1
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
2
|
Yan G, Lei W. Role of ELK1 in regulating colorectal cancer progression: miR-31-5p/CDIP1 axis in CRC pathogenesis. PeerJ 2023; 11:e15602. [PMID: 37547727 PMCID: PMC10399563 DOI: 10.7717/peerj.15602] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Objective Colorectal cancer (CRC) is a malignant tumor that affects the digestive system. With the increased of modernization of society, the incidence of colorectal cancer has increased throughout the world. As a transcription factor, ELK1 has been widely studied in colorectal cancer. However, there are still many unknown factors regarding its specific mechanism of action.This study explored the role of ELK1 and its downstream pathway in CRC pathogenesis. Methods Based on clinical samples, this study examined miR-31-5p expression in CRC cells and its impact on malignant behaviors (migration, invasion, apoptosis) and autophagy. The promoter sequence of miR-31-5p was obtained from the UCSC database, and ELK1 was identified as its transcription factor. In ELK1-knockdown CRC cells, miR-31-5p was overexpressed, and its response in malignant behaviors and autophagy was analyzed. The target gene CDIP1 was predicted and verified using a dual-luciferase assay. The influence of CDIP1 on malignant behavior in CRC cells was assessed, and CDIP1 siRNA was used as a rescue treatment for miR-31-5p inhibition. The role of ELK1/miR-31-5p in tumor growth was validated in vivo. Results miR-31-5p expression was upregulated in the colorectal cancer tissues and cells. The knockdown of miR-31-5p markedly inhibited cancer cells' malignant behaviors and mediated autophagy. ELK1 was confirmed to bind with the miR-31-5p promoter and enhance miR-31-5p transcription. miR-31-5p was found to bind with the CDIP1 3'UTR and inhibit CDIP1 expression. CDIP1 siRNA partially rescued the effects of miR-31-5p knockdown on cell metastatic ability, autophagy, and apoptosis. Based on the in vivo experiments, results showed that the ELK1/miR-31-5p axis positively regulated tumor growth in nude mice. Conclusion Our findings indicate that ELK1 regulates the progression of colorectal cancer via an miR-31-5p/CDIP1 axis, and the ELK1/miR-31-5p/CDIP1 axis could be a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Guoqiang Yan
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wang Lei
- Department of Colorectal & Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Soave C, Ducker C, Islam N, Kim S, Yurgelevic S, Nicely NI, Pardy L, Huang Y, Shaw PE, Auner G, Dickson A, Ratnam M. The Small Molecule Antagonist KCI807 Disrupts Association of the Amino-Terminal Domain of the Androgen Receptor with ELK1 by Modulating the Adjacent DNA Binding Domain. Mol Pharmacol 2023; 103:211-220. [PMID: 36720643 PMCID: PMC11033959 DOI: 10.1124/molpharm.122.000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 02/02/2023] Open
Abstract
The androgen receptor (AR) is a crucial coactivator of ELK1 for prostate cancer (PCa) growth, associating with ELK1 through two peptide segments (358-457 and 514-557) within the amino-terminal domain (NTD) of AR. The small-molecule antagonist 5-hydroxy-2-(3-hydroxyphenyl)chromen-4-one (KCI807) binds to AR, blocking ELK1 binding and inhibiting PCa growth. We investigated the mode of interaction of KCI807 with AR using systematic mutagenesis coupled with ELK1 coactivation assays, testing polypeptide binding and Raman spectroscopy. In full-length AR, deletion of neither ELK1 binding segment affected sensitivity of residual ELK1 coactivation to KCI807. Although the NTD is sufficient for association of AR with ELK1, interaction of the isolated NTD with ELK1 was insensitive to KCI807. In contrast, coactivation of ELK1 by the AR-V7 splice variant, comprising the NTD and the DNA binding domain (DBD), was sensitive to KCI807. Deletions and point mutations within DBD segment 558-595, adjacent to the NTD, interfered with coactivation of ELK1, and residual ELK1 coactivation by the mutants was insensitive to KCI807. In a glutathione S-transferase pull-down assay, KCI807 inhibited ELK1 binding to an AR polypeptide that included the two ELK1 binding segments and the DBD but did not affect ELK1 binding to a similar AR segment that lacked the sequence downstream of residue 566. Raman spectroscopy detected KCI807-induced conformational change in the DBD. The data point to a putative KCI807 binding pocket within the crystal structure of the DBD and indicate that either mutations or binding of KCI807 at this site will induce conformational changes that disrupt ELK1 binding to the NTD. SIGNIFICANCE STATEMENT: The small-molecule antagonist KCI807 disrupts association of the androgen receptor (AR) with ELK1, serving as a prototype for the development of small molecules for a novel type of therapeutic intervention in drug-resistant prostate cancer. This study provides basic information needed for rational KCI807-based drug design by identifying a putative binding pocket in the DNA binding domain of AR through which KCI807 modulates the amino-terminal domain to inhibit ELK1 binding.
