1
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Spear S, Le Saux O, Mirza HB, Iyer N, Tyson K, Grundland Freile F, Walton JB, Woodman C, Jarvis S, Ennis DP, Aguirre Hernandez C, Xu Y, Spiliopoulou P, Brenton JD, Costa-Pereira AP, Cook DP, Vanderhyden BC, Keun HC, Triantafyllou E, Arnold JN, McNeish IA. PTEN Loss Shapes Macrophage Dynamics in High-Grade Serous Ovarian Carcinoma. Cancer Res 2024; 84:3772-3787. [PMID: 39186679 PMCID: PMC7616669 DOI: 10.1158/0008-5472.can-23-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) remains a disease with poor prognosis that is unresponsive to current immune checkpoint inhibitors. Although PI3K pathway alterations, such as PTEN loss, are common in HGSC, attempts to target this pathway have been unsuccessful. We hypothesized that aberrant PI3K pathway activation may alter the HGSC immune microenvironment and present a targeting opportunity. Single-cell RNA sequencing identified populations of resident macrophages specific to Pten-null omental tumors in murine models, which were confirmed by flow cytometry. These macrophages were derived from peritoneal fluid macrophages and exhibited a unique gene expression program, marked by high expression of the enzyme heme oxygenase-1 (HMOX1). Targeting resident peritoneal macrophages prevented the appearance of HMOX1hi macrophages and reduced tumor growth. In addition, direct inhibition of HMOX1 extended survival in vivo. RNA sequencing identified IL33 in Pten-null tumor cells as a likely candidate driver, leading to the appearance of HMOX1hi macrophages. Human HGSC tumors also contained HMOX1hi macrophages with a corresponding gene expression program. Moreover, the presence of these macrophages was correlated with activated tumoral PI3K/mTOR signaling and poor overall survival in patients with HGSC. In contrast, tumors with low numbers of HMOX1hi macrophages were marked by increased adaptive immune response gene expression. These data suggest targeting HMOX1hi macrophages as a potential therapeutic strategy for treating poor prognosis HGSC. Significance: Macrophages with elevated HMOX1 expression are enriched in PTEN-deficient high-grade serous ovarian carcinoma, promote tumor growth, and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah Spear
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Olivia Le Saux
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France
| | - Hasan B. Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Nayana Iyer
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Katie Tyson
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Fabio Grundland Freile
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Josephine B. Walton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chloé Woodman
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Sheba Jarvis
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Darren P. Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Carmen Aguirre Hernandez
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Yuewei Xu
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Pavlina Spiliopoulou
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James D. Brenton
- CRUK Cambridge Institute, University of Cambridge, United Kingdom
| | - Ana P. Costa-Pereira
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Hector C. Keun
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Evangelos Triantafyllou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| |
Collapse
|
3
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Bakhtiar H, Sharifi MN, Helzer KT, Shi Y, Bootsma ML, Shang TA, Chrostek MR, Berg TJ, Carson Callahan S, Carreno V, Blitzer GC, West MT, O'Regan RM, Wisinski KB, Sjöström M, Zhao SG. A phenocopy signature of TP53 loss predicts response to chemotherapy. NPJ Precis Oncol 2024; 8:220. [PMID: 39358429 PMCID: PMC11447220 DOI: 10.1038/s41698-024-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.
Collapse
Affiliation(s)
- Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Marina N Sharifi
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Matthew L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Tianfu A Shang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - S Carson Callahan
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Viridiana Carreno
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Grace C Blitzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Malinda T West
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Kari B Wisinski
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
5
|
Lu G, Liu H, Wang H, Tang X, Luo S, Du M, Christiani DC, Wei Q. Genetic variants of LRRC8C, OAS2, and CCL25 in the T cell exhaustion-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15:1455927. [PMID: 39416786 PMCID: PMC11479925 DOI: 10.3389/fimmu.2024.1455927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Background T cell exhaustion is a state in which T cells become dysfunctional and is associated with a decreased efficacy of immune checkpoint inhibitors. Lung cancer has the highest mortality among all cancers. However, the roles of genetic variants of the T cell exhaustion-related genes in the prognosis of non-small cell lung cancer (NSCLC) patients has not been reported. Methods We conducted a two-stage multivariable Cox proportional hazards regression analysis with two previous genome-wide association study (GWAS) datasets to explore associations between genetic variants in the T cell exhaustion-related genes and survival of NSCLC patients. We also performed expression quantitative trait loci analysis for functional validation of the identified variants. Results Of all the 52,103 single nucleotide polymorphisms (SNPs) in 672 T cell exhaustion-related genes, 1,721 SNPs were found to be associated with overall survival (OS) of 1185 NSCLC patients of the discovery GWAS dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, and 125 of these 1,721 SNPs remained significant after validation in an additional independent replication GWAS dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. In multivariable stepwise Cox model analysis, three independent SNPs (i.e., LRRC8C rs10493829 T>C, OAS2 rs2239193 A>G, and CCL25 rs3136651 T>A) remained significantly associated with OS with hazards ratios (HRs) of 0.86 (95% confidence interval (CI) = 0.77-0.96, P = 0.008), 1.48 (95% CI = 1.18-1.85, P < 0.0001) and 0.78 (95% CI = 0.66-0.91, P = 0.002), respectively. Further combined analysis for these three SNPs suggested that an unfavorable genotype score was associated with a poor OS and disease-specific survival. Expression quantitative trait loci analysis suggested that the LRRC8C rs10493829 C allele was associated with elevated LRRC8C mRNA expression levels in normal lymphoblastoid cells, lung tissue, and whole blood. Conclusion Our findings suggested that these functional SNPs in the T cell exhaustion-related genes may be prognostic predictors for survival of NSCLC patients, possibly via a mechanism of modulating corresponding gene expression.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaozhun Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Head and Neck Surgery, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
6
|
Du KX, Wu YF, Hua W, Duan ZW, Gao R, Liang JH, Li Y, Yin H, Wu JZ, Shen HR, Wang L, Shao Y, Li JY, Liang JH, Xu W. Identify truly high-risk TP53-mutated diffuse large B cell lymphoma patients and explore the underlying biological mechanisms. Cell Commun Signal 2024; 22:401. [PMID: 39148095 PMCID: PMC11325619 DOI: 10.1186/s12964-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
TP53 mutation (TP53-mut) correlates with inferior survival in many cancers, whereas its prognostic role in diffuse large B-cell lymphoma (DLBCL) is still in controversy. Therefore, more precise risk stratification needs to be further explored for TP53-mut DLBCL patients. A set of 2637 DLBCL cases from multiple cohorts, was enrolled in our analysis. Among the 2637 DLBCL patients, 14.0% patients (370/2637) had TP53-mut. Since missense mutations account for the vast majority of TP53-mut DLBCL patients, and most non-missense mutations affect the function of the P53 protein, leading to worse survival rates, we distinguished patients with missense mutations. A TP53 missense mutation risk model was constructed based on a 150-combination machine learning computational framework, demonstrating excellent performance in predicting prognosis. Further analysis revealed that patients with high-risk missense mutations are significantly associated with early progression and exhibit dysregulation of multiple immune and metabolic pathways at the transcriptional level. Additionally, the high-risk group showed an absolutely suppressed immune microenvironment. To stratify the entire cohort of TP53-mut DLBCL, we combined clinical characteristics and ultimately constructed the TP53 Prognostic Index (TP53PI) model. In summary, we identified the truly high-risk TP53-mut DLBCL patients and explained this difference at the mutation and transcriptional levels.
