopoulos PA, Odunsi K, Swisher EM, Kohn EC, Zamarin D. State of the Biomarker Science in Ovarian Cancer: A National Cancer Institute Clinical Trials Planning Meeting Report. JCO Precis Oncol 2022; 6:e2200355. [PMID: 36240472 PMCID: PMC9848534 DOI: 10.1200/po.22.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Despite therapeutic advances in the treatment of ovarian cancer (OC), 5-year survival remains low, and patients eventually die from recurrent, chemotherapy-resistant disease. The National Cancer Gynecologic Cancer Steering Committee identified the integration of scientifically defined subgroups as a top strategic priority in clinical trial planning. METHODS A group of experts was convened to review the scientific literature in OC to identify validated predictive biomarkers that could inform patient selection and treatment stratification. Here, we report on these findings and their potential for use in future clinical trial design on the basis of hierarchal evidence grading. RESULTS The biomarkers were classified on the basis of mechanistic targeting, including DNA repair and replication stress, immunotherapy and tumor microenvironment, oncogenic signaling, and angiogenesis. Currently, BRCA mutations and homologous recombination deficiency to predict poly (ADP-ribose) polymerase inhibitor response are supported in OC by the highest level of evidence. Additional biomarkers of response to agents targeting the pathways above have been identified but require prospective validation. CONCLUSION Although a number of biomarkers of response to various agents in OC have been described in the literature, high-level evidence for the majority is lacking. This report highlights the unmet need for identification and validation of predictive biomarkers to guide therapy and future trial design in OC.
Collapse
Affiliation(s)
- Josee-Lyne Ethier
- Department of Oncology, Cancer Centre of Southeastern Ontario, Queen's University, Kingston, ON, Canada
| | - Katherine C. Fuh
- Division of Gynecologic Oncology, Washington University St Louis, St Louis, MO
| | - Rebecca Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingam, AL
| | - Gottfried E. Konecny
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | | | - Elise C. Kohn
- Clinical Investigations Branch of The Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, ML
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
11
|
Pauly N, Ehmann S, Ricciardi E, Ataseven B, Bommert M, Heitz F, Prader S, Schneider S, du Bois A, Harter P, Baert T. Low-grade Serous Tumors: Are We Making Progress? Curr Oncol Rep 2020; 22:8. [PMID: 31989304 DOI: 10.1007/s11912-020-0872-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of the current clinical standard in low-grade serous ovarian cancer (LGSOC). The available evidence for surgery and standard treatments is elaborated. In addition, we discuss recent findings and novel treatments for LGSOC. RECENT FINDINGS Two large multicenter trials studying MEK inhibitors in LGSOC have been presented in the last year. Binimetinib demonstrated an activity in LGSOC, especially in KRAS-mutated disease. Trametinib was associated with an improved progression-free survival in relapsed LGSOC. Based on the current results, MEK inhibitors could be an alternative treatment for LGSOC. Surgery is an important step in the treatment of LGSOC. Hormonal therapy and bevacizumab can be beneficial, next to chemotherapy. Targeted treatments, such as the MEK-inhibitor trametinib, seem to be efficient and should be introduced into clinical practice.
Collapse
Affiliation(s)
- Nina Pauly
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Sarah Ehmann
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Enzo Ricciardi
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Beyhan Ataseven
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Mareike Bommert
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Florian Heitz
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Sonia Prader
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Stephanie Schneider
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Andreas du Bois
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Philipp Harter
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany
| | - Thaïs Baert
- Gynaecology and Gynaecological Oncology, Kliniken Essen-Mitte, Henricistraße 92, 45136, Essen, Germany. .,Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
EMR 20006-012: A phase II randomized double-blind placebo controlled trial comparing the combination of pimasertib (MEK inhibitor) with SAR245409 (PI3K inhibitor) to pimasertib alone in patients with previously treated unresectable borderline or low grade ovarian cancer. Gynecol Oncol 2019; 156:301-307. [PMID: 31870556 DOI: 10.1016/j.ygyno.2019.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To compare the combination of a MEK inhibitor (pimasertib) and a PI3K inhibitor (SAR245409) to pimasertib alone in recurrent unresectable borderline/low malignant potential (LMP) or low-grade serous ovarian carcinoma (LGSOC), determining whether combination is superior. METHODS Patients with previously treated, recurrent LMP or LGSOC with measurable disease received either combination of pimasertib (60 mg daily) + SAR245409 (SAR) (70 mg daily) or pimasertib alone (60 mg BID) until progression or unacceptable toxicity. Primary endpoint was objective response rate (ORR) by RECIST 1.1, determining whether combination was superior to pimasertib alone. Secondary endpoints included progression free survival (PFS), disease control, and adverse events. RESULTS Sixty-five patients were randomized between September 2012 and December 2014. ORR was 9.4% (80% CI, 3.5 to 19.7) in the combination arm and 12.1% (80% CI, 5.4 to 22.8) in the pimasertib alone arm. Median PFS was 7.23 months (80% CI, 5.06 to -) and 9.99 (80% CI, 7.39 to 10.35) for pimasertib alone and pimasertib + SAR, respectively. Six-month PFS was 63.5% (80% CI, 47.2% to 75.9%) and 70.8% (80% CI, 56.9% to 80.9%). Eighteen (56.3%) patients in the combination arm and 19 (57.6%) patients in the pimasertib alone arm discontinued the trial. The study was terminated early because of low ORR and high rate of discontinuation. CONCLUSIONS Response to pimasertib alone (ORR 12%) suggests that MEK inhibition could be used as an alternative treatment method to cytotoxic chemotherapy in this population. The MEK inhibitor alone was as effective as the combination, although the trial was limited by small numbers. Additional studies investigating the role of single agent or combination MEK and PI3K inhibition are warranted to further evaluate the utility of these treatments and describe a standard of care for LGSOC.