Collapse
Affiliation(s)
- Claire Soave
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Charles Ducker
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Naeyma Islam
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Seongho Kim
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Sally Yurgelevic
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Nathan I Nicely
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Luke Pardy
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Yanfang Huang
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Peter E Shaw
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Gregory Auner
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Alex Dickson
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Manohar Ratnam
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| |
Collapse
|
4
|
Ducker C, Ratnam M, Shaw PE, Layfield R. Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1. Protein Expr Purif 2023; 203:106216. [PMID: 36528218 DOI: 10.1016/j.pep.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Post-translational modifications (PTMs) are important for protein folding and activity, and the ability to recreate physiologically relevant PTM profiles on recombinantly-expressed proteins is vital for meaningful functional analysis. The ETS transcription factor ELK-1 serves as a paradigm for cellular responses to mitogens and can synergise with androgen receptor to promote prostate cancer progression, although in vitro protein function analyses to date have largely overlooked its complex PTM landscapes. We expressed and purified human ELK-1 using mammalian (HEK293T), insect (Sf9) and bacterial (E. coli) systems in parallel and compared PTMs imparted upon purified proteins, along with their performance in DNA and protein interaction assays. Phosphorylation of ELK-1 within its transactivation domain, known to promote DNA binding, was most apparent in protein isolated from human cells and accordingly conferred the strongest DNA binding in vitro, while protein expressed in insect cells bound most efficiently to the androgen receptor. We observed lysine acetylation, a hitherto unreported PTM of ELK-1, which appeared highest in insect cell-derived ELK-1 but was also present in HEK293T-derived ELK-1. Acetylation of ELK-1 was enhanced in HEK293T cells following starvation and mitogen stimulation, and modified lysines showed overlap with previously identified regulatory SUMOylation and ubiquitination sites. Our data demonstrate that the choice of recombinant expression system can be tailored to suit biochemical application rather than to maximise soluble protein production and suggest the potential for crosstalk and antagonism between different PTMs of ELK-1.
Collapse
Affiliation(s)
- Charles Ducker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Manohar Ratnam
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Peter E Shaw
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Robert Layfield
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
5
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
6
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
7
|
Identification of ELK1 interacting peptide segments in the androgen receptor. Biochem J 2022; 479:1519-1531. [PMID: 35781489 DOI: 10.1042/bcj20220297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer (PCa) growth requires tethering of the androgen receptor (AR) to chromatin by the ETS domain transcription factor ELK1 to coactivate critical cell proliferation genes. Disruption of the ELK1-AR complex is a validated potential means of therapeutic intervention in PCa. AR associates with ELK1 by co-opting its two ERK docking sites, through the amino-terminal domain (A/B domain) of AR. Using a mammalian two-hybrid assay, we have now functionally mapped amino acids within the peptide segments 358-457 and 514-557 in the A/B domain as required for association with ELK1. The mapping data was validated by GST (glutathione S-transferase)-pulldown and BRET (bioluminescence resonance energy transfer) assays. Comparison of the relative contributions of the interacting motifs/segments in ELK1 and AR to coactivation of ELK1 by AR suggested a parallel mode of binding of AR and ELK1 polypeptides. Growth of PCa cells was partially inhibited by deletion of the upstream segment in AR and nearly fully inhibited by deletion of the downstream segment. Our studies have identified two peptide segments in AR that mediate functional association of AR with its two docking sites in ELK1. Identification of the ELK1 recognition sites in AR should enable further structural studies of the ELK1-AR interaction and rational design of small molecule drugs to disrupt this interaction.