Collapse
Affiliation(s)
- Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi-Fan Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Hua
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Zi-Wen Duan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Rui Gao
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jun-Heng Liang
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua Yin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
7
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
8
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
9
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
10
|
Miliotou AN, Georgiou-Siafis SK, Ntenti C, Pappas IS, Papadopoulou LC. Recruiting In Vitro Transcribed mRNA against Cancer Immunotherapy: A Contemporary Appraisal of the Current Landscape. Curr Issues Mol Biol 2023; 45:9181-9214. [PMID: 37998753 PMCID: PMC10670245 DOI: 10.3390/cimb45110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Over 100 innovative in vitro transcribed (IVT)-mRNAs are presently undergoing clinical trials, with a projected substantial impact on the pharmaceutical market in the near future. Τhe idea behind this is that after the successful cellular internalization of IVT-mRNAs, they are subsequently translated into proteins with therapeutic or prophylactic relevance. Simultaneously, cancer immunotherapy employs diverse strategies to mobilize the immune system in the battle against cancer. Therefore, in this review, the fundamental principles of IVT-mRNA to its recruitment in cancer immunotherapy, are discussed and analyzed. More specifically, this review paper focuses on the development of mRNA vaccines, the exploitation of neoantigens, as well as Chimeric Antigen Receptor (CAR) T-Cells, showcasing their clinical applications and the ongoing trials for the development of next-generation immunotherapeutics. Furthermore, this study investigates the synergistic potential of combining the CAR immunotherapy and the IVT-mRNAs by introducing our research group novel, patented delivery method that utilizes the Protein Transduction Domain (PTD) technology to transduce the IVT-mRNAs encoding the CAR of interest into the Natural Killer (NK)-92 cells, highlighting the potential for enhancing the CAR NK cell potency, efficiency, and bioenergetics. While IVT-mRNA technology brings exciting progress to cancer immunotherapy, several challenges and limitations must be acknowledged, such as safety, toxicity, and delivery issues. This comprehensive exploration of IVT-mRNA technology, in line with its applications in cancer therapeutics, offers valuable insights into the opportunities and challenges in the evolving landscape of cancer immunotherapy, setting the stage for future advancements in the field.
Collapse
Affiliation(s)
- Androulla N. Miliotou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- Department of Health Sciences, KES College, 1055 Nicosia, Cyprus
- Faculty of Pharmacy, Department of Health Sciences, University of Nicosia, 1700 Nicosia, Cyprus
| | - Sofia K. Georgiou-Siafis
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Thessaly, Greece;
| | - Charikleia Ntenti
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
- 1st Laboratory of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Ioannis S. Pappas
- Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Thessaly, Greece;
| | - Lefkothea C. Papadopoulou
- Laboratory of Pharmacology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece; (A.N.M.); (S.K.G.-S.); (C.N.)
| |
Collapse
|
11
|
Singh H, Keller RB, Kapner KS, Dilly J, Raghavan S, Yuan C, Cohen EF, Tolstorukov M, Andrews E, Brais LK, Da Silva A, Perez K, Rubinson DA, Surana R, Giannakis M, Ng K, Clancy TE, Yurgelun MB, Schletchter B, Clark JW, Shapiro GI, Rosenthal MH, Hornick JL, Nardi V, Li YY, Gupta H, Cherniack AD, Meyerson M, Cleary JM, Nowak JA, Wolpin BM, Aguirre AJ. Oncogenic Drivers and Therapeutic Vulnerabilities in KRAS Wild-Type Pancreatic Cancer. Clin Cancer Res 2023; 29:4627-4643. [PMID: 37463056 PMCID: PMC10795103 DOI: 10.1158/1078-0432.ccr-22-3930] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Approximately 8% to 10% of pancreatic ductal adenocarcinomas (PDAC) do not harbor mutations in KRAS. Understanding the unique molecular and clinical features of this subset of pancreatic cancer is important to guide patient stratification for clinical trials of molecularly targeted agents. EXPERIMENTAL DESIGN We analyzed a single-institution cohort of 795 exocrine pancreatic cancer cases (including 785 PDAC cases) with a targeted multigene sequencing panel and identified 73 patients (9.2%) with KRAS wild-type (WT) pancreatic cancer. RESULTS Overall, 43.8% (32/73) of KRAS WT cases had evidence of an alternative driver of the MAPK pathway, including BRAF mutations and in-frame deletions and receptor tyrosine kinase fusions. Conversely, 56.2% of cases did not harbor a clear MAPK driver alteration, but 29.3% of these MAPK-negative KRAS WT cases (12/41) demonstrated activating alterations in other oncogenic drivers, such as GNAS, MYC, PIK3CA, and CTNNB1. We demonstrate potent efficacy of pan-RAF and MEK inhibition in patient-derived organoid models carrying BRAF in-frame deletions. Moreover, we demonstrate durable clinical benefit of targeted therapy in a patient harboring a KRAS WT tumor with a ROS1 fusion. Clinically, patients with KRAS WT tumors were significantly younger in age of onset (median age: 62.6 vs. 65.7 years; P = 0.037). SMAD4 mutations were associated with a particularly poor prognosis in KRAS WT cases. CONCLUSIONS This study defines the genomic underpinnings of KRAS WT pancreatic cancer and highlights potential therapeutic avenues for future investigation in molecularly directed clinical trials. See related commentary by Kato et al., p. 4527.
Collapse
Affiliation(s)
- Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rachel B. Keller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Biological and biomedical sciences program, Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth F. Cohen
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lauren K. Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Annacarolina Da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, Weill Cornell Medical College, New York, NY
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Rishi Surana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Thomas E. Clancy
- Harvard Medical School, Boston, MA
- Division of Surgical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA
| | - Matthew B. Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Benjamin Schletchter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeffrey W. Clark
- Harvard Medical School, Boston, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael H. Rosenthal
- Department of Radiology, Dana-Farber Cancer Institute, Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Yvonne Y. Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| | - Hersh Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| | - Andrew D. Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jonathan A. Nowak
- Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
12
|
Wu M, Zhou S. Harnessing tumor immunogenomics: Tumor neoantigens in ovarian cancer and beyond. Biochim Biophys Acta Rev Cancer 2023; 1878:189017. [PMID: 37935309 DOI: 10.1016/j.bbcan.2023.189017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Ovarian cancer is a major cause of death among gynecological cancers due to its highly aggressive nature. Immunotherapy has emerged as a promising avenue for ovarian cancer treatment, offering targeted approaches with reduced off-target effects. With the advent of next-generation sequencing, it has become possible to identify genomic alterations that can serve as potential targets for immunotherapy. Furthermore, immunogenomics research has revealed the importance of genetic alterations in shaping the cancer immune responses. However, the heterogeneity of immunogenicity and the low tumor mutation burden pose challenges for neoantigen-based immunotherapies. Further research is needed to identify neoantigen-specific tumor-infiltrating lymphocytes (TIL) and establish guidelines for patient inclusion criteria in TIL-based therapy. The study of neoantigens and their implications in ovarian cancer immunotherapy holds great promise, and efforts focused on personalized treatment strategies, refined neoantigen selection, and optimized therapeutic combinations will contribute to improving patient outcomes in the future.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
13
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Carlsen L, Zhang S, Tian X, De La Cruz A, George A, Arnoff TE, El-Deiry WS. The role of p53 in anti-tumor immunity and response to immunotherapy. Front Mol Biosci 2023; 10:1148389. [PMID: 37602328 PMCID: PMC10434531 DOI: 10.3389/fmolb.2023.1148389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
p53 is a transcription factor that regulates the expression of genes involved in tumor suppression. p53 mutations mediate tumorigenesis and occur in approximately 50% of human cancers. p53 regulates hundreds of target genes that induce various cell fates including apoptosis, cell cycle arrest, and DNA damage repair. p53 also plays an important role in anti-tumor immunity by regulating TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2; T-cell inhibitory ligand PD-L1; pro-inflammatory cytokines; immune cell activation state; and antigen presentation. Genetic alteration of p53 can contribute to immune evasion by influencing immune cell recruitment to the tumor, cytokine secretion in the TME, and inflammatory signaling pathways. In some contexts, p53 mutations increase neoantigen load which improves response to immune checkpoint inhibition. Therapeutic restoration of mutated p53 can restore anti-cancer immune cell infiltration and ameliorate pro-tumor signaling to induce tumor regression. Indeed, there is clinical evidence to suggest that restoring p53 can induce an anti-cancer immune response in immunologically cold tumors. Clinical trials investigating the combination of p53-restoring compounds or p53-based vaccines with immunotherapy have demonstrated anti-tumor immune activation and tumor regression with heterogeneity across cancer type. In this Review, we discuss the impact of wild-type and mutant p53 on the anti-tumor immune response, outline clinical progress as far as activating p53 to induce an immune response across a variety of cancer types, and highlight open questions limiting effective clinical translation.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Taylor E. Arnoff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