Collapse
|
13
|
Bardhi E, Marchetti C, Scopelliti A, Musacchio L, Tomao F, Schiavi M, Carraro C, Palaia I, Monti M, Muzii L, Benedetti Panici P. Etirinotecan pegol in women with recurrent platinum-resistant or refractory ovarian cancer. Expert Opin Investig Drugs 2019; 28:667-673. [PMID: 31353973 DOI: 10.1080/13543784.2019.1648430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: A PEGylated form of irinotecan, a topoisomerase I inhibitor, is now available in commerce; its safety and efficacy have been tested in platinum resistant/refractory ovarian cancer (PROC) patients. This novel agent is known as Etirinotecan Pegol (EP). EP, like irinotecan, exerts its action through its principal metabolite SN-38. Areas covered: This drug evaluation article focuses on the most recent investigations and clinical progress regarding EP, a long-acting polymer conjugate of irinotecan for the treatment of PROC. Expert opinion: EP provides prolonged and continuous exposure of SN-38 in tumors, when compared to its parent drug irinotecan. Results from phase II studies are comparable in terms of efficacy to other agents of proven use in PROC. A limitation of the use of EP is the schedule-dependent toxicities (mainly diarrhea and dehydration). In the future, EP could be investigated in association with other agents, even in attempts to restore sensitivity to other treatments. PROC remains a very difficult setting and EP might be a valid agent for patients with good performance status that have exhausted therapeutic options. In such a setting, participation in clinical trials is strongly encouraged.
Collapse
Affiliation(s)
- Erlisa Bardhi
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Claudia Marchetti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy.,b Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli, IRCCS , Rome , Italy
| | - Annalisa Scopelliti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Lucia Musacchio
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Federica Tomao
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Michele Schiavi
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Carlo Carraro
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Innocenza Palaia
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Marco Monti
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Ludovico Muzii
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| | - Pierluigi Benedetti Panici
- a Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome , Policlinico Umberto I, Rome , Italy
| |
Collapse
|
14
|
Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int 2019; 43:1206-1222. [PMID: 31136035 DOI: 10.1002/cbin.11187] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal-epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular-signal-regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross-talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase-2, transforming growth factor-β, NOTCH and (in particular) with phosphatidylinositol 3-kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK-targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre-evaluation of cancer-type-specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175-861, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
15
|
Clinical Pharmacokinetic and Pharmacodynamic Considerations in the (Modern) Treatment of Melanoma. Clin Pharmacokinet 2019; 58:1029-1043. [DOI: 10.1007/s40262-019-00753-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Fernandez ML, Dawson A, Hoenisch J, Kim H, Bamford S, Salamanca C, DiMattia G, Shepherd T, Cremona M, Hennessy B, Anderson S, Volik S, Collins CC, Huntsman DG, Carey MS. Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell Int 2019. [PMID: 30636931 DOI: 10.1186/s12935-019-0725-1]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. METHODS We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. RESULTS Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. CONCLUSIONS KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC.