Collapse
|
8
|
ELK1 Promotes Epithelial-Mesenchymal Transition and the Progression of Lung Adenocarcinoma by Upregulating B7-H3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:2805576. [PMID: 34970415 PMCID: PMC8714344 DOI: 10.1155/2021/2805576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023]
Abstract
In previous studies, we found that B7 homolog 3 (B7-H3) was highly expressed in lung adenocarcinoma (LUAD) and promoted epithelial-to-mesenchymal transition (EMT) of LUAD cells. However, the underlying molecular mechanism is unclear. This study is aimed at evaluating the role of Ets-like protein 1 (ELK1) as a transcriptional regulator of B7-H3 for mediating the development and progression of LUAD in vitro and in vivo. We confirmed that ELK1 is highly expressed in LUAD and is associated with poor patient prognosis. ELK1 was found to promote proliferation, invasion, migration, and EMT of LUAD cells through in vivo and in vitro experiments. In terms of mechanism, ELK1 binds to the B7-H3 promoter region and induces the upregulation of B7-H3 in LUAD. Our data suggest that ELK1 plays an important role in the development of LUAD and could be used as a prognostic marker and therapeutic target for LUAD.
Collapse
|
9
|
Ducker C, Shaw PE. Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. Int J Mol Sci 2021; 22:5119. [PMID: 34066106 PMCID: PMC8151852 DOI: 10.3390/ijms22105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Collapse
Affiliation(s)
- Charles Ducker
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Peter E. Shaw
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Yu J, Zhou P, Du W, Xu R, Yan G, Deng Y, Li X, Chen Y. Metabolically stable diphenylamine derivatives suppress androgen receptor and BET protein in prostate cancer. Biochem Pharmacol 2020; 177:113946. [PMID: 32247852 DOI: 10.1016/j.bcp.2020.113946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Androgen receptor (AR) is a crucial driver of prostate cancer (PC). AR-relevant resistance remains a major challenge in castration-resistant prostate cancer (CRPC). Bromodomain and extra-terminal domain (BET) family are critical AR coregulators. Here, we developed several diphenylamine derivatives and identified compound 7d that disrupted the functions of AR and BET family in prostate cancer and exhibited favorable metabolic stability in vitro and high drug exposure in vivo. We showed 7d not only bound to AR, suppressed transactivation of wild-type AR (wt-AR) and the mutant that mediates Enzalutamide resistance, but also reduced c-Myc protein expression through BET inhibition. In addition, 7d inhibited the proliferation of AR-positive PC cells with favorable selectivity and suppressed AR-V7-expressing VCaP and 22Rv1 xenografts growth in vivo. Collectively, these results indicate the potential of lead compound 7d as an orally available AR and BET inhibitor to treat CRPC and overcome antiandrogen resistance.
Collapse
Affiliation(s)
- Jiang Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peiting Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wu Du
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Ruixue Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyi Yan
- Department of Hepatobiliary Pancreatic Surgery, Henan Province People's Hospital, Zhengzhou 450003, China
| | - Yufang Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinghai Li
- Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China
| | - Yuanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Hinova Pharmaceuticals Inc., 4th Floor, Building RongYao A, No. 5, Keyuan South Road, Chengdu 610041, China.
| |
Collapse
|
11
|
Lu C, Brown LC, Antonarakis ES, Armstrong AJ, Luo J. Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations. Prostate Cancer Prostatic Dis 2020; 23:381-397. [PMID: 32139878 PMCID: PMC7725416 DOI: 10.1038/s41391-020-0217-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Background: The androgen receptor (AR) is a key prostate cancer drug target.