15
|
Millar DG, Yang SYC, Sayad A, Zhao Q, Nguyen LT, Warner K, Sangster AG, Nakatsugawa M, Murata K, Wang BX, Shaw P, Clarke B, Bernardini MQ, Pugh T, Thibault P, Hirano N, Perreault C, Ohashi PS. Identification of antigenic epitopes recognized by tumor infiltrating lymphocytes in high grade serous ovarian cancer by multi-omics profiling of the auto-antigen repertoire. Cancer Immunol Immunother 2023; 72:2375-2392. [PMID: 36943460 PMCID: PMC10264507 DOI: 10.1007/s00262-023-03413-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Immunotherapeutic strategies aimed at enhancing tumor cell killing by tumor-specific T cells hold great potential for reducing tumor burden and prolonging survival of cancer patients. Although many potential tumor antigens have been described, identifying relevant targets when designing anti-cancer vaccines or targeted cell therapies remains a challenge. To identify novel, potentially immunogenic candidate tumor antigens, we performed integrated tumor transcriptomic, seromic, and proteomic analyses of high grade serous ovarian cancer (HGSC) patient tumor samples. We identified tumor neo-antigens and over-expressed antigens using whole exome and RNA sequencing and examined these in relation to patient-matched auto-antibody repertoires. Focusing on MHC class I epitopes recognized by CD8+ T cells, HLA-binding epitopes were identified or predicted from the highly expressed, mutated, or auto-antibody target antigen, or MHC-associated peptides (MAPs). Recognition of candidate antigenic peptides was assessed within the tumor-infiltrating T lymphocyte (TIL) population expanded from each patient. Known tumor-associated antigens (TAA) and cancer/testis antigens (CTA) were commonly found in the auto-antibody and MAP repertoires and CD8+ TILs recognizing epitopes from these antigens were detected, although neither expression level nor the presence of auto-antibodies correlated with TIL recognition. Auto-antibodies against tumor-mutated antigens were found in most patients, however, no TIL recognition of the highest predicted affinity neo-epitopes was detected. Using high expression level, auto-antibody recognition, and epitope prediction algorithms, we identified epitopes in 5 novel antigens (MOB1A, SOCS3, TUBB, PRKAR1A, CCDC6) recognized by HGSC patient TILs. Furthermore, selection of epitopes from the MAP repertoire identified 5 additional targets commonly recognized by multiple patient TILs. We find that the repertoire of TIL specificities includes recognition of highly expressed and immunogenic self-antigens that are processed and presented by tumors. These results indicate an ongoing autoimmune response against a range of self-antigens targeted by HGSC TILs.
Collapse
Affiliation(s)
- Douglas G Millar
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - S Y Cindy Yang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Azin Sayad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Qingchuan Zhao
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Linh T Nguyen
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Kathrin Warner
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Ami G Sangster
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Kenji Murata
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Ben X Wang
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Patricia Shaw
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Blaise Clarke
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Marcus Q Bernardini
- Division of Gynecologic Oncology, Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Trevor Pugh
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Pamela S Ohashi
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Ai Q, Li F, Zou S, Zhang Z, Jin Y, Jiang L, Chen H, Deng X, Peng C, Mou N, Wen C, Shen B, Zhan Q. Targeting KRAS G12V mutations with HLA class II-restricted TCR for the immunotherapy in solid tumors. Front Immunol 2023; 14:1161538. [PMID: 37287989 PMCID: PMC10243368 DOI: 10.3389/fimmu.2023.1161538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
KRAS mutation is a significant driving factor of tumor, and KRASG12V mutation has the highest incidence in solid tumors such as pancreatic cancer and colorectal cancer. Thus, KRASG12V neoantigen-specific TCR-engineered T cells could be a promising cancer treatment approach for pancreatic cancer. Previous studies had reported that KRASG12V-reactive TCRs originated from patients' TILs could recognized KRASG12V neoantigen presented by specific HLA subtypes and remove tumor persistently in vitro and in vivo. However, TCR drugs are different from antibody drugs in that they are HLA-restricted. The different ethnic distribution of HLA greatly limits the applicability of TCR drugs in Chinese population. In this study, we have identified a KRASG12V-specific TCR which recognized classII MHC from a colorectal cancer patient. Interestingly, we observed that KRASG12V-specific TCR-engineered CD4+ T cells, not CD8+ T cells, demonstrated significant efficacy in vitro and in xenograft mouse model, exhibiting stable expression and targeting specificity of TCR when co-cultured with APCs presenting KRASG12V peptides. TCR-engineered CD4+ T cells were co-cultured with APCs loaded with neoantigen, and then HLA subtypes were identified by the secretion of IFN-γ. Collectively, our data suggest that TCR-engineered CD4+ T cells can be used to target KRASG12V mutation presented by HLA-DPB1*03:01 and DPB1*14:01, which provide a high population coverage and are more suitable for the clinical transformation for Chinese, and mediate tumor killing effect like CD8+ T cells. This TCR hold promise for precision therapy in immunotherapy of solid tumors as an attractive candidate.
Collapse
Affiliation(s)
- Qi Ai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyi Zou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangbing Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Mou
- Department of Cell Therapy, Shanghai Genbase Biotechnology Co., Ltd, Shanghai, China
| | - Chenlei Wen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Identification of T Cell Receptors Targeting a Neoantigen Derived from Recurrently Mutated FGFR3. Cancers (Basel) 2023; 15:cancers15041031. [PMID: 36831375 PMCID: PMC9953830 DOI: 10.3390/cancers15041031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Immunotherapies, including immune checkpoint blockades, play a critically important role in cancer treatments. For immunotherapies, neoantigens, which are generated by somatic mutations in cancer cells, are thought to be good targets due to their tumor specificity. Because neoantigens are unique in individual cancers, it is challenging to develop personalized immunotherapy targeting neoantigens. In this study, we screened "shared neoantigens", which are specific types of neoantigens derived from mutations observed commonly in a subset of cancer patients. Using exome sequencing data in the Cancer Genome Atlas (TCGA), we predicted shared neoantigen peptides and performed in vitro screening of shared neoantigen-reactive CD8+ T cells using peripheral blood from healthy donors. We examined the functional activity of neoantigen-specific T cell receptors (TCRs) by generating TCR-engineered T cells. Among the predicted shared neoantigens from TCGA data, we found that the mutated FGFR3Y373C peptide induced antigen-specific CD8+ T cells from the donor with HLA-A*02:06 via an ELISPOT assay. Subsequently, we obtained FGFR3Y373C-specific CD8+ T cell clones and identified two different sets of TCRs specifically reactive to FGFR3Y373C. We found that the TCR-engineered T cells expressing FGFR3Y373C-specific TCRs recognized the mutated FGFR3Y373C peptide but not the corresponding wild-type peptide. These two FGFR3Y373C-specific TCR-engineered T cells showed cytotoxic activity against mutated FGFR3Y373C-loaded cells. These results imply the possibility of strategies of immunotherapies targeting shared neoantigens, including cancer vaccines and TCR-engineered T cell therapies.
Collapse
|
18
|
van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023; 23:193-215. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Tumours display an astonishing variation in the spatial distribution, composition and activation state of immune cells, which impacts their progression and response to immunotherapy. Shedding light on the mechanisms that govern the diversity and function of immune cells in the tumour microenvironment will pave the way for the development of more tailored immunomodulatory strategies for the benefit of patients with cancer. Cancer cells, by virtue of their paracrine and juxtacrine communication mechanisms, are key contributors to intertumour heterogeneity in immune contextures. In this Review, we discuss how cancer cell-intrinsic features, including (epi)genetic aberrations, signalling pathway deregulation and altered metabolism, play a key role in orchestrating the composition and functional state of the immune landscape, and influence the therapeutic benefit of immunomodulatory strategies. Moreover, we highlight how targeting cancer cell-intrinsic parameters or their downstream immunoregulatory pathways is a viable strategy to manipulate the tumour immune milieu in favour of antitumour immunity.