Collapse
Affiliation(s)
| | - Amy Dawson
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Joshua Hoenisch
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Hannah Kim
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Sylvia Bamford
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Clara Salamanca
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gabriel DiMattia
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Trevor Shepherd
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Mattia Cremona
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bryan Hennessy
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Shawn Anderson
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Stanislav Volik
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Colin C Collins
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - David G Huntsman
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada.,7Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Mark S Carey
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada.,Division of Gynecologic Oncology, Diamond Health Centre, 2775 Laurel St., 6th Floor, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
17
|
Fernandez ML, Dawson A, Hoenisch J, Kim H, Bamford S, Salamanca C, DiMattia G, Shepherd T, Cremona M, Hennessy B, Anderson S, Volik S, Collins CC, Huntsman DG, Carey MS. Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell Int 2019. [PMID: 30636931 DOI: 10.1186/s12935-019-0725-1] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. Methods We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. Results Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. Conclusions KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC.
Collapse
Affiliation(s)
| | - Amy Dawson
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Joshua Hoenisch
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Hannah Kim
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Sylvia Bamford
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Clara Salamanca
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gabriel DiMattia
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Trevor Shepherd
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Mattia Cremona
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bryan Hennessy
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Shawn Anderson
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Stanislav Volik
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Colin C Collins
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - David G Huntsman
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada.,7Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Mark S Carey
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada.,Division of Gynecologic Oncology, Diamond Health Centre, 2775 Laurel St., 6th Floor, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
18
|
Fernandez ML, Dawson A, Hoenisch J, Kim H, Bamford S, Salamanca C, DiMattia G, Shepherd T, Cremona M, Hennessy B, Anderson S, Volik S, Collins CC, Huntsman DG, Carey MS. Markers of MEK inhibitor resistance in low-grade serous ovarian cancer: EGFR is a potential therapeutic target. Cancer Cell Int 2019; 19:10. [PMID: 30636931 PMCID: PMC6325847 DOI: 10.1186/s12935-019-0725-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Although low-grade serous ovarian cancer (LGSC) is rare, case-fatality rates are high as most patients present with advanced disease and current cytotoxic therapies are not overly effective. Recognizing that these cancers may be driven by MAPK pathway activation, MEK inhibitors (MEKi) are being tested in clinical trials. LGSC respond to MEKi only in a subgroup of patients, so predictive biomarkers and better therapies will be needed. Methods We evaluated a number of patient-derived LGSC cell lines, previously classified according to their MEKi sensitivity. Two cell lines were genomically compared against their matching tumors samples. MEKi-sensitive and MEKi-resistant lines were compared using whole exome sequencing and reverse phase protein array. Two treatment combinations targeting MEKi resistance markers were also evaluated using cell proliferation, cell viability, cell signaling, and drug synergism assays. Results Low-grade serous ovarian cancer cell lines recapitulated the genomic aberrations from their matching tumor samples. We identified three potential predictive biomarkers that distinguish MEKi sensitive and resistant lines: KRAS mutation status, and EGFR and PKC-alpha protein expression. The biomarkers were validated in three newly developed LGSC cell lines. Sub-lethal combination of MEK and EGFR inhibition showed drug synergy and caused complete cell death in two of four MEKi-resistant cell lines tested. Conclusions KRAS mutations and the protein expression of EGFR and PKC-alpha should be evaluated as predictive biomarkers in patients with LGSC treated with MEKi. Combination therapy using a MEKi with EGFR inhibition may represent a promising new therapy for patients with MEKi-resistant LGSC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0725-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Amy Dawson
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Joshua Hoenisch
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Hannah Kim
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Sylvia Bamford
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada
| | - Clara Salamanca
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Gabriel DiMattia
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Trevor Shepherd
- 3Translational Ovarian Cancer Research Program, London Health Science Centre, London, ON Canada.,4Oncology, University of Western Ontario, London, ON Canada
| | - Mattia Cremona
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bryan Hennessy
- Medical Oncology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Shawn Anderson
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Stanislav Volik
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - Colin C Collins
- 6Laboratory for Advanced Genome Analysis, Vancouver Prostate Centre, Vancouver, BC Canada
| | - David G Huntsman
- 2Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada.,7Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC Canada
| | - Mark S Carey
- 1Obstetrics and Gynecology, University of British Columbia, Vancouver, BC Canada.,Division of Gynecologic Oncology, Diamond Health Centre, 2775 Laurel St., 6th Floor, Vancouver, BC V5Z 1M9 Canada
| |
Collapse
|
19
|
Low-Grade Serous Ovarian Cancer: Current Treatment Paradigms and Future Directions. Curr Treat Options Oncol 2018; 19:54. [DOI: 10.1007/s11864-018-0571-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|