Suppression of AR signaling mediated by the full-length AR (AR-FL) is the
therapeutic goal of all existing AR-directed therapies. AR-targeting agents
impart therapeutic benefit, but lead to AR aberrations that underlie disease
progression and therapeutic resistance. Among the AR aberrations specific to
castration-resistant prostate cancer (CRPC), AR variants (AR-Vs) have
emerged as important indicators of disease progression and therapeutic
resistance. Methods: We conducted a systemic review of the literature focusing on recent
laboratory studies on AR-Vs following our last review article published in
2016. Topics ranged from measurement and detection, molecular origin,
regulation, genomic function, and preclinical therapeutic targeting of
AR-Vs. We provide expert opinions and perspectives on these topics. Results: Transcript sequences for 22 AR-Vs have been reported in the
literature. Different AR-Vs may arise through different mechanisms, and can
be regulated by splicing factors and dictated by genomic rearrangements, but
a low-androgen environment is a prerequisite for generation of AR-Vs. The
unique transcript structures allowed development of in-situ and in-solution
measurement and detection methods, including mRNA and protein detection, in
both tissue and blood specimens. AR variant-7 (AR-V7) remains the main
measurement target and the most extensively characterized AR-V. Although
AR-V7 co-exists with AR-FL, genomic functions mediated by AR-V7 do not
require the presence of AR-FL. The distinct cistromes and transcriptional
programs directed by AR-V7 and their co-regulators are consistent with
genomic features of progressive disease in a low-androgen environment.
Preclinical development of AR-V-directed agents currently focuses on
suppression of mRNA expression and protein degradation as well as targeting
of the amino-terminal domain. Conclusions: Current literature continues to support AR-Vs as biomarkers and
therapeutic targets in prostate cancer. Laboratory investigations reveal
both challenges and opportunities in targeting AR-Vs to overcome resistance
to current AR-directed therapies.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Landon C Brown
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Emmanuel S Antonarakis
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Brown LC, Lu C, Antonarakis ES, Luo J, Armstrong AJ. Androgen receptor variant-driven prostate cancer II: advances in clinical investigation. Prostate Cancer Prostatic Dis 2020; 23:367-380. [PMID: 32094489 DOI: 10.1038/s41391-020-0215-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Approximately 10-30% of men with mCRPC will test positive for AR-V7 using one of two analytically and clinically validated circulating tumor cell (CTC)-based assays. These men have poor outcomes with approved AR-targeting therapies but may retain sensitivity to chemotherapy. Here, we discuss the clinical implications of testing and strategies that may benefit AR splice variant (AR-V)-positive men and discuss whether such variants are passengers or drivers of aggressive clinical behavior. METHODS We conducted a systemic review of the literature, covering updates since our 2016 review on androgen receptor variants in mCRPC, outcomes, and existing and novel approaches to therapy. We provide an expert opinion about management strategies for AR-V7-positive men and key unanswered research questions. RESULTS AR-V7-positive men, defined by Epic nuclear protein detection or the modified AdnaTest mRNA detection in CTCs, identify a subset of men with mCRPC that have a low probability of response to AR-targeting therapy with short progression-free and overall survival in multivariable analyses. AR-variants do not exist in isolation, but rather in the context of a complex, heterogeneous, and evolving mCRPC genome and phenotype as well as patient-specific clinical heterogeneity, and multiple mechanisms of resistance likely exist in patients regardless of AR-V7 detection. Efforts to develop broader resistance assays are needed, and effective treatment strategies beyond taxanes are needed to address the causal driver role of AR-variants and to benefit patients with AR-V-expressing prostate cancer. CONCLUSIONS CTC AR-V7 detection using the AdnaTest mRNA or Epic nuclear protein assays represents the first analytically and prospective clinically validated liquid biopsy assays that may inform treatment decisions in men with mCRPC, particularly after failure of first-line AR-therapy. The importance of AR-variants is likely to increase with the earlier use of AR-targeting strategies in other settings, and novel interventions for these men are needed.