Collapse
Affiliation(s)
- Antoinette van Weverwijk
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
19
|
Martinov T, Greenberg PD. Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:331-351. [PMID: 37655310 PMCID: PMC10470615 DOI: 10.1146/annurev-cancerbio-061521-082114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
T cell reactivity to tumor-specific neoantigens can drive endogenous and therapeutically induced antitumor immunity. However, most tumor-specific neoantigens are unique to each patient (private) and targeting them requires personalized therapy. A smaller subset of neoantigens includes epitopes that span recurrent mutation hotspots, translocations, or gene fusions in oncogenic drivers and tumor suppressors, as well as epitopes that arise from viral oncogenic proteins. Such antigens are likely to be shared across patients (public), uniformly expressed within a tumor, and required for cancer cell survival and fitness. Although a limited number of these public neoantigens are naturally immunogenic, recent studies affirm their clinical utility. In this review, we highlight efforts to target mutant KRAS, mutant p53, and epitopes derived from oncogenic viruses using T cells engineered with off-the-shelf T cell receptors. We also discuss the challenges and strategies to achieving more effective T cell therapies, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Tijana Martinov
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Immunology Department, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Abstract
Mutations in the TP53 tumour suppressor gene are very frequent in cancer, and attempts to restore the functionality of p53 in tumours as a therapeutic strategy began decades ago. However, very few of these drug development programmes have reached late-stage clinical trials, and no p53-based therapeutics have been approved in the USA or Europe so far. This is probably because, as a nuclear transcription factor, p53 does not possess typical drug target features and has therefore long been considered undruggable. Nevertheless, several promising approaches towards p53-based therapy have emerged in recent years, including improved versions of earlier strategies and novel approaches to make undruggable targets druggable. Small molecules that can either protect p53 from its negative regulators or restore the functionality of mutant p53 proteins are gaining interest, and drugs tailored to specific types of p53 mutants are emerging. In parallel, there is renewed interest in gene therapy strategies and p53-based immunotherapy approaches. However, major concerns still remain to be addressed. This Review re-evaluates the efforts made towards targeting p53-dysfunctional cancers, and discusses the challenges encountered during clinical development.
Collapse
Affiliation(s)
- Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Zhao D, Zhu D, Cai F, Jiang M, Liu X, Li T, Zheng Z. Current Situation and Prospect of Adoptive Cellular Immunotherapy for Malignancies. Technol Cancer Res Treat 2023; 22:15330338231204198. [PMID: 38037341 PMCID: PMC10693217 DOI: 10.1177/15330338231204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is an innovative promising treatment for tumors. ACT is characterized by the infusion of active anti-tumor immune cells (specific and non-specific) into patients to kill tumor cells either directly or indirectly by stimulating the body's immune system. The patient's (autologous) or a donor's (allogeneic) immune cells are used to improve immune function. Chimeric antigen receptor (CAR) T cells (CAR-T) is a type of ACT that has gained attention. T cells from the peripheral blood are genetically engineered to express CARs that rapidly proliferate and specifically recognize target antigens to exert its anti-tumor effects. Clinical application of CAR-T therapy for hematological tumors has shown good results, but adverse reactions and recurrence limit its applicability. Tumor infiltrating lymphocyte (TIL) therapy is effective for solid tumors. TIL therapy exhibits T cell receptor (TCR) clonality, superior tumor homing ability, and low targeted toxicity, but its successful application is limited to a number of tumors. Regardless, TIL and CAR-T therapies are effective for treating cancer. Additionally, CAR-natural killer (NK), CAR-macrophages (M), and TCR-T therapies are currently being researched. In this review, we highlight the current developments and limitations of several types of ACT.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| |
Collapse
|
22
|
Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2022; 13:974. [PMID: 36400749 PMCID: PMC9674619 DOI: 10.1038/s41419-022-05408-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
TP53, a crucial tumor suppressor gene, is the most commonly mutated gene in human cancers. Aside from losing its tumor suppressor function, mutant p53 (mutp53) often acquires inherent, novel oncogenic functions, which is termed "gain-of-function". Emerging evidence suggests that mutp53 is highly associated with advanced malignancies and poor prognosis, which makes it a target for development of novel cancer therapies. Herein, we provide a summary of our knowledge of the mutp53 types and mutp53 spectrum in cancers. The mechanisms of mutp53 accumulation and gain-of-function are also summarized. Furthermore, we discuss the gain-of-function of mutp53 in cancers: genetic instability, ferroptosis, microenvironment, and stemness. Importantly, the role of mutp53 in the clinic is also discussed, particularly with regard to chemotherapy and radiotherapy. Last, emphasis is given to emerging strategies on how to target mutp53 for tumor therapy. Thus, this review will contribute to better understanding of the significance of mutp53 as a target for therapeutic strategies.
Collapse
|
23
|
Zhou W, Yu J, Li Y, Wang K. Neoantigen-specific TCR-T cell-based immunotherapy for acute myeloid leukemia. Exp Hematol Oncol 2022; 11:100. [PMID: 36384590 PMCID: PMC9667632 DOI: 10.1186/s40164-022-00353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Neoantigens derived from non-synonymous somatic mutations are restricted to malignant cells and are thus considered ideal targets for T cell receptor (TCR)-based immunotherapy. Adoptive transfer of T cells bearing neoantigen-specific TCRs exhibits the ability to preferentially target tumor cells while remaining harmless to normal cells. High-avidity TCRs specific for neoantigens expressed on AML cells have been identified in vitro and verified using xenograft mouse models. Preclinical studies of these neoantigen-specific TCR-T cells are underway and offer great promise as safe and effective therapies. Additionally, TCR-based immunotherapies targeting tumor-associated antigens are used in early-phase clinical trials for the treatment of AML and show encouraging anti-leukemic effects. These clinical experiences support the application of TCR-T cells that are specifically designed to recognize neoantigens. In this review, we will provide a detailed profile of verified neoantigens in AML, describe the strategies to identify neoantigen-specific TCRs, and discuss the potential of neoantigen-specific T-cell-based immunotherapy in AML.
Collapse
|
24
|
Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol 2022; 10:953887. [PMID: 36420446 PMCID: PMC9677957 DOI: 10.3389/fbioe.2022.953887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
High grade serous carcinoma (HGSC) is one of the most lethal ovarian cancers that is characterised by asymptomatic tumour growth, insufficient knowledge of malignant cell origin and sub-optimal detection. HGSC has been recently shown to originate in the fallopian tube and not in the ovaries. Conventional treatments such as chemotherapy and surgery depend upon the stage of the disease and have resulted in higher rates of relapse. Hence, there is a need for alternative treatments. Differential antigen expression levels have been utilised for early detection of the cancer and could be employed in vaccination strategies using nucleic acids. In this review the different vaccination strategies in Ovarian cancer are discussed and reviewed. Nucleic acid vaccination strategies have been proven to produce a higher CD8+ CTL response alongside CD4+ T-cell response when compared to other vaccination strategies and thus provide a good arena for antitumour immune therapy. DNA and mRNA need to be delivered into the intracellular matrix. To overcome ineffective naked delivery of the nucleic acid cargo, a suitable delivery system is required. This review also considers the suitability of cell penetrating peptides as a tool for nucleic acid vaccine delivery in ovarian cancer.
Collapse
Affiliation(s)
- Chayanika Saha
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - James Bojdo
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, India
| | - Niamh Buckley
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
25
|
Daver NG, Maiti A, Kadia TM, Vyas P, Majeti R, Wei AH, Garcia-Manero G, Craddock C, Sallman DA, Kantarjian HM. TP53-Mutated Myelodysplastic Syndrome and Acute Myeloid Leukemia: Biology, Current Therapy, and Future Directions. Cancer Discov 2022; 12:2516-2529. [PMID: 36218325 PMCID: PMC9627130 DOI: 10.1158/2159-8290.cd-22-0332] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct group of myeloid disorders with dismal outcomes. TP53-mutated MDS and AML have lower response rates to either induction chemotherapy, hypomethylating agent-based regimens, or venetoclax-based therapies compared with non-TP53-mutated counterparts and a poor median overall survival of 5 to 10 months. Recent advances have identified novel pathogenic mechanisms in TP53-mutated myeloid malignancies, which have the potential to improve treatment strategies in this distinct clinical subgroup. In this review, we discuss recent insights into the biology of TP53-mutated MDS/AML, current treatments, and emerging therapies, including immunotherapeutic and nonimmune-based approaches for this entity. SIGNIFICANCE Emerging data on the impact of cytogenetic aberrations, TP53 allelic burden, immunobiology, and tumor microenvironment of TP53-mutated MDS and AML are further unraveling the complexity of this disease. An improved understanding of the functional consequences of TP53 mutations and immune dysregulation in TP53-mutated AML/MDS coupled with dismal outcomes has resulted in a shift from the use of cytotoxic and hypomethylating agent-based therapies to novel immune and nonimmune strategies for the treatment of this entity. It is hoped that these novel, rationally designed combinations will improve outcomes in this area of significant unmet need.
Collapse
Affiliation(s)
- Naval G. Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M. Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, California
| | - Andrew H. Wei
- Peter MacCallum Centre, Royal Melbourne Hospital and Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | - Charles Craddock
- Blood and Marrow Transplant Unit, Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom
| | - David A. Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Yu X, Mao SQ, Shan YY, Huang Y, Wu SD, Lu CD. Predictive Value of the TP53 p.G245S Mutation Frequency for the Short-Term Recurrence of Hepatocellular Carcinoma as Detected by Pyrophosphate Sequencing. Genet Test Mol Biomarkers 2022; 26:476-484. [PMID: 36264169 DOI: 10.1089/gtmb.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims: We explored the relationship between the mutation of the p.G245S site in TP53 and the short-term recurrence of hepatocellular carcinoma (HCC). Materials and Methods: One hundred one HCC patients were included in this study. The TP53 p.G245S mutation frequency spectrum was examined by direct sequencing of genomic DNA from tissue specimens of HCC patients. Univariate and multivariate Cox regression were used to evaluate the independent prognostic factors of tumor recurrence. Receiver operating characteristic (ROC) curve analysis was applied to determine the cutoff value of p.G245S mutation frequency and verify the predictive ability of the Cox model compared with single risk factor indices. Results: Multivariate Cox regression analysis showed that TP53 p.G245S mutation frequency (hazard ratio [HR] = 1.231, 95% CI: 1.006-1.505, p = 0.043), alpha-fetoprotein (AFP) (HR = 2.432, 95% CI: 1.297-4.561, p = 0.006), macrotrabecular-massive (MTM) (HR = 2.656, 95% CI: 0.930-7.583, p = 0.068), and portal vein tumor thrombus (PVTT) (HR = 14.297, 95% CI: 3.085-66.243, p = 0.001) were independent prognostic factors for short-term recurrence. The cutoff value of TP53 p.G245S mutation frequency (18.5%) was determined by ROC analysis. The prediction model integrating TP53 p.G245S mutation frequency, PVTT, MTM, and AFP could be a predictive indicator of short-term recurrence in HCC patients (AUC = 0.849, 95% CI: 0.748-0.950, p = 0.000001). Survival analysis indicated that the probability of short-term recurrence-free survival was significantly different among different TP53 p.G245S mutation frequency, MTM, PVTT, and AFP risk groups (p < 0.05). Conclusion: The mutation frequency of the p.G245S site was a novel prognostic risk factor for the short-term recurrence of HCC.
Collapse
Affiliation(s)
- Xi Yu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Qi Mao
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yu-Ying Shan
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Sheng-Dong Wu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Cai-De Lu
- Department of Hepatopancreatobiliary Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
27
|
GOF Mutant p53 in Cancers: A Therapeutic Challenge. Cancers (Basel) 2022; 14:cancers14205091. [PMID: 36291874 PMCID: PMC9600758 DOI: 10.3390/cancers14205091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In normal cells, p53 is a protein which regulates the cell cycle progression to ensure normal cell division, growth, and development. However, in cancer, changes in the p53 DNA sequence, called genetic mutation, results in the protein either losing its normal function or exhibiting advanced pro-tumorigenic functions that lead to cancer. Importantly, cancers with mutations in the p53 protein often represent ones which are more aggressive and more resistant to chemotherapy. As a result, many studies have and continue to investigate multiple ways to target mutant p53-bearing cancer using targeted therapy, gene therapy, immunotherapy, and combination therapies. Knowledge of these strategies is important in improving the overall therapeutic response of cancers with mutant p53. This review highlights new strategies and discusses the progression of such therapies. Abstract TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.
Collapse
|
28
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
30
|
Research progress of neoantigens in gynecologic cancers. Int Immunopharmacol 2022; 112:109236. [PMID: 36113318 DOI: 10.1016/j.intimp.2022.109236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The incidence and mortality of gynecological cancers have increased over the past decade. In the absence of effective treatment strategies, many advanced patients develop resistance to conventional therapies and have poor prognosis. Neoantigens have emerged as a novel tumor-specific antigen (TSA) that arises from genomic mutations in tumor cells. With higher immunogenicity than tumor-associated antigens (TAA), they have no risk of developing autoimmune response, leading them an attractive candidate for tumor therapeutic vaccines. With the development of next-generation sequencing (NGS) technology, the identification of neoantigens has been gradually improved, and the scope of application of neoantigen vaccines has continued to expand. Combined with other therapies such as immune-checkpoint inhibitors (ICIs) or adoptive cell therapy (ACT), the application of neoantigen in gynecological cancers has extended to clinical practice. Here, we reviewed the preclinical and clinical studies of neoantigens in gynecological cancers.
Collapse
|
31
|
Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (Beijing) 2022; 3:e167. [PMID: 36033422 PMCID: PMC9409637 DOI: 10.1002/mco2.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines made their successful public debut in the effort against the COVID-19 outbreak starting in late 2019, although the history of mRNA vaccines can be traced back decades. This review provides an overview to discuss the historical course and present situation of mRNA vaccine development in addition to some basic concepts that underly mRNA vaccines. We discuss the general preparation and manufacturing of mRNA vaccines and also discuss the scientific advances in the in vivo delivery system and evaluate popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we highlight the clinical value of mRNA vaccines as potent candidates for therapeutic treatment and discuss clinical progress in the treatment of cancer and coronavirus disease 2019. Data suggest that mRNA vaccines, with several prominent advantages, have achieved encouraging results and increasing attention due to tremendous potential in disease management. Finally, we suggest some potential directions worthy of further investigation and optimization. In addition to basic research, studies that help to facilitate storage and transportation will be indispensable for practical applications.
Collapse
Affiliation(s)
- Yangzhuo Gu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
| | - Jiangyao Duan
- Department of Life SciencesImperial College LondonLondonUK
| | - Na Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Yuxin Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xing Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
32
|
Tumor Infiltrating Lymphocyte (TIL) Therapy for Solid Tumor Treatment: Progressions and Challenges. Cancers (Basel) 2022; 14:cancers14174160. [PMID: 36077696 PMCID: PMC9455018 DOI: 10.3390/cancers14174160] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, immunotherapy, especially cell-based immunotherapy, has provided new strategies for cancer therapy. Recent clinical studies demonstrated that adopting cell transfer of tumor-infiltrating lymphocytes (TILs) for advanced solid tumors showed good efficacy. TIL therapy is a type of cell-based immunotherapy using the patient’s own immune cells from the microenvironment of the solid tumor to kill tumor cells. In this review, we provide a comprehensive summary of the current strategies and challenges in TIL isolation and generation. Moreover, the current clinical experience of TIL therapy is summarized and discussed, with an emphasis on lymphodepletion regimen, the use of interleukin-2, and related toxicity. Furthermore, we highlight the clinical trials where TIL therapy is used independently and in combination with other types of therapy for solid cancers. Finally, the limitations, future potential, and directions of TIL therapy for solid tumor treatment are also discussed.