Collapse
Affiliation(s)
- Landon C Brown
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Pardy L, Rosati R, Soave C, Huang Y, Kim S, Ratnam M. The ternary complex factor protein ELK1 is an independent prognosticator of disease recurrence in prostate cancer. Prostate 2020; 80:198-208. [PMID: 31794091 PMCID: PMC7302117 DOI: 10.1002/pros.23932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Both hormone-sensitive and castration- and enzalutamide-resistant prostate cancers (PCa) depend on the ternary complex factor (TCF) protein ELK1 to serve as a tethering protein for the androgen receptor (AR) to activate a critical set of growth genes. The two sites in ELK1 required for AR binding are conserved in other members of the TCF subfamily, ELK3 and ELK4. Here we examine the potential utility of the three proteins as prognosticators of disease recurrence in PCa. METHODS Transcriptional activity assays; Retrospective analysis of PCa recurrence using data on 501 patients in The Cancer Genome Atlas (TCGA) database; Unpaired Wilcoxon rank-sum test and multiple comparison correction using the Holm's method; Spearman's correlations; Kaplan-Meier methods; Univariable and multivariable Cox regression analyses; LASSO-based penalized Cox regression models; Time-dependent area under the receiver operating characteristic (ROC) curve. RESULTS ELK4 but not ELK3 was coactivated by AR similar to ELK1. Tumor expression of neither ELK3 nor ELK4 was associated with disease-free survival (DFS). ELK1 was associated with higher clinical T-stage, pathology T-stage, Gleason score, prognostic grade, and positive lymph node status. ELK1 was a negative prognosticator of DFS, independent of ELK3, ELK4, clinical T-stage, pathology T-stage, prognostic grade, lymph node status, age, and race. Inclusion of ELK1 increased the abilities of the Oncotype DX and Prolaris gene panels to predict disease recurrence, correctly predicting disease recurrence in a unique subset of patients. CONCLUSIONS ELK1 is a strong, independent prognosticator of disease recurrence in PCa, underscoring its unique role in PCa growth. Inclusion of ELK1 may enhance the utility of currently used prognosticators for clinical decision making in prostate cancer.
Collapse
Affiliation(s)
- Luke Pardy
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Rayna Rosati
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Claire Soave
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Yanfang Huang
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Seongho Kim
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Manohar Ratnam
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
14
|
Ducker C, Chow LKY, Saxton J, Handwerger J, McGregor A, Strahl T, Layfield R, Shaw PE. De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Res 2019; 47:4495-4508. [PMID: 30854565 PMCID: PMC6511843 DOI: 10.1093/nar/gkz166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023] Open
Abstract
ELK-1 is a transcription factor involved in ERK-induced cellular proliferation. Here, we show that its transcriptional activity is modulated by ubiquitination at lysine 35 (K35). The level of ubiquitinated ELK-1 rises in mitogen-deprived cells and falls upon mitogen stimulation or oncogene expression. Ectopic expression of USP17, a cell cycle-dependent deubiquitinase, decreases ELK-1 ubiquitination and up-regulates ELK-1 target-genes with a concomitant increase in cyclin D1 expression. In contrast, USP17 depletion attenuates ELK-1-dependent gene expression and slows cell proliferation. The reduced rate of proliferation upon USP17 depletion appears to be a direct effect of ELK-1 ubiquitination because it is rescued by an ELK-1(K35R) mutant refractory to ubiquitination. Overall, our results show that ubiquitination of ELK-1 at K35, and its reversal by USP17, are important mechanisms in the regulation of nuclear ERK signalling and cellular proliferation. Our findings will be relevant for tumours that exhibit elevated USP17 expression and suggest a new target for intervention.
Collapse
Affiliation(s)
- Charles Ducker
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Leo Kam Yuen Chow
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Janice Saxton
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jürgen Handwerger
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander McGregor
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Thomas Strahl
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert Layfield
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter E Shaw
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
15
|
Zarif JC, Antonarakis ES. Targeting ELK1: a wELKome addition to the prostate cancer armamentarium. ACTA ACUST UNITED AC 2018; 3. [PMID: 30542670 DOI: 10.21037/amj.2018.10.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jelani C Zarif
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|