Collapse
|
33
|
Kim SP, Vale NR, Zacharakis N, Krishna S, Yu Z, Gasmi B, Gartner JJ, Sindiri S, Malekzadeh P, Deniger DC, Lowery FJ, Parkhurst MR, Ngo LT, Ray S, Li YF, Hill V, Florentin M, Masi RV, Paria BC, Levin N, Bera A, Hedges EA, Choi A, Chatani PD, Parikh AY, Levi S, Seitter S, Lu YC, Zheng Z, Prickett TD, Jia L, Hernandez JM, Hoang CD, Robbins PF, Goff SL, Sherry RM, Yang JC, Rosenberg SA. Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor-Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors. Cancer Immunol Res 2022; 10:932-946. [PMID: 35749374 PMCID: PMC9357191 DOI: 10.1158/2326-6066.cir-22-0040] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. We performed whole-exome sequencing on 163 patients with metastatic solid cancers, identified 78 who had TP53 missense mutations, and through immunologic screening, identified 21 unique T-cell reactivities. Here, we report a library of 39 T-cell receptors (TCR) targeting TP53 mutations shared among 7.3% of patients with solid tumors. These TCRs recognized tumor cells in a TP53 mutation- and human leucocyte antigen (HLA)-specific manner in vitro and in vivo. Twelve patients with chemorefractory epithelial cancers were treated with ex vivo-expanded autologous tumor-infiltrating lymphocytes (TIL) that were naturally reactive against TP53 mutations. However, limited clinical responses (2 partial responses among 12 patients) were seen. These infusions contained low frequencies of mutant p53-reactive TILs that had exhausted phenotypes and showed poor persistence. We also treated one patient who had chemorefractory breast cancer with ACT comprising autologous peripheral blood lymphocytes transduced with an allogeneic HLA-A*02-restricted TCR specific for p53R175H. The infused cells exhibited an improved immunophenotype and prolonged persistence compared with TIL ACT and the patient experienced an objective tumor regression (-55%) that lasted 6 months. Collectively, these proof-of-concept data suggest that the library of TCRs targeting shared p53 neoantigens should be further evaluated for the treatment of patients with advanced human cancers. See related Spotlight by Klebanoff, p. 919.
Collapse
Affiliation(s)
- Sanghyun P. Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nolan R. Vale
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nikolaos Zacharakis
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sri Krishna
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Billel Gasmi
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Jared J. Gartner
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sivasish Sindiri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Parisa Malekzadeh
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Drew C. Deniger
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank J. Lowery
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria R. Parkhurst
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lien T. Ngo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Satyajit Ray
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yong F. Li
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Victoria Hill
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Florentin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert V. Masi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Biman C. Paria
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Noam Levin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alakesh Bera
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth A. Hedges
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Agnes Choi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Praveen D. Chatani
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anup Y. Parikh
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shoshana Levi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Samantha Seitter
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yong-Chen Lu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhili Zheng
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Todd D. Prickett
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Li Jia
- National Institutes of Health Library, Office of Director, National Institutes of Health, Bethesda, Maryland
| | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, NIH, CCR and The Clinical Center, Bethesda, Maryland
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie L. Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Richard M. Sherry
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James C. Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven A. Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
T-Cell Receptor Repertoire Sequencing and Its Applications: Focus on Infectious Diseases and Cancer. Int J Mol Sci 2022; 23:ijms23158590. [PMID: 35955721 PMCID: PMC9369427 DOI: 10.3390/ijms23158590] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The immune system is a dynamic feature of each individual and a footprint of our unique internal and external exposures. Indeed, the type and level of exposure to physical and biological agents shape the development and behavior of this complex and diffuse system. Many pathological conditions depend on how our immune system responds or does not respond to a pathogen or a disease or on how the regulation of immunity is altered by the disease itself. T-cells are important players in adaptive immunity and, together with B-cells, define specificity and monitor the internal and external signals that our organism perceives through its specific receptors, TCRs and BCRs, respectively. Today, high-throughput sequencing (HTS) applied to the TCR repertoire has opened a window of opportunity to disclose T-cell repertoire development and behavior down to the clonal level. Although TCR repertoire sequencing is easily accessible today, it is important to deeply understand the available technologies for choosing the best fit for the specific experimental needs and questions. Here, we provide an updated overview of TCR repertoire sequencing strategies, providers and applications to infectious diseases and cancer to guide researchers’ choice through the multitude of available options. The possibility of extending the TCR repertoire to HLA characterization will be of pivotal importance in the near future to understand how specific HLA genes shape T-cell responses in different pathological contexts and will add a level of comprehension that was unthinkable just a few years ago.
Collapse
|
35
|
Wang W, Yuan T, Ma L, Zhu Y, Bao J, Zhao X, Zhao Y, Zong Y, Zhang Y, Yang S, Qiu X, Shen S, Wu R, Wu T, Wang H, Gao D, Wang P, Chen L. Hepatobiliary Tumor Organoids Reveal HLA Class I Neoantigen Landscape and Antitumoral Activity of Neoantigen Peptide Enhanced with Immune Checkpoint Inhibitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105810. [PMID: 35665491 PMCID: PMC9353440 DOI: 10.1002/advs.202105810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/08/2022] [Indexed: 05/28/2023]
Abstract
Neoantigen-directed therapy lacks preclinical models recapitulating neoantigen characteristics of original tumors. It is urgent to develop a platform to assess T cell response for neoantigen screening. Here, immunogenic potential of neoantigen-peptides of tumor tissues and matched organoids (n = 27 pairs) are analyzed by Score tools with whole genome sequencing (WGS)-based human leukocyte antigen (HLA)-class-I algorithms. The comparisons between 9203 predicted neoantigen-peptides from 2449 mutations of tumor tissues and 9991 ones from 2637 mutations of matched organoids demonstrate that organoids preserved majority of genetic features, HLA alleles, and similar neoantigen landscape of original tumors. Higher neoantigen load is observed in tumors with early stage. Multiomics analysis combining WGS, RNA-seq, single-cell RNA-seq, mass spectrometry filters out 93 candidate neoantigen-peptides with strong immunogenic potential for functional validation in five organoids. Immunogenic peptides are defined by inducing increased CD107aCD137IFN-γ expressions and IFN-γ secretion of CD8 cells in flow cytometry and enzyme-linked immunosorbent assay assays. Nine immunogenic peptides shared by at least two individuals are validated, including peptide from TP53R90S . Organoid killing assay confirms the antitumor activity of validated immunogenic peptide-reactive CD8 cells, which is further enhanced in the presence of immune checkpoint inhibitors. The study characterizes HLA-class-I neoantigen landscape in hepatobiliary tumor, providing practical strategy with tumor organoid model for neoantigen-peptide identification in personalized immunotherapy.
Collapse
Affiliation(s)
- Wenwen Wang
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Tinggan Yuan
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lili Ma
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanjing Zhu
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
- National Center for Liver CancerShanghai200441China
| | - Jinxia Bao
- School of MedicineNanjing UniversityNanjing210093China
| | - Xiaofang Zhao
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yan Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200433China
| | - Yali Zong
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200433China
| | - Yani Zhang
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghai200433China
| | - Shuai Yang
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xinyao Qiu
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
- National Center for Liver CancerShanghai200441China
| | - Rui Wu
- Department of Biliary Surgery IEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
| | - Tong Wu
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
- National Center for Liver CancerShanghai200441China
| | - Hongyang Wang
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- The International Cooperation Laboratory on Signal TransductionEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200438China
- National Center for Liver CancerShanghai200441China
| | - Dong Gao
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Cell BiologyShanghai Key Laboratory of Molecular AndrologyShanghai Institute of Biochemistry and Cell BiologyCAS Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Peng Wang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lei Chen
- Fudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- National Center for Liver CancerShanghai200441China
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU)Ministry of EducationShanghai200438China
- Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH)Shanghai200438China
| |
Collapse
|
36
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
37
|
Abstract
ABSTRACT The holy grail of cancer therapeutics is the destruction of cancer cells while avoiding harm to normal cells. Cancer is unique from normal tissues because of the presence of somatic mutations that accumulate during tumorigenesis. Some nonsynonymous mutations can give rise to mutated peptide antigens (hereafter referred to as neoantigens) that can be specifically recognized by T cells. Thus, the immunological targeting of neoantigens represents a safe and promising strategy to treat patients with cancer. This article reviews the clinical application of adoptive cell therapy targeting neoantigens in patients with epithelial cancers.
Collapse
|
38
|
Association of PTPRT Mutations with Cancer Metastasis in Multiple Cancer Types. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9386477. [PMID: 35789644 PMCID: PMC9250438 DOI: 10.1155/2022/9386477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
Abstract
Metastasis is one of the characteristics of advanced cancer and the primary cause of cancer-related deaths from cancer, but the mechanism underlying metastasis is unclear, and there is a lack of metastasis markers. PTPRT is a protein-coding gene involved in both signal transduction and cellular adhesion. It is also known as a tumor suppressor gene that inhibits cell malignant proliferation by inhibiting the STAT3 pathway. Recent studies have reported that PTPRT is involved in the early metastatic seeding of colorectal cancer; however, the correlation between PTPRT and metastasis in other types of cancer has not been revealed. A combined analysis using a dataset from the genomics evidence neoplasia information exchange (GENIE) and cBioPortal revealed that PTPRT mutation is associated with poor prognosis in pan-cancer and non-small-cell lung cancer. The mutations of PTPRT or “gene modules” containing PTPRT are significantly enriched in patients with metastatic cancer in multiple cancers, suggesting that the PTPRT mutations serve as potential biomarkers of cancer metastasis.
Collapse
|
39
|
Uddin MB, Roy KR, Hill RA, Roy SC, Gu X, Li L, Zhang QJ, You Z, Liu YY. p53 missense mutant G242A subverts natural killer cells in sheltering mouse breast cancer cells against immune rejection. Exp Cell Res 2022; 417:113210. [PMID: 35597298 DOI: 10.1016/j.yexcr.2022.113210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 11/15/2022]
Abstract
Cancer cells acquire immunoediting ability to evade immune surveillance and thus escape eradication. It is widely known that mutant proteins encoded from tumor suppressor TP53 exhibit gain-of-function in cancer cells, thereby promoting progression; however, how mutant p53 contributes to the sheltering of cancer cells from host anticancer immunity remains unclear. Herein, we report that murine p53 missense mutation G242A (corresponding to human G245A) suppresses the activation of host natural killer (NK) cells, thereby enabling breast cancer cells to avoid immune assault. We found that serial injection of EMT6 breast cancer cells that carry wild-type (wt) Trp53, like normal fibroblasts, promoted NK activity in mice, while SVTneg2 cells carrying Trp53 G242A+/+ mutation decreased NK cell numbers and increased CD8+ T lymphocyte numbers in spleen. Innate immunity based on NK cells and CD8 T cells was reduced in p53 mutant-carrying transgenic mice (Trp53 R172H/+, corresponding to human R175H/+). Further, upon co-culture with isolated NK cells, EMT6 cells substantively activated NK cells and proliferation thereof, increasing interferon-gamma (IFN-γ) production; however, SVTneg2 cells suppressed NK cell activation. Further mechanistic study elucidated that p53 can modulate expression by cancer cells of Mult-1 and H60a, which are activating and inhibitory ligands for NKG2D receptors of NK cells, respectively, to enhance immune surveillance against cancer. Our findings demonstrate that wt p53 is requisite for NK cell-based immune recognition and elimination of cancerous cells, and perhaps more importantly, that p53 missense mutant presence in cancer cells impairs NK cell-attributable responses, thus veiling cancerous cells from host immunity and enabling cancer progression.
Collapse
Affiliation(s)
- Mohammad B Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kartik R Roy
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Li Li
- Laboratory of Translational Cancer Research, Tom & Gayle Benson Cancer Center, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Qian-Jin Zhang
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA, USA.
| |
Collapse
|
40
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
41
|
Kiessling A, Ramanathan K, Nilsson OB, Notari L, Renken S, Kiessling R, Grönlund H, Wickström SL. Generation of Tumor-Specific Cytotoxic T Cells From Blood via In Vitro Expansion Using Autologous Dendritic Cells Pulsed With Neoantigen-Coupled Microbeads. Front Oncol 2022; 12:866763. [PMID: 35433456 PMCID: PMC9009257 DOI: 10.3389/fonc.2022.866763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
For the past decade, adoptive cell therapy including tumor-infiltrating lymphocytes, genetically modified cytotoxic lymphocytes expressing a chimeric antigen receptor, or a novel T-cell receptor has revolutionized the treatment of many cancers. Progress within exome sequencing and neoantigen prediction technologies provides opportunities for further development of personalized immunotherapies. In this study, we present a novel strategy to deliver in silico predicted neoantigens to autologous dendritic cells (DCs) using paramagnetic beads (EpiTCer beads). DCs pulsed with EpiTCer beads are superior in enriching for healthy donor and patient blood-derived tumor-specific CD8+ T cells compared to DC loaded with whole-tumor lysate or 9mer neoantigen peptides. A dose-dependent effect was observed, with higher EpiTCer bead per DC being favorable. We concluded that CD8+ T cells enriched by DC loaded with EpiTCer beads are tumor specific with limited tumor cross-reactivity and low recognition of autologous non-activated monocytes or CD8+ T cells. Furthermore, tumor specificity and recognition were improved and preserved after additional expansion using our Good Manufacturing Process (GMP)-compatible rapid expansion protocol. Phenotypic analysis of patient-derived EpiTCer DC expanded CD8+ T cells revealed efficient maturation, with high frequencies of central memory and effector memory T cells, similar to those observed in autologous expanded tumor-infiltrating lymphocytes. These results indicate that DC pulsed with EpiTCer beads enrich for a T-cell population with high capacity of tumor recognition and elimination, which are features needed for a T-cell product to be used for personalized adoptive cell therapy.
Collapse
Affiliation(s)
- Adela Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Ola B. Nilsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Luigi Notari
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Stefanie Renken
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
| | - Stina L. Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- NEOGAP Therapeutics AB, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Stina L. Wickström,
| |
Collapse
|
42
|
Kerle IA, Jägerhuber L, Secci R, Pfarr N, Blüm P, Roesch R, Götze KS, Weichert W, Bassermann F, Ruland J, Winter C. Circulating Tumor DNA Profiling of a Diffuse Large B Cell Lymphoma Patient with Secondary Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14061371. [PMID: 35326522 PMCID: PMC8946858 DOI: 10.3390/cancers14061371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/01/2023] Open
Abstract
Diffuse large B cell lymphomas (DLBCL) are the most common neoplasia of the lymphatic system. Circulating cell-free DNA released from tumor cells (ctDNA) has been studied in many tumor entities and successfully used to monitor treatment and follow up. Studies of ctDNA in DLBCL so far have mainly focused on tracking mutations in peripheral blood initially detected by next-generation sequencing (NGS) of tumor tissue from one lymphoma manifestation site. This approach, however, cannot capture the mutational heterogeneity of different tumor sites in its entirety. In this case report, we present repetitive targeted next-generation sequencing combined with digital PCR out of peripheral blood of a patient with DLBCL relapse. By combining both detection methods, we were able to detect a new dominant clone of ctDNA correlating with the development of secondary therapy-related acute myeloid leukemia (t-AML) during the course of observation. Conclusively, our case report reinforces the diagnostic importance of ctDNA in DLBCL as well as the importance of repeated ctDNA sequencing combined with focused digital PCR assays to display the dynamic mutational landscape during the clinical course.
Collapse
Affiliation(s)
- Irina A. Kerle
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
- Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus Dresden at TU Dresden, 01307 Dresden, Germany
| | - Ludwig Jägerhuber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
| | - Ramona Secci
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (N.P.); (W.W.)
| | - Philipp Blüm
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
| | - Romina Roesch
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
| | - Katharina S. Götze
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (N.P.); (W.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (I.A.K.); (P.B.); (K.S.G.); (F.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Christof Winter
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (L.J.); (R.S.); (R.R.); (J.R.)
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| |
Collapse
|
43
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
44
|
Sim MJW, Sun PD. T Cell Recognition of Tumor Neoantigens and Insights Into T Cell Immunotherapy. Front Immunol 2022; 13:833017. [PMID: 35222422 PMCID: PMC8867076 DOI: 10.3389/fimmu.2022.833017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
In cancer, non-synonymous DNA base changes alter protein sequence and produce neoantigens that are detected by the immune system. For immune detection, neoantigens must first be presented on class I or II human leukocyte antigens (HLA) followed by recognition by peptide-specific receptors, exemplified by the T-cell receptor (TCR). Detection of neoantigens represents a unique challenge to the immune system due to their high similarity with endogenous 'self' proteins. Here, we review insights into how TCRs detect neoantigens from structural studies and delineate two broad mechanistic categories: 1) recognition of mutated 'self' peptides and 2) recognition of novel 'non-self' peptides generated through anchor residue modifications. While mutated 'self' peptides differ only by a single amino acid from an existing 'self' epitope, mutations that form anchor residues generate an entirely new epitope, hitherto unknown to the immune system. We review recent structural studies that highlight these structurally distinct mechanisms and discuss how they may lead to differential anti-tumor immune responses. We discuss how T cells specific for neoantigens derived from anchor mutations can be of high affinity and provide insights to their use in adoptive T cell transfer-based immunotherapy.
Collapse
Affiliation(s)
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
45
|
Gartner JJ, Parkhurst MR, Gros A, Tran E, Jafferji MS, Copeland A, Hanada KI, Zacharakis N, Lalani A, Krishna S, Sachs A, Prickett TD, Li YF, Florentin M, Kivitz S, Chatmon SC, Rosenberg SA, Robbins PF. A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types. NATURE CANCER 2021; 2:563-574. [PMID: 34927080 DOI: 10.1038/s43018-021-00197-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumor neoepitopes presented by major histocompatibility complex (MHC) class I are recognized by tumor-infiltrating lymphocytes (TIL) and are targeted by adoptive T-cell therapies. Identifying which mutant neoepitopes from tumor cells are capable of recognition by T cells can assist in the development of tumor-specific, cell-based therapies and can shed light on antitumor responses. Here, we generate a ranking algorithm for class I candidate neoepitopes by using next-generation sequencing data and a dataset of 185 neoepitopes that are recognized by HLA class I-restricted TIL from individuals with metastatic cancer. Random forest model analysis showed that the inclusion of multiple factors impacting epitope presentation and recognition increased output sensitivity and specificity compared to the use of predicted HLA binding alone. The ranking score output provides a set of class I candidate neoantigens that may serve as therapeutic targets and provides a tool to facilitate in vitro and in vivo studies aimed at the development of more effective immunotherapies.
Collapse
Affiliation(s)
- Jared J Gartner
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria R Parkhurst
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alena Gros
- Vall d'Hebron Institute of Oncology (VHIO), Cellex Center, Barcelona, Spain
| | - Eric Tran
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - Amy Copeland
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nikolaos Zacharakis
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Almin Lalani
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sri Krishna
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abraham Sachs
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong F Li
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Florentin
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Scott Kivitz
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel C Chatmon
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
47
|
Peri A, Greenstein E, Alon M, Pai JA, Dingjan T, Reich-Zeliger S, Barnea E, Barbolin C, Levy R, Arnedo-Pac C, Kalaora S, Dassa B, Feldmesser E, Shang P, Greenberg P, Levin Y, Benedek G, Levesque MP, Adams DJ, Lotem M, Wilmott JS, Scolyer RA, Jönsson GB, Admon A, Rosenberg SA, Cohen CJ, Niv MY, Lopez-Bigas N, Satpathy AT, Friedman N, Samuels Y. Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. J Clin Invest 2021; 131:129466. [PMID: 34651586 DOI: 10.1172/jci129466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.
Collapse
Affiliation(s)
| | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Joy A Pai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Tamir Dingjan
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Eilon Barnea
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Ronen Levy
- Department of Molecular Cell Biology and
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ping Shang
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - James S Wilmott
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, Australia
| | - Göran B Jönsson
- Lund University Cancer Center, Lund University, Lund, Sweden
| | - Arie Admon
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Cyrille J Cohen
- Laboratory of Tumor Immunotherapy, The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
48
|
Development of New Cancer Treatment by Identifying and Focusing the Genetic Mutations or Altered Expression in Gynecologic Cancers. Genes (Basel) 2021; 12:genes12101593. [PMID: 34680987 PMCID: PMC8535522 DOI: 10.3390/genes12101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), The Cancer Genome Atlas (TCGA) research network has given gynecologic cancers molecular classifications, which impacts clinical practice more and more. New cancer treatments that identify and target pathogenic abnormalities of genes have been in rapid development. The most prominent progress in gynecologic cancers is the clinical efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors, which have shown breakthrough benefits in reducing hazard ratios (HRs) (HRs between 0.2 and 0.4) of progression or death from BRCA1/2 mutated ovarian cancer. Immune checkpoint inhibition is also promising in cancers that harbor mismatch repair deficiency (dMMR)/microsatellite instability (MSI). In this review, we focus on the druggable genetic alterations in gynecologic cancers by summarizing literature findings and completed and ongoing clinical trials.
Collapse
|
49
|
Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4681. [PMID: 34572908 PMCID: PMC8468925 DOI: 10.3390/cancers13184681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The p53 pathway is a desirable therapeutic target, owing to its critical role in the maintenance of genome integrity. This is exemplified in chronic lymphocytic leukemia (CLL), one of the most common adult hematologic malignancies, in which functional loss of p53 arising from genomic aberrations are frequently associated with clonal evolution, disease progression, and therapeutic resistance, even in the contemporary era of CLL targeted therapy and immunotherapy. Targeting the 'undruggable' p53 pathway therefore arguably represents the holy grail of cancer research. In recent years, several strategies have been proposed to exploit p53 pathway defects for cancer treatment. Such strategies include upregulating wild-type p53, restoring tumor suppressive function in mutant p53, inducing synthetic lethality by targeting collateral genome maintenance pathways, and harnessing the immunogenicity of p53 pathway aberrations. In this review, we will examine the biological and clinical implications of p53 pathway defects, as well as our progress towards development of therapeutic approaches targeting the p53 pathway, specifically within the context of CLL. We will appraise the opportunities and pitfalls associated with these therapeutic strategies, and evaluate their place amongst the array of new biological therapies for CLL.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2SY, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| |
Collapse
|
50
|
Srivastava RM, Purohit TA, Chan TA. Diverse Neoantigens and the Development of Cancer Therapies. Semin Radiat Oncol 2021; 30:113-128. [PMID: 32381291 DOI: 10.1016/j.semradonc.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is the manifestation of uncontrolled cellular growth and immune escape mechanisms. Unrestrained tumor growth can be associated with incidental errors in the genome during replication and genotoxic agents can alter the structure and sequence of our DNA. Among all genetic aberrations in cancer, only limited number of mutations can produce immunogenic antigens which have the potential to bind human leukocyte antigen class I or human leukocyte antigen class II, and help activate the adaptive immune system. These neoantigens can be recognized by CD8+ and CD4+ neoantigen-specific T lymphocytes. Recently, several immune checkpoint targeting drugs have been approved for clinical use. Primarily, these drugs expand and facilitate the cytotoxic activity of neoantigen-specific T cells to eradicate tumors. Differential drug response across cancers could be attributed, at least in part, to differences in the 'tumor antigen landscape' and 'antigen presentation pathway' in patients. Although tumor mutational burden correlates with response to immune checkpoint inhibitors in many cancer types and has evolved as a broad biomarker, a comprehensive understanding of the neoantigen landscape and the function of cognate T cell responses is lacking and is needed for improved patient selection criteria and neoantigen vaccine design. Here, we review cancer neoantigens, their implications for antitumor responses, the dynamics of neoantigen-specific T cells, and the advancement of neoantigen-based therapy in proposed clinical trials.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tanaya A Purohit
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|